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[bookmark: _Toc64291914]Figure S1 Diurnal profiles of meteorological parameters (temperature, relative humidity, wind speed, wind direction, PBLH, VC, rain, and SWR flux) by season. Mean (+) and median (—) values by season and hour of the day are presented. We retrieved visibility and relative humidity (RH) data from the Indira Gandhi International Airport (IGIA). To obtain mesoscale data for hourly wind speed, direction, temperature (10m above ground level), SWR flux, and planetary boundary layer height (H), we used the NASA meteorological reanalysis dataset (MERRA2). Precipitation data for Delhi was retrieved from the European Centre for Medium-Range Weather Forecasts' reanalysis dataset, ERA-Interim (Gani et al., 2019).
[bookmark: _Toc64291818]Table S1 Seasonal summary of PM1 species—arithmetic mean (AM) for hourly concentrations. 
	
	Winter
	Monsoon

	Org
	112
	23

	NH4
	20
	4.6

	Chl
	23
	0.4

	NO3
	24
	3.6

	SO4
	16
	10

	BC
	15
	11

	NR-PM1
	195
	41


[bookmark: _Toc64291819]Table S2 Seasonally averaged meteorological variables in monsoon and winter 2017 (day-D/night-N)
	Season 
	T (K) 
(D/N)
	RH (%)
(D/N)
	VC (m2/s)
	PBLH (m)
(D/N)
	WS (m/s)
(D/N)
	WD (°N)
(D/N)

	W17
	290/286
	 60/78
	707/188
	920/340
	 2.7/2.6
	300/300

	M17
	305/302
	 71/81
	3870/3790
	1600/460
	 3.4/2.5
	250/190 


[bookmark: _Toc64291794]S1 Steps for conducting PMF, criteria for factor selection, and R code
The first step to conducting PMF is the identification of strong, weak, and bad variables. Traditionally, average signal-to-noise ratio (SNR) is used as criteria for down-weighting species (Paatero and Hopke, 2003). However, selections based only on SNR are subjective and do not account for the ability of the model to fit the data. For example, data with SNR 1 may fit better than the data with SNR of 2. Here, we utilized data trimming prior to running PMF to account for the down-weighting of noisy or weak variables. We hypothesize that application of PMF will extract fewer than 8–9 factors. This is not surprising: most AMS/ACSM studies report fewer than four factors (Jimenez et al., 2009). Even recent studies utilizing constraints report not more than 6 factors (Fröhlich et al., 2015; Canonaco et al., 2020). Thus, as pilot runs, we went to 9 factor solutions. In these pilot runs, a high Q/Qexp can arise from few data points in the dataset (Q/Qexp >50 but going as high as O (1000)), biasing the overall Q/Qexp. These time series points led to very high Q/Qexp for specific m/zs as well. A representative figure from the PMF analysis of winter 2017 is shown in Fig. S2a–S Thus, we removed time points with Q/Qexp>20.
Our results suggested that removing these time series points prior to reweighting m/zs led to a dramatic reduction in the Q/Qexp corresponding to the m/zs and therefore the number of m/zs that need to be down-weighted. Representative results for a single pass of data trimming at this decision step are shown in Fig. S3a–S In total, less than 15% of the data was removed before conducting PMF analysis for factor identification. Such data trimming is also considered standard procedure in PMF analysis on data collected and analyzed at federal and state monitoring agencies (Dave Sullivan, personal communication). Interestingly, the removed time series points were not necessarily associated with high concentrations. Histogram analysis suggests that while time series points with organic concentrations greater than 180 µg m−3 account for ∼10% of the raw data, they account for ∼1% of the removed points. Thus, the time series points at which PMF fails to fit appropriately are not necessarily associated with high concentrations. After removing data points that could not be fit by the PMF analysis even at 8–9 factor solutions, we utilized two criteria to identify “strong” and “weak” m/zs. The criteria used in the order of decreasing importance were Q/Qexp at an m/z (<10 for strong m/z) and, the slope and the correlation of modeled versus measured mass for contributions at an m/z (slope, R > 0.7). SNR of 1 was used as a check. The use of SNR of 1 is in line with the traditional definition since EPA PMF defines signal as data above noise (Norris et al., 2014). Only one m/z, m/z 12, was selected as a “bad” variable due to negative signals; this has been observed elsewhere as well (Fröhlich et al., 2015; Schlag et al., 2016). A full list of weak m/zs in each PMF run are shown in Table S3.
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Figure S2 Q/Qexp at (a) relevant time series points and (b) m/zs for raw organic data
As shown in Table S3, we identified important m/zs as either strong or weak in both the time-resolved and the seasonal PMF runs; thus, modeling error can be quantified by taking the difference of Q/Qexp between two models (Paatero and Hopke, 2009). We used the default fragmentation table, and as a result, higher weight was given to mass spectral contribution at m∕z 44, with which data at m∕z values 16–18 is proportionally related. Accordingly, we down-weighted contributions at these m∕z values and marked them as “weak”. To be consistent, identical trimmed parent organic data and error matrices were used between time-of-day PMF and seasonal PMF analyses. We conducted PMF runs for one to seven factors, explored the solution space using the tools FPEAK, seeds, and constraints, and conducted error analysis on the dataset. The IGOR PET tool, based on PMF2, provides extensive information on different aspects of the residual structure in the tool itself (Ulbrich et al., 2009). However, the EPA PMF tool only generates .csv files that need to be individually analyzed for further analysis (Norris et al., 2014). An R package was developed to automate the process of data visualization and processing for subjective decision making by the PMF user (R Core Team, 2019). The package was based on libraries tidyverse (Wickham et al., 2019), openair (Carslaw et al., 2012), lubridate (Grolemund and Wickham, 2011), and MASS (Venables and Ripley, 2002).
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[bookmark: _Toc64291916]Figure S3 Q/Qexp at relevant time series points and m/zs for trimmed organic data
[bookmark: _Toc64291820][bookmark: _Hlk60580110]Table S3 List of weak m/zs in PMF runs
	Period
	m/zs

	W171115
	13, 16–18, 24–25, 37–38, 44, 48–49, 62, 66, 75, 76, 80, 88–90, 92, 94, 100–104, 106, 108, 110, 112–114, 116–120 

	W172303
	13, 15–18, 24, 37–38, 44

	W17
	13, 16–18, 24, 37–38, 44

	M171115
	13, 16–18, 24, 37, 44, 48–49, 61–62, 66, 72, 75, 80, 86–90, 92, 94, 98, 100–104, 106, 108, 110–114, 116–120

	M172303
	13, 16–18, 24–25, 37, 44, 48–49, 61–62, 75–76, 80, 87–90, 94, 100–104, 112–114, 116, 118, 120

	M17
	13, 16–18, 24, 37, 44, 48–49, 62, 66, 72, 75, 76, 80, 86–90, 94, 100–104, 108, 110, 112–114, 116, 118, 120


At the first step of analysis, we analyzed the improvement in the ability of the PMF solution to explain residual structure with the addition of factors. We selected an initial range of factors based on analysis of the residual structure. In this range, we selected an initial number of p factors based on correlations with the factors at the selection p−1. Specific aspects of the 
[bookmark: _Toc64291821]
Table S4 Analyzed aspects of residual structure and criteria of factor selection
	Aspect studied
	Criteria of factor selection

	Overall Q/Qexp as a function of the number of factors
	Q/Qexp decreases as more factors are added. Here, we look at the rate of the drops as new solutions are added. After a few factor additions above two factors, the drops begin to stagnate to a constant. This is the point when new factors added explain minimal information in the residual structure.

	Statistics of residual and scaled residual data
	Mean values of Q/Qexp may not be representative of other central tendencies and range of the Q/Qexp distribution. Here, we look at the minimum, maximum, median, and histograms of Q/Qexp to observe changes in residual structure. Small changes in the parameters and bleeding on the lower end of the histogram suggests optimal factor solution has likely been reached.

	Correlogram of residual and scaled residual MS with reference MS profiles
	The residual might be dominated by the influence of a specific PMF factor. Here, we look at correlations of residual MS with reference profiles to check if a specific type of factor dominates the residual MS, suggesting the addition of new factors might be needed.

	Correlogram of residual TS with reference TS profiles
	Mass spectral correlation of the residual MS with reference MS is not sufficient to attribute residual to a specific factor (Ulbrich et al., 2009). Here, we look at correlations of residual TS with external tracers to check if the specific type of factor identified in residual MS has relevant TS correlations with tracers.

	Time series variations in residual and scaled residual patterns
	Often, time series patterns by season, month of season, day of week, and hour of day can reveal information about factors due to similarity with human-activity patterns (Crippa et al., 2020). Here, we look at these patterns to identify changes in residual time series structure. As an example, a residual with minimal diurnal structure would be considered as more suitable than a residual with significant diurnal structure.

	Q/Qexp at different m/zs
	Contributions at all m/z fragments are not equally fit. Here, we plot average Q/Qexp at all m/zs and use the plot to identify transition points for fitting of data at m/zs, particularly those typically considered tracers, such as m/zs 29, 43, 44, 55, 57, 60, 73, and 115.

	Time series variations in Q/Qexp
	Average values of overall Q/Qexp cannot provide detailed information on the time series patterns of Q/Qexp by season, month of season, day of week, and hour of day. These plots can reveal information about factors due to similarity with human-activity patterns (Crippa et al., 2020). Here, we look at these patterns to identify changes in Q/Qexp time series structure. As an example, Q/Qexp with minimal diurnal structure would be considered as more suitable than a residual with significant diurnal structure.

	Range of scaled residuals at different m/zs
	A large range of scaled residuals at different m/zs would suggest several time series points where the data does not fit contributions at these m/zs. We use this test as a check that the 25th and the 75th percentile of the scaled residuals at all m/zs are within ±3. 



analyzed residual structure are included in Table S4. The next criteria employed for factor selection was the correlation of factor mass spectral profiles with reference mass spectra. We used as reference mass spectra the average mass spectral profiles developed by Ng et al. (2011) and cooking organic aerosol (COA) and coal combustion organic aerosol (CCOA) profiles in the AMS spectral databases (Ulbrich et al., 2017, 2018), and the one with the highest correlation with the mass spectrum of the PMF-generated factor (generally, Pearson R≥0.9) is used for naming the obtained factor (Ng et al., 2011). This comparison enables the separation of factors based on their sources, since MS of different factors are characterized by different spectral signature peaks (Zhang et al., 2011). For example, hydrocarbon-like organic aerosol (HOA) is a proxy for fresh traffic and combustion emissions and shows prominent peaks at m∕z values 55 and 57 and a higher fractional organic signal at m∕z 43 than m∕z 44. Other criteria employed to select the number of factors include the correlations of factor time series with external tracers, and time series patterns by season, month of season, day of week, and hour of day. As an example, we expected that the time series patterns would suggest high concentrations of BBOA in colder months and higher HOA at traffic hours in diurnal patterns. In this study, we utilized the co-located aethalometer measurements of BC (880 nm) as a traffic tracer. For biomass burning, we used two tracers: (i) ΔC, defined as the difference between UVPM (370 nm) and BC detected by the aethalometer (Wang et al., 2011; Olson et al., 2015; Tian et al., 2019), and (ii) the biomass-burning component of black carbon, BCBB, estimated using the model of Sandradewi et al. (2008). We extracted CO, NO2, and O3 data using the OpenAQ Platform (openaq.org, last access: 1 August 2019). The OpenAQ data originate from a fixed regulatory monitoring location, R.K. Puram, maintained by the Central Pollution Control Board (CPCB), government of India, about ∼ 3–4 km aerial distance from the measurement site. This analysis marks the end of the second round of factor identification, with a selected number of factors. For correlations, we used the Pearson correlation coefficient (Pearson R) for mass spectral data and Spearman correlation coefficient (Spearman R) for time series patterns. This differentiation was recommended in the peer review of Ulbrich et al (2009), due to the limitation of Pearson R for slowly varying time series concentrations.
In previous work, differences between plausible factor solutions in the FPEAK–SEED 2-D space were considered representative of the uncertainty of the final selected solution (Ulbrich et al., 2009, Bhandari et al., 2020). We observed unreasonable MS, weak time series correlations, or rotational ambiguity on changing FPEAK and/or SEED from the default selection of FPEAK = 0 and SEED = 0. Therefore, default parameter values were used (Chapter 2; Bhandari et al., 2020). In EPA PMF, quantitative error estimation (EE) of random error and rotational ambiguity is conducted using BS, DISP, and BS-DISP (Sect. 3.2.5). If the PMF factor solution passes all tests, BS, DISP, and BS-DISP, the solution was regarded as final. The statistical basis of these EE techniques is discussed in detail elsewhere (Paatero et al., 2014).
However, sometimes, the base PMF solutions did not pass uncertainty tests. To address the inability of the solution to pass the PMF tests, we changed the SEED value while keeping the number of factors constant. Changing the SEED value initializes the PMF algorithm with different pseudorandom starts. We changed the SEED value at least once and run 10 runs each time, leading to at least 20 random starts. If changing the SEED value did not lead to an improved base run, we either used FPEAK or applied constraints. Changing the FPEAK value allows exploring rotations of solutions of a given number of factors. We recalculate BS on running FPEAK to account for random errors; thus, FPEAK is particularly useful to improve base solutions that pass the DISP test but fail BS. However, DISP and BS-DISP error evaluations are biased when FPEAK is used (Norris et al., 2014). Therefore, we rely on DISP of the base run; if the recalculated BS passes the threshold, we assumed that the issues associated with BS in BS-DISP would be fixed as FPEAK is used. We allow a 5% change in Q (or 5% dQ) relative to the base run in the solution obtained using FPEAK.
If changing FPEAK did not result in a better solution, we applied constraints on the solutions. Since reference profiles are available, we used the “ratio” form of expressions for applying constraints. Application of constraints is very subjective; constraints were obtained from reference profiles, a cleaner factor in other periods, or a cleaner factor in a higher number of factors. Similar approaches have been used previously as well (Canonaco et al., 2015; Zhu et al., 2018; Tobler et al., 2020). To apply constraints, we identified the m/zs with the least uncertain contributions (Ng et al 2011). We combined the list of these m/zs with key m/zs such as m/z 29, 44, 43, 55, 57, 60, and 73. Application of constraints on some of these select m/zs was sufficient to reach more optimal solutions, e.g., in some PMF runs, constraining the m/z 60 MS contribution to mean of the contribution in the reference profile moved the entire profile to a clean BBOA factor. We allowed a 5% change in Q (or 5% dQ) relative to the base run in the solution obtained by applying constraints. Despite the large dQ% allowed, factor profiles moved in the direction of the constraint but did not necessarily reach the exact value. This subjective movement of the profile allows generation of local profiles with tendencies reflected as similar to global profiles for the same factors.
S2 Corrections to the EPA PMF code
The EPA PMF tool references the work of Politis and White (2004) for estimating the bootstrap block size. However, in 2009, they published a correction to their bootstrap estimates (Patton et al., 2009). Updated source code for implementing the calculation of block size is also available (Hayfield and Racine, 2008). The code generates a block size based on each variable; thus, a subjective decision to select a single block size needs to be made. We base our decision for block size on the work of Hemann and co-workers (2009). They apply the stationary block bootstrap approach for identification of block lengths. As a part of the process, we sum up the mass of all m/zs, find the optimal block length for that total mass, and compare the block length for total mass to block length for different percentiles of individual species. Next, we pick a block length that accounts for the total mass but also most of the individual species. Details of the block size calculations are shown in Table S5. In all cases, the used block size accounts for the total mass in PMF runs as well as more than 75% of contributions at different m/zs.
[bookmark: _Toc64291822]Table S5 Details of block size calculations for all PMF runs
	Period
	Mean 
Block Size
	Median 
Block Size
	Block Size for 
total organics
	Percentile Calculations
	Used 
Block Size

	
	
	
	
	Percentile
	Block Size
	

	W171115
	36
	36
	42
	90
	43
	43

	W172303
	53
	53
	53
	100
	54
	54

	M171115
	94
	94
	97
	90
	98
	98

	M172303
	98
	99
	100
	75
	100
	100

	M17
	296
	296
	309
	75
	310
	310

	W17
	160
	160
	161
	90
	162
	162



[bookmark: _Toc64291823]Table S6 Steps for solution identification for specific EPA PMF runs
	Period
	Solution Identification

	W171115
	Residual analysis suggested 4–6 factor solutions. Factor swaps occurring in 5 and 6 factor solutions. Application of constraints at 5 and 6 factor solutions resulted in unreasonable MS or weak time series correlations. Base 4 factor solution fails BS test. Rotating the solution to FPEAK of 1 led to BS test resolution. 

	W172303
	Residual analysis suggested 6–8 factor solutions. Attempted rotations and constraints for solutions with 6 or more factors but failed BS and DISP repeatedly. Base runs of 5 factor solutions fail DISP and show factor swaps at two or more factors, despite the application of rotations and constraints. Base runs of 4 factor solution fail BS at a semi-volatile oxidized OA factor, that shows mixing with HOA and BBOA factors. Constraining primary factors did not solve the problem. Rotations of the 4 factor solution allowed passing of the BS test but failed DISP. Finally, constraints based on the SVOOA reference profile were applied on the semi-volatile oxidized OA factor. Application of these constraints led to passing of all three tests.

	W17
	Residual analysis suggested 4–6 factor solutions. 5 and 6 factor solutions resulted in unreasonable MS or weak time series correlations. 4 factor solution fails BS-DISP test and shows factor swaps of BBOA, HOA, and local OOA factors. Constraining BBOA led to BS-DISP test resolution as well as improves BS mapping.    

	M171115
	Residual analysis suggested 3–5 factor solutions. 4 and 5 factor solution resulted in unreasonable MS or weak time series correlations. 3 factor solution base run passes all tests.

	M172303
	Residual analysis suggested 3–5 factor solutions. 5 factor solutions resulted in two factors with no time series correlations. 4 factor solution passes DISP and BS-DISP tests but fails BS test. Rotating solution to FPEAK 15 led to the necessary improvement in BS mapping.    

	M17
	Residual analysis suggested 3–5 factor solutions. Solutions 4 factors and above gave identical TS correlations at multiple factors.



[bookmark: _Toc64291824]Table S7 Details of number of factors, seed, constraints, rotations applied in EPA PMF
	Period
	Solution Identification

	W171115
	4 factor solution at seed 83 was rotated to FPEAK 1

	W172303
	4 factor solution at seed 6 was constrained with SVOOA presence at factor 3

	W17
	4 factor solution at seed 5 was constrained with BBOA presence at factor 1

	M171115
	3 factor solution at seed 76 with no constraints or rotations applied

	M172303
	4 factor solution at seed 54 was rotated to FPEAK 15

	M17
	3 factor solution at seed 83 with no constraints or rotations applied


[bookmark: _Toc64291825]
Table S8 BS mapping results (reported in terms of BS mapping observed in period)
	Period
	Factors Separated in EPA PMF
	BS Mapping (out of 100)

	W171115
	SFC-OA, BBOA, Local OOA, Regional OOA
	100, 92, 100, 95

	W172303
	HOA, BBOA, Local OOA, Regional OOA
	100, 99, 97, 100

	W17
	HOA, BBOA, Local OOA, Regional OOA
	100, 100, 100, 100

	M171115
	POA, Local OOA, Regional OOA 
	95, 77, 100

	M172303
	HOA, COA, Local OOA, Regional OOA
	100, 100, 96, 99

	M17
	POA, Local OOA, Regional OOA
	NAa


aTest terminated prematurely due to large computational size of data
[bookmark: _Toc64291826]Table S9 DISP swap performance results for lowest dQ-max
	Period
	Factors Separated in EPA PMF
	DISP Swaps

	W171115
	SFC-OA, BBOA, Local OOA, Regional OOA
	0, 0, 0, 0

	W172303
	HOA, BBOA, Local OOA, Regional OOA
	0, 0, 0, 0

	W17
	HOA, BBOA, Local OOA, Regional OOA
	0, 0, 0, 0

	M171115
	POA, Local OOA, Regional OOA 
	0, 0, 0

	M172303
	HOA, COA, Local OOA, Regional OOA
	0, 0, 0, 0

	M17
	POA, Local OOA, Regional OOA
	0, 0, 0, 0


[bookmark: _Toc64291827]Table S10 BS-DISP swap performance results for lowest dQ-max
	Period
	Factors Separated in EPA PMF
	Accepted Cases
	BS-DISP Swaps

	W171115
	SFC-OA, BBOA, Local OOA, Regional OOA
	82
	2, 1, 0, 3

	W172303
	HOA, BBOA, Local OOA, Regional OOA
	NAa
	0, 0, 0, 0

	W17
	HOA, BBOA, Local OOA, Regional OOA
	83
	11, 7, 4, 0

	M171115
	POA, Local OOA, Regional OOA 
	98
	0, 0, 0

	M172303
	HOA, COA, Local OOA, Regional OOA
	93
	1, 1, 0, 0

	M17
	POA, Local OOA, Regional OOA
	NAb
	NA


aTest terminated prematurely due to unknown cause
bTest terminated due to large computational size of data









[bookmark: _Toc64291917]Figure S4 shows mass spectrum of seasonal PMF primary organic aerosol (POA) factor in winter 2017. The whiskers in the graphs represent ±1 standard deviation (SD) of the reference spectra. The mass spectrum resembles the reference HOA profile.


[bookmark: _Toc64291918]Figure S5 shows mass spectrum of seasonal PMF primary organic aerosol (POA) factor in monsoon 2017. The whiskers in the graphs represent ±1 SD of the reference spectra. The mass spectrum resembles the reference HOA profile.


[bookmark: _Toc64291919]Figure S6 shows mass spectrum of seasonal PMF biomass burning organic aerosol (BBOA) factor in winter 2017. Whiskers in the graphs represent ±1 SD of the reference spectra. The mass spectrum resembles the reference BBOA profile.


[bookmark: _Toc64291920]Figure S7 shows the time series correlations of the seasonal PMF factors’ TS and their fractions’ TS with external tracers for the season of winter 2017 (for expanded figure, see Supplementary File-FigS7).


[bookmark: _Toc64291921]Figure S8 shows the time series correlations of the seasonal PMF factors’ TS and their fractions’ TS with external tracers for the season of monsoon 2017 (for expanded figure, see Supplementary File-FigS8).









[bookmark: _Toc64291922]Figure S9 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for BBOA, chloride, BCBB, and ΔC for the seasonal PMF run of winter 2017.




[bookmark: _Toc64291923]Figure S10 shows the mass spectrum of seasonal PMF oxidized organic aerosol (OOA) factors: (a) local OOA and (b) regional OOA in winter 2017. Both MS are similar to the reference OOA factor. The whiskers in the graphs represent ±1 SD of the reference spectra. The two MS are at the two extremes for the range of contributions at m/z 44, pointing to the different oxidation state of aerosols.






[bookmark: _Toc64291924]Figure S11 shows the mass spectrum of seasonal PMF oxidized organic aerosol (OOA) factors: (a) local OOA and (b) regional OOA in monsoon 2017. Both MS are similar to the reference OOA factor. The whiskers in the graphs represent ±1 SD of the reference spectra. The two MS are at the two extremes for the range of contributions at m/z 44, pointing to the different oxidation state of aerosols.






[bookmark: _Toc64291925]Figure S12 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local OOA and regional OOA for the seasonal PMF run of winter 2017. Clearly, regional OOA is less variable diurnally than local OOA.





[bookmark: _Toc64291926]Figure S13 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local OOA and regional OOA for the seasonal PMF run of monsoon 2017. Clearly, regional OOA is less variable diurnally than local OOA.








[bookmark: _Toc64291796]S3 Detailed 15 min time series patterns of seasonal PMF factors at lunch and nighttime 
Time series patterns exhibit contrasting behavior in winter and monsoon. In winter, seasonal PMF POA time series patterns exhibit strong variability at lunch but remain relatively stable at nighttime (Fig. S14a–f). At winter lunch, concentrations of both HOA and BBOA exhibit a monotonically decreasing pattern. In this period, winter peak HOA and BBOA concentrations are ∼6 and ∼3 times the period minimum, respectively (Figs. S14b–c). At winter night, concentrations of HOA and BBOA are higher than lunchtime by a factor of ∼14 and ∼4, respectively, and are comparatively stable; peak concentrations at night are only ∼2 times the period minimum (Figs. S14e–f). In contrast, monsoon POA exhibits relatively stable lunchtime (peak POA∼2 times the period minimum) and variable nighttime (peak POA∼3 times the period minimum) patterns, with nighttime concentrations higher than lunchtime by a factor of ∼3.5 (Fig. S15a, c). These dynamics could be explained by the differences in ventilation coefficient, source strength, reaction chemistry, and the effect of temperature on partitioning (Bhandari et al, 2020). The large mean–median difference in POA factors suggests the influence of episodes. Compared to POA, OOA time series patterns are relatively stable (Figs. S14c, f). In winter, at lunch, the local OOA factor (peak OOA∼2.5 x period minimum) has a stronger variability than the regional OOA factor (peak OOA∼2 x period minimum), but the OOA factors both show a similar monotonically decreasing trend (Fig. S14c). At winter night, we observe no trends in OOA factors (Fig. S14f). Monsoon OOA factors show behavior similar to POA factors (Fig. S15b, d). Local and regional OOA at lunch and at nighttime exhibit very limited variability (peak OOA∼≤1.5 x period minimum).









[bookmark: _Toc64291927]Figure S14 shows 15 min averaged seasonally representative concentration time series of seasonal PMF factors for the periods: (a)-(c) W171115 and (d)-(f) W172303. Nighttime POA factors show stronger evidence of episodes (in µgm-3).






[bookmark: _Toc64291928]Figure S15 shows 15 min averaged seasonally representative concentration time series of seasonal PMF factors for the periods: (a)-(b) M171115 and (c)-(d) M172303. Nighttime POA factors show stronger evidence of episodes (in µgm-3).













[bookmark: _Toc64291929]Figure S16 shows the mass spectrum of time-of-day PMF primary OA factors: (a) W171115 SFC-OA and (b) W171115 BBOA at winter lunchtime in 2017. The whiskers in the graphs represent ±1 SD of the reference spectra. W171115 SFC-OA MS shares similarities with both reference HOA and BBOA MS. W171115 BBOA MS has higher m/z 29 and lower m/z 60 than reference BBOA MS.




[bookmark: _Toc64291930]Figure S17 shows the mass spectrum of time-of-day PMF primary OA factors: (a) W172303 HOA and (b) W172303 BBOA at winter nighttime in 2017. The whiskers in the graphs represent ±1 SD of the reference spectra. W172303 HOA MS is similar to the reference HOA MS. W172303 BBOA MS is similar to reference BBOA MS.


[bookmark: _Toc64291931]Figure S18 shows the mass spectrum of time-of-day PMF primary OA factor W171115 SFC-OA at winter lunchtime in 2017 and the SFC-OA profile from the work of Tobler and co-workers (2020). MS contributions are very similar except at m/z 44.



[bookmark: _Toc64291932]Figure S19 shows the mass spectrum of time-of-day PMF primary OA factor M171115 mixed COA-HOA at monsoon lunchtime in 2017. The whiskers in the graphs represent ±1 SD of the reference spectra. M171115 COA-HOA MS shares similarities with both reference HOA and COA MS.




[bookmark: _Toc64291933]Figure S20 shows the mass spectrum of time-of-day PMF primary OA factors: (a) M172303 HOA and (b) M172303 COA at monsoon nighttime in 2017. The whiskers in the graphs represent ±1 SD of the reference spectra. M172303 HOA MS is similar to the reference HOA MS. M172303 COA MS is similar to reference COA MS.
S4 Details of time-of-day PMF oxidized organic aerosol MS and TS
S4.1 Time series patterns of secondary PM
In all time-of-day periods presented in the paper, POA and local OOA factors correlate more negatively with O3 compared to the regional OOA factor, indicating O3 co-production with regional OOA (Figs. S21–S24). Both lunchtime and nighttime regional OOA factor TS correlate the strongest (among all PMF factors in their respective time periods) with O3+NO2, suggesting that daytime photochemistry and nighttime chemistry are the controlling processes for regional OOA production respectively, with high primary emissions available for oxidation and higher OOA observed in periods with higher oxidant levels. At lunchtime in winter, one OOA factor shares similar time series correlations as the SFC-OA factor, suggesting similar origin (Fig. S21). This OOA factor has the highest correlations with sulfate in this period. We call this factor the local OOA factor, even though sulfate is generally associated with regional OOA. The other OOA factor at lunchtime has low correlations with external tracers. At night, the local OOA factor correlates with nitrate and chloride, and the regional OOA factor correlates with sulfate and nitrate (Fig. S22). These differing correlations also suggest that the association of factors with inorganic species might be due to volatility and not similar origin, especially at lunchtime in winter (Zhang et al., 2011). At monsoon lunchtime, the regional OOA factor correlates strongly with sulfate and the local OOA factor correlates with nitrate (Fig. S23). Additionally, the monsoon lunchtime local (and regional) OOA factor TS correlate strongly with O3+NO2, suggesting that rapid radical chemistry is the controlling process for OOA production. At monsoon nighttime, OOA factors are both correlated with sulfate and nitrate, but the OOA factor with weaker inorganic tracer correlations is correlated stronger with CO (Fig. S24). This factor also has lower MS correlations with the reference OOA profile (Fig. S26). We use these differences to attribute the local and regional OOA nature to the two factors at monsoon nighttime. 
In all periods, time-of-day PMF OOA concentrations are within 25% of the seasonal PMF OOA concentrations, with lower concentrations in time-of-day PMF in all periods except winter nighttime (Figs. S33b and S34b). Unlike nighttime POA concentrations, nighttime OOA concentrations remain stable throughout. Also, unlike the large contrast in lunchtime and nighttime POA concentrations, nighttime OOA concentrations are similar to lunchtime OOA concentrations. The lunchtime period is marked by higher atmospheric mixing, higher photochemical processing, and perhaps lower primary emissions than nighttime (Fig. S1). The nighttime periods are marked by inversions (Bhandari et al., 2020; Fig. S1). Together, these differences in meteorological variables and emissions likely lead to the stable nighttime OOA and similar lunchtime and nighttime OOA concentrations.
S4.2 Mass spectral features of secondary factors
At winter lunchtime, we observe higher contributions in time-of-day OOA at m/z 44, and lower contributions at m/zs 41 and 43, pointing to the higher oxidized nature of OOA (Fig. S35a). At monsoon lunchtime, the only major difference is at m/z 43—higher contributions at m/z 43 lead to a lower oxidation state of OOA in time-of-day PMF (Fig. S36a). At nighttime in monsoon, we observe higher contributions at several m/zs ≤ 44 in time-of-day PMF analysis, suggesting a higher oxidation of OOA (Fig. S36b). The similarity of the OOA MS comparisons in monsoon lunchtime and winter nighttime is accompanied by a similarly strong correlation of the local OOA MS in these periods with the reference SVOOA MS (Figs. S25 and S26).
Similar to POA MS, we compare lunch and nighttime OOA MS from the time-of-day PMF analysis and the seasonal PMF analysis (Figs. S37–S38a–b). For both seasons, seasonal PMF analysis indicates more oxidized OOA at lunchtime than nighttime, based on the higher contributions at m/z 44 (Zhang et al., 2011; Figs. S37a and S38a). In winter, this contrast is sharper in time-of-day PMF analysis and is in line with slower reaction chemistry at winter night (Fig. S37b). In monsoon, however, time-of-day PMF surprisingly suggests lesser oxidized OOA at lunchtime than nighttime, with a higher contribution at m/z 43 and lower contribution at m/z 44 (Fig. S38b). The higher contributions of m/z 43 are likely caused by the presence of semi-volatile compounds—monsoon lunchtime local OOA profile shows the strongest correlation with the reference SVOOA MS among all OOA MS profiles presented in this paper (Fig. S26). Similar behavior has been observed elsewhere as well, and was attributed to biogenic emissions (Canonaco et al., 2015).



[bookmark: _Toc64291934]Figure S21 shows the time series correlations of the PMF factors’ TS with external tracers for the period of W171115 (for expanded figure, see Supplementary File-FigS21).





[bookmark: _Toc64291935]Figure S22 shows the time series correlations of the PMF factors’ TS with external tracers for the period of W172303 (for expanded figure, see Supplementary File-FigS22).


[bookmark: _Toc64291936]Figure S23 shows the time series correlations of the PMF factors’ TS with external tracers for the period of M171115 (for expanded figure, see Supplementary File-FigS23).


[bookmark: _Toc64291937][bookmark: _GoBack]Figure S24 shows the time series correlations of the PMF factors’ TS with external tracers for the period of M172303 (for expanded figure, see Supplementary File-FigS24).


[bookmark: _Toc64291938]Figure S25 shows the time series correlations of the secondary PMF factors’ MS with reference MS for the season of winter 2017. Regional OOA MS are more strongly correlated to reference OOA and LVOOA MS compared to local OOA MS. Local OOA MS are more strongly correlated to reference SVOOA MS compared to regional OOA. 





[bookmark: _Toc64291939]Figure S26 shows the time series correlations of the secondary PMF factors’ MS with reference MS for the season of monsoon 2017. Regional OOA MS are more strongly correlated to reference OOA and LVOOA MS compared to local OOA MS. Local OOA MS are more strongly correlated to reference SVOOA MS compared to regional OOA. 






[bookmark: _Toc64291940]Figure S27 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local OOA and regional OOA for the PMF run of W171115. Clearly, regional OOA is less variable diurnally than local OOA.


[bookmark: _Toc64291941]Figure S28 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local OOA and regional OOA for the PMF run of W172303. Clearly, regional OOA is less variable diurnally than local OOA.



[bookmark: _Toc64291942]Figure S29 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local OOA and regional OOA for the PMF run of M171115. Clearly, regional OOA is less variable diurnally than local OOA.



[bookmark: _Toc64291943]Figure S30 shows the hour-of-day on the day-of-week, seasonal diurnal, monthly, and week-of-day time series patterns for local OOA and regional OOA for the PMF run of M172303. Clearly, regional OOA is less variable diurnally than local OOA.






[bookmark: _Toc64291944]Figure S31 shows the mass spectra of winter lunchtime and nighttime POA using (a) the seasonal PMF approach and (b) the time-of-day PMF approach. Both approaches indicate that the nighttime POA profiles show a stronger primary nature; however, the contrast is sharper in time-of-day PMF comparisons.





[bookmark: _Toc64291945]Figure S32 shows the mass spectra of monsoon lunchtime and nighttime POA using (a) the seasonal PMF approach and (b) the time-of-day PMF approach. Only time-of-day PMF comparisons indicate that nighttime POA profiles show a stronger primary nature. Seasonal PMF comparisons show identical profiles.









[bookmark: _Toc64291946]Figure S33 shows 15 min averaged concentration time series of OOA for the periods: (a) W171115 and (b) W172303.



[bookmark: _Toc64291947]Figure S34 shows 15 min averaged concentration time series of OOA for the periods: (a) M171115 and (b) M172303. 












[bookmark: _Toc64291948]Figure S35 shows the mass spectra of (a) winter lunchtime OOA, and (b) winter nighttime OOA using the seasonal PMF approach and the time-of-day PMF approach.




[bookmark: _Toc64291949]Figure S36 shows the mass spectra of (a) monsoon lunchtime OOA, and (b) monsoon nighttime OOA using the seasonal PMF approach and the time-of-day PMF approach.




[bookmark: _Toc64291950]Figure S37 shows the mass spectra of winter lunchtime and nighttime OOA using (a) the seasonal PMF approach and (b) the time-of-day PMF approach.







[bookmark: _Toc64291951]Figure S38 shows the mass spectra of monsoon lunchtime and nighttime OOA using (a) the seasonal PMF approach and (b) the time-of-day PMF approach.
[bookmark: _Toc64291798]S5 References
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