
 

1 
 

Quantification of primary and secondary organic aerosol 1 

sources by combined factor analysis of extractive electrospray 2 

ionisation and aerosol mass spectrometer measurements 3 

(EESI-TOF and AMS)  4 

 5 

Yandong Tong1,,*, Lu Qi1, Giulia Stefenelli1, Dongyu S. Wang1, Francesco Canonaco1, Urs 6 

Baltensperger1, André S.H. Prévôt1, Jay G. Slowik1,* 7 
1Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, 8 

Switzerland 9 

**Now at Department of Chemistry, University of Colorado, Boulder, 80310, USA 10 

Correspondence to Jay Slowik (jay.slowik@psi.ch)  11 
 12 

Abstract:  13 

Source apportionment studies have struggled to quantitatively link secondary organic aerosol 14 

(SOA) to its precursor sources, due largely to instrument limitations. For example, aerosol mass 15 

spectrometers (AMS) provide quantitative measurements of the total SOA fraction, but lack the 16 

chemical resolution to resolve most SOA sources. In contrast, instruments based on soft ionisation 17 

techniques, such as extractive electrospray ionisation mass spectrometry (EESI, e.g., the EESI 18 

time of flight mass spectrometer, EESI-TOF), have demonstrated the resolution to identify 19 

specific SOA sources but provide only a semi-quantitative apportionment due to uncertainties in 20 

the dependence of instrument sensitivity on molecular identity. We address this challenge by 21 

presenting a method for positive matrix factorisation (PMF) analysis on a single dataset which 22 

includes measurements from both AMS and EESI-TOF instruments, denoted “combined PMF” 23 

(cPMF). Because each factor profile includes both AMS and EESI-TOF components, the cPMF 24 

analysis maintains the source resolution capability of the EESI-TOF, while also providing 25 

quantitative factor mass concentrations. Therefore, the bulk EESI-TOF sensitivity to each factor 26 

can also be directly determined from the analysis. We present metrics for ensuring both 27 

instruments are well-represented in the solution, a method for optionally constraining factor 28 

profile contributions forthe profiles of factors that are detectable by one or both instruments, and 29 

a protocol for uncertainty analysis.  30 

 31 

As a proof of concept, the cPMF analysis was applied to summer and winter measurements in 32 

Zurich, Switzerland. Factors related to biogenic and wood burning-derived SOA are quantified, 33 

as well as POA sources such as wood burning, cigarette smoke, cooking, and traffic. The retrieved 34 

EESI-TOF factor-dependent sensitivities are consistent with both laboratory measurements of 35 

SOA from model precursors and bulk sensitivity parameterisations based on ion chemical 36 

formulae. The cPMF analysis shows that with the standalone EESI-TOF PMF, in which factor-37 

dependent sensitivities are not accounted for, some factors are significantly under/overestimated. 38 

For example, when factor-dependent sensitivities are not considered in the winter dataset, the 39 

SOA fraction is underestimated by ~25% due to the high EESI-TOF sensitivity to components of 40 

primary biomass burning such as levoglucosan. In the summer dataset, where both SOA and total 41 

OA are dominated by monoterpene oxidation products, the uncorrected EESI-TOF 42 

underestimates the fraction of daytime SOA relative to nighttime SOA (in which organonitrates 43 
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and less oxygenated CxHyOz molecules are enhanced). Although applied here to an AMS/EESI-1 

TOF pairing, cPMF is suitable for the general case of a multi-instrument dataset, thereby 2 

providing a framework for exploiting semi-quantitative, high-resolution instrumentation for 3 

quantitative source apportionment.   4 

 5 

1. Introduction 6 
 7 
Atmospheric aerosols negatively affect visibility (Chow et al., 2002), human health (Pope et al., 2002; 8 

Laden et al., 2006; Beelen et al., 2014; Laden et al., 2006; Pope et al., 2002), and urban air quality 9 

(Fenger, 1999; Mayer, 1999) on local and regional scales. Aerosols also provide the largest uncertainties 10 

for global radiation balance and climate change (Myhre et al., 2014; Penner et al., 2011; Forster et al., 11 

2007; Lohmann and Feichter, 2005; Forster et al., 2007; Penner et al., 2011; Myhre et al., 2014). 12 

Therefore, to develop appropriate mitigation policies, it is of vital importance to understand aerosol 13 

chemical composition, sources, and evolution. Organic aerosol (OA) is a major component of 14 

atmospheric aerosol and accounts for 20 to 90 % of the submicron aerosol mass (Jimenez et al., 2009). 15 

OA is typically classified as either primary organic aerosol (POA), which is directly emitted to the 16 

atmosphere, or secondary organic aerosol (SOA), which is produced by atmospheric reactions of 17 

emitted volatile organic compounds (VOCs). Both POA and SOA can exert serious health effects, 18 

including protein and DNA damage caused by reactive oxygen species (ROS), which can be either 19 

contained in the particles or induced by oxidation reactions following inhalation (FullerHalliwell and 20 

Cross, 1994; Li et al., 20142003; Reuter et al., 2010; Kelly and Fussell, 2012; ReuterFuller et al., 2010; 21 

Li et al., 2003; Halliwell and Cross, 19942014). Recent studies indicate that the oxidation potential of 22 

SOA is source-dependent. Therefore, different sources likely carry different health risks, highlighting 23 

the importance of OA source identification and quantification (Zhou et al., 2018; Daellenbach et al., 24 

2020; Zhou et al., 2018). Previous studies have been relatively successful in quantitatively linking POA 25 

to its sources. However, quantification of SOA sources and/or formation pathways is more challenging 26 

due to 1) the chemical complexity of SOA, which can consist of thousands of unique oxidation products, 27 

including highly oxygenated molecules and high molecular weight organic oligomers, and 2) limitations 28 

of traditional instrumentation for characterising OA chemical composition, especially the SOA fraction. 29 

Therefore, the effects of individual SOA sources on health and climate remain poorly constrained. 30 

 31 

Positive matrix factorisation (PMF) is a widely used source apportionment technique. PMF is a bilinear 32 

receptor model which represents the measured mass spectral time series as a linear combination of 33 

factor mass spectra and their corresponding time-dependent concentrations (Paatero and Tapper, 34 

1994)(Paatero and Tapper, 1994). These factors may then be related to emission sources, and/or 35 

atmospheric processes, depending on their chemical and temporal characteristics. PMF has been 36 

implemented in extensive online and offline studies worldwide to quantify OA sources. The Aerodyne 37 

aerosol mass spectrometer (AMS) is widely used in OA source apportionment studies because it 38 

provides online, quantitative measurements of non-refractory PM1 or PM2.5 (particulate matter with 39 

aerodynamic diameter smaller than 1 or 2.5 m, respectively) chemical composition with high time 40 

resolution. Source apportionment studies using PMF based on AMS data have successfully separated 41 

and quantified POA sources based on different chemical signatures, e.g., hydrocarbon-like OA (HOA) 42 

(ZhaoNg et al., 2019; Xu2011b; Zhang et al., 2019; Sun et al., 2016a2014; Elser et al., 2016; ZhangSun 43 

et al., 2014; Ng2016a; Xu et al., 2011b2019; Zhao et al., 2019), cooking-related OA (COA) (XuMohr 44 

et al., 2019; Zhao2012; Crippa et al., 20192013b; Hu et al., 2016; Sun et al., 2016a; Sun et al., 2016b; 45 

CrippaXu et al., 2013a; Mohr2019; Zhao et al., 20122019), biomass burning OA (BBOA) (Alfarra et 46 

al., 2007; Lanz et al., 2007; Sun et al., 2011), and coal combustion OA (CCOA) (Zhang et al., 2008; 47 

Zhang et al., 2014; Elser et al., 2016; Hu et al., 2016; Sun et al., 2016a; Zhang et al., 2014; Zhang et al., 48 
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2008). However, SOA is typically reported as either a single SOA factor (denoted oxygenated organic 1 

aerosol, OOA), or as two factors distinguished by degree of oxygenation (i.e., less oxygenated OOA, 2 

LO-OOA, and more oxygenated OOA, MO-OOA) or by volatility (i.e., semi-volatile OOA, SV-OOA, 3 

and low-volatility OOA, LV-OOA) (Xu et al., 2019; Elser et al., 2016; Sun et al., 2016a; Sun et al., 4 

2013; Jimenez et al., 2009; Zhang et al., 2011; Crippa et al., 2013a2013b; Sun et al., 2013; Elser et al., 5 

2016; Sun et al., 2016a; Xu et al., 2019) rather than in terms of sources and/or formation processes. 6 

This limitation is due to the vaporisation/ionisation scheme in the AMS, which causes significant 7 

thermal decomposition and ionisation-induced fragmentation (Decarlo et al., 2006). The corresponding 8 

decrease in chemical resolution, particularly for the multifunctional and/or highly oxygenated SOA 9 

components molecules of which SOA is comprised(DeCarlo et al., 2006). The corresponding decrease 10 

in chemical resolution, particularly for multifunctional and/or highly oxygenated SOA components (e.g., 11 

multifunctional acids, peroxides, organonitrates, organosulfates, oligomers), limits the resolution of 12 

SOA source apportionment. 13 

 14 

The development of continuous or semi-continuous instruments with softer vaporisation/ionisation 15 

schemes has provided new insights into SOA composition, and is thus of considerable interest for source 16 

apportionment. Recent examples include the (semi-continuous) Filter Inlet for Gases and AEROsols 17 

chemical ionisation time-of-flight mass spectrometer (FIGAERO-CIMS) (Lopez-Hilfiker et al., 18 

2014)(Lopez-Hilfiker et al., 2014), and the (continuous) extractive electrospray ionisation time-of-flight 19 

mass spectrometer (EESI-TOF) (Lopez-Hilfiker et al., 2019), which implement soft ionisation schemes 20 

at lower temperatures than the AMS, thereby reducing thermal decomposition and increasing chemical 21 

resolution (i.e., providing chemical formulae of molecular ions). A recent source apportionment study 22 

using FIGAERO-CIMS at a rural site in the southeastern USA successfully resolved three SOA factors, 23 

characterised by isoprene-derived species such as carboxylic acids from aqueous phase processes, 24 

highlighting the chemistry of biogenic species (Chen et al., 2020). Source apportionment studies in 25 

Zurich using an EESI-TOF identified SOA factors from monoterpene oxidation in summer (Stefenelli 26 

et al., 2019) and oxidation of biomass burning emissions in winter (Qi et al., 2019). EESI-TOF 27 

measurements identified SOA factors related to solid fuel combustion and aqueous-phase processes in 28 

Beijing (Tong et al., 2021) and SOA factors with aromatic and biogenic origins in Delhi (Kumar et al., 29 

2021). However, to date the factor concentrations returned by PMF analyses using these instruments 30 

are not quantitative.  31 

 32 

Quantification of the measurements by instruments such as EESI-TOF and CIMS is challenging,, which 33 

implement soft ionisation schemes at lower temperatures than the AMS, thereby reducing thermal 34 

decomposition and increasing chemical resolution (i.e., providing chemical formulae of molecular ions). 35 

A recent source apportionment study using a FIGAERO-CIMS at a rural site in the southeastern USA 36 

successfully resolved three SOA factors, characterised by isoprene-derived species such as carboxylic 37 

acids from aqueous phase processes, highlighting the chemistry of biogenic species (Chen et al., 2020). 38 

Another source apportionment study from Lee et al. (2020) using FIGAERO-CIMS spectra successfully 39 

distinguished ambient SOA formation and ageing pathways in two forested regions. Source 40 

apportionment studies in Zurich using an EESI-TOF identified SOA factors from monoterpene 41 

oxidation in summer (Stefenelli et al., 2019) and oxidation of biomass burning emissions in winter (Qi 42 

et al., 2019). EESI-TOF measurements identified SOA factors related to solid fuel combustion and 43 

aqueous-phase processes in Beijing (Tong et al., 2021) and SOA factors with aromatic and biogenic 44 

origins in Delhi (Kumar et al., 2021). However, to date the factor concentrations returned by PMF 45 

analyses using these instruments are not quantitative.  46 

 47 
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Quantification of the measurements by instruments such as EESI-TOF and CIMS is challenging 1 

because the instrument sensitivity varies strongly with molecular identity. For CIMS, the sensitivity to 2 

different compounds is determined by the frequency of collisions between reagent ions and analytes, 3 

the ion–molecule reaction time, and the transmission efficiency of product ions to the detector, which 4 

depends on ion-molecule binding energy. Lopez-Hilfiker et al. (2016)Lopez-Hilfiker et al. (2016) 5 

developed methods to estimate the binding energy of iodide (I-) adduct ions of multifunctional organic 6 

compounds for species whose formation is collision-limited, providing a lower limit to their mass 7 

concentrations. Another method to explore the sensitivity is to measure single-compound aerosols or 8 

SOA generated from different precursors simultaneously by an EESI-TOF and a scanning mobility 9 

particle sizer (SMPS) to determine the mass concentration (Lopez-Hilfiker et al., 2016)(Lopez-Hilfiker 10 

et al., 2016). Lopez-Hilfiker et al. (2019) explored EESI-TOF sensitivities to selected reference 11 

compounds with different functional groups (including saccharides, polyols and carboxylic acids) and 12 

bulk SOA generated from oxidation of a single precursor VOC. For pure compounds, relative 13 

sensitivities vary by two orders of magnitude, with some composition-dependent trends evident (e.g., 14 

increasing sensitivity of saccharides with decreasing molecular weight, and high sensitivities for polyols 15 

relative to other functionalities). In addition, a trend of decreasing sensitivity with decreasing molecular 16 

weight of the precursors was found for bulk SOA. While calibration with standard compounds is 17 

straightforward, the quantification of individual species within SOA is extremely challenging, due to 18 

its complex composition, the lack of chemical standards for most molecules, and the potential for 19 

structural isomers to have significantly different sensitivities. These issues were investigated recently 20 

for the EESI-TOF by generating SOA in the presence of a variable seed surface area, and comparing 21 

the difference in SOA ion concentrations measured by the EESI-TOF and the corresponding gas-phase 22 

concentrations measured by a Vocus proton transfer reaction-mass spectrometer (Vocus-PTR-MS) 23 

(Wang et al., 2021).(Wang et al., 2021). The observed sensitivities for different SOA components 24 

produced from the oxidation of limonene, o-cresol, or 1,3,5-trimethylbenzene ranged from 103 to 105 25 

ion s-1 ppb-1. A regression model was developed that was able to predict the ion-by-ion sensitivities to 26 

within a factor of 5 of the experimental value when the precursor VOC is known a priori. However, the 27 

study also showed significantly different sensitivities (up to a factor of 20) for structural isomers derived 28 

from different VOC precursors. Similar isomer sensitivity differences for I--CIMS was also reported by 29 

(Bi et al., 2021)Similar isomer sensitivity differences for the I--CIMS were also reported by (Bi et al., 30 

2021). The fact that these isomers cannot be distinguished by 1-dimensional mass spectrometry, 31 

represents a fundamental limitation of calibration/parameterisation-based quantification and 32 

complicates interpretation of the binding energy-based approach (Lopez-Hilfiker et al., 2016), because 33 

ambient SOA may derive from unknown or complex mixtures of VOCs. Therefore, for source 34 

apportionment purposes, source-based sensitivities are preferred and essential to quantify SOA sources 35 

and formation processes.  36 

 37 

Here we present a new approach for quantification of SOA sources retrieved from source apportionment. 38 

This is achieved by PMF analysis of a single input matrix consisting of data from both a quantitative 39 

instrument with lower chemical resolution (i.e., AMS) and an instrument with high chemical resolution 40 

and a linear but molecule-dependent response (i.e., EESI-TOF). This method is based on the combined 41 

PMF (cPMF) analysis previously performed on combined OA/VOC data from AMS and PTR-MS, 42 

respectively (Crippa et al., 2013b; Slowik et al., 2010; Crippa et al., 2013a), but utilises a more robust 43 

metric for ensuring adequate representation of both instruments in the model solution, optionally allows 44 

constraints to be placed on the factor profile contributions for one or both instruments, and provides a 45 

method for uncertainty analysis. The cPMF method is applied to AMS/EESI-TOF datasets collected 46 

during summer and winter campaigns in Zurich, Switzerland, for which single-instrument PMF 47 

analyses were previously reported (Qi et al., 2019; Stefenelli et al., 2019). The present study is the first 48 
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application of cPMF to a joint EESI-TOF/AMS dataset, and the first attempt at quantitative EESI-TOF-1 

driven source apportionment. 2 

 3 

2. Methodologies 4 
2.1 The measurement site and field campaigns 5 

Field campaigns were conducted at the Swiss National Air Pollution Monitoring Network (NABEL) 6 

station, an urban background site located in the Alte Kaserne, central Zurich (47º22’ N, 8º33’ E, 410 m 7 

above sea level), previously described in detail (Lanz et al., 2007; Canonaco et al., 2013; Lanz et al., 8 

2007). The measurements used in the current analysis are from 20 June to 26 June 2016 and 25 January 9 

to 4 February 2017. These periods are excerpted from longer campaigns, and correspond to the times 10 

during which both the AMS and EESI-TOF achieved stable operation. The measurement site is located 11 

in a courtyard, although influences from nearby restaurants, local minor roads, and human activities 12 

(e.g., cigarette smoking) are often observed (Lanz et al., 2007; Daellenbach et al., 2017; Qi et al., 2019; 13 

Stefenelli et al., 2019; Qi et al., 2019; Qi et al., 2020). Gas-phase species, e.g., nitrogen dioxide (NO2), 14 

nitrogen oxide (NO) and sulfur dioxide (SO2) and meteorological data, e.g., temperature (T), relative 15 

humidity (RH), radiation, wind speed (WDWS) and wind direction (WD) are recorded by the 16 

monitoring station.   17 

 18 

During the intensive campaigns, a separate trailer was deployed to house an additional suite of gas and 19 

particle instrumentation. A PM2.5 cyclone was installed ~75 cm above the trailer roof (~5 m above 20 

ground) to remove coarse particles. After passing through the cyclone, the sampled air passed through 21 

a stainless steel (~6 mm outer diameter, O.D.) tube to the particle instrumentation, which included a 22 

high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS, Aerodyne Research Inc.) and 23 

an extractive electrospray ionisation time-of-flight mass spectrometer (EESI-TOF) to measure the OA 24 

composition, and a scanning mobility particle sizer (SMPS) to measure the particle concentration and 25 

size distribution. The summer and winter campaign results, including OA source apportionment from 26 

the standalone AMS and EESI-TOF datasets, were previously presented in detail (Qi et al., 2019; 27 

Stefenelli et al., 2019). In this study, we focus on the OA source apportionment using positive matrix 28 

factorisation (PMF) on the combined dataset from AMS and EESI-TOF, collected during the two 29 

campaigns. 30 

 31 

2.2 Instrumentation 32 
2.2.1 High-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) 33 

 34 

The AMS (Aerodyne Research, Inc.) provides fast, online, quantitative measurements of the size-35 

resolved composition of non-refractory PM1 (NR-PM1). A detailed description of the instrument can be 36 

found elsewhere (DecarloDeCarlo et al., 2006; Canagaratna et al., 2007), while operational details and 37 

data treatment are documented in Stefenelli et al. (2019) and , while operational details and data 38 

treatment are documented in Stefenelli et al. (2019) and Qi et al. (2019). Briefly, in both campaigns, 39 

the organic composition of NR-PM1 was measured by AMS with a time resolution of 1 min. At the 40 

beginning and at the end of the both campaigns, the instrument was calibrated for ionisation efficiency 41 

(IE) using 400 nm NH4NO3 particles byusing the mass-based method (Jimenez et al., 2003; Canagaratna 42 

et al., 2007; Jimenez et al., 2003). The HR-TOF-AMS data was analysed using the SQUIRREL (v.1.57) 43 

and PIKA (v.1.16) software packages in IGOR Pro 6.37 (Wavemetrics, Inc., Portland, OR, USA). 44 

Before further single-instrument and cPMF analysis, a composition-dependent collection efficiency 45 

(CDCE) was implemented to correct the measured aerosol mass (Middlebrook et al., 2012). For both 46 

single-instrument PMF and cPMF analysis, the input matrices consisted of the time series of fitted OA 47 

ions from highresolution mass spectral analysis, together with their corresponding uncertainties 48 
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estimated from ion counting statistics and detector variability according to Allan et al. (2003). 1 

Following Ulbrich et al. (2009), a minimum error value was applied to the error matrix. . For both 2 

single-instrument PMF and cPMF analysis, the input matrices consisted of the time series of fitted OA 3 

ions from high-resolution mass spectral analysis, together with their corresponding uncertainties 4 

estimated from ion counting statistics and detector variability according to Allan et al. (2003). 5 

Following Ulbrich et al. (2009), a minimum error value was applied to the error matrix. Ions with signal-6 

to-noise ratio (SNR) smaller than 0.2 were excluded in the further analysis, whereas ions with an SNR 7 

between 0.2 and 2 were downweighted by a factor of 2 (Paatero and Hopke, 2003). The contribution of 8 

nitrate ions to CO2
+ was estimated separately in each campaign from their respective NH4NO3 9 

calibrations (Pieber et al., 2016). 10 

 11 

The AMS PMF input matrices are identical to those used by Stefenelli et al. (2019)Stefenelli et al. (2019) 12 

and Qi et al. (2019), with the exception that they include not only the OA ions retrieved from spectral 13 

analysis, but also NO+ and NO2
+. These ions are added because they represent the major products 14 

measured from organonitrate fragmentation (Farmer et al., 2010)(Farmer et al., 2010), and standalone 15 

EESI-TOF PMF suggested a significant role for organonitrates and other nitrogen-containing species 16 

during both the summer and winter campaigns (Qi et al., 2019; Stefenelli et al., 2019). Detailed 17 

descriptions of the final input matrices from AMS (e.g., number of measurements, number of ions and 18 

time resolution) in summer and in winter are presented in Table 1.  19 

 20 

2.2.2 Extractive electrospray ionisation time-of-flight mass spectrometer (EESI-TOF) 21 
 22 

The EESI-TOF provides online, fast, near-molecular-level measurement (i.e., chemical formulae of 23 

molecular ions) of OA composition, without thermal decomposition or ionisation-induced 24 

fragmentation. A detailed description can be found elsewhere (Lopez-Hilfiker et al., 2019) and the 25 

operational details for the summer and winter campaigns are documented in Stefenelli et al. 26 

(2019)Stefenelli et al. (2019) and Qi et al. (2019), respectively. Briefly, aerosol particles were 27 

continuously sampled through a 6 mm O.D., 5 cm long multi-channel extruded carbon denuder. 28 

Particles then intersected a spray of charged droplets generated by a conventional electrospray probe 29 

and the soluble fraction was extracted into the droplets. The droplets passed through a heated stainless-30 

steel capillary (~250 °C), wherein the electrospray solvent evaporated, and ions were ejected into the 31 

mass spectrometer. Due to the short residence time (~1 ms) in the capillary, no thermal decomposition 32 

was observed. The analyte ions were detected by a high-resolution time-of-flight mass spectrometer 33 

with an atmospheric pressure interface (API-TOF) (Junninen et al., 2010)(Junninen et al., 2010). In the 34 

summer campaign, the electrospray consisted of a 1:1 water/methanol (MeOH, UHPLC-MS grade, 35 

LiChrosolv) mixture doped with 100 ppm NaI (>99 %, Sigma-Aldrich). In the winter campaign, a 1:1 36 

water/acetonitrile mixture (> 99.9 %, Sigma-Aldrich) mixture with 100 ppm NaI (99 %, Sigma-Aldrich) 37 

was utilised, which reduced background signal. In both campaigns, the mass spectrometer was 38 

configured to detect positive ions. Because of NaI use, analyte ions were detected almost exclusively 39 

as [M]Na+ and other ionisation pathways were suppressed (the only notable exception being nicotine, 40 

which was detected as [C10H14N2]H+). This yields a linear response to mass, avoids matrix effects, and 41 

simplifies spectral interpretation (Lopez-Hilfiker et al., 2019). Adducts of an analyte with acetonitrile 42 

or methanol molecule(s) may also be detected by the instrument, depending on the voltage settings in 43 

the ion transfer optics (i.e., collision energy), but these adducts were observed to have negligible signals 44 

with our voltage configurations in both campaigns. The EESI-TOF alternates between direct sampling 45 

(8 min) and sampling through a particle filter (3 min) to provide a measurement of instrument 46 

background (including spray). No major changes between adjacent background measurements were 47 

observed in either campaign (Qi et al., 2019; Stefenelli et al., 2019). 48 
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 1 

Data analysis, including high-resolution peak fitting, was performed using Tofware version 2.5.7 2 

(Tofwerk AG, Thun, Switzerland). Detailed data treatment processes can be found in Stefenelli et al. 3 

(2019)Stefenelli et al. (2019) and Qi et al. (2019). The EESI-TOF alternates between periods of direct 4 

ambient sampling (Mamb) and filter sampling (Mbkgd), with the filter periods interpolated to yield an 5 

estimated background spectrum during ambient measurements (Mbkgd,est). The spectra corresponding to 6 

aerosol composition (Mdiff) are determined by the difference of Mamb and Mbkgd,est as shown in Eq. (1a). 7 

The corresponding error matrix was estimated by adding in quadrature the uncertainties of the total 8 

sampling measurement samb (i,j) and the filter sampling measurement sbkdg,est (i,j) as shown in Eq. (1b), 9 

which are in turn calculated from ion counting statistics and detector variability (Allan et al., 10 

2003)(Allan et al., 2003): 11 

 12 

𝑀 𝑖. 𝑗 𝑀 𝑖, 𝑗 𝑀 , 𝑖, 𝑗 1𝑎  13 

𝑠 𝑖, 𝑗 𝑠 𝑖, 𝑗 𝑠 , 𝑖, 𝑗  1𝑏  14 

where the unit of all quantities in both equations is counts per second (cps). Ions with a mean SNR 15 

smaller than 2 were removed from both matrices, because the signals of these ions were predominantly 16 

caused by electrospray and/or instrumental background. Input matrix dimensions are summarised in 17 

Table 1.  18 

 19 

In theory, EESI-TOF signal for an ion x can be converted from ion flux (cps) to mass concentration 20 

(μg m-3), according to Eq. (2):  21 

𝑀𝑎𝑠𝑠 𝐼  
MW

EE CE IE TE /
 

1
𝐹

2  22 

 23 

where 𝑀𝑎𝑠𝑠  and Ix are the mass concentration (in μg m-3), and the ion flux (cps) reaching the detector 24 

for an ion x, respectively. MW  represents the molecular weight of the measured ion (e.g., [M]Na+) 25 

(Lopez-Hilfiker et al., 2019; Qi et al., 2019; Stefenelli et al., 2019). EE , CE , IE  and TE /  denote 26 

EESI extraction efficiency (the probability that a molecule dissolves in the spray), EESI collection 27 

efficiency (the probability that the analyte-laden droplet enters the inlet capillary), ionisation efficiency 28 

(the probability that an ion forms and subsequently survives declustering forces induced by evaporation 29 

and electric fields), and ion transmission efficiency (the probability that a generated ion is transmitted 30 

to the detector, which is independent from chemical identity but depends only on m/z), respectively. F 31 

indicates the flow rate. In practice, several of these parameters are ion-dependent and remain 32 

uncharacterised, and therefore conversion to mass concentration on an ion-by-ion basis cannot currently 33 

be achieved (Lopez-Hilfiker et al., 2019). Instead, to facilitate comparison with bulk quantities, we 34 

define an “apparent sensitivity (AS)” to describe the EESI-TOF response to a measured concentration 35 

of species x, as shown in Eq. (3): 36 

 
𝐴𝑆

MW
EE CE IE TE /

 
1
𝐹

𝐼
𝑀𝑎𝑠𝑠

 
(3) 

where 𝐼  is the measured ion flux (counts per second, cps) for the ion or factor x detected by EESI-TOF, 37 

𝑀𝑎𝑠𝑠  is measured mass concentration (μg m-3) from a reference instrument for the same ion or factor 38 

x, thus the AS is in the unit of cps (μg m-3)-1. In this study, we calculatedEquation (3) is used to determine 39 

the apparent factor-specific sensitivities for different factors from the cPMF resultsoutputs by 40 

utilisingdefining the AMS contribution to the factor profile (μg m-3) as 𝑀𝑎𝑠𝑠  and the EESI-TOF 41 

contribution (cps) as Ix. Calculation of these contributions is discussed later in in Sect. 4 using these 42 

factor-dependent sensitivities.  43 
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 1 

2.2.3 Estimation of EESI-TOF sensitivities from a multi-variate model 2 
 3 

For comparison to the factor-dependent sensitivities determined by the cPMF analysis (see Sect. 3.Eq. 4 

3), we also estimated sensitivities for SOA factors from molecular formulae of individual analyte ions 5 

using parameterisations developed from laboratory measurements of SOA generated from oxidation of 6 

limonene (LMN) by ozone and o-cresol (cresol) and 1,3,5-trimethylbenzene (TMB) by OH radicals 7 

(Wang et al., 2021). As discussed in Sect. 1,(Wang et al., 2021). As discussed in Sect. 1, the 8 

parameterisation can predict the relative sensitivities of ions measured by the EESI-TOF to within a 9 

factor of 5, provided that the SOA is derived from a single, known VOC. However, for ambient data, 10 

SOA derives from multiple precursor VOCs, increasing uncertainties. For example, SOA isomers 11 

generated from different precursors can differ by up to a factor of 20 in relative sensitivity (Wang et al., 12 

2021).(Wang et al., 2021). This represents a significant source of uncertainty for 13 

calibration/parameterisation-based approaches for quantifying SOA factors from source apportionment, 14 

but is nonetheless a useful point of comparison. 15 

 16 

In the present study, we utilise two well-performing models from Wang et al. (2021), namely the 17 

gradient boosting regression and linear ridge regression models, denoted GBR and LRR, respectivelyIn 18 

the present study, we utilise a well-performing model from Wang et al. (2021), namely the gradient 19 

boosting regression, denoted GBR, developed in scikit-learn packages in Spyder 4.1.4 and Python 3.8.3. 20 

The SOA parameterisation derived from LMN was used to predict the sensitivities for summer SOAs 21 

(which are predominantly terpene-derived SOAs), and SOA systems derived from cresol and TMB 22 

were used to predict the sensitivities for winter SOAs (which are characterised by aromatics from 23 

biomass burning activities). The regression models provide compound-dependent relative sensitivities 24 

(ASx) based only on molecular formulae. Then, the EESI-TOF signals for each factor are calculated as 25 

a signal-weighted average from the respective factor profiles, as shown in Eq. (4):  26 

 
𝐴𝑆

∑ 𝐼

∑ 𝐼
𝐴𝑆

 
(4) 

 27 

Here Ix denotes the contribution to the factor profile of each ion x. Because the model parameterisations 28 

are based on laboratory SOA that contained only the CHO group, while the resolved OA sources in this 29 

study include both CHO and CHON, we approximate the total factor sensitivity by assuming the 30 

average EESI-TOF sensitivity to CHON ions is equal to the average sensitivity of CHO ions (on a 31 

factor-by-factor basis). Note that the ions from the CHO group contribute a major fraction in SOA mass 32 

for each factor, comprising 85.2 %, 78.1 %, 57.3 % and 76.3 % for DaySOA1, DaySOA2, NightSOA1 33 

and NightSOA2 for summer and 77.9 % and 75.0 % to SOA1 and SOA2 for winter, reducing the 34 

uncertainties introduced by this assumption (these factors will be discussed in Sect. 3.2). . The factor-35 

specific sensitivities derived from cPMF (Eq. 3) and from the GBR model (Eq. 4) are compared in Sect. 36 

3.2. 37 

 38 

 39 

2.3 Source ApportionmentCombined Positive Matrix Factorisation (cPMF) Method 40 
 41 

In this paper,The source apportionment was performed using the model used in this study is based on 42 

positive matrix factorisation (PMF) model on ), which is widely used in the environmental studies. PMF 43 

is a bilinear receptor factor analysis model that decomposes time series of measured variables (here 44 

related to particle composition) into factor contributions and factor profiles. Different from 45 
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conventional PMF analysis, which is typically conducted on a dataset collected by a single instrument, 1 

here PMF is applied to a single input dataset containing both AMS and EESI-TOF mass spectral data. 2 

WeA conceptual schematic of the input data matrix is shown in Fig. 1. Herein we denote the overall 3 

method governing analysis of such a merged dataset as “combined PMF” (cPMF), while “PMF” denotes 4 

both the general PMF model and single-run executions by the Multilinear Engine solver (see Sect. 5 

2.3.1),2.3.0), which are identical for PMF and cPMF.  6 

 7 

 8 

Figure 1. Schematic of the combined EESI-TOF and AMS input data matrix (X) for cPMF. Matrix 9 
dimensions for the summer and winter datasets are provided in Table 1. 10 
 11 

This section presents an overview of the cPMF method, with detailed descriptions of each step in the 12 

referenced sub-sections. Section 3.1 then presentsIn the Text S2 in the Supplement, we present details 13 

of its application to the test datasets, including dataset-specific decisions (e.g., which factors to constrain, 14 

criteria for accepting/rejecting solutions) required during certain steps. The overall procedure is outlined 15 

in Fig. 1,2, with the main steps as follows: 16 

  17 

1)0) Conventional PMF analyses are conducted on the standalone EESI-TOF and AMS 18 
datasets with synchronised time resolution, including constraints on factor profiles as necessary. 19 
ResidualsResidual distributions from the optimised solutions are used later in step 3 as a 20 
reference to retrieve a balanced solution (step 4).criterion for assessing relative instrument 21 
weight. 22 

2)1) The EESI-TOF and AMS datasets with synchronised time resolution are combined into 23 
a single input matrix. This input matrix contains OA spectra from EESI-TOF and AMS, as well 24 
as the NO+ and NO2

+ ions measured by the AMS due to the contributions of organonitrates to 25 
these ions (Sect. 2.3.1). 26 

3)2) For any factors that are to be constrained, joint AMS/EESI-TOF profiles are 27 
constructed (Sect. 2.3.2 and 3.12.3.2 and Text S2.2). 28 

4)3) An exploratory PMF analysis is conducted on the joint AMS/EESI-TOF matrix. This 29 
consists of a 2-D exploration of the solution space defined by the number of factors (p) and 30 
relative instrument weight (C) (Sect. 2.3.3).2.3.3). The instrument weight ensures that both 31 
instruments are well-represented in the solution and is assessed by comparing residuals from 32 
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cPMF and standalone PMF. For computational efficiency, the profiles of all constrained factors 1 
are not allowed to deviate from their reference profiles. Solutions in which both instruments 2 
receive approximately equal weight are evaluated for environmental interpretability, with the 3 
most interpretable solution utilised as the base case for further analysis. Note that the base case 4 
is fully defined by C, p, and the set of constrained factor profiles. 5 

5)4) From the selected base case, 1000 PMF runs are conducted, which combine bootstrap 6 
analysis with random selection of a- values (i.e., tightness of constraint) for the constrained 7 
factors within predetermined limits that are defined on a factor-by-factor basis (Sect. 8 
2.3.4).2.3.4). This requires the following as prerequisites: 9 

a.  Definition of dataset-specific criteria for acceptance/rejection of individual runs (Sect. 10 
3.1Text S2.4). 11 

b.  Determination of the a- value range on a factor-by-factor basis giving a reasonable 12 
acceptance probability, i.e., sufficient rejection rate to ensure adequate exploration 13 
while maintaining computational efficiency (Sect. 3.1Text S2.4).  14 

6) The final cPMF result is taken as the mean of all accepted solutions from the 15 
bootstrap/a-value analysis (step 5),, with uncertainties represented by the standard deviation. 16 
From this mean solution, quantitative time series and EESI-TOF factor-specific sensitivities are 17 
calculated. 18 

 19 
 20 
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 1 

Figure 2. Flow chart summary of cPMF analysis workflow. Red text denotes PMF model operations 2 

while black text denotes inputs, outputs, and/or analysis decisions.  3 

 4 

2.3.12.3.0 Positive matrix factorisation (PMF) principles 5 
In this step, PMF analyses are conducted on the standalone EESI-TOF and AMS datasets with 6 

synchronised time resolution, including constraints on factor profiles as necessary. Residuals from these 7 

solutions are used to derive as a reference quantity to retrieve a balanced solution (procedure described 8 

in step 3). This step is a parallel step and a preparation for the cPMF, therefore, we denote this step as 9 

step 0.  10 

 11 

Positive matrix factorisation (PMF) is implemented using the Multilinear Engine (ME-2) (Paatero, 12 

1999)(Paatero, 1999), with model configuration and post-analysis performed with the Source Finder 13 

(SoFi, version 6B) (Canonaco et al., 2013), programmed in Igor Pro 6.39 (Wavemetrics, Inc.). PMF is 14 

a bilinear receptor model, which operates on an input data matrix X (here the mass spectral time series 15 

collected by EESI-TOF and/or AMS) and uncertainty matrix S, which corresponds point-by-point to X. 16 

PMF describes X as a linear combination of static factor profiles (in this case characteristic mass spectra, 17 

representing specific sources and/or atmospheric processes) and their corresponding time-dependent 18 

source contributions, as described in Eq. (5): 19 

 20 

𝐗 𝐆  𝐅 𝐄 5  21 

 22 

Here X has dimensions of m×n, representing m measurements of n variables (here ions), G and F are 23 

respectively the factor time series with the dimension of m×p, and factor profiles with the dimension of 24 

p×n, where p is the number of factors in the PMF solution, and is determined by the user. E is the 25 

residual matrix and defined by Eq. (5). Figure 2 shows a conceptual representation of the combined 26 

EESI-TOF and AMS input data matrix X. The corresponding uncertainty matrix S and residual matrix 27 

E are constructed in the same way (Slowik et al., 2010)(Slowik et al., 2010). Note that the AMS 28 

component of X, S and E is in μg m-3, and the EESI-TOF component is in cps. Also, X includes not 29 

only organic ions from the AMS, but also NO+ and NO2
+, which contain a large fraction of the AMS 30 

signal derived from organonitrates (Farmer et al., 2010)(Farmer et al., 2010). 31 
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    1 

             2 
 3 

Figure 2. Schematic of the combined EESI-TOF and AMS input data matrix (X) for cPMF. Matrix 4 
dimensions for the summer and winter datasets are provided in Table 1. 5 
 6 

Equation (5) is solved by a least-squares algorithm that iteratively minimises the quantity Q, which is 7 

defined in Eq. (6) as the sum of the squares of the uncertainty-weighted residuals:  8 

 9 

𝑄
𝑒
𝑠

6  10 

 11 

Here eij is an element in the residual matrix E, and sij is the corresponding element in the uncertainty 12 

matrix, where i and j are the indices representing time and ion (or m/z), respectively. The theoretical Q, 13 

denoted as Qexpected, is estimated by Eq. (7): 14 

 15 

However, different combinations of the G and F matrices may result in solutions with the same or 16 

similar Q (rotational ambiguity), which in practice leads to mixed or unresolvable factors. Here we 17 

explore a subset of the possible PMF/cPMF solutions in which one or more factor profiles are 18 

constrained using the a-value approach to direct solutions towards environmentally meaningful 19 

rotations. These factors are constrained using reference profiles, with the scalar a (0≤ a ≤1) determining 20 

the tightness of constraint as follows:  21 

𝑓 ,   𝑓 , 𝑎 𝑓 , 7   22 

Here 𝑓 ,  represents the reference profile and 𝑓 ,  the final profile returned by the model. Due 23 

to the renormalisation of matrices after PMF runs, the final values in 𝑓 ,  may slightly exceed the 24 

prescribed range. This approach has been shown to significantly improve the model performance 25 

relative to unconstrained PMF 26 

𝑄 ≌ 𝑚𝑛 𝑝 𝑚 𝑛 7  27 

 28 
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where m and n denote the number of measurements (here time points) and the number of variables (ions 1 

or m/z), respectively, and p denotes the number of factors in this PMF solution. 2 

 3 

(Canonaco et al., 2013; Crippa et al., 2014; Daellenbach et al., 2016; Qi et al., 2019; Stefenelli et al., 4 

2019). 5 

 6 

Due to the nature of the cPMF X matrix, each retrieved factor has a single time series, which can be 7 

expressed in the concentration units of either instrument, and the factor profile contains both an AMS 8 

and an EESI-TOF component. The factor time series for a single factor k is calculated as follows: 9 

𝑔 , 𝑔 ,  𝑓 , 8  10 

 11 

Here 𝑔 ,  refers generally to the time series in the measurement units of a given instrument, which 12 

we denote 𝑔 ,  or 𝑔 , , and the j=inst formalism denotes the set of ions measured by the 13 

respective instrument. For ease of interpretation, we report the instrument contribution to each factor 14 

profile as the mass spectrum (in the respective instrument units) that would be obtained for a factor 15 

mass concentration of 1 µg m-3. This is expressed as follows, for a single factor k: 16 

𝑓 ,

𝑓 , 𝑔 ,

𝑔
9  17 

 18 

Here 𝑔 ,  denotes the mean of the factor time series in AMS units (µg m-3), 𝑔  is a reference mass 19 

concentration (chosen here as 1 µg m-3), the j=inst formulation again refers to all ions measured by a 20 

given instrument. We refer to the organic fraction of AMS profile components and EESI-TOF profile 21 

components as 𝑓 ,  and 𝑓 ,  ,, respectively. The EESI-TOF apparent sensitivity (ASx, 22 

defined in Eq. (3))(3)) can then be calculated for a single factor k as: 23 

 24 

𝐴𝑆
𝑔 ,

𝑔 ,

10  25 

Evaluation of factor interpretability for PMF analysis of the data from a single instrument typically 26 

includes: 1) correlation of the time series with external data; 2) comparison of factor diurnal cycles with 27 

known source activity and previous measurements; 3) identification of source-specific spectral features. 28 

In addition to these three points, factors from cPMF were also interpreted by considering the consistency 29 

of spectral features between the AMS and EESI-TOF, e.g., factors originated from fresh biomass 30 

burning activities are characterised by elevated signal from C2H4O2
+ in the AMS spectrum and 31 

levoglucosan in the EESI-TOF spectrum. 32 

 33 

2.3.1 Dataset combination and synchronisation 34 
 35 

In this step, the time resolution of the EESI-TOF and AMS are synchronised and the datasets with 36 

overlap temporal coverage are combined into a single input matrix, as shown in Fig. 1. This input matrix 37 

contains OA spectra from EESI-TOF and AMS, as well as the NO+ and NO2
+ ions measured by the 38 

AMS due to the contributions of organonitrates to these ions. The corresponding error matrix is also 39 

constructed in the same way. 40 

 41 
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2.3.2 Constraints on factor profiles  1 
 2 

Different combinations of the G and F matrices may result in solutions with the same or similar Q 3 

(rotational ambiguity), which in practice leads to mixed or unresolvable factors. Here we explore a 4 

subset of the possible PMF/cPMF solutions in which one or more factor profiles are constrained using 5 

the a-value approach to direct solutions towards environmentally meaningful rotations. These factors 6 

are constrained using reference profiles, with the scalar a (0≤ a ≤1) determining the tightness of 7 

constraint as follows:  8 

𝑓 ,   𝑓 , 𝑎 𝑓 , 11   9 

Here 𝑓 ,  represents the reference profile and 𝑓 ,  the final profile returned by the model. Due 10 

to the renormalisation of matrices after PMF runs, the final values in 𝑓 ,  may slightly exceed the 11 

prescribed range. This approach has been shown to significantly improve the model performance 12 

relative to unconstrained PMF (Crippa et al., 2014; Canonaco et al., 2013; Daellenbach et al., 2016; 13 

Stefenelli et al., 2019; Qi et al., 2019). 14 

 15 

As shown in Eqs. (8-10), the EESI-TOF factor sensitivity is intrinsic to a given factor (via its profile). 16 

However, in 17 

If one or more factors are constrained in the Sect. 2.3.0, these factors should also be constrained in this 18 

step, in which the principle of a-value approach in Eq. (7) applies here too. In the cPMF, it may be 19 

desirable to constrain a factor for which a single reference profile incorporating both AMS and EESI-20 

TOF mass spectra is not available. For example, a factor may be detectable by only one instrument, or 21 

reference profiles may have been retrieved independently for each instrument (e.g., from different 22 

studies). In such cases, the cPMF reference profile, 𝑓 , ,
 is constructed from merged 23 

individual profiles as follows:  24 
  25 

𝑓 , ,

1 𝜇g m

⎩
⎪
⎨

⎪
⎧ 𝑓 ,

∑ 𝑓 ,
, 𝑗 ∈ 𝐴𝑀𝑆, 𝑟𝑒𝑓

𝐴𝑆 ∙
𝑓 ,

∑ 𝑓 ,
, 𝑗 ∈ 𝐸𝐸𝑆𝐼, 𝑟𝑒𝑓

12  
𝑓 , ,

1 𝜇g m

⎩
⎪
⎨

⎪
⎧ 𝑓 ,

∑ 𝑓 ,
,

𝐴𝑆 ∙
𝑓 ,

∑ 𝑓 ,
,

26 

 27 

 28 

Here 𝑓 ,   denotes standalone reference profiles for the AMS and EESI-TOF, respectively. Note that 29 

although Eq. (1211) requires an initial value of ASk to be assumed prior to PMF execution and utilised 30 

during the exploratory phase of cPMF (Sect. 2.3,2.3, step 43), selection of a non-zero a- value during 31 

bootstrap analysis (Sect. 2.3,2.3, step 54) allows the final ASk to be determined by the algorithm within 32 

the designated boundaries. Therefore, only a reasonable a priori estimate is required. In the case that a 33 

factor is undetectable by the EESI-TOF (e.g., non-oxygenated hydrocarbons comprising traffic-related 34 

factors), a value of ASk is assumed that fixes the EESI-TOF contribution near zero., as discussed in the 35 

Supplement in Text S1. In the present study, we utilised ASk = 0.01 cps (μg m-3)-1 when this situation 36 

arose. (e.g., HOA and InorgNit reference profiles are constructed using this method). For contrast, ASk 37 

for factors detectable by both instruments ranged from approximately 100 to 1000 cps (μg m-3)-1. 38 

 39 

 40 

2.3.3 Instrument weighting  41 
2.3.3 Exploratory phase of cPMF 42 
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In this step, an exploratory PMF analysis is conducted on the joint AMS/EESI-TOF matrix. This 1 

consists of a 2-D exploration of the solution space defined by the number of factors (p) and relative 2 

instrument weight (C). For both factor interpretation and quantitative analysis, it is important that both 3 

instruments be well-represented in any accepted PMF solution. In principle, the extent to which PMF 4 

can explain a variable xi,j is limited by the measurement uncertainty, si,j; that is, the expectation value 5 

of the scaled residual (ei,j/si,j) is 1 (i.e., Q/Qexpect ~ 1). In practice, ei,j/si,j may be systematically above or 6 

below 1, and differ between instruments, for several reasons. First, the accuracy of the error calculation 7 

may be systematically different between instruments, leading to systematic differences in the effect of 8 

residuals from a given instrument on Q. Second, the extent of internal correlations in the dataset may 9 

differ between instruments. For example, fragmentation/thermal decomposition in the AMS can lead to 10 

sequences of correlated ions (e.g., CnH2n+1
+ for alkanes). In contrast, for the EESI-TOF measurement of 11 

individual molecular ions, ion-to-ion correlations depend solely on particle composition. Finally, even 12 

for a case where ion-by-ion signal-to-noise and the extent of internal correlations is equal between 13 

instruments, the relative number of variables (ions) included in the dataset may affect the weight due to 14 

small drifts in instrument performance, modelling errors in PMF, and the prevalence of 15 

transient/variable sources not fully captured by PMF. Therefore, it is important to assess the relative 16 

weight of the two instruments and rebalance if necessary. We define a balanced solution as one in which 17 

there are no systematic differences between quality of fit for different instruments (Crippa et al., 2013b; 18 

Slowik et al., 2010; Crippa et al., 2013a). However, note that variable-to-variable differences in the 19 

ei,j/si,j within the dataset of a single instrument are permitted (as in standalone PMF). 20 

 21 

The instrument weighting process follows the method previously proposed by Slowik et al.,. (2010), in 22 

which weighting is performed by applying a weighting factor C to the uncertainties and evaluated by 23 

comparison of the AMS vs. EESI-TOF residuals. Here we utilise the same weighting method, but 24 

propose an improved evaluation metric. Instrument weighting is performed by applying a weighting 25 

factor C to the components of the uncertainty matrix S corresponding to one of the two instruments. 26 

This increases/decreases the contribution of that instrument’s residuals to Q, thereby changing its 27 

weight within the PMF solver. In this paper, we applied the weighting factor, denoted CEESI, to the 28 

columns of S corresponding to ions measured by the EESI-TOF, according to Eq. (12):  29 

𝑠 ,
𝑠 ,

𝐶
       

𝑠 ,  𝑠 ,  
    13  30 

𝑠 ,
𝑠 ,

𝐶
       

𝑠 ,  𝑠 ,  
    12  31 

 32 

Note that CEESI = 1 is equivalent to an unweighted solution; and CEESI > 1 means the uncertainty matrix 33 

of EESI-TOF decreases, which upweights the EESI-TOF.  34 

 35 

As noted above, a balanced solution is defined as one in which the quality of fit to a given ion (assessed 36 

via scaled residuals, eij/sij) is independent of the instrument performing the measurement. In previous 37 

work (Slowik et al., 2010; Crippa et al., 2013), the metric used to assess this was the mean of the 38 

absolute scaled residuals. This metric assumes that the optimised solution for each individual instrument 39 

yields approximately the same Q/Qexp. In practice, this may vary between instruments for the reasons 40 

described above. Further, this metric can be unduly influenced by a few large outliers. Therefore, we 41 

employ a new approach which references the residuals from the combined dataset to those obtained 42 

from the final solutions from single-instrument PMF, which having been selected as the optimal 43 
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representation of environmental data are assumed to likewise provide the optimised distributions of 1 

single-instrument residuals. The new method is as follows:  2 

1) From the result of each single instrument PMF (here AMS PMF, EESI-TOF PMF), calculate 3 

the scaled residual (eij/sij) probability distribution over the entire (single instrument) dataset. Here we 4 

denote the scaled residual probability distribution function in the scaled residual (eij/sij) space for EESI-5 

TOF and AMS as PEESI(eij/sij) and PAMS(eij/sij), respectively.   6 

2) Calculate the overlap fraction 𝐹  between the AMS and EESI-TOF scaled residual 7 

probability distributions from the single instrument solutions, according to Eq. (13): 8 

 9 

𝐹 min 𝑃
𝑒

𝑠
,𝑃

𝑒

𝑠
14  10 

𝐹 min 𝑃
𝑒

𝑠
,𝑃

𝑒

𝑠
13  11 

where PEESI(eij/sij) and PAMS(eij/sij) indicates the probability of occurrence of AMS and EESI-TOF at the 12 

point eij/sij in scaled residual space, respectively. Given the previously mentioned assumption that the 13 

single-instrument solutions represent the optimal representation of the data for the individual 14 

instruments, the 𝐹  calculated at this step is the value that should likewise be obtained from a 15 

balanced solution to the combined dataset. Therefore, we define the quantity 𝐹∗  as the 𝐹  of 16 

the final single-instrument PMF solutions.  17 

 3) For the combined dataset, calculate 𝐹  as a function of a two-dimensional exploration 18 

of the space defined by weighing factor (CEESI) and the number of factors (p). This exploration is 19 

necessary because the scaled residuals have been empirically observed to depend not only on C but also 20 

p (Crippa et al., 2013b; Slowik et al., 2010; Crippa et al., 2013a), likely because p affects the degrees 21 

of freedom in the solution. We select for further analysis the set of solutions in which 𝐹  does not 22 

greatly differ from 𝐹∗ , as given by Eq. (14):  23 

 24 

𝐹 𝐶,𝑝 𝐹∗  15  25 

𝐹 𝐶,𝑝 𝐹∗  14  26 

where the threshold of absolute difference is defined as β. Here β is a subjective parameter chosen to 27 

allow a manageable number of solutions to be selected for detailed inspection. For computational 28 

efficiency, if one or more factors are constrained, we choose a = 0 for all constrained factors at this 29 

preliminary exploration stage and will explore the a- value range(s) for constraint(s) for further 30 

bootstrapping analysis once the C and p are determined.   31 

 32 

The balanced solutions satisfying Eq. (14) are then evaluated using the same metrics as in standard 33 

PMF analysis to select the solution with the greatest explanatory power. This solution is used as the 34 

base case for bootstrap analysis and, if one or more factors are constrained, simultaneous randomised 35 

a-value trials. 36 

 37 

2.3.4 Bootstrap/constraint sensitivity analysis on the combined dataset  38 
Bootstrap analysis (Davison and Hinkley, 1997)Bootstrap analysis (Davison and Hinkley, 1997) is 39 

frequently used to characterise solution stability, reproducibility and estimate uncertainties. In typical 40 

bootstrap analysis, a set of new input and error matrices are created by random resampling of rows from 41 

the original input data and error matrices. The resulting resampled matrices preserve the original 42 

dimensions of the input data matrix, but randomly duplicate some time points while excluding others 43 

(Paatero et al., 2014).(Paatero et al., 2014). In the present analysis, we combined bootstrap analysis with 44 
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randomised selection of a- values for all constrained factors within predetermined limits defined on a 1 

factor-by-factor basis. Since the constrained factors use reference profiles constructed with an estimated 2 

ASk (see Eq. (1211)), this combined bootstrap/constraint analysis allows recalculation of ASk within 3 

PMF for any factor with a non-zero a value. As a result, the final reported solution is the average of all 4 

accepted bootstrap runs, with uncertainties in factor profiles and time series taken as the standard 5 

deviation. To minimise the effect of estimated ASk on constrained factors, we suggest that in the future 6 

this method could be improved by initialisation of constrained factor profiles with randomised ASk 7 

within a predefined range, in conjunction with the existing a-value/bootstrap routine.  8 

 9 

Within this analysis, the range of a- values explored for a given factor may have a significant effect on 10 

the acceptance probability. A very low acceptance probability is undesirable because it is 11 

computationally inefficient, while a very high acceptance probability is also undesirable because it 12 

implies the solution space is inadequately explored due to excessively restrictive a-values (Canonaco 13 

et al., 2021). values (Canonaco et al., 2021). Therefore, we conduct pre-tests to estimate the a- value 14 

range leading to a reasonable acceptance probability. This is done by a set of 2-dimensional a-value 15 

(“multi-2D”) scans in which the a- values of two constrained factors are varied stepwise from 0 to 1 16 

with a step size of 0.1 (i.e., 121 runs), while the a- values of other constrained factors are held at 0. The 17 

results of all multi-2D runs for a given factor are combined to determine the acceptance probability as 18 

a function of a- value, and upper and lower a- value boundaries are assessed. The acceptance criteria 19 

are dataset-specific and discussed later (Sect. 3.1in the Text S2.4).. When the number of constrained 20 

factors (pref) = 2, the multi-2D algorithm is equivalent to an explicit exploration of all possible a- value 21 

combinations. However, for pref >2, multi-2D is much more computationally efficient, because it 22 

increases as pref (pref -1)/2, whereas the explicit method increases as the factorial of pref . For the datasets 23 

used here, in which pref is 3 (summer) and 4 (winter), the multi-2D approach decreases the number of 24 

runs required for a-value pre-scans by factors of ~4 and ~20, respectively. 25 

 26 

Acceptance criteria consist of both the assessment of specific features of selected factor profiles/time 27 

series (see Sect. 3.1Text S2.4), as well as a general evaluation of whether the solution is qualitatively 28 

similar to the base case. That is, we require that the time series of each factor from a PMF run to be 29 

unambiguously related to the corresponding base case factor (Stefenelli et al., 2019; Vlachou et al., 30 

2019; Tong et al., 2021). The key steps of this method are summarised below: 1) identify a base case, 31 

which as discussed above is defined by a weighting factor C, number of factors p, and set of constrained 32 

factors with the a- value set to 0; 2) calculate the Spearman correlation between the time series of base 33 

case and the multi-2D scans, which yields a correlation matrix with the highest correlation values on 34 

the diagonal; 3) each correlation coefficient on the matrix diagonal must be by a statistically significant 35 

margin (using different confidence levels from a t test) than any value on the intersecting row or column.  36 

In the current study, we selected a confidence level of 0 for this base case/bootstrap correlation test, 37 

representing the most permissive application of this criterion. That is, we require only that the diagonal 38 

matrix mentioned above can be constructed, i.e., that there is a unique 1:1 correspondence between base 39 

case factors and factors from the bootstrap/a-value analysis. 40 

 41 

The final set of PMF runs consisted of 1000 bootstrap runs, conducted at a single combination of CEESI 42 

and p, with a- values randomly selected with a step size of 0.05 for summer and 0.1 for winter within 43 

the factor-specific limits determined via the multi-2D pre-scans. The same acceptance criteria utilised 44 

for the multi-2D pre-scans were also used for the bootstrap runs. As a final solution, we report the mean 45 

factor profiles and time series determined from all accepted bootstrap runs, with the standard deviation 46 

taken to represent the uncertainty of the analysis procedure. Although not currently implemented within 47 

the analysis software used, we note that in theory it would be possible to additionally include random 48 



 

18 
 

CEESI selection (within a predefined range corresponding to balanced solutions) and randomised ASk for 1 

constrained profiles (within a user-defined range) in this stage of the analysis and in calculation of the 2 

final model outputs.  3 

 4 

 5 

 6 

3. Results 7 
 8 
We have conducted cPMF analysis on datasets collected from the summer and winter campaigns. The 9 

parameters for the PMF analysis of the combined dataset and the re-analysed summer and winter 10 

datasets are summarised in Table 1. We re-ran the conventional PMF on the summer and the winter 11 

data, obtaining results similar to Stefenelli et al. (2019) and Qi et al. (2019), as discussed in Text S2 in 12 

the Supplement. Other technical details of method validation and solution selections are also explained 13 

in the Supplement (from the Text S2.2 to Text S2.4), including reference profile construction, the 14 

determination of CEESI and number of factors p, and the determination of case-specific a value range 15 

and acceptance criteria for bootstrap analysis. Table 2 summarises these case-specific facts for summer 16 

and winter datasets, including a value range for constrained factors, criteria for a value range and 17 

accepted bootstrap run selection, and the number of accepted runs from the final combined bootstrap.  18 

 19 

Here we present final results from the cPMF analysis of the summer and winter campaigns in Sect 3.1.1 20 

and Sect 3.1.2, respectively. The final solutions are reported as the average of all accepted bootstrap/a-21 

value randomisation runs (764 for summer, 308 for winter), with uncertainties corresponding to the 22 

standard deviation. As the NO+ and NO2
+ signals are included in these two datasets and they can result 23 

from either organic or inorganic nitrate, we estimate the organic and inorganic contributions to the NO+ 24 

and NO2
+ signal in each factor using the method of Kiendler-Scharr et al. (2016) (see Text S3). We 25 

compare the cPMF factors to their counterparts from the standalone AMS and EESI-TOF solutions, for 26 

cases where a clear factor-to-factor correspondence exists. The further exploration on EESI-TOF 27 

sensitivities to resolved factors are discussed in Sect 3.2.  28 

 29 

Due to the complexity of the analysed datasets (2 seasons × 3 PMF methods), we use the following 30 

convention for identifying factors: factorNameseason,method, where “factorName” is the name of the factor 31 

(e.g., COA for cooking-related organic aerosol), “season” denotes either the summer (“S”) or winter 32 

(“W”) dataset, and “method” refers to PMF on standalone AMS dataset (“A”), standalone EESI-TOF 33 

dataset (“E”), or combined dataset (“C”). For example, COAS,C stands for the cooking-related factor 34 

retrieved from cPMF applied to the summer dataset.  35 

 36 

3.1 Method validation and solution selection 37 
 38 

3.1.1 PMF analysis of single-instrument datasets 39 
Single-instrument AMS and EESI-TOF PMF analysis was previously conducted and validated for both 40 

the summer and winter datasets (Qi et al., 2019; Stefenelli et al., 2019). To determine the 𝐹∗ , the 41 

EESI-TOF-only PMF was re-run on only the period when both AMS and EESI-TOF were operating. 42 

In addition, the AMS PMF analysis was re-run on the same period, but with the NO+ and NO2
+ ions 43 

included. As discussed above, these ions contain a large fraction of the AMS signal deriving from 44 

organonitrates. For EESI-TOF-only PMF analysis in both datasets, we used the same constraints as in 45 

the referenced studies, that is, cooking-influenced OA (COAS,E) was constrained for the summer dataset 46 

and cigarette-smoking OA (CSOAW,E) was constrained for the winter dataset. For AMS-only PMF 47 
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analysis, the only constrained factor in the original studies was hydrocarbon-like OA during winter 1 

(HOAW,A). We additionally constrained inorganic nitrate (InorgNit) in both the summer and winter 2 

datasets, by including 1) the CO2
+/(NO+ + NO2

+) ratio, where the CO2
+ signal was produced by reaction 3 

of nitrate on the vaporiser (Pieber et al., 2016),  as well as minor organic contaminants, and 2) NO+/NO2
+ 4 

ratio. In summer, we took the mass spectrum acquired from the NH4NO3 calibration period during the 5 

campaign to calculate the ratios in 1) and 2), whereas in winter, we constructed the reference using the 6 

two ratios from the ambient measurements (2.54) during periods of high nitrate to organic ratios. 7 

Fig. S1 and Fig. S2 show the results from these single-instrument AMS and EESI-TOF PMF analyses 8 

for summer and winter, respectively, as well as a comparison with the factor time series from the 9 

original studies. Because the results are very similar to the single-instrument studies, they are discussed 10 

only briefly here. The AMS-only PMF yielded five OA factors consistent with those of Stefenelli et al. 11 

(2019), namely hydrocarbon-like OA (HOAS,A), cooking-influenced OA (COAS,A), cigarette-smoking 12 

OA (CSOAS,A), more oxygenated OA, MO-OOAS,A, and less oxygenated OA (LO-OOAS,A), and 13 

additionally a factor dominated by NO+ and NO2
+ in a ratio consistent with that of ammonium nitrate, 14 

denoted InorgNitS,A. The main difference between these results and those reported by Stefenelli et al. 15 

(2019) is some exchange of signal between MO-OOAS,A and LO-OOAS,A. In addition, the contribution 16 

from NO+ and NO2
+ is not solely apportioned to InorgNitS,A but also to factors such as LO-OOAS,A; 17 

however, this does not affect the identity and interpretation of these factors.  18 

Similarly, for the winter dataset, seven factors were resolved consistent with the OA factors determined 19 

by Qi et al. (2019), namely HOAW,A, COAW,A, LO-OOAW,A, MO-OOAW,A, biomass burning OA 20 

(BBOAW,A), event-specific OA (EVENTW,A) and nitrogen-rich OA (NitrogenOAW,A), as well as a new 21 

factor consistent with InorgNitW,A. Apart from being apportioned to InorgNit, NO+ and NO2
+ were also 22 

apportioned to non-InorgNit factors, indicating organonitrate content and/or imperfect attribution of 23 

inorganic NO+ and NO2
+ to these factors. Although the NO+ and NO2

+ contributions in some non-24 

InorgNit factors are significant, causing some changes in the factor time series compared to those in Qi 25 

et al. (2019), the main features of the spectra from other OA components (i.e., ions other than NO+ and 26 

NO2
+) in these factors are retained. 27 

As discussed in Sect. 2.3.3, scaled residual probability distributions, i.e., P (eij/sij), for the selected 28 

single-instrument solutions were calculated and are shown in Fig. 3. As discussed in Eq. (14), this yields 29 

values for 𝐹∗  , which are calculated to be 0.769 in summer and 0.899 in winter.  30 
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1 

 2 

Figure 3. Scaled residual probability distributions and region of overlap from individual AMS PMF 3 

solution and EESI-TOF PMF solutions for the summer (a) and winter (b) datasets. Red and black lines 4 

show the residual distributions for the EESI-TOF and AMS, respectively; shading denotes the region 5 

of overlap.  6 

 7 

 8 

 9 
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Table. 1 Summary of parameters for the PMF analysis of re-analysed summer and winter datasets, and 1 

the combined dataset. There are 257 ions that are found in PMF input matrices for both the summer and 2 

winter datasets (common ions are listed in the Table S1). All datasets include AMS measurements of 3 

NO+ and NO2
+. 4 

  

  EESI-TOF AMS Combined 

Summer  

Matrix dimensions 

(time points  m/z) 
1779  507 1779   287 1779   794 

Time period  20 to 26 June 2016  20 to 26 June 2016 20 to 26 June 2016 
Time resolution (min) 5 5 5 
Range of p analysed 6 6 5-10 

Winter  

Matrix dimensions 

(time points  m/z) 
6142  892 6142  258 6142  1150 

Time period 25 Jan to 4 Feb 2017 25 Jan to 4 Feb 2017 25 Jan to 4 Feb 2017 
 Time resolution (min) 1 1 1 
 Range of p analysed 12 8 7-14 

 5 

3.1.2 Construction of reference profiles 6 
 7 

In the cPMF analysis, the factor profiles for HOA, COA, and InorgNit were constrained in both the 8 

summer and winter datasets, while CSOA was constrained in winter only. All reference profiles were 9 

constructed according to Eq. (12). Here we discuss the methods used to determine 𝑓 , ,
, 10 

𝑓 , ,
, and the estimated ASk used to synthesise the reference profile. Note that COA and 11 

CSOA are retrieved by both AMS and EESI-TOF, while HOA and InorgNit are not retrieved by the 12 

EESI-TOF in the configuration used for these campaigns. Specifically, no HOA-sensitive EESI-TOF 13 

extraction/ionisation scheme has yet been developed, while the measurable ion corresponding to 14 

inorganic nitrate, [NaNO3]Na+, has been detected in other studies (Tong et al., 2021) but falls below the 15 

m/z transmission window used here. 16 

For summer COAS,C, 𝑓 , ,
 and 𝑓 , ,

 were taken from the factor profiles for 17 

COAS,A  and COAS,E, respectively. AS  was calculated as the ratio of the mean signals of COAS,E 18 

(cps) to COAS,A (μg m-3). For HOAS,C, 𝑓 , ,
 the HOA profile of Crippa et al. (2013b) was 19 

used, and for InorgNitS,C, it was taken to be the mass spectrum acquired from the NH4NO3 calibration 20 

period during the campaign. The latter included the CO2
+ signal produced by reaction of nitrate on the 21 

vaporiser (Pieber et al., 2016), here observed with a CO2
+/(NO+ + NO2

+) ratio of 0.0345, as well as 22 

minor organic contaminants.  For both HOAS,C and InorgNitS,C all ions in 𝑓 , ,
 were set at 23 

the same intensity, and 𝐴𝑆  was selected to be 0.01 cps (μg m-3)-1.  24 

The COAW,C reference profile was constructed using the identical method as for COAS,C, with COAW,A 25 

and COAW,E as references. For CSOAW,C,  𝑓 , ,
  was taken to be the CSOAW,E profile. 26 

However, because the AMS did not resolve CSOA in the winter, we used the CSOAS,A profile for  27 

𝑓 , ,
 and estimated 𝐴𝑆 ,  as follows: 28 
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𝐴𝑆 ,
𝐴𝑆 ,

𝐴𝑆 ,
  𝐴𝑆 , 16  1 

where 𝐴𝑆 , , 𝐴𝑆 , , and 𝐴𝑆 ,  are the EESI-TOF apparent sensitivities of the corresponding 2 

factors, calculated assuming direct correspondence between the AMS and EESI-TOF factors sharing 3 

the same name (Stefenelli et al., 2019; Qi et al., 2019).  4 

The reference profile for HOAW,C is identical to HOAS,C, and constructed in the same way using the 5 

same profile as in the summer dataset. Unlike summer, the calibration mass spectrum of NH4NO3 was 6 

not used as the reference profile for InorgNitW,C, because the NO+/NO2
+ in the NH4NO3 calibration 7 

period (1.58) was not consistent with that observed from ambient measurements (2.54) during periods 8 

of high nitrate to organic ratios, possibly indicating contributions from non-NH4
+ cations. Instead, the 9 

InorgNit reference profile of AMS ions was constructed based on these features: 1) the NO+/NO2
+ ratio 10 

(2.54) from 26 Jan 2016 to 31 Jan 2016, when the instrument remained stable and the ratio of nitrate to 11 

OA was high, suggesting the contribution from organonitrates to NO+ and NO2
+ was low, 2) the 12 

CO2
+/(NO+ + NO2

+) ratio (0.00026) was assumed to be the same as during the calibration period in the 13 

Zurich winter campaign and 3) the ratio of intensity of each organic ion to CO2
+ was kept the same as 14 

during the calibration period in the Zurich winter campaign. Then 𝑓 , ,
  and  𝐴𝑆 ,  15 

were determined using the same method as in summer. 16 

 17 

3.1.3 Determination of CEESI and number of solutions 18 
Because 𝐹  depends on both the weighting factor CEESI and the number of factors p, an exploration 19 

of this two-dimensional space is required. As discussed earlier, for computational efficiency the a-20 
values of all constrained factor profiles were set to zero during this initial exploration. For the summer 21 
dataset, in which both the AMS-only and EESI-TOF-only PMF analyses yielded 6 factors, the cPMF 22 
was explored from 5 to 12 factors with HOAS,C, COAS,C and InorgNitS,C constrained. For the winter 23 
dataset, in which the AMS-only and EESI-TOF-only PMF analyses yielded 8 and 11 factors, 24 
respectively, the cPMF was explored from 7 to 15 factors with HOAW,C, COAW,C, CSOAW,C and 25 
InorgNitW,C constrained. For the summer dataset, CEESI was explored from 0.1 to 100, and in winter 26 
from 0.001 to 50. The results of this exploration are shown in Fig. 4a and Fig. 4b, which present 27 
|𝐹  𝐹∗ | as a function of CEESI and p for the summer and winter datasets, respectively. 28 

 29 
The Zurich summer dataset displays the expected trend of | 𝐹  – 𝐹∗ | with respect to CEESI. 30 

Balanced solutions are found at intermediate values of CEESI, with lower and higher values yielding 31 
solutions in which the AMS and EESI-TOF, respectively, are overweighted. Examples of scaled 32 
residual distributions for these three cases (AMS overweighted, balanced, and EESI-TOF overweighted) 33 
are shown in Fig. S3. The black box in Fig. 4a denotes a set of solutions satisfying the criterion in Eq. 34 
(15), which are selected for further inspection. The value of β is selected empirically to yield a practical 35 
number of solutions for manual inspection, with 0.02 chosen for summer and 0.005 for winter. Factor 36 
profiles and time series for solutions satisfying the β criterion, comprising solutions with 6 to 9 factors 37 
(black box in the figure) are shown in Figs S4 to Fig. S13. An 8-factor solution was chosen as the best 38 
representation of the data, and included HOAS,C, COAS,C, CSOAS,C, InorgNitS,C, two daytime SOAs 39 
(DaySOA1S,C and DaySOA2S,C) and two nighttime SOAs (NightSOA1S,C and NightSOA2S,C), discussed 40 
in detail in Sect. 3.2.1. Solutions with higher numbers of factors yielded uninterpretable splits in the 41 
SOA or CSOA factors. Among the balanced 8-factor solutions, we selected the solution with CEESI = 2, 42 
which has the minimum value of | 𝐹  – 𝐹∗ |. This solution serves as the base case for further 43 

analysis. The other 8-factor solutions exhibit time series and profiles that are similar to the selected 44 
solutions. Therefore, we simply select the 8-factor solution with minimum | 𝐹  – 𝐹∗ |. 45 

 46 
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For the winter dataset, solutions with 12 or more factors are similar to the summer in which balanced 1 
solutions (i.e., β < 0.005) are clustered narrowly around a single value of CEESI (in this case 0.05), as 2 
shown in the right black box in Fig. 4b. However, in addition, solutions with 10 to 11 factors show 3 
balanced solutions over a relatively broad range, CEESI = 0.001 to 0.01, as shown in the left black box 4 
in Fig. 4b. This complex behaviour highlights the importance of fully exploring the two-dimensional 5 
space. Solutions from the left black box (e.g., a 10-factor solution with CEESI = 0.01, and 11-factor 6 
solutions with CEESI = 0.001, 0.005, and 0.001 which are shown in Fig. S14 to Fig S17) exhibited mixed 7 
factors, in which biomass burning was not clearly separable from other sources. In contrast, the 12-8 
factor solution (see Fig. S18) and 13-factor solution (see Fig. S19) in the narrow band successfully 9 
resolves these factors. The 12-factor and 13-factor solutions differ in that the 13-factor solution includes 10 
uninterpretable splitting of biomass-burning-related factors. Similarly, higher-order solutions also result 11 
in uninterpretable factor splitting. Therefore, the 12-factor solution with CEESI of 0.05 is selected as the 12 
best representation of the combined dataset.  13 

14 

 15 
 16 

Figure 4. Identification of balanced solutions in the combined dataset (i.e., | 𝐹  – 𝐹∗ | as a 17 

function of CEESI and p) for summer (a) and winter (b) datasets. Note that | 𝐹  – 𝐹∗ |= 0 defines 18 

a balanced solution. Solutions within the black box satisfied the | 𝐹  – 𝐹∗ | < β criterion 19 

defined in Eq. (15) (β is set to be 0.02 and 0.005 for summer and winter, respectively) and were selected 20 
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as base case candidates, from which the base case that can best represent the combined data was selected 1 

by manual inspection.  2 

3.1.4 Acceptance criteria and factor-specific a-value boundaries  3 
As discussed in Sect. 2.3.4, the combined bootstrap/a-value randomisation analysis requires (1) a set of 4 

criteria for solution acceptance/rejection and (2) factor-specific boundaries for randomised a-value 5 

selection to maintain computational efficiency. The final set of acceptance criteria and a-value 6 

boundaries are presented in Table 2. Here we discuss their selection, which is determined synergistically 7 

by consideration of 1) unique correlations of factor time series with the base case (see Sect. 2.3.4), 2) 8 

factor-based acceptance criteria, which are here based on selected key mass spectral features (see Sect. 9 

3.2.1 and Sect. 3.2.2 for a complete discussion of factor characteristics). Both (1) and (2) are evaluated 10 

as a function of changing a-values within the multi-2D scanning algorithm (see Sect. 2.3.4). For 11 

assessing the solution/base case correlations, we utilise a confidence level of 0, meaning that the only 12 

requirement is the ability to construct a correlation matrix with the values on the diagonal being higher 13 

than any vertical or horizontal transect. This accepts the largest possible number of solutions while 14 

requiring an unambiguous relationship between base case and bootstrapped factors. Recall that the 15 

multi-2D algorithm consists of two-dimensional a-value scans in which the a-values of constrained 16 

factors are scanned from 0 to 1 with a step size of 0.1, the a-values of other constrained factors are set 17 

to zero, and the remaining factors are left free.  18 

Here we describe the general steps to determine acceptance criteria and a-value boundaries. A factor-19 

based acceptance criterion is defined by the combination of a diagnostic quantity relating to one or more 20 

factors and a corresponding acceptance/rejection threshold ( 𝜃 ). Solutions that fulfil all criteria 21 

simultaneously are classified as accepted solutions. We calculate the acceptance probability as a 22 

function of a-value for a given factor (this is calculated independently for each factor). For a given 23 

factor, the acceptance probability is defined as the ratio of the number of accepted solutions to the total 24 

number of solutions, for which the factor has the selected a-value and the a-value of at most one other 25 

constrained factor is non-zero (that is, we consider only multi-2D runs where the factor in question is 26 

being scanned against a single other factor, while discarding runs for which the factor in question is 27 

fixed at a=0 while two other factors are scanned; this is relevant only for analyses with at least 3 28 

constrained factors). The acceptance probability is not only a function of the a-value of the target 29 

constraint but also a function of the threshold 𝜃. When an appropriate value of θ cannot be defined a 30 

priori, it is selected via sensitivity tests. The final selection of the threshold 𝜃 and a-value ranges is a 31 

compromise between (1) maintaining a reasonably high acceptance probability, thereby providing 32 

sufficient statistics without an excessive number of bootstrap runs; and (2) ensuring a sufficiently broad 33 

exploration of the solution space to encompass most environmentally reasonable solutions and thus 34 

accurately assess errors. Therefore, we determine the threshold 𝜃 and a-value upper limit for each 35 

constrained factor at which a steep drop-off from high to low probability of acceptance occurs.  36 

For the summer dataset, three factors are constrained: HOAS,C, COAS,C, and InorgNitS,C, yielding three 37 

pairs (C(3,2) = 3) of two-dimensional a-value scans. Two factor-based diagnostic quantities with 38 

acceptance/rejection thresholds (𝜃) were selected: 1) the ratio of C3H3O+ to C3H5O+ for COAS,C should 39 

be higher than the threshold 𝜃
,

  (Mohr et al., 2012), and 2) the ratio of CO2
+/(NO++NO2

+) for 40 

InorgNitS,C should not be higher than 𝜃
,

,  because the CO2
+ signal in InorgNitS,C should not 41 

greatly exceed the CO2
+ signal produced by reaction of nitrate on the vaporiser (Pieber et al., 2016); 42 

excessively high values would indicate mixing with OA. To explore the sensitivity of the acceptance 43 

probability to the threshold 𝜃, we varied 𝜃
,

 from 4.5 to 5.1 with a step of 0.1 (note that 5.0 is the 44 



 

25 
 

ratio of C H O  / C H O  in the reference profile) and 𝜃
,

 from 0.034 to 0.040 with a step of 1 

0.01, (note that 0.0345 is the ratio of CO2
+/(NO++NO2

+) in the reference profile).  2 

The acceptance probability as a function of a-value and the various thresholds (θ’s) for COAS,C, 3 

InorgNitS,C, and HOAS,C are shown in Fig. S22. Vertical dashed lines denote the final selected a-values, 4 

while the thicker traces denote the selected θ values (both of which are also given in Table 2). For 5 

𝜃
,

 > 5.0, very few runs are accepted. Within the range 4.5 ≤ 𝜃
,

 ≤ 5.0, 𝜃
,

 does not affect 6 

the relationship between acceptance probability and a-value for InorgNitS,C (Fig. S22b), but has a 7 

considerable effect for COAS,C and HOAS,C, with a decreasing 𝜃
,

 leading to the acceptance 8 

probability remaining high at larger a-values. Visual inspection of the solutions suggests that this is due 9 

to increased mixing, mostly between COAS,C and HOAS,C. Therefore, we select a value of 𝜃
,

 = 5.0, 10 

corresponding to the C3H3O3
+/C3H5O3

+ in the factor profile. For 𝜃
,

, values smaller than 0.0345 11 

(i.e., reference profile) result in a very low acceptance probability, whereas choice of 𝜃
,

 results 12 

in similar acceptance probabilities as a function of a-value. Therefore, we select 0.0345, as the 13 

acceptance probability for 𝜃
,

 of 0.035 is not substantially different from 0.0345.Having 14 

selected these θ values, we set a-value limits at the point where an incremental increase/decrease in a 15 

yields a large change in acceptance probability (i.e. transition from high probability to low probability). 16 

For the current dataset, constrained factors, and selected θ’s, there is no such transition at low a-values, 17 

and we therefore select only an upper limit for the a-values. For COAS,C, there is a clear decrease for 18 

both criteria between 𝑎
,

 = 0.1 and 𝑎
,

 = 0.2, and we therefore set the a-value boundaries as 0 19 

≤ 𝑎
,

 ≤ 0.2. InorgNitS,C maintains an acceptance probability of ~50 % for 𝑎
,

 ≤ 0.4, before 20 

decreasing to <20 % at 𝑎
,

 = 0.5 and ~0 for 𝑎
,

 > 0.5; therefore the range 0 ≤ 21 

𝑎
,

 ≤ 0.5 is chosen. Finally, for HOAS,C, the acceptance probability decreases from ~55 % at 22 

𝑎
,

 ≤ 0.1 to ~35 % at 𝑎
,

 ≤ 0.2, so the a-value range for HOAS,C is selected as  0 ≤ 𝑎
,

  ≤ 23 

0.2. The a-values selected for constraints for the further summer bootstrap analysis are summarised in 24 

Table 2. However, we also see that for HOAS,C the acceptance probability increases and stays high again 25 

for the a-value of 0.4 to 0.8. Therefore, we made an additional bootstrap analysis to explore the result 26 

when the a-value of HOAS,C randomises from 0 to 0.8, as discussed in the last paragraph in this section. 27 

In the winter dataset, four factors (HOAW,C, COAW,C, CSOAW,C, and InorgNitW,C) are constrained, 28 

yielding six pairs (C(4,2) = 6) of two-dimensional a-value scans. Compared to the summer dataset, the 29 

unique base case/bootstrap correlation requirement yields a much smaller number of accepted solutions, 30 

probably due to the more complicated aerosol sources and/or evolution conditions in winter (e.g., 31 

multiple biomass burning-related factors). Three factor-based diagnostic quantities were selected: 1) 32 

the fraction of the nicotine signal ([C10H14N2]H+) apportioned to CSOAW,C, 2) the relative intensity of 33 

the AMS primary biomass burning tracer C2H4O2
+ (Alfarra et al., 2007; Cubison and Jimenez, 2015) in 34 

the factor profiles (AMS part) of less-aged biomass burning (LABBW,C) vs. more-aged biomass burning 35 

(MABBW,C), and 3) the relative intensity of the EESI-TOF primary biomass burning tracer levoglucosan 36 

([C6H10O5]Na+) (Qi et al., 2019; Stefenelli et al., 2019; Lopez-Hilfiker et al., 2019) in the factor profiles 37 

of LABBW,C vs. MABBW,C. For 2) and 3), we require that the contribution of the primary tracer is higher 38 

for the profile of LABBW,C than MABBW,C as follows:  39 

LABB , , MABB , ,

LABB , , MABB , , /2
 𝜃 17  40 
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where LABB , ,  and  MABB , ,  are the "ion" intensity in the LABBW,C and MABBW,C factor 1 

profiles, and "ion" in Eq. (17) denotes either AMS C2H4O2
+ (criterion 2) or EESI-TOF levoglucosan 2 

([C6H10O5]Na+) (criterion 3), and 𝜃 denotes the acceptance threshold.   3 

For criterion 1), we select the threshold 𝜃
,

 from investigation of Fig. S23, which shows the 4 

frequency distribution of the fraction of total nicotine signal apportioned to CSOAW,C, derived from the 5 

multi-2D scans used to assess criteria 2 and 3 (see below). The figure shows that for nearly all runs, the 6 

fraction of total nicotine mass apportioned to this factor is higher than 0.96. The exceptions are clear 7 

outliers, and we therefore select 𝜃
,

 = 0.96 which was therefore chosen as the criterion threshold. 8 

The acceptance probability as a function of a-value is shown in Fig. S24 for HOAW,C, COAW,C, 9 

InorgNitW,C, and CSOAW,C. For criteria 2 and 3, sensitivity tests are conducted using 𝜃  and 10 

𝜃 , which were varied from 0 to 1 with a step of 0.1, and the final selected values are shown 11 

as a thicker line. The acceptance probability decreases to near-zero for 𝜃C2H4O2
 ≥ 0.1 and 𝜃levoglucosan 12 

≥ 0.2. We select 0 for both thresholds, which is the most permissive value, requiring only that MABBW,C 13 

appear more aged than LABBW,C (i.e., reduced contribution from POA tracers). Similar to the summer 14 

dataset, there is no major decrease in acceptance probability at low a-values, and we therefore impose 15 

only an upper limit. For HOAW,C, we set the upper a-value boundary at 0.9, due to the large decrease in 16 

acceptance probability at 𝑎
,

 = 1.0. However, for the other constrained factors, the acceptance 17 

probability decreases steadily without a steep drop-off. We target an acceptance probability of ~0.4 (by 18 

considering the unmixing status) as a subjective compromise between exploration and computational 19 

efficiency, and select as an upper boundary the largest a-value that achieves this. This results in upper 20 

a-value limits of 0.3 for COAW,C, and 0.5 for InorgNitW,C. For CSOAW,C. the high acceptance probability 21 

is kept high from the a-value of 0 to 0.6. Therefore, we chose the a-value range of CSOAW,C to be 0 to 22 

0.6. However, it is also observed that the acceptance probability for this factor dips at 0.7 and stays high 23 

again at a-values of 0.8 and 0.9, so we made an addition bootstrap analysis with the a-value range for 24 

CSOAW,C of 0 to 0.9 to explore the influence of the a-value of this factor on overall result, as discussed 25 

in the following paragraph. The a-values selected for the four constraints for the further winter bootstrap 26 

analysis are summarised in Table 2.  27 

After a-value selection, 1000 bootstrap runs were performed for summer and winter, respectively, and 28 

in each bootstrap run, an a-value was randomly selected for each constrained factor, with a step size of 29 

0.05 for summer and 0.1 for winter within the corresponding range. The criteria for accepted solutions 30 

in the bootstrap analysis are exactly the same as the criteria and θ in Sect. 3.1.4, and are given in Table 31 

2. As noted above, accepted solutions must simultaneously satisfy all criteria including the time-series-32 

based mixing status exploration and mass-spectral-based criteria. Note that we also did an additional 33 

bootstrap analysis for summer and winter, respectively, as mentioned in previous paragraphs, to explore 34 

the bootstrap result with larger a-value range of HOAS,C and CSOAW,C. In the additional bootstrap 35 

analysis for summer, a-value range for HOAS,C was set to be 0 ≤ 𝑎
,

  ≤ 0.8, while the a-value ranges 36 

of the other two constraints were kept the same as indicated in Table 2. Likewise, we only changed the 37 

a-value range of CSOAW,C. to be 0 ≤ 𝑎
,

  ≤ 0.9, while keeping the a-value ranges of the other 38 

three constraints the same as in Table 2. Since the results of these additional bootstrap analysis are not 39 

qualitatively different from the bootstrap analysis with a-value ranges in Table 2, we only present the 40 

bootstrap results with a-value ranges in Table 2. 41 

 42 
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Table. 2 Summary of a-value range for constrained factors, criteria for a-Table. 2 Summary of a value 1 

range for constrained factors, criteria for a value range and accepted bootstrap run selection and the 2 

number of accepted runs from the final combined bootstrap/a-value analysis for the summer and winter 3 

datasets.  4 

 5 

Dataset  
Constrained 

factor 
a- value 

range 
Criteria 

Accepted 
runs 

Zurich 
summer  

HOAS,C 0 ≤ a ≤ 0.2 
1). COAS,C: ≥ 5  

2). InorgNitS,C: 
 

 ≤ 0.035 

3). Base case vs. Bootstrap correlation test at 
confidence level = 0 

764 
(76.4 %) 

COAS,C 0 ≤ a ≤ 0.2 

Inorganic 
nitrate 

(InorgNitS,C) 
0 ≤ a ≤ 0.5 

Zurich 
winter 

HOAW,C 0 ≤ a ≤ 0.9 
1). CSOAW,C: fmass(nicotine) ≥ 0.96 

2). C2H4O2
+ intensity:  LABB ,  MABB , 0 

3). C6H10O5 intensity:  LABB ,  MABB , 0 
4). Base case vs. Bootstrap correlation test at 

confidence level = 0 
 

308 
(30.8 %) 

COAW,C 0 ≤ a ≤ 0.3 

Inorganic 
nitrate  

(InorgNitW,C) 
0 ≤ a ≤ 0.5 

CSOAW,C 0 ≤ a ≤ 0.6 

 6 

3.23.1 cPMF results   7 
 8 

Here we present final results from the cPMF analysis of the summer and winter campaigns. 9 

The final solutions are reported as the average of all accepted bootstrap/a-value randomisation 10 

runs (764 for summer, 308 for winter), with uncertainties corresponding to the standard 11 

deviation. We compare the cPMF factors to their counterparts from the standalone AMS and 12 

EESI-TOF solutions, for cases where a clear factor-to-factor correspondence exists. 13 
 14 
A complication in this analysis is that the NO+ and NO2

+ signal can result from either organic or 15 
inorganic nitrate. Ideally, all inorganic NO+ and NO2

+ would apportion to the InorgNitS,C and 16 
InorgNitW,C factors, however inspection of the solutions reveals that this is not the case, as discussed in 17 
the factor presentations (Sect. 3.2.1 and Sect. 3.2.2). Therefore, we estimate the organic and inorganic 18 
contributions to these ions by the method of Kiendler-Scharr et al. (2016), as follows:  19 
 20 

𝑓𝑟𝑎𝑐 ,
1 𝑅 𝑅 𝑅
1 𝑅 𝑅  𝑅

18  21 

Here we apply this analysis on a factor-by-factor basis, where 𝑓𝑟𝑎𝑐 , , defined in Eq. (19a), represents 22 
the fraction of ON apportioned to the kth factor, and 𝑅  denotes the intensity ratio of NO2

+ to NO+ in 23 
the factor profile. 𝑅  is the reference NO2

+/NO+ ratio for inorganic nitrate, taken as that of the 24 
InorgNitW,C and InorgNitS,C reference profiles for their respective datasets. 𝑅 , defined in Eq. (19b), 25 
is the intensity ratio of NO2

+ to NO+ for organonitrate, which ranges from 0.08 to 0.20 (Boyd et al., 26 
2015; Bruns et al., 2010; Fry et al., 2011; Fry et al., 2009; Rollins et al., 2009). 27 
 28 

𝑓𝑟𝑎𝑐 ,

𝑓 , ,  𝑓 , ,  

𝑓 ,  𝑓 ,  
19𝑎  29 

 30 
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𝑅  
𝑓 , ,  

 𝑓 , ,
 19𝑏  1 

 2 
Here 𝑓 ,  and 𝑓 ,  denote the total NO+ and NO2

+ signal, respectively in the kth factor profile, 3 

while 𝑓 , ,  and 𝑓 , ,  denote the organonitrate contribution to these ions. Because 𝑓 ,  and 4 

𝑓 ,   are directly available from the factor profile, 𝑓𝑟𝑎𝑐 ,  is independently calculated via Eq. (18), 5 

and 𝑅  is assumed, Eqs. (19a) and (19b) constitute a system of 2 equations with 2 unknowns, which 6 

can be solved algebraically for 𝑓 , ,  and 𝑓 , , , yielding: 7 

𝑓 , ,

𝑅 𝑅 𝑓 ,  𝑓 ,  

1 𝑅 𝑅  𝑅
20𝑎  8 

𝑓 , ,

𝑅 𝑅 𝑓 ,  𝑓 ,  

1 𝑅 𝑅  𝑅
𝑅 20𝑏  9 

 10 

These calculations are important not only for profile interpretation, but also for quantitative 11 

apportionment of OA. Specifically, as noted earlier, calculations of the OA contribution to the factor 12 

time series, 𝑔 , ,  and the EESI-TOF sensitivity to a given factor, ASk, should consider only the 13 

organic contribution to NO+ and NO2
+. In this study, we estimated the contribution from organonitrates 14 

for all factors in summer and winter assuming the midpoint of the 𝑅  range (𝑅  = 0.14). 15 

Organonitrate contributions 𝑓𝑟𝑎𝑐 , ) to the total nitrate signal for each factor and the corresponding 16 

OA fraction  ∑ 𝑓 ,   are shown in Table S1. We also include the same calculations performed 17 

assuming an RON of  0.08 or 0.20, which as discussed above consitute the lower and upper estimates 18 

from previous studies. For 𝑅  = 0.14, the 𝑓𝑟𝑎𝑐 ,  for all SOAs in summer are higher than 75 %, and 19 

for winter, this fraction 𝑓𝑟𝑎𝑐 ,  varies by factor from 0 to 100 %, with four factors having 𝑓𝑟𝑎𝑐 ,  20 

= 100 % (SOA1W,C, MABBW,C, LABBW,C and NitOA1W,C), suggesting the NO+ and NO2
+ signals are 21 

strongly influenced by ON. If 𝑅  = 0.08 is assumed, the estimated 𝑓𝑟𝑎𝑐 ,  decreases by ~12 % for 22 

the summer SOA factors and by 10 % to 20 % for the winter SOA factors, whereas assuming 𝑅  = 23 

0.20 increases 𝑓𝑟𝑎𝑐 ,  by ~15 % in the summer and 16% in the winter OA factors. The effect of this 24 

assumption on the factor OA concentration and thus ASk is much smaller, with all factors below ±2 % 25 

except for one wintertime SOA factor (SOA1W,C, ±6 %). 26 

.  27 

 28 

3.2.13.1.1 cPMF analysis: Zurich summer 29 
Eight factors were resolved from the Zurich summer campaign: HOAS,C, COAS,C, CSOAS,C, InorgNitS,C, 30 

two daytime SOA factors (DaySOA1S,C and DaySOA2S,C), and two nighttime SOA factors 31 

(NightSOA1S,C and NightSOA2S,C). The mean time series, diurnal cyclecycles, and the mass spectra of 32 

these factors over 764 accepted runs are shown in Fig. 53, together with the time series from AMS-only 33 

PMF and/or EESI-TOF-only PMF when the corresponding standalone factor(s) exist. An estimate of 34 

campaign-average percent uncertainty in the mass concentration of each factor, calculated as the median 35 

of the standard deviation across all accepted runs, is given in Table S2. Many factor characteristics from 36 

cPMF resemble those previously discussed in detail for single-instrument AMS PMF and/or EESI-TOF 37 

PMF (Stefenelli et al., 2019).(Stefenelli et al., 2019). Therefore, only a summary discussion of these 38 

characteristics areis presented here, and we focus on new information and/or differences obtained by 39 

the cPMF analysis. Recall that factor profiles for HOAS,C, COAS,C, and InorgNitS,C are constrained as 40 

discussed above. 41 

  42 
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HOAS,C --- The AMS mass spectrum is dominated by the CnH2n+1
+, and CnH2n-1

+ series, consistent with 1 

n-alkanes and branched alkanes (NgZhang et al., 2011a2005; Lanz et al., 2007; Ulbrich et al., 2009; 2 

LanzNg et al., 2007; Zhang et al., 20052011a; Qi et al., 2019; Stefenelli et al., 2019). The diurnal cycle 3 

of HOAS,C has three clear peaks (see Fig. 5b3b), however, compared to HOAS,A from Stefenelli et al. 4 

(2019)Stefenelli et al. (2019), their intensities are weaker. Specifically, the morning peak intensity ratio 5 

to the evening peak intensity is almost 1 in the HOAS,A factor, whereas in HOAS,C, the morning peak is 6 

~1/3 of the evening peak. In terms of contribution to total OA, the HOAS,A factor contributes 5.8 % 7 

(0.177 µg m-3) of the total OA, whereas in the cPMF analysis, this factor only contributes 3.1 % (0.092 8 

µg m-3) of the total OA. 9 

 10 

COAS,C --- This factor is characterised by long-chain fatty acids and alcohols, e.g., coronaric acid and/or 11 

its isomers at m/z 319.2 ([C18H32O3]Na+), oleic acid and/or its isomers at m/z 305.2 ([C18H34O2]Na+), 12 

and 2-oxo-tetredecanoic acid and/or its isomers at m/z 293.2 ([C16H30O3]Na+). Similar to previous work, 13 

the AMS profile shows both alkyl fragments and slightly oxygenated ions, consistent with aliphatic 14 

acids from cooking oils (Hu et al., 2016). The AMS profile is characterised by a high ratio of C3H3O+ 15 

to C3H5O+ (~5 here), slightly higher than in other studies (Xu et al., 2019; Zhao et al., 2019; Sun et al., 16 

2016a; Sun et al., 2016b; Xu et al., 2019; Zhao et al., 2019), as well as high contributions from C5H8O+, 17 

C6H10O+ and C7H12O+. Both cPMF and single instrument PMF analyses yield peaks during lunch 18 

(~11:30 to 13:30) and dinner. (~18:30 to 20:30). The time series of COAS,C is strongly correlated with 19 

those of the single instrument solutions, with Pearson’s r2 of 0.846 and 0.634 against COAS,A and 20 

COAS,E, respectively. 21 

 22 

CSOAS,C --- The EESI-TOF factor profile is dominated by nicotine (detected as [C10H13N2]H+) at m/z 23 

163.12 and levoglucosan at m/z 185.042 ([C6H10O5]Na+), which derives from pyrolysis of the cellulose 24 

present in tobacco (Talhout et al., 2006)(Talhout et al., 2006). In the AMS profile, this factor accounts 25 

for 79.3 % of the signal from C5H10N+ at m/z 84.081, which is attributed to a fragment of n-methyl 26 

pyrrolidine and previously identified as a tracer for cigarette smoke (Struckmeier et al., 27 

2016)(Struckmeier et al., 2016). The time series of CSOAS,C correlates with that of the AMS-only and 28 

EESI-TOF solutions, with r2 of  0.922 and 0.965, respectively. The diurnal cycles from the combined 29 

and single-instrument solutions are likewise correlated, showing high concentrations at night and low 30 

concentration during daytime. 31 

 32 

InorgNitS,C --- Among the accepted bootstrap runs, the mean CO2
+/(NO++NO2

+) ratio is 0.0346, slightly 33 

higher than the ratio of 0.0345 observed during the NH4NO3 calibration period, probably due to 1) 34 

uncertainties in the constrained profile, and/or 2) a small amount of OA apportioned to this factor. The 35 

time series of this factor correlates with AMS nitrate (NO3
-), NO+ and NO2

+ time series, with r2 of 0.654, 36 

0.645 and 0.956, respectively. Regarding the mass fraction, approximately 48.5 % of the NO+ signal 37 

and 78.0 % of the NO2
+ signal are apportioned to this factor, followed by the two NightSOAS,C factors. 38 

This is consistent with the overall NO+ and NO2
+ signals deriving not only from inorganic nitrate, but 39 

also from organonitrates (in other factors). 40 

 41 

DaySOA1S,C and DaySOA2S,C --- The cPMF analysis yields two SOA factors elevated during daytime, 42 

denoted DaySOA1S,C and DaySOA2S,C. The EESI-TOF spectra are similar to two factors retrieved from 43 

EESI-TOF-only PMF analysis by Stefenelli et al. (2019)Stefenelli et al. (2019), but were not resolved 44 

in AMS-only PMF, where only more- and less-oxygenated SOA factors (MO-OOAS,A and LO-OOAS,A) 45 

were obtained. These factors contain strong signatures from terpene oxidation products, e.g., 46 

monoterpene-derived ions (C10H16Ox, x=5, 6, 7) and sesquiterpene oxidation products (C15H24Ox, x=3, 47 

4, 5). A detailed comparison of the two DaySOA factors from the cPMF analysis to the LO-OOAS,A 48 
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and MO-OOAS,A factors from AMS-only PMF is shown in Fig. S28S31, and a comparison between the 1 

two DaySOAS,C factors and DaySOAS,E factors are shown in Figs. S29S32 a) and b), respectively. The 2 

AMS ions in these two factors are characterised by a strong CO2
+ signal, similar to the LO-OOAS,A and 3 

MO-OOAS,A factors, indicating they largely consist of oxygenated OA, consistent with the EESI-TOF 4 

spectra. We calculate 𝑓𝑟𝑎𝑐  for DaySOA1S,C and DaySOA2S,C to be 0.869 and 1.000, respectively, 5 

demonstrating that the NO+ and NO2
+ signal in these factors is dominated by organonitrates. Regarding 6 

the time series, DaySOA1S,C and DaySOA2S,C correlate strongly with DaySOA1S,E and DaySOA2S,E, 7 

with r2 of 0.883 and 0.977, respectively. The diurnal patterns of DaySOA1S,C and DaySOA2S,C are 8 

consistent with the diurnal patterns of DaySOA1S,E and DaySOA2S,E. The diurnal patterns of both 9 

factors show an enhancement in the afternoon and the evening, which distinguish these SOAs from 10 

other SOAs: DaySOA1S,C exhibits almost a factor of 2 enhancement in signal between 15:00 and 21:00 11 

compared to the morning, whereas the DaySOA2S,C exhibits the same magnitude of enhancement in 12 

signal around 12:00 to 17:00. 13 

 14 

NightSOA1S,C and NightSOA2S,C --- We retrieve two SOA factors that are enhanced overnight and in 15 

the early morning, denoted NightSOA1S,C and NightSOA2S,C. Their factor profiles and time 16 

series/diurnals closely resemble those of NightSOA1S,E and NightSOA2S,E (see Figs. S29cS32c and 17 

S29dS32d). Similar to the DaySOAS,C factors, terpene oxidation products are evident. However, the 18 

composition is weighted towards less oxygenated and more volatile terpene oxidation products, e.g., 19 

C10H16O2 and C10H16O3, which likely partition to the particle phase at night when temperature decreases. 20 

In addition, signals consistent with monoterpene-derived organonitrates are also evident, e.g., the 21 

C10H17O6-8N and C10H15O6-9N series, which are consistent with night time oxidation of monoterpenes 22 

by NO3 radicals (Xu et al., 2015; Faxon et al., 2018; Zhang et al., 2018; Xu et al., 2015). The AMS ions 23 

in these two factors are characterised by a strong CO2
+ signal and also a relatively high NO+ signal 24 

compared to sum_DaySOAsS,C. The ratio of NO+/ NO2
+ ratio is 4.55 and 8.24 for NightSOA1S,C and 25 

NightSOA2S,C, respectively, yielding 𝑓𝑟𝑎𝑐  for NightSOA1S,C and NightSOA2S,C of 0.798 and 1, 26 

indicating high organonitrate content. These two factors correlate well with sum_NightSOAsS,E, 27 

reaching r2 of  0.975 and 0.897, following in general the same diurnal patterns, with NightSOA1S,C 28 

peaking from 22:00 to 05:00 and NightSOA1S,C peaking from 04:00 to 12:00.    29 
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 1 
Figure 3. Mean factor time series (a), diurnal cycles (b) and factor profiles (c) from the 764 accepted 2 

bootstrap runs from cPMF analysis. In a), the average factor time series are shown in red, and 3 

corresponding AMS and/or EESI-TOF factors from standalone PMF are shown in green and blue, 4 

respectively. Shaded areas represent the standard deviation across all accepted runs and are summarised 5 

in Table S2. In b), the average diurnal cycles are displayed as red solid lines. Shaded areas denote the 6 

standard deviation over the average diurnal from individual solutions over all 764 accepted runs. 7 

Dashed lines denote the maximum and minimum mean diurnal observed within these 764 runs. For 8 

comparison, the AMS and EESI-TOF PMF factor time series and diurnal cycles from the individual 9 

dataset in Stefenelli et al. (2019)Stefenelli et al. (2019) are shown in green and blue respectively for 10 

related factors. In c), the average factor profiles are coloured by different ion families. Here, the AMS 11 

factor profiles are in the unit of µg m-3 (each factor sums to 1 µg m-3), whereas the EESI-TOF spectra 12 

are in the unit of cps (each factor sums to the total signal derived from 1 µg m-3 of the factor). Note that 13 

the NO+ and NO2
+ signal is divided into inorganic and organic contributions.  14 

 15 

3.2.23.1.2 cPMF analysis: Zurich winter 16 
 17 

Twelve factors were resolved from cPMF analysis of the Zurich winter campaign: HOAW,C, COAW,C, 18 

InorgNitW,C, CSOAW,C, SOA1W,C, SOA2W,C, a more-aged biomass burning OA (MABBW,C), two less-19 

aged biomass burning OAs (LABB1W,C and LABB2W,C), two nitrogen-containing OA factors 20 

(NitOA1W,C and NitOA2W,C), and a factor related to a specific local event (EVENTW,C). Because no 21 

significant chemical differences are apparent between LABB1W,C and LABB2W,C (see Figs. S30S33 and 22 

S31S34), they are aggregated to a single LABBW,C factor for presentation. Therefore, there are 11 23 

factors presented below. The average time series and mass spectra of these factors among 308 accepted 24 

runs are shown in Fig. 64. The factor profiles for HOAW,C, COAW,C, InorgNitW,C, and CSOAW,C are 25 

constrained as described previously. Similar to the summer dataset, uncertainties in the factor mass 26 

concentrations are summarised in Table S2. 27 

 28 
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HOAW,C --- This factor has a qualitatively a profile similar tois dominated by the summer 1 

campaign,CnH2n+1
+, and the discussion ofCnH2n-1

+ series, consistent with n-alkanes and branched alkanes, 2 

with lower CO+ and CO2
+ content than the HOAS,C profile applies here as well.. The HOAW,C time series 3 

correlates strongly with HOAW,A (r2 of 0.913).  4 

COAW,C --- The COAW,C profile is characterised by long-chain fatty acids and alcohols e.g., coronaric 5 

acid and/or its isomers at m/z 319.2 ([C18H32O3]Na+), oleic acid and/or its isomers at m/z 305.2 6 

([C18H34O2]Na+), and 2-oxo-tetredecanoic acid and/or its isomers at m/z 293.2 ([C16H30O3]Na+), and in 7 

the AMS, a combination of alkyl fragments and slightly oxygenated ions from aliphatic acids from 8 

cooking oils, including C5H8O+, C6H10O+ and C7H12O+. These are key features are consistent with 9 

featuresof the constrained reference profile (0 ≤ a ≤ 0.3) (Qi et al., 2019) and COA factors found byin 10 

other studies (Qi et al., 2019; Stefenelli et al., 2019; Tong et al., 2021). The COAW,C time series 11 

correlates with the corresponding single instrument analyses, exhibiting r2 of 0.894, and 0.798, with 12 

COAW,A and COAW,E, respectively.  13 

InorgNitW,C --- As noted in Sect. 3.1Text S2.2, the NO+/ NO2
+ ratio of this factor (2.42) is higher than 14 

that of pure NH4NO3 measured onsite (1.58), consistent with the presence of other inorganic nitrate 15 

sources such as KNO3. Also, the mean CO2
+/(NO++NO2

+) ratio is 0.0371, higher than the ratio of 0.0261 16 

from the constructed InorgNitW,C profile, probably due to 1) uncertainties in the constrained profile, 17 

and/or 2) a small amount of OA apportioned to this factor. The time series of this factor shows high 18 

correlations with the AMS nitrate (NO3
-), NO+ and NO2

+ time series, with r2 of 0.739, 0.792 and 0.754, 19 

respectively. Regarding the mass fraction, only 13.7% of the NO+ signal and 13.2 % of the NO2
+ signal 20 

are apportioned to this factor. The considerable fractions of the NO+ and NO2
+ signal from inorganic 21 

nitrate and organonitrates in other factors are estimated as discussed above (Kiendler-Scharr et al., 2016) 22 

and will be interpreted later for the relevant factors (as summarised in Table S1).   23 

 24 

CSOAW,C --- Similar to CSOAS,C, nicotine at m/z 163.12 and levoglucosan at m/z 185.042 were found 25 

to be the two highest peaks in the EESI-TOF mass spectra, contributing 8.75 % and 4.56 % of the EESI-26 

TOF signal. The time series of this factor resolved from cPMF analysis correlates with CSOAW,E ( r2 = 27 

0.662). Similar to CSOAW,C, the fragment of cigarette smoke tracer n-methyl pyrrolidine C5H10N+ at 28 

m/z 84.081 is also found here. This is a minor factor, comprising 2.4 % of OA.  29 

 30 

SOA1W,C and SOA2W,C --- these two factors have qualitatively similar spectra but different temporal 31 

patterns. SOA1W,C decreased gradually from 26 to 30 January, whereas SOA2W,C increased from 26 32 

January and fluctuated at high level from 28 to 31 January and then decreased from 1 February on. 33 

From the AMS perspective, both factors are characterised by high NO+, NO2
+ and CO2

+ signal compared 34 

to other organic ions. Organonitrates account for all NO+ and NO2
+ signals in SOA1W,C, but contribute 35 

nothing in SOA2W,C. Aside from the NO+ and NO2
+ ions, these AMS spectra are similar to the profiles 36 

of MO-OOA W,A and LO-OOAW,A which are characterised by high CO2
+ signal. Major ions in the EESI-37 

TOF profile include C10H16Ox (x = 3, 4, 5), C9H14Ox (x = 3, 4), C8H12Ox (x = 4, 5), C10H18O4, and 38 

C10H14O5, which are also found in secondary biomass burning (three MABBW,E factors) and/or terpene 39 

oxidation factors (SOA1W,E and SOA2W,E ) from Qi et al. (2019). However, the H:C ratio of these two 40 

factors from the EESI-TOF component (1.578 and 1.588 for SOA1W,C and SOA2W,C, respectively) is 41 

less than that of DaySOA1S,C (1.650) and DaySOA2S,C (1.672), suggesting an increased contribution 42 

from aromatic precursors. 43 

 44 

Biomass burning factors (LABBW,C and MABBW,C) --- We resolve a less-aged biomass burning 45 

factor (LABBW,C, which, as mentioned above, is the aggregate of two similar LABB factors), and a 46 
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more-aged biomass burning factor (MABBW,C). Consistent with Qi et al. (2019), the EESI-TOF 1 

component of LABBW,C is characterised by a large signal from [C6H10O5]Na+ (mainly levoglucosan) 2 

(20.4 %), and MABBW,C by a smaller but notably non-zero one (6.21 %). In addition, 76.7 % and 11.9 % 3 

of the total levoglucosan signal is apportioned to LABBW,C, and MABBW,C, respectively. The difference 4 

in the fraction of total levoglucosan apportioned to these two factors suggests different degrees of ageing 5 

of biomass burning-emitted OA. The AMS spectrum of the BBOAW,A factor is characterised by 6 

C2H4O2
+ and C3H5O2

+, which are typical fragments of anhydrosugars, such as levoglucosan (Alfarra et 7 

al., 2007; Lanz et al., 2007; Sun et al., 2011). These ions are also present in LABBW,C and MABBW,C 8 

and are higher in LABBW,C (1.91 % vs 0.879 % for C2H4O2
+ and 0.978 % vs 0.323 % for C3H5O2

+). In 9 

addition, the ratio of C2H4O2
+ to CO2

+ is 0.396 and 0.092 for LABBW,C and MABBW,C, respectively, 10 

supporting the separation of these factors based on different degrees of ageing. 11 

 12 

EVENTW,C --- This factor is low throughout the campaign except for the nights of 28 and 29 January 13 

from 00.00 to 07.00 UTC+2, where large peaks are observed. Therefore, it likely corresponds to a 14 

specific event near the sampling location. The mass spectrum features ions at m/z 174.08, 185.04 and 15 

195.06, tentatively assigned to [C8H11N2O]Na+, [C6H10O5]Na+ and [C8H12O4]Na+ from the EESI-TOF 16 

part and at m/z 15.024 (CH3
+), 27.027 (C2H3

+), 31.018 (CH3O+), and 43.018 (C2H3O+) from the AMS 17 

part. Qi et al. (2019) observed a very similar factor in standalone EESI-TOF PMF, which was tentatively 18 

attributed to the Zurich gaming festival and/or plastic burning in a nearby restaurant. The factor includes 19 

large contributions from C8H12O4, which likely represents 1,2-cyclohexane dicarboxylic acid diisononyl 20 

ester, a plasticiser for the manufacture of food packaging. In the AMS spectrum, large signals from NO+ 21 

(7.36%) and NO2
+ (2.03 %)  are also observed, with 46.6 % of the NO+ signal and 23.6% of the NO2

+ 22 

signal assigned to organonitrates. Similar to Qi et al. (2019), the AMS spectrum is also dominated by 23 

the ions in the CxHyOz
+ group.  24 

 25 

NitOA1W,C--- this factor is characterised by a high signal of C5H10N+ at m/z 84.081, contributing 4.02 % 26 

to the AMS intensity in this factor  (no other factor exceeds 0.16 %) while 97.0 % of the C5H10N+ mass 27 

is apportioned to this factor. This ion is considered to be a tracer of cigarette smoking (Struckmeier et 28 

al., 2016)(Struckmeier et al., 2016), however, different from typical CSOA mass spectra, this factor 29 

also has high signal from CO2
+, suggesting a contribution from secondary formation processes. Similar 30 

to other OA factors, this factor also has a considerable fraction of NO+ and NO2
+ signal, attributed 31 

entirely to organonitrates. For the EESI-TOF component, this factor is characterised by [C8H11N2O]Na+, 32 

levoglucosan and [C8H11N2O]Na+, [C6H10O5]Na+ and [C9H12O4]Na+ and [C11H14O4]Na+, suggesting this 33 

factor may also be influenced by fresh biomass burning.   34 

 35 

NitOA2W,C --- this factor is characterised by a high fraction of total signal from the CHON group in the 36 

EESI-TOF analysis (38.5 %). Among these ions, [C7H11O6N]Na+ at m/z 228.048, [C10H15O6N]Na+ at 37 

m/z 268.079, and [C10H17O7N]Na+ at m/z 286.090 are the three highest ions, contributing 1.65 %, 1,99 %, 38 

and 1.98 %, respectively. There are also some typical ions with high intensity from biomass burning 39 

ageing (Qi et al., 2019; Stefenelli et al., 2019), e.g., [C9H14O4]Na+ at m/z 209.078, [C10H14O6]Na+ at m/z 40 

253.068, and [C10H16O6]Na+ at m/z 255.084, contributing 6.47 %, 2.85 %, and 4.39 %, respectively. 41 

This may suggest a contribution from biomass burning activities. From the AMS perspective, this factor 42 

is characterised by high NO+ and NO2
+ signal, in which all of the NO+ and NO2

+ signals are produced 43 

from inorganic nitrates (see Table S1), with the other ions being qualitatively similar to OOA-type 44 

spectra.  45 
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1 

 2 
Figure 4.  Average factor time series (a) and factor profiles (b), which are calculated as the mean of all 3 

accepted bootstrap runs (308 runs in total). In a), the average factor time series are shown in red, and 4 

corresponding AMS and/or EESI-TOF factors from standalone PMF are shown in green and blue, 5 

respectively. Shaded areas represent the standard deviation across all accepted runs, and are summarised 6 

in Table S2. In b), the average factor profiles are coloured by different ion families. Here, the AMS 7 

factor profiles are in the unit of µg m-3 (each factor sums to 1 µg m-3), whereas the EESI-TOF spectra 8 

are in the unit of cps (each factor sums to total signal derived from 1 µg m-3 of the factor). Note that the 9 

NO+ and NO2
+ signal is divided into inorganic and organic contributions. 10 

b)
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 1 

3.33.2 EESI-TOF sensitivity to resolved factors  2 
AMS and EESI-TOF contributions to the factor profiles are intrinsically linked by cPMF. That is, for 3 

each individual factor the two instrument profiles by definition describe the same OA fraction. 4 

Therefore, the EESI-TOF sensitivity to a factor 𝐴𝑆  can be calculated according to Eq. (10). Note that 5 

this calculation depends on the assumptions that (1) both instruments are well-represented in the 6 

solution; (2) the PMF solution is of high quality (i.e., factors are all meaningful and well-separated, 7 

without significant mixing or splitting); (3) solution uncertainties are not so high as to preclude 8 

quantitative interpretation of the results. Assumption (1) was discussed earlier in the context of 9 

instrument weighting, and assumption (2) is supported by the interpretability of the factors as presented 10 

in the previous section. By performing the cPMF analysis on a large number of runs combining 11 

bootstrap analysis and a-value exploration, we can estimate uncertainties in the calculated sensitivities 12 

imposed by the analysis model, as presented below, thereby addressing assumptions (2) and (3).  13 

 14 

The datasets analysed here were taken from the first field deployments of the EESI-TOF. As a result, 15 

operational protocols were not yet fully standardised across campaigns. Specifically, we lack reliable 16 

on-site calibration with a chemical standard common to the two campaigns (this was attempted but the 17 

measurements were evaluated to be unreliable during post-analysis due to operational problems). 18 

Therefore, to enable comparison of relative factor sensitivities between the summer and winter 19 

campaigns, we select COA as a reference. That is, we assume 𝐴𝑆 𝐴𝑆
,

𝐴𝑆
,

 .We 20 

choose COA because it is the only factor that both (1) appears in all four single-instrument datasets (i.e., 21 

summer and winter, AMS and EESI-TOF) and (2) compared to other factors, is less likely to 22 

significantly change in composition between the campaigns (in contrast to, e.g., SOA in Zurich, which 23 

is known to have significantly different precursors in summer and winter). Therefore, all sensitivities 24 

below are reported as (𝐴𝑆 /𝐴𝑆 ), in which 𝐴𝑆  is calculated in every bootstrap run, and then 25 

referenced to 𝐴𝑆  (the mean 𝐴𝑆  calculated over all bootstrap runs). Here k denotes a given factor 26 

from the (summer or winter) cPMF solutions. Note that EESI-TOF sensitivities to HOA and InorgNit 27 

are not discussed here, since they are undetectable by the EESI-TOF (as configured for these campaigns; 28 

see Sect. 2.2.2).2.2.2) and therefore constrained to be ~0.01 cps / (ug m-3).  The mean and standard 29 

deviation of factor-dependent 𝐴𝑆 /𝐴𝑆  for the summer and winter datasets are shown in Fig. 5, with 30 

histograms summarising all accepted runs shown in Fig. S32S35 and Fig. S33S36.  31 

 32 

For ease of viewing, the factors in Fig. 75 are collected into related groups. We also calculate the ASk’s 33 

for several factor aggregations. First, five factors that are likely related to biomass burning (LABBW,C, 34 

MABB W,C, NitOA1W,C, NitOA2W,C and EVENTW,C), are denoted as the “Sum_“BB” factor. 35 

Additionally, we separately aggregate the two DaySOAS,C and two NightSOAS,C factors, denoted 36 

“sum_“DaySOAsS,C” and “sum_“NightSOAsS,C”, respectively. As seen in Fig. 5 (as well as Fig. 37 

S34in Figs. S35 and S36 and Table S3), the relative uncertainty from the summer factors is 38 

systematically lower than for the winter factors within the accepted solutions. This may indicate higher 39 

source apportionment quality and solution stability for the former, but is also related to the sub-division 40 

of factors related to primary biomass burning-related factors, as discussed later. 41 

For COAS,C and COAW,C, the mean relative sensitivities are 1 by definition, though uncertainties are 42 

still calculated due to non-zero a- values, while the reference profile utilised for CSOAW,C, ensures that 43 

CSOAW,C CSOAS,C will have similar sensitivities. Interestingly, the distribution of the sensitivities, of 44 

COASCOAS,C, COAW,C, and CSOAW,C in FigFigs. S32 and Fig. S33 is clearly multi-modal despite a-45 

value constraints, (although the overall COAS,C and COAW,C distributions remain relatively narrow), 46 

but the reason for this remains to be exploredis unknown. 47 
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The next group of factors (LABBW,C, MABBW,C, NitOA1W,C, NitOA2W,C and EVENTW,C) includes non-1 

negligible contributions from levoglucosan (C6H10O5), produced typically from biomass-burning(BB)-2 

related activities. Previous work has demonstrated that the EESI-TOF sensitivity to levoglucosan is 3 

higher than that of many other compounds and bulk SOA from representative precursors (Lopez-4 

Hilfiker et al., 2019; Brown et al., 2021). Indeed, although the set of studied compounds is far from 5 

comprehensive, the relative sensitivity of the EESI-TOF to levoglucosan is among the highest yet 6 

recorded. Therefore, althoughdespite the variation in composition of the POA-influenced factors varies 7 

considerably, it is possible that, the levoglucosaneffect of the C6H10O5 content may have significant 8 

predictive value with respect toon the overall factor sensitivity. is often considerable for cases where 9 

this ion is strongly influenced by levoglucosan. Figure 6 shows ASk as a function of the C6H10O5 fraction 10 

for all factors for which the C6H10O5 signal is believed to result largely from levoglucosan. This analysis 11 

accounts for all factors resolved from the cPMF of the winter dataset except CSOAW,C, because 12 

CSOAW,C is dominated by the signal from the protontated nicotine ([C10H14N2]H+) ion, which is both 13 

chemically different (reduced nitrogen) and has a different ionisation pathway than other measured ions. 14 

The four summer SOA factors are excluded as well, because the contribution from C6H10O5 in these 15 

factors was previously attributed to terpene and/or aromatic oxidation products (Stefenelli et al., 16 

2019)(Stefenelli et al., 2019). An obvious qualitative trend of increasing sensitivity with increasing 17 

levoglucosan fraction is evident with Pearson r2 of 0.676, indicating the overwhelming influence of the 18 

high sensitivity species levoglucosan on the factor apparent sensitivity. 19 

For the primary BB-related factors, the uncertainties are generally higher than for the other factors (see 20 

Fig. S33 and Fig. S34bS36). In contrast, the aggregated BB factor (Sum_(BBW,C, and Sum_BBW,C = 21 

MABBW,C + LABBW,C + NitOA1W,C + NitOA2W,C + EVENTW,C) is less uncertain and has a narrower 22 

sensitivity distribution. This suggests that the overall classification of signal as biomass burning-related 23 

is robust, but the subdivision into more specific BB-related sources carries higher uncertainties. 24 

Likewise, the relative sensitivities of sum_DaySOAsS,C and sum_NightSOAsS,C are less uncertain 25 

compared to individual corresponding SOA factors in summer (as shown in Fig. S32 and Fig. S34aS35). 26 

This contrast suggests that coarse classifications of factors may have higher precision, but provide less 27 

information, whereas fine classifications of factors may have higher uncertainties, but potentially 28 

provide more information from each factor. It also suggests that, at least for these datasets, factor mixing 29 

occurs primarily between factors with closely related sources. Despite their higher uncertainties, the 30 

finest classification levels explored here still appear to be meaningful. We also note that both datasets 31 

investigated here are of relatively short duration, and factor separation may improve in longer datasets. 32 

The final group of factors in Fig. 75 corresponds to SOA. The relative sensitivities of the SOA factors 33 

in winter are shown to be lower than any of the SOA factors resolved during summer. This is consistent 34 

with expectations regarding the seasonal differences in the dominant SOA precursors and the expected 35 

ASk of the resulting SOA. At this site, SOA precursors are expected to be dominated by monoterpenes 36 

in summer, and biomass burning (increasing the contribution of phenols, naphthalenes, and other 37 

aromatics) in winter, with traffic making a lesser contribution in both seasons (Daellenbach et al., 2016; 38 

Qi et al., 2020). This is supported by analysis of the characteristics of the retrieved factors as discussed 39 

above (Qi et al., 2019; Stefenelli et al., 2019). Previous studies have shown differences in the EESI-40 

TOF bulk sensitivity to SOA from different precursors, with terpene-derived SOA generally exhibiting 41 

higher sensitivity than SOA from light aromatics (Lopez-Hilfiker et al., 2019; Wang et al., 2021). Figure 42 

7 shows the 𝐴𝑆/𝐴𝑆  for two DaySOAS,C and NightSOAS,C factors in summer, as well as the 43 

sum_DaySOAsS,C and sum_NightSOAsS,C, which are the aggregates of the individual DaySOAS,C 44 

and NightSOAS,C factors (sum_(DaySOAsS,C = DaySOA1S,C + DaySOA2S_C; and 45 

sum_NightSOAsS,C = NightSOA1S,C + NightSOA2S,C), respectively, and two SOAW,C factors in winter 46 
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as a function of their H:C ratio calculated from the EESI-TOF component. A trend of increasing 1 

sensitivity with increasing H:C ratio is observed for the summer SOAs, as well as the winter SOAs 2 

(SOA1W,C and SOA2W,C).  andwinter SOAs (SOA1W,C and SOA2W,C), with an overall Spearman’s rank 3 

correlation of 0.833. Consistent with Wang et al. (2021), H:C is found to be a better predictor of ASk 4 

than either O:C or OSc, yielding Spearman’s rank correlation of 0.833 for ASk vs. H:C, -0.167 for ASk 5 

vs. O:C, and -0.452 for ASk vs. OSc (Fig. S37a and Fig. S37b). 6 

For the SOA factors, we compare ASk retrieved to ASk predicted using a molecular formula-based 7 

parameterisation trained with laboratory SOA measurements, as described in Sect. 2.2.3 (Wang et al., 8 

2021).2.2.3 (Wang et al., 2021). No parameterisations presently exist for POA factors, so these are 9 

excluded from the comparison, although to allow comparison between campaigns the model is used to 10 

calculate a reference value for ASCOA. Figure 108 compares the ASk values based on model predictions 11 

against values determined from cPMF. For summer SOAs, the LMN (limonene)-based parameterisation 12 

is applied as a surrogate for terpene oxidation products. Regarding the winter SOAs, three scenarios 13 

(cresol, LMN and TMB) are applied, as the winter SOAs in Zurich are mainly related to oxidation of 14 

biomass burning emissions, which include monoterpenes, phenols, naphthalenes, and other aromatics 15 

(Rouvière et al., 2006; Bruns et al., 2016; Kelly et al., 2018; Rouvière et al., 2006). In Fig. 108, 1:1, 1:2, 16 

1:4, and 1:8 lines are provided to guide the eye, although a 1:1 correspondence is not expected because 17 

the models are not trained on primary COA. The figure shows a monotonic increase in model sensitivity 18 

predictions with increasing cPMF-derived sensitivities, with the sole exception of SOA2W,C. 19 

Specifically, the summer-derived points fall mainly between the 1:1 and 1:2 lines, while for SOA1W,C, 20 

the model predictions are roughly a factor of 2 lower relative to the cPMF results. This offset may 21 

reflect differences in the appropriateness of the selected precursor surrogate. The SOA2W,C factor is a 22 

slight outlier, probably because the ASk for this factor is more uncertain than the others (and not fully 23 

captured by the error bars in Fig. 75) due to the high contribution from inorganic nitrate (~80 % of mass) 24 

in its factor profile. Given the limitations of the multi-variate parameterisation (see Sect. 2.2.3) and the 25 

several orders of magnitude variation in EESI-TOF sensitivities to individual compounds, the 26 

qualitative agreement between ASk values independently retrieved from multivariate parameterisation 27 

and cPMF provide support for both methods. 28 
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 1 

Figure 5. Comparison of 𝐴𝑆 /𝐴𝑆  of different factors resolved from the cPMF on the summer and 2 

winter datasets. Mean values are shown as bars, and error bars indicate the standard deviation over all 3 

accepted bootstrap runs. The following factor aggregations are also shown: Sum_BBW,C = MABBW,C 4 

+ LABBW,C + NitOA1W,C + NitOA2W,C + EVENTW,C.; sum_DaySOAsS,C = DaySOA1S,C + 5 

DaySOA2S_C; and sum_NightSOAsS,C = NightSOA1S,C + NightSOA2S,C.  6 

 7 
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   1 

Figure 6. Relative apparent sensitivity 𝐴𝑆 /𝐴𝑆
,

  as a function of levoglucosan fraction for all 2 

factors resolved from the cPMF of the winter dataset except CSOAW,C. Error bars denote standard 3 

deviation. 4 
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 1 

 2 

Figure 7. 𝐴𝑆 /𝐴𝑆  of SOA factors retrieved from the summer and winter datasets as a function of 3 

the H:C ratio. Error bars denote standard deviation across all accepted runs. Spearman correlation is 4 

0.833, as indicated in the top-left corner.  5 

8

7

6

5

4

3

2

1

0

A
S
k 

/ A
S

C
O

A
C

1.721.701.681.661.641.621.601.581.561.54
 H:C

 
 Summer
 Winter

SOA1W,C

SOA2W,C

DaySOA1S,C

DaySOA2S,C

NightSOA1S,C

NightSOA2S,C

ΣDaySOAsS,C

ΣNightSOAsS,C

 Spearman R = 0.833



 

42 
 

 1 

 2 

 3 

Figure 8. The estimated relative apparent sensitivity to COA (𝐴𝑆 /𝐴𝑆 ) from the gradient boosting 4 

regression (GBR) and linear ridge regression (LRR) modelsmodel as a function of cPMF-derived 5 

𝐴𝑆 /𝐴𝑆 ). The symbols indicate the different oxidation-precursor system (LMN for SOA produced 6 

from oxidation of limonene by ozone, cresol and TMB for SOA produced from oxidation of o-cresol 7 

and 1,3,5-trimethylbenzene by OH radicals, respectively). 8 
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 1 

4. Atmospheric implications 2 
 3 

The application of factor-dependent sensitivities can qualitatively and quantitatively affect the source 4 

apportionment results. Figures 9a and 9b compare the source apportionment results from cPMF on the 5 

summer and winter datasets using the calculated factor sensitivities (𝐴S ) (i.e., direct outputs of the 6 

cPMF analysis) vs. using a single bulk sensitivity (𝐴𝑆 ) for all factors, where the latter is calculated 7 

as the ratio of the total OA measured by the EESI-TOF (cps) to that measured by the AMS (µg m-3). 8 

Figures 10a and 10b compare the total OA concentrations returned from the cPMF using 𝐴𝑆  and 9 

𝐴𝑆  to the total OA measured by the AMS. Table S3 summarises the retrieved ASk values for each 10 

factor (note that although the relative ASk are believed to be intrinsic properties of the factors, the 11 

absolute sensitivities are instrument- and tuning-dependent, and will vary between campaigns). 12 

 13 

In the Zurich summer campaign, the bulk OA sensitivity 𝐴𝑆
,

 (1254.0 cps /( (µg m-3)))-1) is higher 14 

than that of 𝐴𝑆
,

  (509.8 cps /( (µg m-3)).)-1). Four factors (HOAS,C, COAS,C, DaySOA1S,C and 15 

NightSOA1S,C) are underestimated, whereas three factors (CSOAS,C, DaySOA2S,C and NightSOA2S,C) 16 

are overestimated when 𝐴𝑆
,

 is used. Using the calculated ASk, the contribution of COAS,C to total 17 

OA more than doubles, from 4.5 % to 11.7 % as shown in Fig. 9a). Similarly, the application of ASk 18 

increases the contributions of DaySOA1S,C and NightSOA1S,C from 22.7 % to 35.2 %, and from 10.3 % 19 

to 17.1 %, respectively. Among the overestimated factors, the largest decrease post-correction is found 20 

for NightSOA2S,C, the contribution of which decreases by approximately a factor of three (from 29.7 % 21 

to 10.3%). Smaller post-correction decreases are observed for the contributions of CSOAS,C (12.9 % to 22 

7.7 %) and DaySOA2S,C (19.9 % to 14.9 %). If factor-dependent sensitivities were ignored, 23 

NightSOA2S,C would be the largest contributor to total OA, followed by DaySOA1S,C whereas the full 24 

analysis indicates that DaySOA1S,C is the largest contributor.  25 

 26 

Similar to the summer campaign, application of ASk significantly affects the source apportionment 27 

results in winter. CSOAW,C, MABBW,C, and LABBW,C are shown to be overestimated, while HOAW,C, 28 

COAW,C, SOA1W,C, NitOA1W,C, NitOA2W,C and EVENTW,C are underestimated. If factor-dependent 29 

sensitivities were not considered, LABBW,C and MABBW,C would appear to be the dominant 30 

contributors to total OA (35.7 % and 18.2 % respectively) due to their high levoglucosan content. 31 

However, the full cPMF analysis indicates the LABBW,C and MABBW,C contributions to be 14.9 % and 32 

14.4 %, respectively, whereas accounting for ASk increases the contribution of SOA1W,C from 12.7 % 33 

to 22.0 %, making it the largest contributor.  34 

 35 

For both the summer and winter datasets, calculation of total OA from cPMF results using factor-36 

specific 𝐴𝑆  significantly outperforms that using a single 𝐴𝑆 . This is evident from an increased r2 37 

(0.966 vs 0.821) for summer. However, the r2 is similar between the two approaches in winter (0.947 38 

vs 0.943). The difference after applying 𝐴𝑆  and 𝐴𝑆  in r2 might be related to the extent to which 39 

the contribution from factors with high 𝐴𝑆  and low 𝐴𝑆  to total OA changes over the time during the 40 

campaign, which can vary in different datasets. 41 

 42 

Box-and-whisker diagrams of factor contributions to total OA with/without applying ASk values for 43 

summer and winter are presented in Fig. 11. In the Zurich summer campaign, the box plots of the 44 

corrected contributions of all six factors fall completely outside of the interquartile range (IQR) of the 45 

uncorrected results, suggesting that the use of a single ASbulk would lead to significant biases. In contrast, 46 

the winter campaign exhibits a lack of overlap between the ASk and ASbulk-derived results for eight 47 
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factors (HOAW,C, COAW,C, CSOAW,C, SOA1W,C, SOA2W,C, NitOA1W,C, NitOA2W,C and EVENTW,C) , 1 

whereas two factors overlap (SOA2W,C and MABBW,C,). This may result from statistical uncertainties 2 

in bootstrap analysis coupled with a less robust division between certain factors, yielding a wide 3 

distribution, e.g., MABBW,C, and/or ASk values that are similar to ASbulk (2271.1 cps /( (µg m-3)),)-1), e.g., 4 

SOA2W,C (2253.2 cps /( (µg m-3)),)-1), and MABBW,C (2619.0 cps /( (µg m-3)).)-1).  5 

6 
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 1 

 2 

Figure 9. Comparison of source apportionment results between direct output from cPMF (i.e., 3 

accounting for factor-dependent sensitivities) and application of a single bulk OA sensitivity, applied 4 

to the Zurich summer (a) and winter (b) datasets. Stack plots of factor time series directly from 5 

combined PMF and factor time series calculated from bulk OA sensitivity compared with total AMS 6 

OA concentration are shown in the upper and lower panel, respectively in each subfigure, together with 7 

the corresponding factor contribution shown in the pie chart. Note that here the contribution of the 8 

InorgNit factor and the contributions of NO+ and NO2
+ from inorganic nitrate in each factor are excluded 9 

to account only for the total OA. 10 
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1 

 2 
Figure 10. Comparison between the sum of factor concentrations in each time point with (in red) and 3 

without (in blue) taking the factor-dependent sensitivity into account and total OA measured by AMS 4 

for summer in a) and winter in b). A linear fit is conducted based on the Levenberg-Marquardt least 5 

orthogonal distance method. Note that here the contribution of the InorgNit factor and the contributions 6 

of NO+ and NO2
+ from inorganic nitrate in each factor are excluded. 7 
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1 

 2 

 3 

Figure 11. Box-and-whisker diagrams of factor contributioncontributions to total OA with/without 4 

applying the factor dependent sensitivities, for summer in a) and winter in b) within accepted solutions. 5 

For each pair of factors, the contribution without factor-dependent sensitivity applied is shown in the 6 

left box (open symbols), whereas the contribution corrected by factor-dependent sensitivity is shown in 7 

the right box (fullfilled symbols). The plotbox-and-whisker diagram shows the mean (open/filled circle), 8 

median (horizontal bar), interquartile range (rectangle, the 25th percentile is the lower edge and the 75th 9 

is the upper edge), and minimum/maximum values (whiskers). Note that here the contribution of 10 

InorgNit factor and contribution of NO+ and NO2
+ from inorganic nitrate in each factor are excluded. 11 

  12 
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5. Conclusion 1 
5. Conclusions 2 

 3 

We address the longstanding challenges in achieving quantitative source apportionment of SOA sources 4 

by conducting a positive matrix factorisation (PMF) analysis of a dataset combining measurements from 5 

an aerosol mass spectrometer (AMS) and an extractive electrospray ionisation time-of-flight mass 6 

spectrometer (EESI-TOF). This approach combines the strengths of the two instruments, namely the 7 

quantification ability of the AMS and the chemical resolution of the EESI-TOF. We demonstrate the 8 

utility of this approach by PMF analysis of combined EESI-TOF/AMS datasets collected during 9 

summer and winter in Zurich, Switzerland. The results retain the chemical resolution of the standalone 10 

EESI-TOF PMF, while additionally providing quantitative factor time series and the EESI-TOF bulk 11 

sensitivity to different OA factors.  12 

We present a general procedure to conduct source apportionment on a combined dataset, including a 13 

new metric for ensuring both instruments are well-represented in the solution, a method for optionally 14 

constraining factor profiles for one or both instruments, and a protocol for uncertainty analysis. The 15 

balancing metric references residual distributions obtained from cPMF to those of optimised single-16 

instrument PMF solutions to avoid bias due to differing instrument characteristics or error models. 17 

Factor profile constraints require the construction of a reference profile, which may be challenging in a 18 

multi-instrument dataset. We therefore provide methods for reference profile construction for cases 19 

when (1) a single reference profile exists combining data from both instruments; (2) reference profile 20 

exist independently for each instrument; and (3) a factor is detectable by one instrument but not the 21 

other. To explore the solution stability and the uncertainties, a protocol for combined bootstrap 22 

analysis/constraint exploration is developed.  23 

Note that while these methods provide a general procedure for cPMF analysis, the specific parameters 24 

employed (i.e., the number of factors (p), instrument weighting parameter (Cinst), and the factors to be 25 

constrained and the tightness of constraints (a value ranges)) are dataset-specific and should be 26 

determined independently for each new analysis. 27 

The cPMF method intrinsically provides factor-dependent sensitivities (cps / (ug/m3(µg m-3)-1) for the 28 

EESI-TOF. To account for organonitrate content, the AMS ions NO+ and NO2
+ are included in the 29 

cPMF analysis. Organic and inorganic contributions to these ions are estimated on a factor-by-factor 30 

basis using the method of Kiendler-Scharr et al. (2016). 31 

For practical reasons, sensitivities between winter and summer campaigns are compared using cooking-32 

related OA (COA) as a common reference. The retrieved factor sensitivities range from approximately 33 

1.3 to 7.5 times the sensitivity of COA. The relative sensitivities of SOA factors are precursor-34 

dependent, and qualitatively consistent with trends observed in lab measurements of SOA from single 35 

precursors (Lopez-Hilfiker et al., 2019). The SOA sensitivities estimated using our cPMF approach also 36 

agree with the sensitivities predicted by multi-variate regression models (Wang et al. 2021), which 37 

further demonstrates that SOA sensitivities are precursor- and/or source-dependent.(Wang et al., 2021), 38 

which further demonstrates that SOA sensitivities are precursor- and/or source-dependent. Comparison 39 

of source apportionment results using factor-dependent sensitivities to uncorrected results show 40 

substantial differences, highlighting the importance of quantitative analysis. For example, before 41 

applying factor-dependent sensitivities, the contribution of a daytime SOA factor is underestimated by 42 

about 30 % (22.7 % before vs 35.2 % after), whereas the contribution of a nighttime SOA factor is 43 

almost overestimated by a factor of 3 in the summer campaign (29.7 % before vs 10.3 % after). As for 44 
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the winter campaign, the contribution of less-aged biomass burning factor to total OA in Zurich winter 1 

dataset is 35.7 %, making it a major factor in winter without considering its factor-dependent sensitivity. 2 

However, this factor is significantly overestimated by more than a factor of 2 (35.7 %, before vs 14.9 % 3 

after). In contrast, the SOA1 factor in winter is underestimated, with its contribution increasing from 4 

12.7% to 22.0 %.   5 

These considerable differences in the source contributions between the uncorrected EESI-TOF and 6 

cPMF results highlight the challenges in interpreting standalone source apportionment results for 7 

instruments where ion-specific sensitivity information is not readily available, such as EESI-TOF or 8 

FIGAERO-CIMS.  Although the time trends of such analyses are likely robust, interpretation of the 9 

relative composition requires caution. Therefore, if such interpretation is desired, it is advised to employ 10 

analysis strategies such as cPMF that are capable of integrating quantitative measurements from 11 

reference instruments.  12 

The cPMF method presented herein is can be utilised as-is not only for the AMS/EESI-TOF 13 

combination, but to any dataset comprising data from multiple instruments. As such, it provides a 14 

promising strategy for utilising instruments with high chemical resolution but semi-quantitative 15 

performance (i.e., a linear but hard-to-calibrate response to mass) within the framework of a quantitative 16 

source apportionment.  17 

 18 
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