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Abstract. Present methodologies for source apportionment assume fixed source profiles. Since meteorology and human 10 

activity patterns change seasonally and diurnally, application of source apportionment techniques to shorter rather than longer 

time periods generates more representative mass spectra. Here, we present a new method to conduct source apportionment 

resolved by time of day using the underlying approach of positive matrix factorization (PMF). We call this approach “time-

of-day PMF” and statistically demonstrate the improvements in this approach over traditional PMF. We report on source 

apportionment conducted on four example time periods in two seasons (winter and monsoon 2017), using organic aerosol 15 

measurements from an Aerosol Chemical Speciation Monitor (ACSM). We deploy the EPA PMF tool with the underlying 

Multilinear Engine (ME-2) as the PMF solver. Compared to the traditional seasonal PMF approach, we extract a larger number 

of factors as well as PMF factors that represent the expected sources of primary organic aerosol using time-of-day PMF. By 

capturing diurnal time series patterns of sources at a low computational cost, time-of-day PMF can utilize large datasets 

collected using long-term monitoring and improve the characterization of sources of organic aerosol compared to traditional 20 

PMF approaches that do not resolve by time of day. 

1 Introduction 

Air pollution is considered the greatest current environmental health threat to humanity, with an estimated mortality burden of 

7 million per year (World Health Organization, 2018; Schraufnagel et al., 2019; Health Effects Institute, 2020). Air pollutants 

also cause climate forcing and environmental damages to ecosystems and biodiversity (Intergovernmental Panel on Climate 25 

Change, 2019; Intergovernmental Panel on Climate Change, 2021). Apart from physiological and environmental effects, air 

pollution is associated with negative psychological, economic, and social effects (Lu et al., 2020). High racial, ethnic, income, 

regional, and nationality-based disparities exist in air pollution exposure, making air pollution exposure an important 

environmental justice issue (Hajat et al., 2015; Goodkind et al., 2019; Tessum et al., 2019; Thind et al., 2019; Health Effects 

Institute, 2020; Pandey et al., 2020; Chakraborty et al., 2021). These disparities are associated with a wide variety of sectors, 30 
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activities, processes, and pollutants (Thakrar et al., 2020). Policy solutions targeting specific pollutants have led to non-uniform 

reductions of air pollution contributions of different sectors (Tschofen et al., 2019). Thus, reduction of air pollution is essential 

to global health and can be expected to generate long-term societal benefits (Tessum et al., 2018; Tschofen et al., 2019; 

Organization for Economic Co-operation and Development, 2020). However, more than half the world’s population is exposed 

to increasing air pollution (Shaddick et al., 2020). Most of this population lives in developing nations. Moreover, economic 35 

resources are limited, and reduction of air pollution alongside continued economic growth requires investment in abatement 

measures for older technologies and adoption of cleaner technologies (Lei et al., 2021). Thus, sources of air pollution need to 

be prioritized to appropriately focus limited resources on the most effective abatement measures. This prioritization should be 

based on the contributions of different emission sources to air pollution in a region. 

Source apportionment is the practice of attributing air pollution to different causes such as sectors (residential, 40 

industrial), activities (traffic, biomass burning) and atmospheric processes (oxidation). Several approaches have been 

developed to conduct source apportionment studies (Belis et al., 2014). Broadly, these approaches can be categorized into 

emission inventories, receptor-oriented modeling, and source-oriented modeling. These approaches have been accepted by 

regional, national, and international agencies for use in air quality policy and planning (Belis et al., 2014; Environmental 

Protection Agency, 2017; California Air Resources Board, 2018; Wayland, 2018). Source-oriented models and emission 45 

inventories together capture the emissions, chemical transformation, transport, and dispersion of pollution. However, they have 

heavy computational burden, require extensive data collection, and are subject to cumulative uncertainties from model inputs 

as well as the different computational components (Hopke et al., 2016). Receptor models are mathematical tools with relatively 

lower computational requirements that use mass balance analysis to output source contributions (time series of source 

concentrations) and source profiles (relative strength of different pollutants) for identified sources of air pollution (Belis et al., 50 

2013; Hopke et al., 2016). Positive Matrix Factorization (PMF) has been identified as an appropriate receptor modeling 

technique that can be deployed for quantifying source contributions for air quality management (Belis et al., 2015). 

Three tools are currently in active use for application of PMF to atmospheric datasets: the IGOR PMF Evaluation 

Tool (PET) (Ulbrich et al., 2009), the EPA PMF tool (Brown et al., 2012), and Source Finder (SoFi) (Canonaco et al., 2013). 

The IGOR PET tool uses the PMF2 program to resolve factors from 2-D matrices (Paatero and Tapper, 1994; Ulbrich et al., 55 

2009). Further details on the statistical basis of this method are available elsewhere (Ulbrich et al., 2009; Zhang et al., 2011, 

and references therein). Both SoFi and EPA PMF are based on the Multilinear Engine (ME-2), which allows the application 

of factor profile constraints to extract specific sources (Paatero et al., 1999; Paatero et al., 2002; Canonaco et al., 2013; Crippa 

et al., 2014; Norris et al., 2014). PMF2 does not allow the application of factor profile constraints, and it often results in greater 

uncertainty in solutions, poorer source separation, and fewer identified sources compared to ME-2 (Ramadan et al., 2003, 60 

Amato et al., 2009; Amato and Hopke, 2012). A further important advantage of the EPA PMF tool over Igor PET and SoFi 

are its error estimation techniques, which systematically account for both random error and rotational ambiguity using 

bootstrapping, displacements, and bootstrap-displacements, as explained in more detail in Sect. 2.5. (Paatero et al., 2014; 
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Brown et al., 2015). Currently, the IGOR PET and the SoFi tools only use bootstrapping to account for random errors and, 

partially, rotational ambiguity (Ulbrich et al., 2009; Canonaco et al., 2020). 65 

PMF tools have been applied to identify sources using long-term datasets spanning multiple years (Zhang et al., 2019; 

Heikkinen et al., 2020), seasonal datasets accounting for seasonal variability (Amil et al., 2016; Bikkina et al., 2019; Bhandari 

et al., 2020; Patel et al., 2021a), for studying special events (Reyes-Villegas et al., 2018; Rai et al., 2020, Patel et al., 2021b), 

to study spatial variability (Crippa et al., 2014; Robinson et al., 2018), as well as to connect sources to health effects 

(Daellenbach et al., 2020). Several studies have analysed the influence of meteorology after conducting source apportionment 70 

on a larger dataset (Venturini et al., 2014; Pauraite et al., 2019; Bhandari et al., 2020). Some studies have quantified the effect 

of meteorological variables on the performance of the source apportionment approach for the identification of sources, with or 

without stratification. One such study stratified data based on mean temperature and showed that accounting for temperature 

variability using gas-particle partitioning before conducting source apportionment improved the stability of the solution (Xie 

et al., 2013a, b). Similar data-segmentation schemes have been deployed for wind direction, wind speed, and precipitation, 75 

and these techniques resulted in a larger and more representative PMF factors (Park et al., 2019). 

A major limitation of PMF is the assumption of constant factor profiles throughout the modeling period—while the 

contribution of each factor is modelled to change over time, its profile (e.g., mass spectrum, when PMF is applied to mass 

spectrometer data) stays constant, which leads to modeling uncertainty (Ulbrich et al., 2009). Previous studies have tested the 

limitation of constant mass spectral profiles for seasonal and weekly changes in meteorology and activity patterns (Canonaco 80 

et al., 2015; Reyes-Villegas et al., 2016; Canonaco et al., 2020). These studies found that annual and seasonal datasets from 

an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Research, Billerica, MA) show high variations in mass spectral 

contributions which cannot be sufficiently captured when PMF is conducted on the complete dataset. These studies 

recommended conducting PMF analysis on shorter time frames (weeks–months) with limited variability of emissions and 

meteorology. However, meteorological conditions influence source apportionment on hourly and smaller time scales; for 85 

example, changes in ventilation (Dai et al., 2020) and photochemistry (Lelieveld et al., 1991) affect source apportionment 

results. Human activity patterns also vary with time leading to changes in source cocktails—for example, we expect higher 

cooking emissions during cooking-influenced periods (Abdullahi et al., 2013; Patel et al., 2021), higher traffic emissions during 

rush hours (Zhang et al., 2013), and time-of-day, day-of-week, and month-of-year patterns for other emission sources (Crippa 

et al., 2020). These changes in meteorology, photochemistry, and sources lead to diurnal variability in mass spectra. For 90 

example, Canonaco et al. (2015) showed that the mass spectra of secondary organic aerosol (SOA) changed with 

concentrations of OX (O3+NO2), which shows high diurnal variability due to monotonic association with ambient 

temperature. Finally, diurnal variability of time series patterns is frequently used for PMF factor selection and representation 

(Zhang et al., 2011). As an example, using data from 11 days of PMF runs, Williams et al. (2010) presented bihourly diurnal 

variability of PMF factor time series contributions. Recognizing the importance of variability of source influence at receptor 95 

sites, previous research has examined the influence of sampling periods, sampling time resolution, and time series variability 

of source emissions on the final PMF result (Tian et al., 2017; Wang et al., 2018).  Results from these studies suggest that, 
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given the assumption of constant factor profiles in PMF, PMF analysis should be conducted on time-resolved datasets. 

Additionally, to capture source emission and meteorological variability over the day, data from all times of day should be 

collected. Thus, an ideal PMF technique would make the most of the high-time resolution of datasets while assuming constant 100 

factor profiles for periods with limited variability in emissions and meteorology. 

One such approach is conducting different PMF runs for different times of the day across long-term datasets. A key 

advantage of such sub-setting is that it captures the diurnal variability in source apportionment using PMF while keeping 

computational load to a minimum. Differences in factor profiles between the seasonal PMF and time-of-day PMF runs may 

indicate the effect of diurnal process changes and/or reactivity (Norris et al., 2014). Conducting PMF on smaller time windows 105 

is expected to improve results for another reason. Positive Matrix Factorization approaches have influence functions that are 

designed to account for the influence of outliers on the solutions (Paatero et al., 1994; Paatero et al., 1997; Ulbrich et al., 2009). 

These outliers depend on the time window on which the factorization is being applied (Paatero et al., 1997). A shorter time 

window for analysis is influenced by outliers present in that time window only, and not any other period. Thus, a shorter time 

window can be expected to give higher factor resolution, given that the influence of many outliers in the dataset is removed. 110 

At the same time, the number of zeros in the dataset also assists with the quantification of PMF factors (Paatero et al., 1997). 

Thus, shortening time windows can also decrease the extraction of factors via PMF, as has been reported previously (Tian et 

al., 2017). 

This paper improves upon the seasonal source apportionment previously employed in Delhi (Bhandari et al., 2020). 

The Delhi Aerosol Supersite (DAS) study provides long-term chemical characterization of ambient submicron aerosol in Delhi, 115 

with near-continuous online measurements of aerosol composition (Gani et al., 2019; Arub et al., 2020; Bhandari et al., 2020; 

Gani et al., 2020; Patel et al., 2021a). In that study, PMF was conducted on six seasons of highly time-resolved speciated non-

refractory submicron aerosol (NR-PM1) organic (Org) mass spectrometer data from an Aerosol Chemical Speciation Monitor 

(ACSM) in the PMF receptor model at a time resolution of 5–6 min. Then, we deployed the IGOR PET tool on seasonal 

datasets and 2–3 PMF factors were extracted. The extraction of a low number of factors implies low rotations, and therefore 120 

quantitative error estimation was not conducted in that study (Paatero et al., 1994). 

Here, we apply the approach of conducting PMF on long-term datasets where each day was separated into six 4 hour 

periods with limited variability in emissions and meteorology. In our knowledge, no study has systematically assessed the use 

of PMF on data resolved by time of day. In this paper, we report on PMF conducted on ACSM organic aerosol data from the 

two seasons of winter and monsoon 2017—collected as a part of the Delhi Aerosol Supersite (DAS) study—after resolving by 125 

time-of-day. Thus, factor MS is expected to vary in these time-of-day windows. The two seasons of winter and monsoon are 

selected for this analysis as they capture two extremes in seasonal concentrations, precipitation, and meteorology, especially 

in terms of temperature, ventilation coefficient, wind direction, and wind speed (Tables S1 and S2, Fig. S1). In addition, winter 

experiences extremely high organic and inorganic concentrations and high pollution episodes dominated by primary emissions 

(Gani et al., 2019; Bhandari et al., 2020). We use the EPA PMF tool to apply constraints, extract a larger number of factors, 130 

and quantify errors in PMF solutions. 
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2 Methods 

2.1 Statistical basis of approach 

ME-2 is a multilinear unmixing model that can be used to perform bilinear deconvolution of a measured mass spectral matrix 

(X) into the product of positively constrained mass spectral profiles (F) and their corresponding time series (G), as shown in 135 

Eq. (1). In Eq. (1), E corresponds to the data residual not fit by the model. Given that time series and mass spectra are 

deconvoluted, the model mass spectral profiles are assumed to remain constant in time. The mass balance equation underlying 

the bilinear implementation of the factor analytical model and the optimization problem in the EPA PMF tool can be 

represented as shown in Eq. 1–3. 

𝑋 = 𝐺𝐹 + 𝐸             (1) 140 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑝. 𝑓𝑝𝑗
𝑛
𝑝=1 + 𝑒𝑖𝑗                                       (2) 

 

Equation (2) is an elemental notation of Eq. (1). For ACSM data analysed here, xij represents an element of the m × n data 

matrix X, where i represents a single time point and j represents a measured ion or m/z. n corresponds to the number of factors 

in the PMF solution. Thus, gip refers to the time series contribution of the pth factor at the ith time point, and fpj represents the 145 

mass spectral contribution of the jth m/z in the pth factor profile.  

To derive factor time series and mass spectra in an iterative fitting process, ME-2 lowers residual by minimizing the 

quality of fit parameter Q, using the gradient approach (Norris et al., 2014; Eq. (3)). Thus, PMF attempts to achieve a global 

minimum to the optimization problem. Q is the weighted least-squares error (sum of squares of model error normalized to 

measurement error), or the summation of squares of scaled residuals of the fit at each data point. We do not expect the norm 150 

of the actual error matrix to be zero but instead close to the ACSM measured uncertainty (an element of the measured 

uncertainty is represented as σij in Eq. (3)). The quality of fit parameter corresponding to this uncertainty is called Qexp (Ulbrich 

et al., 2009). While Qexp is precisely equal to mn−p(m+n), for large m, n, it simplifies to ∼mn. Usually, PMF solutions start 

from very high Q⁄Qexp, and converge to 1 as more factors are added. We refer to the Q for the entire dataset as Q0. 

𝑄0 = 𝑀𝑖𝑛𝐹,𝐺𝑄 = ∑ ∑ (𝑒𝑖𝑗 𝜎𝑖𝑗⁄ )
2𝑛

𝑗=1
𝑚
𝑖=1             (3) 155 

For this discussion, we assume that Eq. (3) is subject to a constant mass spectrum F0, and variable time series G0. A 

key limitation of PMF is that it assumes constant MS profiles, even though source signatures can change over the course of 

the day. To address this limitation, we divide our data into time segments to conduct PMF analysis resolved by time-of-day. 

We refer to this time-resolved organic MS-based PMF as “time-of-day PMF” and the traditional approach as “seasonal PMF” 

in the paper. In the time-of-day PMF approach presented here, we minimize Q separately in each of these time-of-day windows. 160 
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2.2 Mathematical formulation of the time-of-day PMF approach 

The mathematical formulation of the time-of-day PMF approach is introduced in Eqs. 4–17. To provide an example for splitting 

of data by time-of-day, we modify Eq. 3, dividing the data matrix X into Xday (time, t ∈ [12 am, 12 pm)) and Xnight (time, t ∈ 

[12 pm, 12 am)) (Eq. 4). Here, we demonstrate that splitting the data by time-of-day will result in a better solution. Thus, 

𝑋 = {𝑋𝑑𝑎𝑦 , 𝑋𝑛𝑖𝑔ℎ𝑡}                (4) 165 

The mathematical representation of the objective functions for conducting PMF separately for Xday and Xnight periods are 

shown in Eq. 5 and Eq. 6 respectively. We call Q for these data subsets Q1 and Q2. 

𝑄1 = 𝑀𝑖𝑛𝐹,𝐺 (∑ ∑ (𝑒𝑖𝑗 𝜎𝑖𝑗⁄ )
2𝑛

𝑗=1∋𝑡𝑖𝑚𝑒∈𝑋𝑑𝑎𝑦
𝑚
𝑖=1 )               (5) 

𝑄2 = 𝑀𝑖𝑛𝐹,𝐺 (∑ ∑ (𝑒𝑖𝑗 𝜎𝑖𝑗⁄ )
2𝑛

𝑗=1∋𝑡𝑖𝑚𝑒∈𝑋𝑛𝑖𝑔ℎ𝑡
𝑚
𝑖=1 )              (6) 

For this discussion, we assume that Eq. (5) is subject to a constant mass spectrum F1, and variable time series G1 for dataset 170 

Xday, and Eq. (6) is subject to a constant mass spectrum F2, and variable time series G2 for the dataset Xnight. For simplification,  

𝐴(𝐹, 𝐺) = ∑ ∑ (𝑒𝑖𝑗 𝜎𝑖𝑗⁄ )
2𝑛

𝑗=1∋𝑡𝑖𝑚𝑒∈𝑋𝑑𝑎𝑦
𝑚
𝑖=1                (7)  

𝐵(𝐹,𝐺) = ∑ ∑ (𝑒𝑖𝑗 𝜎𝑖𝑗⁄ )
2𝑛

𝑗=1∋𝑡𝑖𝑚𝑒∈𝑋𝑛𝑖𝑔ℎ𝑡
𝑚
𝑖=1                (8)  

Thus,     𝑄1(𝐹1, 𝐺1) = 𝑀𝑖𝑛(𝐴) ∧ 𝑄2(𝐹2, 𝐺2) = 𝑀𝑖𝑛(𝐵)              (9) 

Using these definitions, we can also redefine Q0 as shown in Eq. 10. 175 

𝑄0(𝐹0, 𝐺0) = 𝑀𝑖𝑛(𝐴 + 𝐵)                 (10) 

Clearly, Q0 minimizes the sum of two functions 𝐴 and 𝐵. Thus, Q0 is a multi-objective optimization problem attempting to 

achieve global minimum for the combined dataset X (Gunantara et al., 2018; Eq. 10). The two functions A and B are globally 

minimized separately at (F1, G1) in Eq. 5 and at (F2, G2) in Eq. 6, respectively. Thus, by definition, Eq. 5 and Eq. 6 can be 

written as: 180 

𝑀𝑖𝑛𝐹,𝐺𝐴 ≤ 𝐴𝑓𝑜𝑟𝑎𝑙𝑙(𝐹, 𝐺)                                     (11) 

𝑀𝑖𝑛𝐹,𝐺𝐵 ≤ 𝐵𝑓𝑜𝑟𝑎𝑙𝑙(𝐹, 𝐺)                                (12) 

Adding the inequalities in Eq. (11) and Eq. (12), we get: 

𝑀𝑖𝑛𝐹,𝐺(𝐴) +𝑀𝑖𝑛𝐹,𝐺(𝐵) ≤ 𝐴 + 𝐵𝑓𝑜𝑟𝑎𝑙𝑙(𝐹, 𝐺)                        (13) 

Since this is true for all (F, G), this is also true for (F, G) that gives the minimum of 𝐴 + 𝐵. Thus, 185 

𝑀𝑖𝑛𝐹,𝐺(𝐴) +𝑀𝑖𝑛𝐹,𝐺(𝐵) ≤ 𝑀𝑖𝑛𝐹,𝐺(𝐴 + 𝐵),∨                        (14) 

𝑄1 + 𝑄2 ≤ 𝑄0,∨                                 (15) 

         𝑄1 + 𝑄2 ≤ 𝑄01 + 𝑄02                                 (16) 

In Eq. (16), Q01 and Q02 are Q contributions to Q0 in the (F, G) space corresponding to Q1 and Q2 respectively. Thus, we can 

see that if solutions to Q0 will attempt to minimize error in the (F, G) space corresponding to Q1 (minimize Q01), the obtained 190 

solution will likely worsen the error in the (F, G) space corresponding to Q2 (and therefore, not minimize Q02). This property 

of solutions to multi-objective optimization problems is inherent to a large class of solutions known as Pareto solutions, which 
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are used for source apportionment and air quality planning (Gunantara et al., 2018; Angelis et al., 2020). This limitation can 

also be viewed as a limitation on the mass spectral profiles—Q0 assumes constant mass spectral profiles for both day and night 

periods, and likely fits both periods worse than the scenarios of Q1 and Q2, where separate mass profiles for the two periods 195 

were developed. Thus, in the traditional approach, varying TS on non-varying MS can only capture changes as a linear TS 

scaling factor for all MS contributions. In the time-of-day PMF approach, both MS and TS are varying, and we can expect 

new MS and TS patterns. For the special case of day-night data split, where equal number of points are collected in Xday and 

Xnight, Qexp (~ mn) corresponding to the two matrices are equal (we call it Qexpdn), whereas we call it Qexp corresponding to 

the matrix X would be double that value (2Qexpdn). Using these Qexpdn values, Eq. 16 can be written as 200 

𝑄1 𝑄𝑒𝑥𝑝𝑑𝑛⁄ + 𝑄2 𝑄𝑒𝑥𝑝𝑑𝑛⁄ ≤ 𝑄01 𝑄𝑒𝑥𝑝𝑑𝑛⁄ + 𝑄02 𝑄𝑒𝑥𝑝𝑑𝑛⁄                               (17) 

Clearly, using the day-night split thought experiment, we show that the sum of Q1 and Q2 (and the equivalent sum in Q/Qexp) 

would be lower than Q0 (and the equivalent sum of Q/Qexp components). By inference, dividing the time series into periods 

of similar length (six 4 hour segments in this manuscript) should result in a similar relationship as Eq. (17). Overall, conducting 

PMF on each of such time-of-day periods challenges the assumption of diurnally non-varying MS factors in typical PMF. 205 

 

Table 1 Summary of meteorology in the time-of-day PMF periods 

Season and Period T (K) RH (%) VCa (m2/s) PBLH* (m) WS (m/s) WD (°N) 
Nomenclatur

e 

W17 1100–1500 LT  294  93 3870 (3790) 1353 (1356)  2.9  -14.0 W-11-15 

W17 2300–0300 LT  286  62 707 (188) 273 (64)  2.5  -49.0  W-23-03 

M17 1100–1500 LT  308  82 6179 (6222) 2022 (2061)  3.1  6.9 M-11-15 

M17 2300–0300 LT  302  73 1182 (237) 428 (84)  2.5  68.0 M-23-03 

 aMedian values for VC and PBLH are reported in parenthesis. 

2.3 Sampling site and measurements 

As a part of the DAS study, an ACSM (Aerodyne Research, Billerica, MA) was operated at ∼0.1 L min−1 at ∼1 min time 210 

resolution in a temperature-controlled laboratory on the top floor of a four-story building at IIT Delhi (Ng et al., 2011b). 

Additionally, BC, ultraviolet-absorbing particulate matter (UVPM), and their difference ΔC were measured using a seven-

wavelength aethalometer operated at the 1L min−1 flow rate and 1 min time resolution (Magee Scientific Model AE33, 

Berkeley, CA) (Drinovec et al., 2015). These instruments were on separate sampling lines, both of which had a PM2.5 cyclone 

followed by a water trap and a Nafion membrane diffusion dryer (Magee Scientific sample stream dryer, Berkeley, CA). Full 215 

details of sampling site, instrument setup, operating procedures, calibrations, and data processing are described in a separate 

publication (Gani et al., 2019). 

We collected the data used in this paper in winter (January–February 2017) and monsoon (July–September 2017). 

Definition of the seasons comes from the Indian National Science Academy (2018) (Table 2 from Bhandari et al., 2020). 
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Diurnal plots of meteorological variables are shown in Fig. S1. We conduct seasonal PMF runs for winter and monsoon 2017 220 

and time-of-day PMF runs for two periods (1100–1500 LT and 1900–2300 LT) in the two seasons. We used the dataset 

obtained by averaging every five consecutive measurements for the seasonal PMF runs. We selected organic spectral data at a 

specific set of m⁄z values between m∕z 12 and m∕z 120. This approach is the commonly used approach, and the reasons for the 

selection of the specific set of m∕z values have been described previously (Zhang et al., 2005). Spring, summer, and autumn 

(mid-September to November) periods are not included in the analysis here; but seasonal PMF analysis has been presented in 225 

previous publications (Bhandari et al., 2020; Patel et al., 2021a). 

2.4 PMF tool and runs 

Here, we used two alternative approaches for conducting PMF. In one approach, we apply PMF by splitting the data into six 

4 hour time windows each day to illustrate the use of our time-of-day PMF method. The choice of the four-hour window was 

based on a preliminary PMF analysis conducted on monsoon that allowed us to identify the influence of cooking organic 230 

aerosol, based on the ratio of contributions at m/z 55:57 (Robinson et al, 2018). We started from 12 hour time windows and 

kept decreasing the window size until the ratio was substantially greater than 1.6, suggesting the presence of a COA factor in 

at least one such time window (in this case, it was M-23-03, Table 2). We also conduct seasonal PMF runs for winter and 

monsoon 2017 and time-of-day PMF runs for two periods (1100–1500 LT-local time and 1900–2300 LT) in the two seasons. 

Thus, we conduct four time-of-day PMF runs in total. The two time-of-day periods in each season are selected to differentiate 235 

between the influence of primary sources, changing MS due to reaction chemistry, and the effect of meteorology (Table 1, Fig. 

S1).  As shown in the companion paper, these periods represent the two extremes in total NRPM1 concentrations (Tables 1–2, 

Bhandari et al., 2022). Results from PMF analysis for all times of the day are presented in a companion paper (Bhandari et al., 

2022), and a brief summary of those results is also provided in the Supplement of this paper (Sect. S5). In monsoon and winter, 

traffic is expected to be a dominant source at night due to low cooking-related emissions and overlap with high nighttime 240 

traffic on major traffic corridors (Mishra et al., 2019). At midday in monsoon, high temperatures and solar flux imply high 

photochemical processing of aerosols; therefore, we expect to see more oxidized aerosols (Table 1, Fig. S1). At winter 

nighttime, biomass burning for heating is an expected source. To refer to PMF runs corresponding to specific time windows, 

we use the nomenclature “Season” + “Period” style in the format “S-TT-TT” (Table 1). For example, W-11-15 corresponds to 

the 1100–1500 LT of Winter 2017. Using data presented in this paper, we also compare the Q (and Q/Qexp) values from the 245 

seasonal PMF runs corresponding to the periods of the time-of-day windows (Sect. 3.5). While this work addresses the diurnal 

variations in MS patterns, future work could investigate the optimal length of the time window to sufficiently represent the 

finer diurnal variations (less than four hours) in mass spectral profiles while managing computational burden. 

 The EPA PMF v5.0 tool was used to conduct ME-2 analysis on this dataset and interpret its results (Norris et al., 

2014). Further details on the statistical basis of this method are available elsewhere (Paatero et al., 1999; Paatero et al., 2002). 250 

For the base run, the iterative PMF technique does not make any assumptions for source or time profiles. If factors extracted 

in the base run were not clearly associated with a source type but suggestive of the presence or mixing of specific sources, 
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constraints were applied on the factors in the base run to extract cleaner source profiles (Brown et al., 2012; Brown et al., 

2015). An R package was developed to automate the process of data analysis of EPA PMF outputs (R Core Team, 2019). We 

readjusted the results from PMF analysis to account for underestimation of factor mass based on the selected m∕z values only. 255 

To account for particle losses, we applied transmission and collection efficiencies after conducting PMF analysis (Gani 

et al., 2019).  

 Details of the steps for conducting PMF, R code, and criteria for factor selection are discussed in detail in the 

Supplement (Sect. S1). Briefly, for selection of PMF solutions, we started by analysing the different statistics of Q/Qexp (a 

measure of fit), correlogram of residual TS and correlation with external tracers, time series patterns in residuals, and PMF fits 260 

at different m/zs (Table S4). We also considered the correlation of factor mass spectral profiles with reference mass spectra 

since MS of different factors are characterized by different spectral signature peaks (Zhang et al., 2011). For example, 

hydrocarbon-like organic aerosol (HOA) is a proxy for fresh traffic and combustion emissions and shows prominent peaks at 

m⁄z values 55 and 57 and a higher fractional organic signal at m⁄z 43 than m⁄z 44. For separation of cooking organic aerosol 

(COA) and distinguishing it from HOA in this study, we used the Robinson et al (2018) ratio of contributions at m/z 55:57 of 265 

1.6 as a preliminary test for relative positioning of the HOA and COA profiles (COA factors with the ratio close to or greater 

than 1.6 and HOA profiles with the ratio substantially lower than 1.6). We also validated obtained PMF factors by correlation 

of factor time series with external tracers. We use two tracers for HOA-influence: CO and the fossil-fuel component of black 

carbon, BCFF, estimated using the model of Sandradewi et al. (2008). For the time-series of BBOA factors, we use three tracers: 

(i) chloride (under the influence of agricultural and other open waste burning-related contributions (Li et al., 2014a, b; Kumar 270 

et al., 2015; Fourtziou et al., 2017), (ii) ΔC, defined as the difference between UVPM (370 nm) and BC detected by the 

aethalometer (Wang et al., 2011; Olson et al., 2015; Tian et al., 2019), and (iii) the biomass-burning component of black 

carbon, BCBB, estimated using the model of Sandradewi et al. (2008). COA-related factors often exhibit weak correlations 

with external tracers (Huang et al., 2010, Sun et al., 2011, Liu et al., 2012, Sun et al., 2013, Hu et al., 2016, Stavroulas et al., 

2019). Additionally, the EPA PMF tool provides detailed uncertainty analysis tools to validate how representative the chosen 275 

PMF solutions are for the respective time windows. Here, we use the uncertainty analysis to select PMF solutions and only 

finalize solutions that pass the EPA PMF tests of random error and rotational ambiguity, as described below in Sect. 2.5. The 

application of these detailed uncertainty analyses to select a PMF solutions for each time window, including the consideration 

of 3–8-factor solutions, is documented in Table S6, with supporting information in Tables S5, S7–S10. 

2.5 Uncertainty estimation 280 

In EPA PMF, quantitative error estimation (EE) of random error and rotational ambiguity was conducted using Bootstrapping 

(BS), Displacement (DISP), and Bootstrapping enhanced with Displacement (BS-DISP). This detailed uncertainty analysis 

ensures that the identified MS/TS are representative of the four-hour time windows by fitting 100s-10000s of PMF-like model 

runs to data subgroups within the four-hour time windows (Paatero et al., 2014). Detailed summary statistics from running 

these uncertainty analyses are presented as mappings onto the PMF solution for the entire time domain (Tables S8-S10). The 285 
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algorithms and computational workload of these techniques are described in detail elsewhere (Paatero et al., 2014). The 

application of these EE techniques leads to several orders of magnitude increase of computational time and memory 

requirements in conducting PMF runs (Paatero et al., 2014). 

Bootstrapping or BS estimates “disproportionate effects of a small set of observations on the solution”. In the process, 

BS accounts for random error and to a limited extent rotational ambiguity (Norris et al., 2014). EPA PMF automatically 290 

identifies BS datasets using the parameter “Block Size” that is based on the principle of stationarity and accounts for underlying 

serial correlations (Politis and White, 2004). The default calculation of the “Block size” in EPA PMF is based on incorrect 

calculations and updated calculations have been published (Patton et al., 2009) but not implemented in the EPA PMF tool. We 

used the corrected block size estimation procedure as shown in the Supplement (Sect. S2, Table S5). BS factors are then 

mapped to base factors using the parameter “Minimum Correlation R-Value”, which is the minimum Pearson correlation 295 

coefficient used for BS factor assignment. We use the default value of 0.6 and conduct 100 BS runs for each PMF solution. 

Specification of too many factors in the base model may create artificial PMF factors (Ulbrich et al., 2009). BS factors with 

rotational ambiguity may also get mapped to other base factors. This scenario is called factor swapping and occurs for not-

well-defined (NWD) solutions. These factors will likely have low BS mapping with their equivalent base run factors (Paatero 

et al., 2014). We only finalize PMF factor solutions with approximately 80% or more BS mapping for all PMF factors.  300 

Displacement or DISP estimates rotational ambiguity in PMF solutions by identifying the range of allowable MS 

profile contributions in the PMF factors. Bootstrapping enhanced with Displacement or BS-DISP combines the bootstrap and 

displacement techniques to simultaneously estimate random error and rotational ambiguity in PMF solutions. In BS-DISP, BS 

resamples explore the solution space randomly and DISP explores the rotationally accessible space around each BS resample. 

The ranges in DISP are obtained corresponding to four limits on changes in the Q-value (dQ-max): 4, 8, 15, and 25. BS-DISP 305 

also reports ranges for contributions at different m/zs to MS profiles of PMF factors. These ranges correspond to four limits 

on changes in the Q-value (dQ-max): 0.5, 1, 2, and 4. The obtained PMF factors using both approaches are then mapped to 

base factors, and the number of cases of factor swaps are noted. Sometimes, DISP and BS-DISP runs are terminated when 

encountering large changes in the Q-value, which suggests the base case solution is not close to the global minimum. Generally, 

small changes in Q suggest PMF solutions are close to the global minimum. Additionally, small number of factor swaps 310 

suggest low rotational ambiguity and robustness of the PMF solution. We only finalize PMF solutions with very few swaps at 

the smallest dQ-max value. Some DISP and BS-DISP runs terminated due to computational limits or encountering high dQ-

max. For these cases, we used the number of factor swaps at termination as an estimate of total factor swaps. Finally, even 

when solutions with factor swaps are encountered, only solutions with swaps among the lowest number of factors are 

considered interpretable (Norris et al., 2014). All other solutions are rejected. 315 
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3 Results and discussion 

In this paper, we focus on the implementation of the time-of-day PMF technique on organic aerosol measured during monsoon 

midday and night periods and winter midday and night periods (Table 1). We report average concentrations of PMF factors in 

Table 2. For reference, data from seasonal PMF analysis are also presented. We find that time-of-day PMF analysis: (i) 

generates a larger diversity of primary factors than seasonal PMF, (ii) resolves mass spectra of cooking-related factors such as 320 

cooking organic aerosol (COA), mixed COA-HOA, and solid fuel combustion organic aerosol (SFC-OA) in Delhi, that are 

relatively unexplored (Tobler et al., 2020), and (iii) resolves different kinds of biomass burning organic aerosol (BBOA)-

related factors (two BBOAs, one SFC-OA) based on MS and TS correlations (Sect. 3.3) (Table 2). Seasonal monsoon PMF 

analysis represents primary organic aerosol (POA) by a single hydrocarbon-like organic aerosol (HOA) whereas monsoon 

time-of-day PMF analysis represents midday POA as a mixed COA-HOA factor and nighttime POA as separate HOA and 325 

COA. In winter, seasonal PMF analysis separates POA into HOA and BBOA factors. In winter time-of-day PMF analysis, 

midday POA separates into an SFC-OA factor and a BBOA factor, and nighttime PMF analysis gives HOA and BBOA. All 

analyses generate two oxidized organic aerosol (OOA) factors. Time series of the different time-of-day PMF factors are shown 

in Figs. 1–2.  

In Sect. 3.1, we discuss the mass spectral profiles (MS) and time series patterns (TS) of factors obtained in seasonal 330 

PMF analysis conducted for winter and monsoon. In Sect. 3.2, we discuss the mass spectral profiles and time series patterns 

of factors obtained in time-of-day PMF analysis conducted for winter and monsoon midday and nighttime periods. In Sect. 

3.3, we contrast the mass spectra and time series patterns of primary and secondary PMF factors obtained from time-of-day 

and seasonal PMF analyses. The mass spectra of POA, a proxy for primary OA, and OOA, a proxy for secondary OA were 

calculated by adding the component factors corresponding to each type (e.g., POA = HOA + BBOA + COA) weighted by their 335 

respective time series contributions. This estimation allows a comparison between the results from the time-of-day and 

seasonal analyses. In Sect. 3.4, we compare the midday and nighttime POA and OOA MS profile results from the seasonal 

PMF and the time-of-day PMF approach. Our hypothesis is that the time-of-day PMF approach will show larger variability 

across the two time periods. In Sect. 3.5, we discuss period-specific Q (and Q/Qexp) values for the time-of-day PMF approach 

and the seasonal PMF approach. We also compare the Q/Qexp TS patterns and Q/Qexp by m/z to identify periods and m/zs 340 

with particularly significant changes in Q/Qexp. 



12   
 

 

Figure 1. Hourly averaged seasonally representative concentration time series of time-of-day PMF (a) primary and (b) secondary 

factors for winter 2017 (in µg m−3). POA PMF factors show stronger variability than OOA PMF factors. (Chopped lines are due to 

the analysis conducted on two 4-hour periods each day.) 345 
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Figure 2. Hourly averaged seasonally representative concentration time series of time-of-day PMF (a) primary and (b) secondary 

factors for monsoon 2017 (in µg m−3). POA PMF factors show stronger variability than OOA PMF factors. (Chopped lines are due 

to analysis conducted on two 4-hour periods each day.) 

 350 

 

 

Table 2 PMF factor concentrations in seasonal PMF and time-of-day PMF analysis (in µg m-3). 

Season Period PMF Run Type Factor Type Factor Concentrations 

M17 

11-15 

Seasonal 
POA (HOA) 2.5 (2.5) 

OOA (Local OOA, Regional OOA) 18.7 (5.4, 13.3) 

Time resolved 
POA (COA-HOA) 4.0 (4.0) 

OOA (Local OOA, Regional OOA) 17.4 (6.4, 11.0) 

 

23-03 

 

Seasonal 
POA (HOA) 8.8 (8.8) 

OOA (Local OOA, Regional OOA) 21.4 (10.7, 10.8) 

Time resolved POA (HOA, COA) 12.1 (7.7, 4.4) 
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   OOA (Local OOA, Regional OOA) 17.8 (7.7, 10.0) 

W17 

       

11-15 

Seasonal 
POA (HOA, BBOA) 13.3 (3.5, 9.7) 

OOA (Local OOA, Regional OOA) 55.5 (13.0, 42.4) 

Time resolved 
POA (SFC-OA, BBOA) 23.0 (18.1, 4.9) 

OOA (Local OOA, Regional OOA) 46.6 (37.6, 8.9) 

23-03 

Seasonal 

 

POA (HOA, BBOA) 86.3 (49.3, 37) 

OOA (Local OOA, Regional OOA) 56.5 (22.3, 34.2) 

Time resolved 
POA (HOA, BBOA) 71.8 (35.5, 36.2) 

OOA (Local OOA, Regional OOA) 70.9 (18.7, 52.2) 

 

3.1 Seasonal PMF runs 355 

The analysis in this section focuses on the PMF factors from seasonal PMF analysis; since this work focuses on specific times 

of day, the results are presented only for the 1115 and the 2303 time windows. Due to differing meteorology, sources, and 

photochemistry, the factor speciation, their mass spectra, and their time series patterns are quite different in the two seasons. 

A comparison of POA and OOA in different seasons has been previously presented (Bhandari et al., 2020). In winter, seasonal 

PMF analysis results in two factors representing POA, namely HOA and BBOA, whereas only HOA is obtained in monsoon 360 

seasonal PMF analysis. In the two seasonal PMF runs, we also obtain two OOA factors: local (less oxidized) OOA and regional 

(more oxidized) OOA (Drosatou et al., 2019; Table 2). 

The behaviour of the HOA factor MS is in line with the reference HOA factor MS, as suggested by the dominance of 

hydrocarbon signatures in the HOA spectrum belonging to the series CnH2n−1+ and CnH2n+1+ (Ng et al., 2011a; Bhandari et al., 

2020; Pearson R∼0.95; Figs. S4 and S5). In monsoon, the seasonal PMF HOA MS is also strongly correlated with the reference 365 

COA factor MS (Ng et al., 2011a; Pearson R∼0.90; Fig. S5). However, the monsoon seasonal POA factor MS had a m/z 55 to 

m/z 57 ratio of 1.2 (Fig. S5). Therefore, the seasonal monsoon POA factor is presented as an HOA factor. This HOA factor 

has stronger correlations with tracers CO (Spearman R: 0.73) and BCFF (Spearman R: 0.91) than the OOA factors (Fig. S6). 

In winter, the fractional contributions of the BBOA factor MS at m/zs 60, 73, and 115 are in line with the reference BBOA 

factor MS (He et al., 2010; Crippa et al., 2014; Bertrand et al., 2017; Pearson R∼0.90; Fig. S7). As expected, POA tracers, 370 

carbon monoxide (CO) and black carbon (BC), correlate more strongly with HOA and BBOA factor TS than with the OOA 

factor TS (Figs. S6 and S8). Additionally, BBOA correlates with chloride, particularly in the evening, suggestive of agricultural 

and other open waste burning-related contributions (Li et al., 2014a, b; Kumar et al., 2015; Fourtziou et al., 2017; Spearman 

R∼0.70; Figs. S8 and S9). We also observe strong correlations of the local OOA factor with chloride (Spearman R∼0.65; Fig. 

S8). These results are consistent with our previous seasonal organic-inorganic PMF analysis which suggested that chloride, 375 

associated with an oxidized BBOA factor (likely a combination of local OOA and BBOA) with weak BCBB and ΔC 
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correlations, might be linked to an industrial source (Bhandari et al., 2020). Indeed, chloride has weak correlations with BCBB 

(Spearman R∼0.45; Figs. S8 and S9). 

OOA factors are principally associated with secondary organic aerosol (SOA; Zhang et al., 2011). Mass spectra of 

both local OOA and regional OOA correlate strongly with the reference OOA factor (Figs. S10–S11a–b; Pearson R≥0.95). 380 

However, local OOA correlates more strongly with the reference semi-volatile oxidized organic aerosol (SVOOA) factor 

(Zhang et al., 2011; Drosatou et al., 2019; Figs. S10 and S11; Pearson R∼0.80). The time series of the regional OOA factor 

correlates stronger with sulfate, whereas local OOA correlates stronger with chloride and black (BC) and brown carbon 

(UVPM) (Figs. S6 and S8). Overall, regional OOA shows less diurnal variability than local OOA, in line with a regional origin 

(Figs. S12 and S13). Detailed 15 min time series patterns of seasonal PMF factors for the midday (1115) and nighttime (2303) 385 

periods in the two seasons are discussed in the Supplement (Sect. S3). 

3.2 Time-of-day PMF runs 

The analysis in this section focuses on the PMF factors from time-of-day analysis for the 1115 and the 2303 time windows. 

Here, we show that time-of-day PMF analysis resolves mass spectra of cooking- and biomass burning-related factors (one 

COA, one mixed COA-HOA, one SFC-OA, two BBOAs) based on MS and TS correlations. Only nighttime periods separate 390 

clean HOA factors. 

3.2.1 Primary factor MS and TS 

Winter 2017 Primary factor MS 

At winter midday, PMF analysis results in two factors representing POA, SFC-OA and BBOA, whereas at nighttime, HOA 

and BBOA are obtained (Table 2). The behavior of the winter time-of-day PMF HOA factor MS is in line with the reference 395 

HOA factor MS (Ng et al., 2011a; Pearson R>0.95; Fig. S17a). The MS of the winter BBOA factors obtained are correlated 

with the reference profile but differ in contributions at key m/z values such as m/zs 29, 43, and 44 (Pearson R≥∼0.8; Fig. S16b, 

S17b). Both MS profiles show much larger m/z 29 contributions than the reference profile, suggesting a strong influence of 

wood burning (Bahreini et al., 2005; Schneider et al., 2006). The winter midday BBOA is more oxidized (MS shows higher 

ratio of contributions at m/z 44 to m/z 43) and shows a low m/z 60 contribution. It also has a high contribution at m/z 15 (Fig. 400 

S16b). Similar BBOA MS profiles with high m/z 15 have been observed previously as well (Crippa et al., 2013). In contrast, 

the winter nighttime BBOA is less oxidized and BBOA MS shows an m/z 60 contribution closer to the higher end of the 

reference profile (Fig. S17b). At midday in winter, we also obtain a mixed POA factor (Fig. S16a). We call it solid fuel 

combustion organic aerosol (SFC-OA) as the factor MS correlates with multiple reference MS profiles such as BBOA, HOA, 

and COA (Pearson R>0.8). This behaviour is similar to a seasonal PMF SFC-OA factor identified recently in ToF-ACSM 405 

analysis for NR-PM2.5 in Delhi. In that study, that factor was expected to be associated with heating- and cooking-related 

domestic fuel combustion and open-fire activities (Tobler et al., 2020; correlation at all m/zs but m/z 44, Pearson R>0.95; Fig. 

S18). 
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Monsoon 2017 Primary Factor MS 

At midday in monsoon, we see only one POA factor, COA-HOA (Fig. S19). COA-HOA MS shows similarities with both the 410 

reference COA and HOA MS (ref. COA: Pearson R∼0.90, ref. HOA: Pearson R∼0.80; Fig. S19). The inability to separate 

HOA and COA factors for mass spectral data obtained in a major city in the Indo-Gangetic Plains has been observed previously 

as well (Thamban et al., 2017; Bhandari et al., 2020). However, a key difference of this factor compared to the reference HOA 

and COA profiles are the large contributions at m/z 44 in monsoon midday COA-HOA. These high contributions are likely a 

result of the highly oxidizing environment in the afternoon. Afternoon overlaps with periods of high shortwave radiative flux 415 

(SWR) and therefore high reactivity of the atmosphere (Fig. S1). At monsoon nighttime, HOA and COA separate out (Fig. 

S20a–b). The behavior of the monsoon nighttime time-of-day PMF HOA factor MS is in line with the reference HOA factor 

MS (Ng et al., 2011a; Pearson R>0.95; Fig. S20a). The monsoon nighttime COA factor MS is very similar to the reference 

COA factor MS (Pearson R∼0.90; Robinson et al., 2018, ratio of contributions at m/z 55 to m/z 57∼1.66; Fig. S20b). A key 

feature of this COA factor is the high m/z 41, a characteristic feature of COA from heated cooking oils, especially in Asian 420 

cooking (Allan et al., 2010; Liu et al., 2018; Zhang et al., 2020; Zheng et al., 2020).  

 

Primary Factor TS 

CO and BC serve as tracers for HOA, BBOA, and SFC-OA (Figs. S21–S24). The winter midday SFC-OA profile correlates 

strongly with chloride (Spearman R: 0.71), nitrate (Spearman R: 0.75), BCFF (Spearman R: 0.79), and ΔC (Spearman R: 0.60), 425 

pointing to the mixing of HOA, BBOA, and possibly COA in the factor (Fig. S21). At winter nighttime, we separate an HOA 

MS profile that correlates strongly with BCFF (Spearman R: 0.84) and CO (Spearman R: 0.83) (Fig. S22). We obtain one 

BBOA factor each at winter midday and winter nighttime. Among the two BBOA obtained, winter midday BBOA correlates 

strongly with chloride (Spearman R: 0.66) and CO (Spearman R: 0.67), suggesting an industrial source (Fig. S21, Sect. 3.1). 

At nighttime, however, winter BBOA correlates strongest with the wood burning component of BC (BCBB, Spearman R: 0.92) 430 

and weakly with chloride (Spearman R: 0.40), suggesting at least two different origins of BBOA (Fig. S22). This is consistent 

with our previous work, where we have separated BBOA-like factors with different correlations with chloride and BCBB in 

different seasons (Bhandari et al., 2020; Patel et al., 2021a). In monsoon midday, we observe only one primary factor, a COA-

HOA factor, with strong correlations with chloride (Spearman R: 0.75), suggesting the influence of landfill emissions, trash 

burning, and solid-fuel sources (Fig. S23; Dall’Osto et al., 2015, Lin et al., 2017). Otherwise, COA-HOA has weak correlations 435 

with external tracers. Similar behaviour of COA-dominated factors has been seen previously as well (Huang et al., 2010, Sun 

et al., 2011, Liu et al., 2012, Sun et al., 2013, Hu et al., 2016, Stavroulas et al., 2019). In the monsoon nighttime PMF run (M-

23-03), we observe stronger correlations of the HOA factor with CO (Spearman R: 0.79) and BCFF (Spearman R: 0.86) 

compared to correlations of these tracers with the COA factor (CO: Spearman R: 0.70, BCFF: Spearman R: 0.71; Fig. S24). 
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3.2.2 Secondary factor MS and TS 440 

Time-of-day PMF and seasonal PMF generate two OOA factors, local OOA and regional OOA, in each run (Figs. S25 and 

S26). Typically, regional OOA is more oxidized (shows weaker correlations with reference SVOOA MS) and has less diurnal 

variation, in line with its expected average lower volatility and contributions from long-range transport (Drosatou et al., 2019). 

The time-of-day PMF OOA factors show MS and TS behaviour similar to the seasonal PMF OOA factors, as shown in Sect. 

3.3. Mass spectra of both local OOA and regional OOA correlate strongly with the reference OOA factor (Pearson R>∼0.80; 445 

Figs. S25 and S26). Also, we consistently observe that the more oxidized regional OOA factors have flatter diurnal time series 

patterns (smaller range) than the less oxidized local OOA factors (larger range) (Figs. S27–S30; Table S11). However, we see 

an overlap of the 95% confidence intervals of the normalized levels of the local and regional OOA factors (Figs. S27–S30) 

and an overlap of external tracers suggesting mixing of the two OOA components (see Sect. S4). This is not surprising 

considering the similarity of MS of the two OOA factors and a continuum of the level of oxidation in the atmosphere (Drosatou 450 

et al., 2019).Since we observe factor mixing of the two secondary components, detailed analysis of the factor MS and TS 

(correlations with external tracers, features of the mass spectra) are only presented in the Supplement (see Sect. S4). 

3.2.3 Time series patterns of time-of-day PMF factors 

Time series patterns exhibit contrasting behaviour in winter and monsoon time-of-day PMF analysis, similar to the seasonal 

factor contrast (Sect. S3; Figs. 3–4a–b). Midday, concentrations of all primary factors exhibit a monotonically decreasing 455 

pattern likely due to increasing ventilation (Figs. 3a, 4a, S1). In the midday period, winter peak SFC-OA and BBOA 

concentrations are both ∼3 times the period minimum (Fig. 3a). At winter night, peak concentrations of HOA and BBOA are 

∼2.5 times and ∼3 times the period minimum (Fig. 3b). In contrast, monsoon primary factors exhibit lower variability midday 

(peak COA-HOA concentrations∼2 times the period minimum) and nighttime (peak HOA∼2.5 times the period minimum; 

peak COA∼2 times the period minimum). 460 

Additionally, the nighttime factors in both seasons show larger differences between the mean and the median than 

the corresponding midday factors in the same seasons, which suggests episodic nature of factors. The presence of episodes in 

these primary factors could be a consequence of the temperature-related inversions at nighttime, which lead to aerosol 

accumulation (Bhandari et al., 2020). These episodes could also be a result of episodic sources contributing to these factors. 

Generally, HOA shows the largest mean-median differences, and episodic contributions could be from heavy duty vehicles, 465 

brick kilns, and construction and road paving activities (Guttikunda et al., 2013; Dallmann et al., 2014; Mishra et al., 2019; 

Khare et al., 2020; Misra et al., 2020). For BBOA, these sources could be associated with burning events, as hypothesized 

previously (Bhandari et al., 2020). Episodic events could also be due to precipitation (Fig. S1). OOA factors experience mixing, 

so their time series patterns are not discussed. 

 470 
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Figure 3 shows 15 min averaged seasonally representative mean (+) and median concentrations (lines) of time-of-day PMF primary 

factors for the periods: (a) W-11-15 and (b) W-23-03 (in µg m−3). Nighttime factors show evidence of episodes. 
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3.3 Comparisons of POA and OOA MS and TS obtained using time-of-day PMF and seasonal PMF 

Results from the previous sections show that time-of-day PMF analysis generates a larger diversity of factors compared to 475 

seasonal PMF analysis. In this section, we summarize and compare the primary and secondary MS and TS contributions of 

factors using PMF results from two approaches—seasonal PMF and time-of-day PMF analysis. We show that (i) seasonal 

PMF analysis significantly underestimates primary concentrations at midday compared to time-of-day analysis (Tables 2 and 

3; Figs. 5–6a–b), (ii) midday shows cleaner signatures in POA factor MS in time-of-day PMF analysis compared to the seasonal 

PMF analysis (Figs. 7–8a–b), and (iii) nighttime OOA MS and TS show larger differences between the two techniques than 480 

nighttime POA MS and TS, whereas midday shows larger differences in POA than OOA (Table 3, Figs. 7–8a–b, S31–S36). 

We also observe larger differences of the POA mass spectra from the two techniques midday than at night (Figs. 7–8a–b). 

Detailed MS and TS comparisons of time-of-day PMF POA and OOA with the seasonal PMF results are discussed below. 
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 485 

 

Figure 4 shows 15 min averaged seasonally representative mean (+) and median concentrations (lines) of time-of-day PMF primary 

factors for the periods: (a) M-11-15 and (b) M-23-03 (in µg m−3). Nighttime HOA shows stronger episodes than COA. 
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 490 

Table 3 Time series correlations of time-of-day POA and OOA TS with seasonal POA and OOA TS 

Period Factor Type Pearson R Slope/intercept with the corresponding seasonal POA/OOA TS 

W-11-15 
POA 0.96  1.38/4.7 

OOA 0.96  0.77/3.9 

W-23-03 
POA 1.00  0.94/-9.2 

OOA 0.98  1.19/3.4 

M-11-15 
POA 0.86  1.04/1.4 

OOA 0.99  0.99/-1.2 

M-23-03 
POA 0.99  1.12/2.3 

OOA 0.99  0.86/-0.6 

 

Here, we show that the time-of-day PMF approach shows strong similarities in time series patterns of primary factors compared 

to seasonal PMF analysis. However, the two approaches show substantial time-of-day dependent differences in detected mass 

spectra. 495 
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Figure 5 shows 15 min averaged seasonally representative diurnal mean (+) and median (lines) concentration time series of POA for 

the periods: (a) W-11-15 and (b) W-23-03 (in µg m−3). Nighttime factors show evidence of episodes. 
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3.3.1 Comparison of POA time series 500 

The behaviour of POA is consistent with the individual component primary factors. POA is monotonically decreasing in all 

periods, concentrations are more variable during the day, and nighttime concentrations are several times those of midday 

concentrations (Figs. 5–6a–b). We observe striking similarities of the 15 min averaged time series patterns of POA between 

the two techniques across all periods (Table 3, Pearson R>0.85). The strong linear correlations suggest that time-of-day PMF 

analysis results in shifted (but correlated) TS patterns. 505 

3.3.2 Comparison of POA mass spectra 

The time-of-day PMF approach generates POA mass spectra both similar and different from the seasonal PMF approach, 

depending on the time-of-day (Figs. 7–8a–b). Two features stand out in these comparisons: the midday POA MS are dissimilar 

at key m/zs whereas the nighttime POA MS are nearly identical. 

 510 
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Figure 6 shows 15 min averaged seasonally representative diurnal mean (+) and median (lines) concentration time series of POA for 

the periods: (a) M-11-15 and (b) M-23-03 (in µg m−3). nighttime factors show stronger evidence of episodes. 
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Figures 7–8a–b show the MS pattern of time-of-day PMF POA and seasonal PMF POA at winter midday and nighttime (Fig. 

7a–b) and monsoon midday and nighttime (Fig. 8a–b). In time-of-day PMF POA presented here, we observe a lower ratio of 515 

contributions at m/z 43 to m/z 44 than seasonal PMF POA. This lower ratio is indicative of the more oxidized nature of the 

POA factor compared to the seasonal POA (Ng et al., 2010). At midday, we observe higher contributions in time-of-day PMF 

POA at m/z 44; in line with the high photochemical processing (SWR flux, Fig. S1). We also observe a higher ratio of 

contributions at m/z 55 to m/z 57, and lower contributions at m/z 57 (Figs. 7a and 8a). These observations are in line with a 

strong cooking influence (and lower traffic influence) at midday (Ng et al., 2011a; Robinson et al., 2018). At winter midday, 520 

we also observe lower contributions at m/zs 29, 60, and 73 in time-of-day PMF than seasonal PMF (Bahreini et al., 2005; 

Schneider et al., 2006). This observation is likely a consequence of the removal of the influence of wood burning for nighttime 

space heating on the time-of-day PMF POA MS for midday. At monsoon midday, we observe a higher contribution at m/z 41 

than m/z 43 in time-of-day PMF POA, which is indicative of the influence of cooking (Allan et al., 2010; He et al., 2010). This 

POA also shows higher contribution at m/z 29, suggesting a higher influence of wood burning, likely associated with midday 525 

cooking. At nighttime, the differences between the time-of-day and seasonal profiles are much smaller. Overall, time-of-day 

PMF analysis seems to be capturing very specific features of primary aerosol behaviour better than seasonal PMF analysis. 
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 530 

Figure 7 shows the mass spectra of time-of-day PMF POA and seasonal PMF POA for the periods (a) midday and (b) nighttime in 

winter 2017. Midday MS shows larger differences compared to nighttime MS. 

 

 

 535 
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Figure 8 shows the mass spectra of time-of-day PMF POA and seasonal PMF POA for the periods (a) midday and (b) nighttime in 

monsoon 2017. Midday MS shows larger differences compared to nighttime MS. 

 540 

3.4 Differences in midday and nighttime POA and OOA MS within time-of-day PMF versus seasonal PMF 

We can also compare midday and nighttime POA MS from the time-of-day PMF analysis and the seasonal PMF analysis (Figs. 

S35–S36a–b). For both seasons, the two comparisons (seasonal PMF and time-of-day PMF) of midday and nighttime POA 

MS indicates more primary nature at nighttime than midday, based on the higher contributions at the m/zs corresponding to 

the alkyl hydrocarbons associated with primary combustion (Zhang et al., 2011). However, this contrast is sharper in time-of-545 

day PMF analysis, in line with the ability of the approach to capture variable MS (Figs. S35b and S36b; Fig. S39, Winter 
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midday and nighttime POA MS: Time-of-day PMF Spearman R: 0.93, Seasonal PMF Spearman R: 0.97; Fig. S40, Monsoon 

midday and nighttime POA MS: Time-of-day PMF Spearman R: 0.81, Seasonal PMF Spearman R: 1.0). The seasonal PMF 

midday–nighttime comparison also fails to capture the influence of cooking midday based on the low and similar ratio of 

contributions at m/z 55 to m/z 57 at nighttime, esp. in monsoon (~1, Figs. S35a and S36a). This contrast between midday and 550 

nighttime POA MS is higher in time-of-day PMF in winter (midday ratio: 1.2, nighttime ratio: 1.0, Fig. S31b) and in monsoon 

time-of-day PMF analysis (midday ratio: 1.4, nighttime ratio: 1.2, Fig. S36b). While seasonal PMF analysis for monsoon 

suggests no change in MS between midday and nighttime, time-of-day PMF analysis suggests large shifts in contributions at 

key m/zs such as 41, 43, 44, 55, and 57, in line with the changing importance of cooking from midday to night. These 

differences demonstrate the ability of time-of-day PMF to capture variable MS corresponding to the source influence of those 555 

time-of-day periods (Sect. 3.3.2). 

We can also compare OOA MS and TS as well as conduct midday and nighttime comparisons for time-of-day PMF 

and seasonal PMF analysis (Sect. S4; Figs. S37–S38a–b). Time-of-day PMF OOA MS and TS are similar to seasonal PMF 

OOA (Table 3, TS: Pearson R>0.95; Figs. S25-S26, MS: Pearson R≥0.95).However, the mass spectra of the time-of-day PMF 

OOA have major differences at m/z 44 relative to the seasonal PMF OOA (Figs. S33–S34a–b). Comparisons of midday and 560 

nighttime time-of-day PMF OOA MS show interesting patterns not apparent in seasonal PMF analysis (Figs. S37–S38a–b). 

For example, time-of-day PMF analysis for monsoon 2017 suggests less oxidized OOA at midday than nighttime, likely caused 

by the presence of semi-volatile compounds (Fig. S38b). Similar behaviour has been observed elsewhere as well, and was 

attributed to biogenic emissions (Canonaco et al., 2015). 

Figure S39 shows all PMF factors obtained in this paper on the triangle plot (Ng et al., 2010). We observe that factors 565 

obtained in the time-of-day PMF analysis occupy a larger spread compared to those obtained in seasonal PMF analysis. For 

example, in time-of-day PMF POA factors, we observe a spread of about 5% in contributions at m/z 43. In contrast, the spread 

of seasonal PMF POA factors is less than 3%. Overall, because time-of-day PMF conducts PMF analyses for each period 

independent of the influence of the variability in the other periods, it generates more representative MS for each time-of-day 

period (Sect. 3.3). 570 

3.5 Quantification of quality of fit using Q and Q/Qexp patterns 

As discussed in the methods section, PMF iterates to identify minima in the Q value, a residual-based metric often used as a 

measure of the quality of fit of the PMF solution (Sect. 2.2). Here, we compare the time-of-day PMF and the seasonal PMF 

approaches based on their Q and Q/Qexp patterns. We show that Q and Q/Qexp are lower in time-of-day PMF analysis than 

seasonal PMF analysis. By allowing the MS to change substantially relative to the seasonal profile at specific times of day, the 575 

time-of-day PMF lowers the residuals and therefore the Q values. These improvements in Q are (i) larger in winter compared 

to monsoon, (ii) larger at midday than nighttime, and (ii) are non-monotonic within the time-of-day periods. 
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3.5.1 Comparison of average Q and Q/Qexp in different time-of-day periods 

In Table 4, we compare the average Q and Q/Qexp values obtained in the time-of-day PMF analysis and the seasonal PMF 

results. Our results indicate that time-of-day PMF approach significantly improves Q by 6–55% and Q/Qexp by 5–30% of the 580 

original Q and Q/Qexp values, respectively. A part of the improvement in Q going from seasonal PMF to time-of-day PMF is 

also due to the lower number of points and therefore, lower degree of freedom, as well as larger number of weak m/zs (Paatero 

et al., 1994; Paatero et al., 1997; Ulbrich et al., 2009; Table S3). However, decreases occurring in Q/Qexp are less affected by 

the different number of weak m/zs, and validate the improvement (Table 4). Winter midday observes larger seasonal Q and 

Q/Qexp values than monsoon midday despite lower number of time series points at winter midday. This result is likely an 585 

effect of the larger diversity of sources expected in winter, and a limitation of seasonal PMF to capture sources through static 

MS profiles (Paatero et al., 2002). Drops in monsoon and winter midday Q/Qexp (going from seasonal PMF to time-of-day 

PMF) are likely an outcome of the factor switching from only HOA to cooking-related factors (COA-HOA and SFC-OA, 

respectively). Further, even though seasonal Q/Qexp at winter nighttime is higher than monsoon nighttime, time-of-day 

Q/Qexp is similar. Improvements at nighttime comes primarily from a change in the OOA MS, as shown in Sect. 3.3. Thus, 590 

time-of-day PMF results in large improvements in fit relative to the seasonal PMF analysis. 

Table 4 Comparison of average Q and Q/Qexp in time-of-day PMF and seasonal PMF 

Period 
Seasonal 

PMF Qa 

Time-of-day  

PMF Q 

Seasonal  

PMF Q/Qexpa 

Time-of-day  

PMF Q/Qexp 

% Change  

Q Q/Qexp 

M-11-15 288030 241858 1.84 1.74 -16% -5% 

M-23-03 333134 313170 2.16 1.93 -6% -11% 

W-11-15 369452 164975 4.36 3.05 -55% -30% 

W-23-03 197984 161468 2.37 1.95 -18% -18% 

aThe seasonal PMF Q (and Q/Qexp) values in these columns correspond to the Q (and Q/Qexp) values associated with the 

solution space of the respective time-resolved windows only. For details, refer to Sect. 2.2 Eqs. 16–17. 

3.5.2 Comparison of time series patterns of Q/Qexp in different time-of-day periods 595 

We can further explore the time periods and m/zs that show improvement in fits in the time-of-day PMF approach. In Fig. 9a–

b, we plot the percent change of 15 min averaged Q/Qexp values from the seasonal PMF approach to the time-of-day PMF 

approach in the midday and nighttime periods. Monsoon results show limited variability, with the standard deviation (SD) of 

the percent change less than 5% from the mean (excluding the edges). On the other hand, in winter, the SD of the percent 

change are ≥15% from the mean, and time-of-day PMF approach particularly improves the solution in the middle of the midday 600 

window (11:30–14:00 LT) and the first half of the nighttime window (23:30–00:45 LT). These selective improvements suggest 

that time-of-day PMF likely accounts for period-specific sources better than the seasonal PMF approach. 
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3.5.3 Comparison of Q/Qexp by m/z in different time-of-day periods 

Instead of classifying improvements in Q/Qexp by time, we can classify the improvements by m/zs. In Fig. 10a–b, we plot the 

percent change of Q/Qexp at different m/zs between the seasonal PMF approach and the time-of-day PMF approach. Our 605 

results show that the percent changes are either negative or small positive at important m/z tracers in all periods. In addition, 

the changes are largely negative at m/zs higher than m/z 80, suggesting that time-of-day PMF approach particularly improves 

the fits at m/zs higher than m/z 80. In particular, winter midday is accompanied by decreases at important m/zs such as 29, 41, 

43, 44, 55, 57, and 60, as well as m/zs higher than m/z 80.  

We also observe that the fit quality reduced at some m/zs; however, most of these m/zs are not tracers of specific PMF 610 

factor types (Zhang et al., 2011). Future work could investigate the deployment of the binPMF approach, selectively fitting 

important m/zs only to identify PMF factors (Zhang et al., 2019). Overall, the time-of-day PMF approach improves PMF fit 

dissimilarly at different m/zs compared to the seasonal PMF approach. 
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Figure 9 Percent change of 15 min averaged seasonally representative Q/Qexp values between the seasonal PMF approach and the 

time-of-day PMF approach in (a) midday and (b) nighttime periods. Time-of-day PMF selectively improves Q/Qexp in specific 

periods compared to the seasonal PMF approach. 

 620 
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Figure 10 shows the percent change of Q/Qexp at different m/zs between the seasonal PMF approach and the time-of-day PMF 

approach in (a) midday and (b) nighttime periods. Key m/zs show a lower Q/Qexp in the time-of-day PMF approach compared to 

the seasonal PMF approach. 625 
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Section 4 Conclusions 

This study introduces a new approach to conducting source apportionment analysis––conducting positive matrix factorization 

on long-term datasets with each day separated into six 4 hour periods with limited variability in emissions and meteorology. 

The statistical viability of this new source apportionment approach is demonstrated, and the approach is called time-of-day 

PMF. We apply the time-of-day PMF approach on two seasons of highly time-resolved speciated non-refractory submicron 630 

aerosol (NR-PM1) organics (Org). This dataset was collected as a part of the Delhi Aerosol Supersite (DAS) study. This study 

improves upon the seasonal source apportionment previously employed in Delhi. We use the EPA PMF tool to apply 

constraints, extract a larger number of factors, and quantify errors in PMF solutions. 

Time-of-day PMF analysis resolves a greater diversity of factors compared to the traditional seasonal PMF approach. 

In winter, time-of-day PMF separates a mixed SFC-OA factor and a BBOA factor at midday but separates clean HOA and 635 

BBOA factors at night. Resolving by time-of-day allows the identification of different types of BBOA; the midday BBOA is 

associated with chloride and nighttime BBOA is associated with black carbon. In monsoon, a mixed COA-HOA factor is 

obtained at midday, but separate clean HOA and COA factors are obtained at night. Even the mixed COA-HOA factor shows 

clear markers associated with influence of heated cooking oils, especially seen in Asian cooking. Such markers are not seen in 

seasonal PMF. PMF analysis also separates two OOA factors in each period, one more local and the other more regional in 640 

nature. The two OOA factors show signs of mixing and are therefore not discussed in detail.  

In monsoon, the seasonal PMF approach underestimates POA TS at all times of the day relative to the time-of-day 

PMF approach. In winter, the seasonal PMF approach underestimates POA TS at midday, but overestimates POA TS at night. 

Several differences also occur at key m/zs in POA MS extracted from the two approaches. Time-of-day PMF midday POA 

factors are more oxidized than the seasonal PMF POA factors, in line with the high photochemical processing at midday. 645 

Differences in nighttime POA MS profiles are small.  

OOA TS show strong similarity between the two approaches. However, OOA MS show lower oxidation state at 

monsoon midday and winter nighttime, and higher oxidation state at monsoon nighttime and winter midday in time-of-day 

PMF analysis compared to the seasonal PMF analysis. Presence of semi-volatile oxidized organics at monsoon midday and 

winter nighttime could be attributed to semi-volatile biogenic emissions in monsoon and slow oxidation processes in winter.  650 

Q/Qexp values of the PMF solutions are a measure of quality of fit and show a decrease of 5–30% going from seasonal PMF 

analysis to time-of-day PMF analysis. These improvements in Q/Qexp can be mapped out to specific time points and m/zs. In 

winter, improvements in Q/Qexp are particularly larger in specific time periods in the 4 h time windows. In monsoon, the 

improvements are, for the most part, independent of time. In winter, improvements in Q/Qexp are associated with 

improvements at key m/zs. Improvements in Q/Qexp for all periods are partially driven by improvements in fits at m/zs higher 655 

than m/z 80. 

Application of PMF on field monitoring datasets is a powerful approach to separate the effects of contributing sources. 

Typically, such analysis is conducted on datasets lasting from a few weeks to a few months. However, in the last decade, 
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several long-term aerosol mass spectrometry deployments have occurred, and one such deployment is the Delhi Aerosol 

Supersite study. Long-term measurements are also conducted for regulatory-level air pollution monitoring. In the coming 660 

years, source apportionment strategies could become mainstream policy tools, and organic mass spectrometry instrumentation 

may obtain regulatory-grade status. Given this context, the time-of-day PMF approach combines the benefits of large datasets 

collected using long-term monitoring with the enhancement of time-resolving capability of source apportionment approaches 

such as PMF at a lower computational intensity compared to the traditional approaches. Results in this paper demonstrate that 

time-of-day PMF approach gives a greater number of factors as well as more representative PMF factors compared to the 665 

traditional seasonal PMF approach.  

Appendix A: Abbreviations 

ACSM Aerosol Chemical Speciation Monitor 

BBOA Biomass-burning organic aerosol 

BC Black carbon 

BCBB Wood burning component of BC 

BCFF Fossil fuel component of BC 

BS Bootstrapping 

BS-DISP Bootstrapping enhanced with displacement 

CO Carbon monoxide 

COA Cooking organic aerosol 

DAS Delhi Aerosol Supersite 

DISP dQ-controlled displacement of factor elements 

HOA Hydrocarbon-like organic aerosol 

IIT Indian Institute of Technology 

LT Local Time 

ME-2 Multilinear Engine 

MS Mass spectral profiles 

NCR National Capital Region 

NR-PM1 Non-refractory submicron particulate matter 

NR-PM2.5 Non-refractory PM smaller than 2.5 μm in diameter 

OOA Oxygenated organic aerosol 

Org Organic 

PBLH Planetary boundary layer height 
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PET PMF evaluation tool 

PM Particulate matter 

PM1 Submicron particulate matter 

PM2.5 Particulate matter smaller than 2.5 μm in diameter 

PMF Positive matrix factorization 

POA Primary organic aerosol 

SD Standard deviation  

SFC-OA Solid fuel combustion organic aerosol 

SOA Secondary organic aerosol 

SoFi Source Finder 

SVOOA Semi-volatile oxygenated organic aerosol 

SWR Shortwave radiative flux 

T Temperature 

TS Time Series 

UVPM Ultraviolet-absorbing particulate matter 

VBS Volatility basis set 

VC Ventilation coefficient 
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