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Abstract:  13 

Source apportionment studies have struggled to quantitatively link secondary organic aerosol 14 

(SOA) to its precursor sources, due largely to instrument limitations. For example, aerosol mass 15 

spectrometers (AMS) provide quantitative measurements of the total SOA fraction, but lack the 16 

chemical resolution to resolve most SOA sources. In contrast, instruments based on soft ionisation 17 

techniques, such as extractive electrospray ionisation mass spectrometry (EESI, e.g., the EESI 18 

time of flight mass spectrometer, EESI-TOF), have demonstrated the resolution to identify 19 

specific SOA sources but provide only a semi-quantitative apportionment due to uncertainties in 20 

the dependence of instrument sensitivity on molecular identity. We address this challenge by 21 

presenting a method for positive matrix factorisation (PMF) analysis on a single dataset which 22 

includes measurements from both AMS and EESI-TOF instruments, denoted “combined PMF” 23 

(cPMF). Because each factor profile includes both AMS and EESI-TOF components, the cPMF 24 

analysis maintains the source resolution capability of the EESI-TOF, while also providing 25 

quantitative factor mass concentrations. Therefore, the bulk EESI-TOF sensitivity to each factor 26 

can also be directly determined from the analysis. We present metrics for ensuring both 27 

instruments are well-represented in the solution, a method for optionally constraining the profiles 28 

of factors that are detectable by one or both instruments, and a protocol for uncertainty analysis.  29 

 30 

As a proof of concept, the cPMF analysis was applied to summer and winter measurements in 31 

Zurich, Switzerland. Factors related to biogenic and wood burning-derived SOA are quantified, 32 

as well as POA sources such as wood burning, cigarette smoke, cooking, and traffic. The retrieved 33 

EESI-TOF factor-dependent sensitivities are consistent with both laboratory measurements of 34 

SOA from model precursors and bulk sensitivity parameterisations based on ion chemical 35 

formulae. The cPMF analysis shows that with the standalone EESI-TOF PMF, in which factor-36 

dependent sensitivities are not accounted for, some factors are significantly under/overestimated. 37 

For example, when factor-dependent sensitivities are not considered in the winter dataset, the 38 

SOA fraction is underestimated by ~25% due to the high EESI-TOF sensitivity to components of 39 

primary biomass burning such as levoglucosan. In the summer dataset, where both SOA and total 40 

OA are dominated by monoterpene oxidation products, the uncorrected EESI-TOF 41 

underestimates the fraction of daytime SOA relative to nighttime SOA (in which organonitrates 42 

and less oxygenated CxHyOz molecules are enhanced). Although applied here to an AMS/EESI-43 
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TOF pairing, cPMF is suitable for the general case of a multi-instrument dataset, thereby 1 

providing a framework for exploiting semi-quantitative, high-resolution instrumentation for 2 

quantitative source apportionment.   3 

 4 

1. Introduction 5 
 6 
Atmospheric aerosols negatively affect visibility (Chow et al., 2002), human health (Pope et al., 2002; 7 

Laden et al., 2006; Beelen et al., 2014), and urban air quality (Fenger, 1999; Mayer, 1999) on local and 8 

regional scales. Aerosols also provide the largest uncertainties for global radiation balance and climate 9 

change (Lohmann and Feichter, 2005; Forster et al., 2007; Penner et al., 2011; Myhre et al., 2014). 10 

Therefore, to develop appropriate mitigation policies, it is of vital importance to understand aerosol 11 

chemical composition, sources, and evolution. Organic aerosol (OA) is a major component of 12 

atmospheric aerosol and accounts for 20 to 90 % of the submicron aerosol mass (Jimenez et al., 2009). 13 

OA is typically classified as either primary organic aerosol (POA), which is directly emitted to the 14 

atmosphere, or secondary organic aerosol (SOA), which is produced by atmospheric reactions of 15 

emitted volatile organic compounds (VOCs). Both POA and SOA can exert serious health effects, 16 

including protein and DNA damage caused by reactive oxygen species (ROS), which can be either 17 

contained in the particles or induced by oxidation reactions following inhalation (Halliwell and Cross, 18 

1994; Li et al., 2003; Reuter et al., 2010; Kelly and Fussell, 2012; Fuller et al., 2014). Recent studies 19 

indicate that the oxidation potential of SOA is source-dependent. Therefore, different sources likely 20 

carry different health risks, highlighting the importance of OA source identification and quantification 21 

(Zhou et al., 2018; Daellenbach et al., 2020). Previous studies have been relatively successful in 22 

quantitatively linking POA to its sources. However, quantification of SOA sources and/or formation 23 

pathways is more challenging due to 1) the chemical complexity of SOA, which can consist of 24 

thousands of unique oxidation products, including highly oxygenated molecules and high molecular 25 

weight organic oligomers, and 2) limitations of traditional instrumentation for characterising OA 26 

chemical composition, especially the SOA fraction. Therefore, the effects of individual SOA sources 27 

on health and climate remain poorly constrained. 28 

 29 

Positive matrix factorisation (PMF) is a widely used source apportionment technique. PMF is a bilinear 30 

receptor model which represents the measured mass spectral time series as a linear combination of 31 

factor mass spectra and their corresponding time-dependent concentrations (Paatero and Tapper, 1994). 32 

These factors may then be related to emission sources, and/or atmospheric processes, depending on 33 

their chemical and temporal characteristics. PMF has been implemented in extensive online and offline 34 

studies worldwide to quantify OA sources. The Aerodyne aerosol mass spectrometer (AMS) is widely 35 

used in OA source apportionment studies because it provides online, quantitative measurements of non-36 

refractory PM1 or PM2.5 (particulate matter with aerodynamic diameter smaller than 1 or 2.5 m, 37 

respectively) chemical composition with high time resolution. Source apportionment studies using PMF 38 

based on AMS data have successfully separated and quantified POA sources based on different 39 

chemical signatures, e.g., hydrocarbon-like OA (HOA) (Ng et al., 2011b; Zhang et al., 2014; Elser et 40 

al., 2016; Sun et al., 2016a; Xu et al., 2019; Zhao et al., 2019), cooking-related OA (COA) (Mohr et al., 41 

2012; Crippa et al., 2013b; Hu et al., 2016; Sun et al., 2016a; Sun et al., 2016b; Xu et al., 2019; Zhao 42 

et al., 2019), biomass burning OA (BBOA) (Alfarra et al., 2007; Lanz et al., 2007; Sun et al., 2011), 43 

and coal combustion OA (CCOA) (Zhang et al., 2008; Zhang et al., 2014; Elser et al., 2016; Hu et al., 44 

2016; Sun et al., 2016a). However, SOA is typically reported as either a single SOA factor (denoted 45 

oxygenated organic aerosol, OOA), or as two factors distinguished by degree of oxygenation (i.e., less 46 

oxygenated OOA, LO-OOA, and more oxygenated OOA, MO-OOA) or by volatility (i.e., semi-volatile 47 

OOA, SV-OOA, and low-volatility OOA, LV-OOA) (Jimenez et al., 2009; Zhang et al., 2011; Crippa 48 
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et al., 2013b; Sun et al., 2013; Elser et al., 2016; Sun et al., 2016a; Xu et al., 2019) rather than in terms 1 

of sources and/or formation processes. This limitation is due to the vaporisation/ionisation scheme in 2 

the AMS, which causes significant thermal decomposition and ionisation-induced fragmentation 3 

(DeCarlo et al., 2006). The corresponding decrease in chemical resolution, particularly for 4 

multifunctional and/or highly oxygenated SOA components (e.g., multifunctional acids, peroxides, 5 

organonitrates, organosulfates, oligomers), limits the resolution of SOA source apportionment. 6 

 7 

The development of continuous or semi-continuous instruments with softer vaporisation/ionisation 8 

schemes has provided new insights into SOA composition, and is thus of considerable interest for source 9 

apportionment. Recent examples include the (semi-continuous) Filter Inlet for Gases and AEROsols 10 

chemical ionisation time-of-flight mass spectrometer (FIGAERO-CIMS) (Lopez-Hilfiker et al., 2014), 11 

and the (continuous) extractive electrospray ionisation time-of-flight mass spectrometer (EESI-TOF) 12 

(Lopez-Hilfiker et al., 2019), which implement soft ionisation schemes at lower temperatures than the 13 

AMS, thereby reducing thermal decomposition and increasing chemical resolution (i.e., providing 14 

chemical formulae of molecular ions). A recent source apportionment study using a FIGAERO-CIMS 15 

at a rural site in the southeastern USA successfully resolved three SOA factors, characterised by 16 

isoprene-derived species such as carboxylic acids from aqueous phase processes, highlighting the 17 

chemistry of biogenic species (Chen et al., 2020). Another source apportionment study from Lee et al. 18 

(2020) using FIGAERO-CIMS spectra successfully distinguished ambient SOA formation and ageing 19 

pathways in two forested regions. Source apportionment studies in Zurich using an EESI-TOF identified 20 

SOA factors from monoterpene oxidation in summer (Stefenelli et al., 2019) and oxidation of biomass 21 

burning emissions in winter (Qi et al., 2019). EESI-TOF measurements identified SOA factors related 22 

to solid fuel combustion and aqueous-phase processes in Beijing (Tong et al., 2021) and SOA factors 23 

with aromatic and biogenic origins in Delhi (Kumar et al., 2021). However, to date the factor 24 

concentrations returned by PMF analyses using these instruments are not quantitative.  25 

 26 

Quantification of the measurements by instruments such as EESI-TOF and CIMS is challenging 27 

because the instrument sensitivity varies strongly with molecular identity. For CIMS, the sensitivity to 28 

different compounds is determined by the frequency of collisions between reagent ions and analytes, 29 

the ion–molecule reaction time, and the transmission efficiency of product ions to the detector, which 30 

depends on ion-molecule binding energy. Lopez-Hilfiker et al. (2016) developed methods to estimate 31 

the binding energy of iodide (I-) adduct ions of multifunctional organic compounds for species whose 32 

formation is collision-limited, providing a lower limit to their mass concentrations. Another method to 33 

explore the sensitivity is to measure single-compound aerosols or SOA generated from different 34 

precursors simultaneously by an EESI-TOF and a scanning mobility particle sizer (SMPS) to determine 35 

the mass concentration (Lopez-Hilfiker et al., 2016). Lopez-Hilfiker et al. (2019) explored EESI-TOF 36 

sensitivities to selected reference compounds with different functional groups (including saccharides, 37 

polyols and carboxylic acids) and bulk SOA generated from oxidation of a single precursor VOC. For 38 

pure compounds, relative sensitivities vary by two orders of magnitude, with some composition-39 

dependent trends evident (e.g., increasing sensitivity of saccharides with decreasing molecular weight, 40 

and high sensitivities for polyols relative to other functionalities). In addition, a trend of decreasing 41 

sensitivity with decreasing molecular weight of the precursors was found for bulk SOA. While 42 

calibration with standard compounds is straightforward, the quantification of individual species within 43 

SOA is extremely challenging, due to its complex composition, the lack of chemical standards for most 44 

molecules, and the potential for structural isomers to have significantly different sensitivities. These 45 

issues were investigated recently for the EESI-TOF by generating SOA in the presence of a variable 46 

seed surface area, and comparing the difference in SOA ion concentrations measured by the EESI-TOF 47 

and the corresponding gas-phase concentrations measured by a Vocus proton transfer reaction-mass 48 
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spectrometer (Vocus-PTR-MS) (Wang et al., 2021). The observed sensitivities for different SOA 1 

components produced from the oxidation of limonene, o-cresol, or 1,3,5-trimethylbenzene ranged from 2 

103 to 105 ion s-1 ppb-1. A regression model was developed that was able to predict the ion-by-ion 3 

sensitivities to within a factor of 5 of the experimental value when the precursor VOC is known a priori. 4 

However, the study also showed significantly different sensitivities (up to a factor of 20) for structural 5 

isomers derived from different VOC precursors. Similar isomer sensitivity differences for the I--CIMS 6 

were also reported by (Bi et al., 2021). The fact that these isomers cannot be distinguished by 1-7 

dimensional mass spectrometry, represents a fundamental limitation of calibration/parameterisation-8 

based quantification and complicates interpretation of the binding energy-based approach (Lopez-9 

Hilfiker et al., 2016), because ambient SOA may derive from unknown or complex mixtures of VOCs. 10 

Therefore, for source apportionment purposes, source-based sensitivities are preferred and essential to 11 

quantify SOA sources and formation processes.  12 

 13 

Here we present a new approach for quantification of SOA sources retrieved from source apportionment. 14 

This is achieved by PMF analysis of a single input matrix consisting of data from both a quantitative 15 

instrument with lower chemical resolution (i.e., AMS) and an instrument with high chemical resolution 16 

and a linear but molecule-dependent response (i.e., EESI-TOF). This method is based on the combined 17 

PMF (cPMF) analysis previously performed on combined OA/VOC data from AMS and PTR-MS, 18 

respectively (Slowik et al., 2010; Crippa et al., 2013a), but utilises a more robust metric for ensuring 19 

adequate representation of both instruments in the model solution, optionally allows constraints to be 20 

placed on the factor profile contributions for one or both instruments, and provides a method for 21 

uncertainty analysis. The cPMF method is applied to AMS/EESI-TOF datasets collected during summer 22 

and winter campaigns in Zurich, Switzerland, for which single-instrument PMF analyses were 23 

previously reported (Qi et al., 2019; Stefenelli et al., 2019). The present study is the first application of 24 

cPMF to a joint EESI-TOF/AMS dataset, and the first quantitative EESI-TOF-driven source 25 

apportionment. 26 

 27 

2. Methodologies 28 
2.1 The measurement site and field campaigns 29 

Field campaigns were conducted at the Swiss National Air Pollution Monitoring Network (NABEL) 30 

station, an urban background site located in the Alte Kaserne, central Zurich (47º22’ N, 8º33’ E, 410 m 31 

above sea level), previously described in detail (Lanz et al., 2007; Canonaco et al., 2013). The 32 

measurements used in the current analysis are from 20 June to 26 June 2016 and 25 January to 4 33 

February 2017. These periods are excerpted from longer campaigns, and correspond to the times during 34 

which both the AMS and EESI-TOF achieved stable operation. The measurement site is located in a 35 

courtyard, although influences from nearby restaurants, local minor roads, and human activities (e.g., 36 

cigarette smoking) are often observed (Lanz et al., 2007; Daellenbach et al., 2017; Qi et al., 2019; 37 

Stefenelli et al., 2019; Qi et al., 2020). Gas-phase species, e.g., nitrogen dioxide (NO2), nitrogen oxide 38 

(NO) and sulfur dioxide (SO2) and meteorological data, e.g., temperature (T), relative humidity (RH), 39 

radiation, wind speed (WS) and wind direction (WD) are recorded by the monitoring station.   40 

 41 

During the intensive campaigns, a separate trailer was deployed to house an additional suite of gas and 42 

particle instrumentation. A PM2.5 cyclone was installed ~75 cm above the trailer roof (~5 m above 43 

ground) to remove coarse particles. After passing through the cyclone, the sampled air passed through 44 

a stainless steel (~6 mm outer diameter, O.D.) tube to the particle instrumentation, which included a 45 

high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS, Aerodyne Research Inc.) and 46 

an extractive electrospray ionisation time-of-flight mass spectrometer (EESI-TOF) to measure the OA 47 

composition, and a scanning mobility particle sizer (SMPS) to measure the particle concentration and 48 
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size distribution. The summer and winter campaign results, including OA source apportionment from 1 

the standalone AMS and EESI-TOF datasets, were previously presented in detail (Qi et al., 2019; 2 

Stefenelli et al., 2019). In this study, we focus on the OA source apportionment using positive matrix 3 

factorisation (PMF) on the combined dataset from AMS and EESI-TOF, collected during the two 4 

campaigns. 5 

 6 

2.2 Instrumentation 7 
2.2.1 High-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) 8 

 9 

The AMS (Aerodyne Research, Inc.) provides fast, online, quantitative measurements of the size-10 

resolved composition of non-refractory PM1 (NR-PM1). A detailed description of the instrument can be 11 

found elsewhere (DeCarlo et al., 2006; Canagaratna et al., 2007), while operational details and data 12 

treatment are documented in Stefenelli et al. (2019) and Qi et al. (2019). Briefly, in both campaigns, 13 

the organic composition of NR-PM1 was measured by AMS with a time resolution of 1 min. At the 14 

beginning and end of the both campaigns, the instrument was calibrated for ionisation efficiency (IE) 15 

using 400 nm NH4NO3 particles using the mass-based method (Jimenez et al., 2003; Canagaratna et al., 16 

2007). The HR-TOF-AMS data was analysed using the SQUIRREL (v.1.57) and PIKA (v.1.16) 17 

software packages in IGOR Pro 6.37 (Wavemetrics, Inc., Portland, OR, USA). Before further single-18 

instrument and cPMF analysis, a composition-dependent collection efficiency (CDCE) was 19 

implemented to correct the measured aerosol mass (Middlebrook et al., 2012). For both single-20 

instrument PMF and cPMF analysis, the input matrices consisted of the time series of fitted OA ions 21 

from high-resolution mass spectral analysis, together with their corresponding uncertainties estimated 22 

from ion counting statistics and detector variability according to Allan et al. (2003). Following Ulbrich 23 

et al. (2009), a minimum error value was applied to the error matrix. Ions with signal-to-noise ratio 24 

(SNR) smaller than 0.2 were excluded in the further analysis, whereas ions with an SNR between 0.2 25 

and 2 were downweighted by a factor of 2 (Paatero and Hopke, 2003). The contribution of nitrate ions 26 

to CO2
+ was estimated separately in each campaign from their respective NH4NO3 calibrations (Pieber 27 

et al., 2016). 28 

 29 

The AMS PMF input matrices are identical to those used by Stefenelli et al. (2019) and Qi et al. (2019), 30 

with the exception that they include not only the OA ions retrieved from spectral analysis, but also NO+ 31 

and NO2
+. These ions are added because they represent the major products measured from organonitrate 32 

fragmentation (Farmer et al., 2010), and standalone EESI-TOF PMF suggested a significant role for 33 

organonitrates and other nitrogen-containing species during both the summer and winter campaigns (Qi 34 

et al., 2019; Stefenelli et al., 2019). Detailed descriptions of the final input matrices from AMS (e.g., 35 

number of measurements, number of ions and time resolution) in summer and in winter are presented 36 

in Table 1.  37 

 38 

2.2.2 Extractive electrospray ionisation time-of-flight mass spectrometer (EESI-TOF) 39 
 40 

The EESI-TOF provides online, fast, near-molecular-level measurement (i.e., chemical formulae of 41 

molecular ions) of OA composition, without thermal decomposition or ionisation-induced 42 

fragmentation. A detailed description can be found elsewhere (Lopez-Hilfiker et al., 2019) and the 43 

operational details for the summer and winter campaigns are documented in Stefenelli et al. (2019) and 44 

Qi et al. (2019), respectively. Briefly, aerosol particles were continuously sampled through a 6 mm 45 

O.D., 5 cm long multi-channel extruded carbon denuder. Particles then intersected a spray of charged 46 

droplets generated by a conventional electrospray probe and the soluble fraction was extracted into the 47 

droplets. The droplets passed through a heated stainless-steel capillary (~250 °C), wherein the 48 
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electrospray solvent evaporated, and ions were ejected into the mass spectrometer. Due to the short 1 

residence time (~1 ms) in the capillary, no thermal decomposition was observed. The analyte ions were 2 

detected by a high-resolution time-of-flight mass spectrometer with an atmospheric pressure interface 3 

(API-TOF) (Junninen et al., 2010). In the summer campaign, the electrospray consisted of a 1:1 4 

water/methanol (MeOH, UHPLC-MS grade, LiChrosolv) mixture doped with 100 ppm NaI (>99 %, 5 

Sigma-Aldrich). In the winter campaign, a 1:1 water/acetonitrile mixture (> 99.9 %, Sigma-Aldrich) 6 

mixture with 100 ppm NaI (99 %, Sigma-Aldrich) was utilised, which reduced background signal. In 7 

both campaigns, the mass spectrometer was configured to detect positive ions. Because of NaI use, 8 

analyte ions were detected almost exclusively as [M]Na+ and other ionisation pathways were suppressed 9 

(the only notable exception being nicotine, which was detected as [C10H14N2]H+). This yields a linear 10 

response to mass, avoids matrix effects, and simplifies spectral interpretation (Lopez-Hilfiker et al., 11 

2019). Adducts of an analyte with acetonitrile or methanol molecule(s) may also be detected by the 12 

instrument, depending on the voltage settings in the ion transfer optics (i.e., collision energy), but these 13 

adducts were observed to have negligible signals with our voltage configurations in both campaigns. 14 

The EESI-TOF alternates between direct sampling (8 min) and sampling through a particle filter (3 min) 15 

to provide a measurement of instrument background (including spray). No major changes between 16 

adjacent background measurements were observed in either campaign (Qi et al., 2019; Stefenelli et al., 17 

2019). 18 

 19 

Data analysis, including high-resolution peak fitting, was performed using Tofware version 2.5.7 20 

(Tofwerk AG, Thun, Switzerland). Detailed data treatment processes can be found in Stefenelli et al. 21 

(2019) and Qi et al. (2019). The EESI-TOF alternates between periods of direct ambient sampling (Mamb) 22 

and filter sampling (Mbkgd), with the filter periods interpolated to yield an estimated background 23 

spectrum during ambient measurements (Mbkgd,est). The spectra corresponding to aerosol composition 24 

(Mdiff) are determined by the difference of Mamb and Mbkgd,est as shown in Eq. (1a). The corresponding 25 

error matrix was estimated by adding in quadrature the uncertainties of the total sampling measurement 26 

samb (i,j) and the filter sampling measurement sbkdg,est (i,j) as shown in Eq. (1b), which are in turn 27 

calculated from ion counting statistics and detector variability (Allan et al., 2003): 28 

 29 

𝑀ௗ௜௙௙ሺ𝑖. 𝑗ሻ ൌ 𝑀௔௠௕ሺ𝑖, 𝑗ሻ െ 𝑀௕௞௚ௗ,௘௦௧ሺ𝑖, 𝑗ሻ ሺ1𝑎ሻ 30 

𝑠ௗ௜௙௙ሺ𝑖, 𝑗ሻ ൌ ට𝑠௔௠௕
ଶ ሺ𝑖, 𝑗ሻ ൅ 𝑠௕௞௚ௗ,௘௦௧

ଶ ሺ𝑖, 𝑗ሻ ሺ1𝑏ሻ 31 

where the unit of all quantities in both equations is counts per second (cps). Ions with a mean SNR 32 

smaller than 2 were removed from both matrices, because the signals of these ions were predominantly 33 

caused by electrospray and/or instrumental background. Input matrix dimensions are summarised in 34 

Table 1.  35 

 36 

In theory, EESI-TOF signal for an ion x can be converted from ion flux (cps) to mass concentration 37 

(μg m-3), according to Eq. (2):  38 

𝑀𝑎𝑠𝑠௫ ൌ 𝐼௫  ൉
MW௫

EE௫ ൅ CE௫ ൅ IE௫ ൅ TE௠/௭
 ൉

1
𝐹

ሺ2ሻ 39 

 40 

where 𝑀𝑎𝑠𝑠௫ and Ix are the mass concentration (in μg m-3), and the ion flux (cps) reaching the detector 41 

for an ion x, respectively. MW௫ represents the molecular weight of the measured ion (e.g., [M]Na+) 42 

(Lopez-Hilfiker et al., 2019; Qi et al., 2019; Stefenelli et al., 2019). EE௫, CE௫, IE௫ and TE௠/௭ denote 43 

EESI extraction efficiency (the probability that a molecule dissolves in the spray), EESI collection 44 

efficiency (the probability that the analyte-laden droplet enters the inlet capillary), ionisation efficiency 45 
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(the probability that an ion forms and subsequently survives declustering forces induced by evaporation 1 

and electric fields), and ion transmission efficiency (the probability that a generated ion is transmitted 2 

to the detector, which is independent from chemical identity but depends only on m/z), respectively. F 3 

indicates the flow rate. In practice, several of these parameters are ion-dependent and remain 4 

uncharacterised, and therefore conversion to mass concentration on an ion-by-ion basis cannot currently 5 

be achieved (Lopez-Hilfiker et al., 2019). Instead, to facilitate comparison with bulk quantities, we 6 

define an “apparent sensitivity (AS)” to describe the EESI-TOF response to a measured concentration 7 

of species x, as shown in Eq. (3): 8 

 
𝐴𝑆௫ ൌ

MW௫

EE௫ ൉ CE௫ ൉ IE௫ ൉ TE௠/௭
 ൉

1
𝐹
ൌ

𝐼௫
𝑀𝑎𝑠𝑠௫

 
(3) 

where 𝐼௫ is the measured ion flux (counts per second, cps) for the ion or factor x detected by EESI-TOF, 9 

𝑀𝑎𝑠𝑠௫ is measured mass concentration (μg m-3) from a reference instrument for the same ion or factor 10 

x, thus the AS is in the unit of cps (μg m-3)-1. Equation (3) is used to determine the apparent factor-11 

specific sensitivities from cPMF outputs by defining the AMS contribution to the factor profile (μg m-12 
3) as 𝑀𝑎𝑠𝑠௫ and the EESI-TOF contribution (cps) as Ix.  13 

 14 

2.2.3 Estimation of EESI-TOF sensitivities from a multi-variate model 15 
 16 

For comparison to the factor-dependent sensitivities determined by the cPMF analysis (Eq. 3), we also 17 

estimated sensitivities for SOA factors from molecular formulae of individual analyte ions using 18 

parameterisations developed from laboratory measurements of SOA generated from oxidation of 19 

limonene (LMN) by ozone and o-cresol (cresol) and 1,3,5-trimethylbenzene (TMB) by OH radicals 20 

(Wang et al., 2021). As discussed in Sect. 1, the parameterisation can predict the relative sensitivities 21 

of ions measured by the EESI-TOF to within a factor of 5, provided that the SOA is derived from a 22 

single, known VOC. However, for ambient data, SOA derives from multiple precursor VOCs, 23 

increasing uncertainties. For example, SOA isomers generated from different precursors can differ by 24 

up to a factor of 20 in relative sensitivity (Wang et al., 2021). This represents a significant source of 25 

uncertainty for calibration/parameterisation-based approaches for quantifying SOA factors from source 26 

apportionment but is nonetheless a useful point of comparison. 27 

 28 

In the present study, we utilise a well-performing model from Wang et al. (2021), namely the gradient 29 

boosting regression, denoted GBR, developed in scikit-learn packages in Spyder 4.1.4 and Python 3.8.3. 30 

The SOA parameterisation derived from LMN was used to predict the sensitivities for summer SOAs 31 

(which are predominantly terpene-derived SOAs), and SOA systems derived from cresol and TMB 32 

were used to predict the sensitivities for winter SOAs (which are characterised by aromatics from 33 

biomass burning activities). The regression models provide compound-dependent relative sensitivities 34 

(ASx) based only on molecular formulae. Then, the EESI-TOF signals for each factor are calculated as 35 

a signal-weighted average from the respective factor profiles, as shown in Eq. (4):  36 

 
𝐴𝑆௙௔௖௧௢௥ ൌ

∑ 𝐼௫௫

∑ ሺ𝐼௫ 𝐴𝑆௫
ൗ ሻ௫

 
(4) 

 37 

Here Ix denotes the contribution to the factor profile of each ion x. Because the model parameterisations 38 

are based on laboratory SOA that contained only the CHO group, while the resolved OA sources in this 39 

study include both CHO and CHON, we approximate the total factor sensitivity by assuming the 40 

average EESI-TOF sensitivity to CHON ions is equal to the average sensitivity of CHO ions (on a 41 

factor-by-factor basis). Note that the ions from the CHO group contribute a major fraction in SOA mass 42 

for each factor, comprising 85.2 %, 78.1 %, 57.3 % and 76.3 % for DaySOA1, DaySOA2, NightSOA1 43 
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and NightSOA2 for summer and 77.9 % and 75.0 % to SOA1 and SOA2 for winter, reducing the 1 

uncertainties introduced by this assumption. The factor-specific sensitivities derived from cPMF (Eq. 2 

3) and from the GBR model (Eq. 4) are compared in Sect. 3.2. 3 

 4 

 5 

2.3 Combined Positive Matrix Factorisation (cPMF) Method 6 
 7 

The source apportionment model used in this study is based on positive matrix factorisation (PMF), 8 

which is widely used in the environmental studies. PMF is a bilinear receptor factor analysis model that 9 

decomposes time series of measured variables (here related to particle composition) into factor 10 

contributions and factor profiles. Different from conventional PMF analysis, which is typically 11 

conducted on a dataset collected by a single instrument, here PMF is applied to a single input dataset 12 

containing both AMS and EESI-TOF mass spectral data. A conceptual schematic of the input data 13 

matrix is shown in Fig. 1. Herein we denote the overall method governing analysis of such a merged 14 

dataset as “combined PMF” (cPMF), while “PMF” denotes both the general PMF model and single-run 15 

executions by the Multilinear Engine solver (see Sect. 2.3.0), which are identical for PMF and cPMF.  16 

 17 

 18 
Figure 1. Schematic of the combined EESI-TOF and AMS input data matrix (X) for cPMF. Matrix 19 
dimensions for the summer and winter datasets are provided in Table 1. 20 
 21 

This section presents an overview of the cPMF method, with detailed descriptions of each step in the 22 

referenced sub-sections. In the Text S2 in the Supplement, we present details of its application to the 23 

test datasets, including dataset-specific decisions (e.g., which factors to constrain, criteria for 24 

accepting/rejecting solutions) required during certain steps. The overall procedure is outlined in Fig. 2, 25 

with the main steps as follows: 26 

0) PMF analyses are conducted on the standalone EESI-TOF and AMS datasets with synchronised 27 
time resolution, including constraints on factor profiles as necessary. Residual distributions 28 
from the optimised solutions are used later in step 3 as a criterion for assessing relative 29 
instrument weight. 30 
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1) The EESI-TOF and AMS datasets with synchronised time resolution are combined into a single 1 
input matrix. This input matrix contains OA spectra from EESI-TOF and AMS, as well as the 2 
NO+ and NO2

+ ions measured by the AMS due to the contributions of organonitrates to these 3 
ions (Sect. 2.3.1). 4 

2) For any factors that are to be constrained, joint AMS/EESI-TOF profiles are constructed (Sect. 5 
2.3.2 and Text S2.2). 6 

3) An exploratory PMF analysis is conducted on the joint AMS/EESI-TOF matrix. This consists 7 
of a 2-D exploration of the solution space defined by the number of factors (p) and relative 8 
instrument weight (C) (Sect. 2.3.3). The instrument weight ensures that both instruments are 9 
well-represented in the solution and is assessed by comparing residuals from cPMF and 10 
standalone PMF. For computational efficiency, the profiles of all constrained factors are not 11 
allowed to deviate from their reference profiles. Solutions in which both instruments receive 12 
approximately equal weight are evaluated for environmental interpretability, with the most 13 
interpretable solution utilised as the base case for further analysis. Note that the base case is 14 
fully defined by C, p, and the set of constrained factor profiles. 15 

4) From the selected base case, 1000 PMF runs are conducted, which combine bootstrap analysis 16 
with random selection of a values (i.e., tightness of constraint) for the constrained factors within 17 
predetermined limits that are defined on a factor-by-factor basis (Sect. 2.3.4). This requires the 18 
following as prerequisites: 19 

a. Definition of dataset-specific criteria for acceptance/rejection of individual runs (Text 20 
S2.4). 21 

b.  Determination of the a value range on a factor-by-factor basis giving a reasonable 22 
acceptance probability, i.e., sufficient rejection rate to ensure adequate exploration 23 
while maintaining computational efficiency (Text S2.4).  24 

The final cPMF result is taken as the mean of all accepted solutions from the bootstrap/a-value 25 
analysis, with uncertainties represented by the standard deviation. From this mean solution, 26 
quantitative time series and EESI-TOF factor-specific sensitivities are calculated. 27 

 28 

 29 
Figure 2. Flow chart summary of cPMF analysis workflow. Red text denotes PMF model operations 30 

while black text denotes inputs, outputs, and/or analysis decisions. 31 

 32 

2.3.0 Positive matrix factorisation (PMF) principles 33 
In this step, PMF analyses are conducted on the standalone EESI-TOF and AMS datasets with 34 

synchronised time resolution, including constraints on factor profiles as necessary. Residuals from these 35 
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solutions are used to derive as a reference quantity to retrieve a balanced solution (procedure described 1 

in step 3). This step is a parallel step and a preparation for the cPMF, therefore, we denote this step as 2 

step 0.  3 

 4 

Positive matrix factorisation (PMF) is implemented using the Multilinear Engine (ME-2) (Paatero, 5 

1999), with model configuration and post-analysis performed with the Source Finder (SoFi, version 6B) 6 

(Canonaco et al., 2013), programmed in Igor Pro 6.39 (Wavemetrics, Inc.). PMF is a bilinear receptor 7 

model, which operates on an input data matrix X (here the mass spectral time series collected by EESI-8 

TOF and/or AMS) and uncertainty matrix S, which corresponds point-by-point to X. PMF describes X 9 

as a linear combination of static factor profiles (in this case characteristic mass spectra, representing 10 

specific sources and/or atmospheric processes) and their corresponding time-dependent source 11 

contributions, as described in Eq. (5): 12 

 13 

𝐗 ൌ 𝐆 ൈ  𝐅 ൅ 𝐄 ሺ5ሻ 14 

 15 

Here X has dimensions of m×n, representing m measurements of n variables (here ions), G and F are 16 

respectively the factor time series with the dimension of m×p, and factor profiles with the dimension of 17 

p×n, where p is the number of factors in the PMF solution, and is determined by the user. E is the 18 

residual matrix and defined by Eq. (5). The corresponding uncertainty matrix S and residual matrix E 19 

are constructed in the same way (Slowik et al., 2010). Note that the AMS component of X, S and E is 20 

in μg m-3, and the EESI-TOF component is in cps. Also, X includes not only organic ions from the 21 

AMS, but also NO+ and NO2
+, which contain a large fraction of the AMS signal derived from 22 

organonitrates (Farmer et al., 2010). 23 

 24 

Equation (5) is solved by a least-squares algorithm that iteratively minimises the quantity Q, which is 25 

defined in Eq. (6) as the sum of the squares of the uncertainty-weighted residuals:  26 

 27 

𝑄 ൌ෍෍ቆ
𝑒௜௝
𝑠௜௝
ቇ
ଶ

௝௜

ሺ6ሻ 28 

 29 

Here eij is an element in the residual matrix E, and sij is the corresponding element in the uncertainty 30 

matrix, where i and j are the indices representing time and ion (or m/z), respectively.  31 

 32 

However, different combinations of the G and F matrices may result in solutions with the same or 33 

similar Q (rotational ambiguity), which in practice leads to mixed or unresolvable factors. Here we 34 

explore a subset of the possible PMF/cPMF solutions in which one or more factor profiles are 35 

constrained using the a-value approach to direct solutions towards environmentally meaningful 36 

rotations. These factors are constrained using reference profiles, with the scalar a (0≤ a ≤1) determining 37 

the tightness of constraint as follows:  38 

൫𝑓௞,௝൯ୱ୭୪   ൌ ൫𝑓௞,௝൯୰ୣ୤ േ 𝑎 ൈ ൫𝑓௞,௝൯୰ୣ୤ ሺ7ሻ  39 

Here ൫𝑓௞,௝൯୰ୣ୤ represents the reference profile and ൫𝑓௞,௝൯ୱ୭୪ the final profile returned by the model. Due 40 

to the renormalisation of matrices after PMF runs, the final values in ൫𝑓௞,௝൯ୱ୭୪ may slightly exceed the 41 

prescribed range. This approach has been shown to significantly improve the model performance 42 

relative to unconstrained PMF (Canonaco et al., 2013; Crippa et al., 2014; Daellenbach et al., 2016; Qi 43 

et al., 2019; Stefenelli et al., 2019). 44 

 45 
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Due to the nature of the cPMF X matrix, each retrieved factor has a single time series, which can be 1 

expressed in the concentration units of either instrument, and the factor profile contains both an AMS 2 

and an EESI-TOF component. The factor time series for a single factor k is calculated as follows: 3 

൫𝑔௜,௞൯௜௡௦௧ ൌ 𝑔௜,௞ ൉  ෍ 𝑓௞,௝
௝ୀ௜௡௦௧

ሺ8ሻ 4 

 5 

Here ൫𝑔௜,௞൯௜௡௦௧ refers generally to the time series in the measurement units of a given instrument, which 6 

we denote ൫𝑔௜,௞൯୅୑ୗ or ൫𝑔௜,௞൯୉୉ୗ୍, and the j=inst formalism denotes the set of ions measured by the 7 

respective instrument. For ease of interpretation, we report the instrument contribution to each factor 8 

profile as the mass spectrum (in the respective instrument units) that would be obtained for a factor 9 

mass concentration of 1 µg m-3. This is expressed as follows, for a single factor k: 10 

൫𝑓௞,௝൯௜௡௦௧ ൌ ቌ
𝑓௞,௝൫𝑔ప,௞൯୅୑ୗ

തതതതതതതതതതതത

𝑔଴
ቍ

௝ୀ௜௡௦௧

ሺ9ሻ 11 

 12 

Here ൫𝑔ప,௞൯୅୑ୗ
തതതതതതതതതതതത denotes the mean of the factor time series in AMS units (µg m-3), 𝑔଴ is a reference mass 13 

concentration (chosen here as 1 µg m-3), the j=inst formulation again refers to all ions measured by a 14 

given instrument. We refer to the organic fraction of AMS profile components and EESI-TOF profile 15 

components as ൫𝑓௞,௝൯୅୑ୗ and ൫𝑓௞,௝൯୉୉ୗ୍, respectively. The EESI-TOF apparent sensitivity (ASx, defined 16 

in Eq. (3)) can then be calculated for a single factor k as: 17 

 18 

𝐴𝑆௞ ൌ ቌ
൫𝑔ప,௞൯୉୉ୗ୍
തതതതതതതതതതതത

൫𝑔ప,௞൯୅୑ୗ
തതതതതതതതതതതതቍ

௝ୀ௜௡௦௧

ሺ10ሻ 19 

Evaluation of factor interpretability for PMF analysis of the data from a single instrument typically 20 

includes: 1) correlation of the time series with external data; 2) comparison of factor diurnal cycles with 21 

known source activity and previous measurements; 3) identification of source-specific spectral features. 22 

In addition to these three points, factors from cPMF were also interpreted by considering the consistency 23 

of spectral features between the AMS and EESI-TOF, e.g., factors originated from fresh biomass 24 

burning activities are characterised by elevated signal from C2H4O2
+ in the AMS spectrum and 25 

levoglucosan in the EESI-TOF spectrum. 26 

 27 

2.3.1 Dataset combination and synchronisation 28 
 29 

In this step, the time resolution of the EESI-TOF and AMS are synchronised and the datasets with 30 

overlap temporal coverage are combined into a single input matrix, as shown in Fig. 1. This input matrix 31 

contains OA spectra from EESI-TOF and AMS, as well as the NO+ and NO2
+ ions measured by the 32 

AMS due to the contributions of organonitrates to these ions. The corresponding error matrix is also 33 

constructed in the same way. 34 

 35 

2.3.2 Constraints on factor profiles  36 
 37 

 38 

If one or more factors are constrained in the Sect. 2.3.0, these factors should also be constrained in this 39 

step, in which the principle of a-value approach in Eq. (7) applies here too. In the cPMF, it may be 40 

desirable to constrain a factor for which a single reference profile incorporating both AMS and EESI-41 
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TOF mass spectra is not available. For example, a factor may be detectable by only one instrument, or 1 

reference profiles may have been retrieved independently for each instrument (e.g., from different 2 

studies). In such cases, the cPMF reference profile, ൫𝑓௞,௝൯௝ୀ௔௟௟,௥௘௙  is constructed from merged 3 

individual profiles as follows:  4 
  5 

൫𝑓௞,௝൯௝ୀ௔௟௟,௥௘௙
1 𝜇g mିଷ ൌ

⎩
⎪
⎨

⎪
⎧ ൫𝑓௞,௝൯௝

∑ ൫𝑓௞,௝൯௝௝
, 𝑗 ∈ 𝐴𝑀𝑆, 𝑟𝑒𝑓

𝐴𝑆௞ ∙
൫𝑓௞,௝൯௝
∑ ൫𝑓௞,௝൯௝௝

, 𝑗 ∈ 𝐸𝐸𝑆𝐼, 𝑟𝑒𝑓

ሺ11ሻ  6 

 7 

 8 

Here ൫𝑓௞,௝൯௝  denotes standalone reference profiles for the AMS and EESI-TOF, respectively. Note that 9 

although Eq. (11) requires an initial value of ASk to be assumed prior to PMF execution and utilised 10 

during the exploratory phase of cPMF (Sect. 2.3, step 3), selection of a non-zero a value during 11 

bootstrap analysis (Sect. 2.3, step 4) allows the final ASk to be determined by the algorithm within the 12 

designated boundaries. Therefore, only a reasonable a priori estimate is required. In the case that a 13 

factor is undetectable by the EESI-TOF (e.g., non-oxygenated hydrocarbons comprising traffic-related 14 

factors), a value of ASk is assumed that fixes the EESI-TOF contribution near zero, as discussed in the 15 

Supplement in Text S1. In the present study, we utilised ASk = 0.01 cps (μg m-3)-1 when this situation 16 

arose (e.g., HOA and InorgNit reference profiles are constructed using this method). For contrast, ASk 17 

for factors detectable by both instruments ranged from approximately 100 to 1000 cps (μg m-3)-1. 18 

 19 

2.3.3 Exploratory phase of cPMF 20 

In this step, an exploratory PMF analysis is conducted on the joint AMS/EESI-TOF matrix. This 21 

consists of a 2-D exploration of the solution space defined by the number of factors (p) and relative 22 

instrument weight (C). For both factor interpretation and quantitative analysis, it is important that both 23 

instruments be well-represented in any accepted PMF solution. In principle, the extent to which PMF 24 

can explain a variable xi,j is limited by the measurement uncertainty, si,j; that is, the expectation value 25 

of the scaled residual (ei,j/si,j) is 1 (i.e., Q/Qexpect ~ 1). In practice, ei,j/si,j may be systematically above or 26 

below 1, and differ between instruments, for several reasons. First, the accuracy of the error calculation 27 

may be systematically different between instruments, leading to systematic differences in the effect of 28 

residuals from a given instrument on Q. Second, the extent of internal correlations in the dataset may 29 

differ between instruments. For example, fragmentation/thermal decomposition in the AMS can lead to 30 

sequences of correlated ions (e.g., CnH2n+1
+ for alkanes). In contrast, for the EESI-TOF measurement of 31 

individual molecular ions, ion-to-ion correlations depend solely on particle composition. Finally, even 32 

for a case where ion-by-ion signal-to-noise and the extent of internal correlations is equal between 33 

instruments, the relative number of variables (ions) included in the dataset may affect the weight due to 34 

small drifts in instrument performance, modelling errors in PMF, and the prevalence of 35 

transient/variable sources not fully captured by PMF. Therefore, it is important to assess the relative 36 

weight of the two instruments and rebalance if necessary. We define a balanced solution as one in which 37 

there are no systematic differences between quality of fit for different instruments (Slowik et al., 2010; 38 

Crippa et al., 2013a). However, note that variable-to-variable differences in the ei,j/si,j within the dataset 39 

of a single instrument are permitted (as in standalone PMF). 40 

 41 
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The instrument weighting process follows the method previously proposed by Slowik et al. (2010), in 1 

which weighting is performed by applying a weighting factor C to the uncertainties and evaluated by 2 

comparison of the AMS vs. EESI-TOF residuals. Here we utilise the same weighting method but 3 

propose an improved evaluation metric. Instrument weighting is performed by applying a weighting 4 

factor C to the components of the uncertainty matrix S corresponding to one of the two instruments. 5 

This increases/decreases the contribution of that instrument’s residuals to Q, thereby changing its 6 

weight within the PMF solver. In this paper, we applied the weighting factor, denoted CEESI, to the 7 

columns of S corresponding to ions measured by the EESI-TOF, according to Eq. (12):  8 

ቐ
ሺ𝑠௜,௝

ᇱ ሻ௝ୀாாௌூ ൌ
ሺ𝑠௜,௝ሻ௝ୀாாௌூ

𝐶୉୉ୗ୍
       

ሺ𝑠௜,௝
ᇱ ሻ௝ୀ஺ெௌ ൌ  ሺ𝑠௜,௝ሻ௝ୀ஺ெௌ 

    ሺ12ሻ 9 

 10 

Note that CEESI = 1 is equivalent to an unweighted solution; and CEESI > 1 means the uncertainty matrix 11 

of EESI-TOF decreases, which upweights the EESI-TOF.  12 

 13 

As noted above, a balanced solution is defined as one in which the quality of fit to a given ion (assessed 14 

via scaled residuals, eij/sij) is independent of the instrument performing the measurement. In previous 15 

work (Slowik et al., 2010; Crippa et al., 2013), the metric used to assess this was the mean of the 16 

absolute scaled residuals. This metric assumes that the optimised solution for each individual instrument 17 

yields approximately the same Q/Qexp. In practice, this may vary between instruments for the reasons 18 

described above. Further, this metric can be unduly influenced by a few large outliers. Therefore, we 19 

employ a new approach which references the residuals from the combined dataset to those obtained 20 

from the final solutions from single-instrument PMF, which having been selected as the optimal 21 

representation of environmental data are assumed to likewise provide the optimised distributions of 22 

single-instrument residuals. The new method is as follows:  23 

1) From the result of each single instrument PMF (here AMS PMF, EESI-TOF PMF), calculate 24 

the scaled residual (eij/sij) probability distribution over the entire (single instrument) dataset. Here we 25 

denote the scaled residual probability distribution function in the scaled residual (eij/sij) space for EESI-26 

TOF and AMS as PEESI(eij/sij) and PAMS(eij/sij), respectively.   27 

2) Calculate the overlap fraction 𝐹୭୴ୣ୰୪ୟ୮ between the AMS and EESI-TOF scaled residual 28 

probability distributions from the single instrument solutions, according to Eq. (13): 29 

 30 

𝐹୭୴ୣ୰୪ୟ୮ ൌ නmin൭𝑃୉୉ୗ୍ ቆ
𝑒௜௝
𝑠௜௝
ቇ ,𝑃୅୑ୗ ቆ

𝑒௜௝
𝑠௜௝
ቇ൱ ሺ13ሻ 31 

where PEESI(eij/sij) and PAMS(eij/sij) indicates the probability of occurrence of AMS and EESI-TOF at the 32 

point eij/sij in scaled residual space, respectively. Given the previously mentioned assumption that the 33 

single-instrument solutions represent the optimal representation of the data for the individual 34 

instruments, the 𝐹୭୴ୣ୰୪ୟ୮ calculated at this step is the value that should likewise be obtained from a 35 

balanced solution to the combined dataset. Therefore, we define the quantity 𝐹୭୴ୣ୰୪ୟ୮
∗  as the 𝐹୭୴ୣ୰୪ୟ୮ of 36 

the final single-instrument PMF solutions.  37 

 3) For the combined dataset, calculate 𝐹୭୴ୣ୰୪ୟ୮ as a function of a two-dimensional exploration 38 

of the space defined by weighing factor (CEESI) and the number of factors (p). This exploration is 39 

necessary because the scaled residuals have been empirically observed to depend not only on C but also 40 

p (Slowik et al., 2010; Crippa et al., 2013a), likely because p affects the degrees of freedom in the 41 

solution. We select for further analysis the set of solutions in which 𝐹୭୴ୣ୰୪ୟ୮ does not greatly differ from 42 

𝐹୭୴ୣ୰୪ୟ୮
∗ , as given by Eq. (14):  43 
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 1 

ห𝐹୭୴ୣ୰୪ୟ୮ሺ𝐶,𝑝ሻ െ 𝐹୭୴ୣ୰୪ୟ୮
∗ ห ൏  ሺ14ሻ 2 

where the threshold of absolute difference is defined as β. Here β is a subjective parameter chosen to 3 

allow a manageable number of solutions to be selected for detailed inspection. For computational 4 

efficiency, if one or more factors are constrained, we choose a = 0 for all constrained factors at this 5 

preliminary exploration stage and will explore the a value range(s) for constraint(s) for further 6 

bootstrapping analysis once the C and p are determined.   7 

 8 

The balanced solutions satisfying Eq. (14) are then evaluated using the same metrics as in standard 9 

PMF analysis to select the solution with the greatest explanatory power. This solution is used as the 10 

base case for bootstrap analysis and, if one or more factors are constrained, simultaneous randomised 11 

a-value trials. 12 

 13 

2.3.4 Bootstrap/constraint sensitivity analysis on the combined dataset  14 
Bootstrap analysis (Davison and Hinkley, 1997) is frequently used to characterise solution stability, 15 

reproducibility and estimate uncertainties. In typical bootstrap analysis, a set of new input and error 16 

matrices are created by random resampling of rows from the original input data and error matrices. The 17 

resulting resampled matrices preserve the original dimensions of the input data matrix, but randomly 18 

duplicate some time points while excluding others (Paatero et al., 2014). In the present analysis, we 19 

combined bootstrap analysis with randomised selection of a values for all constrained factors within 20 

predetermined limits defined on a factor-by-factor basis. Since the constrained factors use reference 21 

profiles constructed with an estimated ASk (see Eq. (11)), this combined bootstrap/constraint analysis 22 

allows recalculation of ASk within PMF for any factor with a non-zero a value. As a result, the final 23 

reported solution is the average of all accepted bootstrap runs, with uncertainties in factor profiles and 24 

time series taken as the standard deviation. To minimise the effect of estimated ASk on constrained 25 

factors, we suggest that in the future this method could be improved by initialisation of constrained 26 

factor profiles with randomised ASk within a predefined range, in conjunction with the existing a-27 

value/bootstrap routine.  28 

 29 

Within this analysis, the range of a values explored for a given factor may have a significant effect on 30 

the acceptance probability. A very low acceptance probability is undesirable because it is 31 

computationally inefficient, while a very high acceptance probability is also undesirable because it 32 

implies the solution space is inadequately explored due to excessively restrictive a values (Canonaco et 33 

al., 2021). Therefore, we conduct pre-tests to estimate the a value range leading to a reasonable 34 

acceptance probability. This is done by a set of 2-dimensional a-value (“multi-2D”) scans in which the 35 

a values of two constrained factors are varied stepwise from 0 to 1 with a step size of 0.1 (i.e., 121 runs), 36 

while the a values of other constrained factors are held at 0. The results of all multi-2D runs for a given 37 

factor are combined to determine the acceptance probability as a function of a value, and upper and 38 

lower a value boundaries are assessed. The acceptance criteria are dataset-specific and discussed in the 39 

Text S2.4. When the number of constrained factors (pref) = 2, the multi-2D algorithm is equivalent to 40 

an explicit exploration of all possible a value combinations. However, for pref >2, multi-2D is much 41 

more computationally efficient, because it increases as pref (pref -1)/2, whereas the explicit method 42 

increases as the factorial of pref . For the datasets used here, in which pref is 3 (summer) and 4 (winter), 43 

the multi-2D approach decreases the number of runs required for a-value pre-scans by factors of ~4 and 44 

~20, respectively. 45 

 46 



15 
 

Acceptance criteria consist of both the assessment of specific features of selected factor profiles/time 1 

series (see Text S2.4), as well as a general evaluation of whether the solution is qualitatively similar to 2 

the base case. That is, we require that the time series of each factor from a PMF run to be unambiguously 3 

related to the corresponding base case factor (Stefenelli et al., 2019; Vlachou et al., 2019; Tong et al., 4 

2021). The key steps of this method are summarised below: 1) identify a base case, which as discussed 5 

above is defined by a weighting factor C, number of factors p, and set of constrained factors with the a 6 

value set to 0; 2) calculate the Spearman correlation between the time series of base case and the multi-7 

2D scans, which yields a correlation matrix with the highest correlation values on the diagonal; 3) each 8 

correlation coefficient on the matrix diagonal must be by a statistically significant margin (using 9 

different confidence levels from a t test) than any value on the intersecting row or column.  In the current 10 

study, we selected a confidence level of 0 for this base case/bootstrap correlation test, representing the 11 

most permissive application of this criterion. That is, we require only that the diagonal matrix mentioned 12 

above can be constructed, i.e., that there is a unique 1:1 correspondence between base case factors and 13 

factors from the bootstrap/a-value analysis. 14 

 15 

The final set of PMF runs consisted of 1000 bootstrap runs, conducted at a single combination of CEESI 16 

and p, with a values randomly selected with a step size of 0.05 for summer and 0.1 for winter within 17 

the factor-specific limits determined via the multi-2D pre-scans. The same acceptance criteria utilised 18 

for the multi-2D pre-scans were also used for the bootstrap runs. As a final solution, we report the mean 19 

factor profiles and time series determined from all accepted bootstrap runs, with the standard deviation 20 

taken to represent the uncertainty of the analysis procedure. Although not currently implemented within 21 

the analysis software used, we note that in theory it would be possible to additionally include random 22 

CEESI selection (within a predefined range corresponding to balanced solutions) and randomised ASk for 23 

constrained profiles (within a user-defined range) in this stage of the analysis and in calculation of the 24 

final model outputs. 25 

 26 

 27 

3. Results 28 
 29 
We have conducted cPMF analysis on datasets collected from the summer and winter campaigns. The 30 

parameters for the PMF analysis of the combined dataset and the re-analysed summer and winter 31 

datasets are summarised in Table 1. We re-ran the conventional PMF on the summer and the winter 32 

data, obtaining results similar to Stefenelli et al. (2019) and Qi et al. (2019), as discussed in Text S2 in 33 

the Supplement. Other technical details of method validation and solution selections are also explained 34 

in the Supplement (from the Text S2.2 to Text S2.4), including reference profile construction, the 35 

determination of CEESI and number of factors p, and the determination of case-specific a value range 36 

and acceptance criteria for bootstrap analysis. Table 2 summarises these case-specific facts for summer 37 

and winter datasets, including a value range for constrained factors, criteria for a value range and 38 

accepted bootstrap run selection, and the number of accepted runs from the final combined bootstrap.  39 

 40 

Here we present final results from the cPMF analysis of the summer and winter campaigns in Sect 3.1.1 41 

and Sect 3.1.2, respectively. The final solutions are reported as the average of all accepted bootstrap/a-42 

value randomisation runs (764 for summer, 308 for winter), with uncertainties corresponding to the 43 

standard deviation. As the NO+ and NO2
+ signals are included in these two datasets and they can result 44 

from either organic or inorganic nitrate, we estimate the organic and inorganic contributions to the NO+ 45 

and NO2
+ signal in each factor using the method of Kiendler-Scharr et al. (2016) (see Text S3). We 46 

compare the cPMF factors to their counterparts from the standalone AMS and EESI-TOF solutions, for 47 
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cases where a clear factor-to-factor correspondence exists. The further exploration on EESI-TOF 1 

sensitivities to resolved factors are discussed in Sect 3.2.  2 

 3 

Due to the complexity of the analysed datasets (2 seasons × 3 PMF methods), we use the following 4 

convention for identifying factors: factorNameseason,method, where “factorName” is the name of the factor 5 

(e.g., COA for cooking-related organic aerosol), “season” denotes either the summer (“S”) or winter 6 

(“W”) dataset, and “method” refers to PMF on standalone AMS dataset (“A”), standalone EESI-TOF 7 

dataset (“E”), or combined dataset (“C”). For example, COAS,C stands for the cooking-related factor 8 

retrieved from cPMF applied to the summer dataset.  9 

 10 

Table. 1 Summary of parameters for the PMF analysis of re-analysed summer and winter datasets, and 11 

the combined dataset. There are 257 ions that are found in PMF input matrices for both the summer and 12 

winter datasets (common ions are listed in the Table S1). All datasets include AMS measurements of 13 

NO+ and NO2
+. 14 

  

  EESI-TOF AMS Combined 

Summer  

Matrix dimensions 

(time points  m/z) 
1779  507 1779   287 1779   794 

Time period 20 to 26 June 2016 20 to 26 June 2016 20 to 26 June 2016 
Time resolution (min) 5 5 5 
Range of p analysed 6 6 5-10 

Winter  

Matrix dimensions 

(time points  m/z) 
6142  892 6142  258 6142  1150 

Time period 25 Jan to 4 Feb 2017 25 Jan to 4 Feb 2017 25 Jan to 4 Feb 2017 
 Time resolution (min) 1 1 1 
 Range of p analysed 12 8 7-14 

 15 

Table. 2 Summary of a value range for constrained factors, criteria for a value range and accepted 16 

bootstrap run selection and the number of accepted runs from the final combined bootstrap/a-value 17 

analysis for the summer and winter datasets.  18 

 19 

Dataset  
Constrained 

factor 
a value 
range 

Criteria 
Accepted 

runs 

Zurich 
summer 

HOAS,C 0 ≤ a ≤ 0.2 
1). COAS,C: 

େయୌయ୓శ

େయୌఱ୓శ
≥ 5 

2). InorgNitS,C: 
େ୓మ

శ

୒୓శା ୒୓మ
శ ≤ 0.035 

3). Base case vs. Bootstrap correlation test at 
confidence level = 0 

764 
(76.4 %) 

COAS,C 0 ≤ a ≤ 0.2 

Inorganic 
nitrate 

(InorgNitS,C) 
0 ≤ a ≤ 0.5 

Zurich 
winter 

HOAW,C 0 ≤ a ≤ 0.9 1). CSOAW,C: fmass(nicotine) ≥ 0.96 
2). C2H4O2

+ intensity:  LABB୛,େ െ  MABB୛,େ ൐ 0 
3). C6H10O5 intensity:  LABB୛,େ െ  MABB୛,େ ൐ 0 

4). Base case vs. Bootstrap correlation test at 
confidence level = 0 

 

308 
(30.8 %) 

COAW,C 0 ≤ a ≤ 0.3 

Inorganic 
nitrate 

(InorgNitW,C) 
0 ≤ a ≤ 0.5 
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CSOAW,C 0 ≤ a ≤ 0.6 

 1 

3.1 cPMF results   2 
 3 

 4 

3.1.1 cPMF analysis: Zurich summer 5 
Eight factors were resolved from the Zurich summer campaign: HOAS,C, COAS,C, CSOAS,C, InorgNitS,C, 6 

two daytime SOA factors (DaySOA1S,C and DaySOA2S,C), and two nighttime SOA factors 7 

(NightSOA1S,C and NightSOA2S,C). The mean time series, diurnal cycles, and the mass spectra of these 8 

factors over 764 accepted runs are shown in Fig. 3, together with the time series from AMS-only PMF 9 

and/or EESI-TOF-only PMF when the corresponding standalone factor(s) exist. An estimate of 10 

campaign-average percent uncertainty in the mass concentration of each factor, calculated as the median 11 

of the standard deviation across all accepted runs, is given in Table S2. Many factor characteristics from 12 

cPMF resemble those previously discussed in detail for single-instrument AMS PMF and/or EESI-TOF 13 

PMF (Stefenelli et al., 2019). Therefore, only a summary discussion of these characteristics is presented 14 

here, and we focus on new information and/or differences obtained by the cPMF analysis. Recall that 15 

factor profiles for HOAS,C, COAS,C, and InorgNitS,C are constrained as discussed above. 16 

  17 

HOAS,C --- The AMS mass spectrum is dominated by the CnH2n+1
+, and CnH2n-1

+ series, consistent with 18 

n-alkanes and branched alkanes (Zhang et al., 2005; Lanz et al., 2007; Ulbrich et al., 2009; Ng et al., 19 

2011a; Qi et al., 2019; Stefenelli et al., 2019). The diurnal cycle of HOAS,C has three clear peaks (see 20 

Fig. 3b), however, compared to HOAS,A from Stefenelli et al. (2019), their intensities are weaker. 21 

Specifically, the morning peak intensity ratio to the evening peak intensity is almost 1 in the HOAS,A 22 

factor, whereas in HOAS,C, the morning peak is ~1/3 of the evening peak. In terms of contribution to 23 

total OA, the HOAS,A factor contributes 5.8 % (0.177 µg m-3) of the total OA, whereas in the cPMF 24 

analysis, this factor only contributes 3.1 % (0.092 µg m-3) of the total OA. 25 

 26 

COAS,C --- This factor is characterised by long-chain fatty acids and alcohols, e.g., coronaric acid and/or 27 

its isomers at m/z 319.2 ([C18H32O3]Na+), oleic acid and/or its isomers at m/z 305.2 ([C18H34O2]Na+), 28 

and 2-oxo-tetredecanoic acid and/or its isomers at m/z 293.2 ([C16H30O3]Na+). Similar to previous work, 29 

the AMS profile shows both alkyl fragments and slightly oxygenated ions, consistent with aliphatic 30 

acids from cooking oils (Hu et al., 2016). The AMS profile is characterised by a high ratio of C3H3O+ 31 

to C3H5O+ (~5 here), slightly higher than in other studies (Sun et al., 2016a; Sun et al., 2016b; Xu et al., 32 

2019; Zhao et al., 2019), as well as high contributions from C5H8O+, C6H10O+ and C7H12O+. Both cPMF 33 

and single instrument PMF analyses yield peaks during lunch (~11:30 to 13:30) and dinner (~18:30 to 34 

20:30). The time series of COAS,C is strongly correlated with those of the single instrument solutions, 35 

with Pearson’s r2 of 0.846 and 0.634 against COAS,A and COAS,E, respectively. 36 

 37 

CSOAS,C --- The EESI-TOF factor profile is dominated by nicotine (detected as [C10H13N2]H+) at m/z 38 

163.12 and levoglucosan at m/z 185.042 ([C6H10O5]Na+), which derives from pyrolysis of the cellulose 39 

present in tobacco (Talhout et al., 2006). In the AMS profile, this factor accounts for 79.3 % of the 40 

signal from C5H10N+ at m/z 84.081, which is attributed to a fragment of n-methyl pyrrolidine and 41 

previously identified as a tracer for cigarette smoke (Struckmeier et al., 2016). The time series of 42 

CSOAS,C correlates with that of the AMS-only and EESI-TOF solutions, with r2 of  0.922 and 0.965, 43 

respectively. The diurnal cycles from the combined and single-instrument solutions are likewise 44 

correlated, showing high concentrations at night and low concentration during daytime. 45 
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 1 

InorgNitS,C --- Among the accepted bootstrap runs, the mean CO2
+/(NO++NO2

+) ratio is 0.0346, slightly 2 

higher than the ratio of 0.0345 observed during the NH4NO3 calibration period, probably due to 1) 3 

uncertainties in the constrained profile, and/or 2) a small amount of OA apportioned to this factor. The 4 

time series of this factor correlates with AMS nitrate (NO3
-), NO+ and NO2

+ time series, with r2 of 0.654, 5 

0.645 and 0.956, respectively. Regarding the mass fraction, approximately 48.5 % of the NO+ signal 6 

and 78.0 % of the NO2
+ signal are apportioned to this factor, followed by the two NightSOAS,C factors. 7 

This is consistent with the overall NO+ and NO2
+ signals deriving not only from inorganic nitrate, but 8 

also from organonitrates (in other factors). 9 

 10 

DaySOA1S,C and DaySOA2S,C --- The cPMF analysis yields two SOA factors elevated during daytime, 11 

denoted DaySOA1S,C and DaySOA2S,C. The EESI-TOF spectra are similar to two factors retrieved from 12 

EESI-TOF-only PMF analysis by Stefenelli et al. (2019), but were not resolved in AMS-only PMF, 13 

where only more- and less-oxygenated SOA factors (MO-OOAS,A and LO-OOAS,A) were obtained. 14 

These factors contain strong signatures from terpene oxidation products, e.g., monoterpene-derived ions 15 

(C10H16Ox, x=5, 6, 7) and sesquiterpene oxidation products (C15H24Ox, x=3, 4, 5). A detailed comparison 16 

of the two DaySOA factors from the cPMF analysis to the LO-OOAS,A and MO-OOAS,A factors from 17 

AMS-only PMF is shown in Fig. S31, and a comparison between the two DaySOAS,C factors and 18 

DaySOAS,E factors are shown in Figs. S32 a) and b), respectively. The AMS ions in these two factors 19 

are characterised by a strong CO2
+ signal, similar to the LO-OOAS,A and MO-OOAS,A factors, indicating 20 

they largely consist of oxygenated OA, consistent with the EESI-TOF spectra. We calculate 𝑓𝑟𝑎𝑐୓୒ 21 

for DaySOA1S,C and DaySOA2S,C to be 0.869 and 1.000, respectively, demonstrating that the NO+ and 22 

NO2
+ signal in these factors is dominated by organonitrates. Regarding the time series, DaySOA1S,C and 23 

DaySOA2S,C correlate strongly with DaySOA1S,E and DaySOA2S,E, with r2 of 0.883 and 0.977, 24 

respectively. The diurnal patterns of DaySOA1S,C and DaySOA2S,C are consistent with the diurnal 25 

patterns of DaySOA1S,E and DaySOA2S,E. The diurnal patterns of both factors show an enhancement in 26 

the afternoon and the evening, which distinguish these SOAs from other SOAs: DaySOA1S,C exhibits 27 

almost a factor of 2 enhancement in signal between 15:00 and 21:00 compared to the morning, whereas 28 

the DaySOA2S,C exhibits the same magnitude of enhancement in signal around 12:00 to 17:00. 29 

 30 

NightSOA1S,C and NightSOA2S,C --- We retrieve two SOA factors that are enhanced overnight and in 31 

the early morning, denoted NightSOA1S,C and NightSOA2S,C. Their factor profiles and time 32 

series/diurnals closely resemble those of NightSOA1S,E and NightSOA2S,E (see Figs. S32c and S32d). 33 

Similar to the DaySOAS,C factors, terpene oxidation products are evident. However, the composition is 34 

weighted towards less oxygenated and more volatile terpene oxidation products, e.g., C10H16O2 and 35 

C10H16O3, which likely partition to the particle phase at night when temperature decreases. In addition, 36 

signals consistent with monoterpene-derived organonitrates are also evident, e.g., the C10H17O6-8N and 37 

C10H15O6-9N series, which are consistent with night time oxidation of monoterpenes by NO3 radicals 38 

(Xu et al., 2015; Faxon et al., 2018; Zhang et al., 2018). The AMS ions in these two factors are 39 

characterised by a strong CO2
+ signal and also a relatively high NO+ signal compared to DaySOAsS,C. 40 

The ratio of NO+/ NO2
+ is 4.55 and 8.24 for NightSOA1S,C and NightSOA2S,C, respectively, yielding 41 

𝑓𝑟𝑎𝑐୓୒ for NightSOA1S,C and NightSOA2S,C of 0.798 and 1, indicating high organonitrate content. 42 

These two factors correlate well with NightSOAsS,E, reaching r2 of  0.975 and 0.897, following in 43 

general the same diurnal patterns, with NightSOA1S,C peaking from 22:00 to 05:00 and NightSOA1S,C 44 

peaking from 04:00 to 12:00.    45 
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 1 
Figure 3. Mean factor time series (a), diurnal cycles (b) and factor profiles (c) from the 764 accepted 2 

bootstrap runs from cPMF analysis. In a), the average factor time series are shown in red, and 3 

corresponding AMS and/or EESI-TOF factors from standalone PMF are shown in green and blue, 4 

respectively. Shaded areas represent the standard deviation across all accepted runs and are summarised 5 

in Table S2. In b), the average diurnal cycles are displayed as red solid lines. Shaded areas denote the 6 

standard deviation over the average diurnal from individual solutions over all 764 accepted runs. 7 

Dashed lines denote the maximum and minimum mean diurnal observed within these 764 runs. For 8 

comparison, the AMS and EESI-TOF PMF factor time series and diurnal cycles from the individual 9 

dataset in Stefenelli et al. (2019) are shown in green and blue respectively for related factors. In c), the 10 

average factor profiles are coloured by different ion families. Here, the AMS factor profiles are in the 11 

unit of µg m-3 (each factor sums to 1 µg m-3), whereas the EESI-TOF spectra are in the unit of cps (each 12 

factor sums to the total signal derived from 1 µg m-3 of the factor). Note that the NO+ and NO2
+ signal 13 

is divided into inorganic and organic contributions.  14 

 15 

3.1.2 cPMF analysis: Zurich winter 16 
 17 

Twelve factors were resolved from cPMF analysis of the Zurich winter campaign: HOAW,C, COAW,C, 18 

InorgNitW,C, CSOAW,C, SOA1W,C, SOA2W,C, a more-aged biomass burning OA (MABBW,C), two less-19 

aged biomass burning OAs (LABB1W,C and LABB2W,C), two nitrogen-containing OA factors 20 

(NitOA1W,C and NitOA2W,C), and a factor related to a specific local event (EVENTW,C). Because no 21 

significant chemical differences are apparent between LABB1W,C and LABB2W,C (see Figs. S33 and 22 

S34), they are aggregated to a single LABBW,C factor for presentation. Therefore, there are 11 factors 23 

presented below. The average time series and mass spectra of these factors among 308 accepted runs 24 

are shown in Fig. 4. The factor profiles for HOAW,C, COAW,C, InorgNitW,C, and CSOAW,C are constrained 25 

as described previously. Similar to the summer dataset, uncertainties in the factor mass concentrations 26 

are summarised in Table S2. 27 

 28 
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HOAW,C --- This factor is dominated by the CnH2n+1
+, and CnH2n-1

+ series, consistent with n-alkanes and 1 

branched alkanes, with lower CO+ and CO2
+ content than the HOAS,C. The HOAW,C time series 2 

correlates strongly with HOAW,A (r2 of 0.913).  3 

COAW,C --- The COAW,C profile is characterised by long-chain fatty acids and alcohols e.g., coronaric 4 

acid and/or its isomers at m/z 319.2 ([C18H32O3]Na+), oleic acid and/or its isomers at m/z 305.2 5 

([C18H34O2]Na+), and 2-oxo-tetredecanoic acid and/or its isomers at m/z 293.2 ([C16H30O3]Na+), and in 6 

the AMS, a combination of alkyl fragments and slightly oxygenated ions from aliphatic acids from 7 

cooking oils, including C5H8O+, C6H10O+ and C7H12O+. These are key features of the constrained 8 

reference profile (0 ≤ a ≤ 0.3) (Qi et al., 2019) and COA factors found in other studies (Stefenelli et al., 9 

2019; Tong et al., 2021). The COAW,C time series correlates with the corresponding single instrument 10 

analyses, exhibiting r2 of 0.894, and 0.798, with COAW,A and COAW,E, respectively.  11 

InorgNitW,C --- As noted in Text S2.2, the NO+/ NO2
+ ratio of this factor (2.42) is higher than that of 12 

pure NH4NO3 measured onsite (1.58), consistent with the presence of other inorganic nitrate sources 13 

such as KNO3. Also, the mean CO2
+/(NO++NO2

+) ratio is 0.0371, higher than the ratio of 0.0261 from 14 

the constructed InorgNitW,C profile, probably due to 1) uncertainties in the constrained profile, and/or 15 

2) a small amount of OA apportioned to this factor. The time series of this factor shows high correlations 16 

with the AMS nitrate (NO3
-), NO+ and NO2

+ time series, with r2 of 0.739, 0.792 and 0.754, respectively. 17 

Regarding the mass fraction, only 13.7% of the NO+ signal and 13.2 % of the NO2
+ signal are 18 

apportioned to this factor. The considerable fractions of the NO+ and NO2
+ signal from inorganic nitrate 19 

and organonitrates in other factors are estimated as discussed above (Kiendler-Scharr et al., 2016) and 20 

will be interpreted later for the relevant factors (as summarised in Table S1).   21 

 22 

CSOAW,C --- Similar to CSOAS,C, nicotine at m/z 163.12 and levoglucosan at m/z 185.042 were found 23 

to be the two highest peaks in the EESI-TOF mass spectra, contributing 8.75 % and 4.56 % of the EESI-24 

TOF signal. The time series of this factor resolved from cPMF analysis correlates with CSOAW,E ( r2 = 25 

0.662). Similar to CSOAW,C, the fragment of cigarette smoke tracer n-methyl pyrrolidine C5H10N+ at 26 

m/z 84.081 is also found here. This is a minor factor, comprising 2.4 % of OA.  27 

 28 

SOA1W,C and SOA2W,C --- these two factors have different temporal patterns. SOA1W,C decreased 29 

gradually from 26 to 30 January, whereas SOA2W,C increased from 26 January and fluctuated at high 30 

level from 28 to 31 January and then decreased from 1 February on. From the AMS perspective, both 31 

factors are characterised by high NO+, NO2
+ and CO2

+ signal compared to other organic ions. 32 

Organonitrates account for all NO+ and NO2
+ signals in SOA1W,C, but contribute nothing in SOA2W,C. 33 

Aside from the NO+ and NO2
+ ions, these AMS spectra are similar to the profiles of MO-OOA W,A and 34 

LO-OOAW,A which are characterised by high CO2
+ signal. Major ions in the EESI-TOF profile include 35 

C10H16Ox (x = 3, 4, 5), C9H14Ox (x = 3, 4), C8H12Ox (x = 4, 5), C10H18O4, and C10H14O5, which are also 36 

found in secondary biomass burning (three MABBW,E factors) and/or terpene oxidation factors 37 

(SOA1W,E and SOA2W,E ) from Qi et al. (2019). However, the H:C ratio of these two factors from the 38 

EESI-TOF component (1.578 and 1.588 for SOA1W,C and SOA2W,C, respectively) is less than that of 39 

DaySOA1S,C (1.650) and DaySOA2S,C (1.672), suggesting an increased contribution from aromatic 40 

precursors. 41 

 42 

Biomass burning factors (LABBW,C and MABBW,C) --- We resolve a less-aged biomass burning 43 

factor (LABBW,C, which, as mentioned above, is the aggregate of two similar LABB factors), and a 44 

more-aged biomass burning factor (MABBW,C). Consistent with Qi et al. (2019), the EESI-TOF 45 

component of LABBW,C is characterised by a large signal from [C6H10O5]Na+ (mainly levoglucosan) 46 
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(20.4 %), and MABBW,C by a smaller but notably non-zero one (6.21 %). In addition, 76.7 % and 11.9 % 1 

of the total levoglucosan signal is apportioned to LABBW,C, and MABBW,C, respectively. The difference 2 

in the fraction of total levoglucosan apportioned to these two factors suggests different degrees of ageing 3 

of biomass burning-emitted OA. The AMS spectrum of the BBOAW,A factor is characterised by 4 

C2H4O2
+ and C3H5O2

+, which are typical fragments of anhydrosugars, such as levoglucosan (Alfarra et 5 

al., 2007; Lanz et al., 2007; Sun et al., 2011). These ions are also present in LABBW,C and MABBW,C 6 

and are higher in LABBW,C (1.91 % vs 0.879 % for C2H4O2
+ and 0.978 % vs 0.323 % for C3H5O2

+). In 7 

addition, the ratio of C2H4O2
+ to CO2

+ is 0.396 and 0.092 for LABBW,C and MABBW,C, respectively, 8 

supporting the separation of these factors based on different degrees of ageing. 9 

 10 

EVENTW,C --- This factor is low throughout the campaign except for the nights of 28 and 29 January 11 

from 00.00 to 07.00 UTC+2, where large peaks are observed. Therefore, it likely corresponds to a 12 

specific event near the sampling location. The mass spectrum features ions at m/z 174.08, 185.04 and 13 

195.06, tentatively assigned to [C8H11N2O]Na+, [C6H10O5]Na+ and [C8H12O4]Na+ from the EESI-TOF 14 

part and at m/z 15.024 (CH3
+), 27.027 (C2H3

+), 31.018 (CH3O+), and 43.018 (C2H3O+) from the AMS 15 

part. Qi et al. (2019) observed a very similar factor in standalone EESI-TOF PMF, which was tentatively 16 

attributed to the Zurich gaming festival and/or plastic burning in a nearby restaurant. The factor includes 17 

large contributions from C8H12O4, which likely represents 1,2-cyclohexane dicarboxylic acid diisononyl 18 

ester, a plasticiser for the manufacture of food packaging. In the AMS spectrum, large signals from NO+ 19 

(7.36%) and NO2
+ (2.03 %)  are also observed, with 46.6 % of the NO+ signal and 23.6% of the NO2

+ 20 

signal assigned to organonitrates. Similar to Qi et al. (2019), the AMS spectrum is also dominated by 21 

the ions in the CxHyOz
+ group.  22 

 23 

NitOA1W,C--- this factor is characterised by a high signal of C5H10N+ at m/z 84.081, contributing 4.02 % 24 

to the AMS intensity in this factor  (no other factor exceeds 0.16 %) while 97.0 % of the C5H10N+ mass 25 

is apportioned to this factor. This ion is considered to be a tracer of cigarette smoking (Struckmeier et 26 

al., 2016), however, different from typical CSOA mass spectra, this factor also has high signal from 27 

CO2
+, suggesting a contribution from secondary formation processes. Similar to other OA factors, this 28 

factor also has a considerable fraction of NO+ and NO2
+ signal, attributed entirely to organonitrates. For 29 

the EESI-TOF component, this factor is characterised by [C8H11N2O]Na+, levoglucosan and 30 

[C8H11N2O]Na+, [C6H10O5]Na+ and [C9H12O4]Na+ and [C11H14O4]Na+, suggesting this factor may also 31 

be influenced by fresh biomass burning.   32 

 33 

NitOA2W,C --- this factor is characterised by a high fraction of total signal from the CHON group in the 34 

EESI-TOF analysis (38.5 %). Among these ions, [C7H11O6N]Na+ at m/z 228.048, [C10H15O6N]Na+ at 35 

m/z 268.079, and [C10H17O7N]Na+ at m/z 286.090 are the three highest ions, contributing 1.65 %, 1,99 %, 36 

and 1.98 %, respectively. There are also some typical ions with high intensity from biomass burning 37 

ageing (Qi et al., 2019; Stefenelli et al., 2019), e.g., [C9H14O4]Na+ at m/z 209.078, [C10H14O6]Na+ at m/z 38 

253.068, and [C10H16O6]Na+ at m/z 255.084, contributing 6.47 %, 2.85 %, and 4.39 %, respectively. 39 

This may suggest a contribution from biomass burning activities. From the AMS perspective, this factor 40 

is characterised by high NO+ and NO2
+ signal, in which all of the NO+ and NO2

+ signals are produced 41 

from inorganic nitrates (see Table S1), with the other ions being qualitatively similar to OOA-type 42 

spectra.  43 
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1 

 2 
Figure 4.  Average factor time series (a) and factor profiles (b), which are calculated as the mean of all 3 

accepted bootstrap runs (308 runs in total). In a), the average factor time series are shown in red, and 4 

corresponding AMS and/or EESI-TOF factors from standalone PMF are shown in green and blue, 5 

respectively. Shaded areas represent the standard deviation across all accepted runs and are summarised 6 

in Table S2. In b), the average factor profiles are coloured by different ion families. Here, the AMS 7 

factor profiles are in the unit of µg m-3 (each factor sums to 1 µg m-3), whereas the EESI-TOF spectra 8 

are in the unit of cps (each factor sums to total signal derived from 1 µg m-3 of the factor). Note that the 9 

NO+ and NO2
+ signal is divided into inorganic and organic contributions. 10 

b)
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 1 

3.2 EESI-TOF sensitivity to resolved factors  2 
AMS and EESI-TOF contributions to the factor profiles are intrinsically linked by cPMF. That is, for 3 

each individual factor the two instrument profiles by definition describe the same OA fraction. 4 

Therefore, the EESI-TOF sensitivity to a factor 𝐴𝑆௞ can be calculated according to Eq. (10). Note that 5 

this calculation depends on the assumptions that (1) both instruments are well-represented in the 6 

solution; (2) the PMF solution is of high quality (i.e., factors are all meaningful and well-separated, 7 

without significant mixing or splitting); (3) solution uncertainties are not so high as to preclude 8 

quantitative interpretation of the results. Assumption (1) was discussed earlier in the context of 9 

instrument weighting, and assumption (2) is supported by the interpretability of the factors as presented 10 

in the previous section. By performing the cPMF analysis on a large number of runs combining 11 

bootstrap analysis and a-value exploration, we can estimate uncertainties in the calculated sensitivities 12 

imposed by the analysis model, as presented below, thereby addressing assumptions (2) and (3).  13 

 14 

The datasets analysed here were taken from the first field deployments of the EESI-TOF. As a result, 15 

operational protocols were not yet fully standardised across campaigns. Specifically, we lack reliable 16 

on-site calibration with a chemical standard common to the two campaigns (this was attempted but the 17 

measurements were evaluated to be unreliable during post-analysis due to operational problems). 18 

Therefore, to enable comparison of relative factor sensitivities between the summer and winter 19 

campaigns, we select COA as a reference. That is, we assume 𝐴𝑆஼ை஺ ൌ 𝐴𝑆஼ை஺ೄ,಴
ൌ 𝐴𝑆஼ை஺ೈ,಴

 .We 20 

choose COA because it is the only factor that both (1) appears in all four single-instrument datasets (i.e., 21 

summer and winter, AMS and EESI-TOF) and (2) compared to other factors, is less likely to 22 

significantly change in composition between the campaigns (in contrast to, e.g., SOA in Zurich, which 23 

is known to have significantly different precursors in summer and winter). Therefore, all sensitivities 24 

below are reported as (𝐴𝑆௞/𝐴𝑆஼ை஺തതതതതതതത), in which 𝐴𝑆௞  is calculated in every bootstrap run, and then 25 

referenced to 𝐴𝑆େ୓୅തതതതതതതത (the mean 𝐴𝑆஼ை஺ calculated over all bootstrap runs). Here k denotes a given factor 26 

from the (summer or winter) cPMF solutions. Note that EESI-TOF sensitivities to HOA and InorgNit 27 

are not discussed here, since they are undetectable by the EESI-TOF (as configured for these campaigns; 28 

see Sect.2.2.2) and therefore constrained to be ~0.01 cps / (ug m-3).  The mean and standard deviation 29 

of factor-dependent 𝐴𝑆௞/𝐴𝑆஼ை஺തതതതതതതത for the summer and winter datasets are shown in Fig. 5, with 30 

histograms summarising all accepted runs shown in Fig. S35 and Fig. S36.  31 

 32 

For ease of viewing, the factors in Fig. 5 are collected into related groups. We also calculate the ASk’s 33 

for several factor aggregations. First, five factors that are likely related to biomass burning (LABBW,C, 34 

MABB W,C, NitOA1W,C, NitOA2W,C and EVENTW,C), are denoted as the “BB” factor. Additionally, we 35 

separately aggregate the two DaySOAS,C and two NightSOAS,C factors, denoted “DaySOAsS,C” and 36 

“NightSOAsS,C”, respectively. As seen in Fig. 5 (as well as in Figs. S35 and S36 and Table S3), the 37 

relative uncertainty from the summer factors is systematically lower than for the winter factors within 38 

the accepted solutions. This may indicate higher source apportionment quality and solution stability for 39 

the former but is also related to the sub-division of factors related to primary biomass burning-related 40 

factors, as discussed later. 41 

For COAS,C and COAW,C, the mean relative sensitivities are 1 by definition, though uncertainties are 42 

still calculated due to non-zero a values, while the reference profile utilised for CSOAW,C, ensures that 43 

CSOAW,C CSOAS,C will have similar sensitivities. Interestingly, the distribution of the sensitivities, of 44 

COAS,C, COAW,C, and CSOAW,C in Figs. S32 and S33 is clearly multi-modal despite a-value constraints 45 

(although the overall COAS,C and COAW,C distributions remain relatively narrow), but the reason for 46 

this is unknown. 47 
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The next group of factors (LABBW,C, MABBW,C, NitOA1W,C, NitOA2W,C and EVENTW,C) includes non-1 

negligible contributions from levoglucosan (C6H10O5), produced typically from biomass-burning(BB)-2 

related activities. Previous work has demonstrated that the EESI-TOF sensitivity to levoglucosan is 3 

higher than that of many other compounds and bulk SOA from representative precursors (Lopez-4 

Hilfiker et al., 2019; Brown et al., 2021). Indeed, although the set of studied compounds is far from 5 

comprehensive, the relative sensitivity of the EESI-TOF to levoglucosan is among the highest yet 6 

recorded. Therefore, despite the variation in composition of the POA-influenced factors, the effect of 7 

the C6H10O5 content on the overall factor sensitivity is often considerable for cases where this ion is 8 

strongly influenced by levoglucosan. Figure 6 shows ASk as a function of the C6H10O5 fraction for all 9 

factors for which the C6H10O5 signal is believed to result largely from levoglucosan. This analysis 10 

accounts for all factors resolved from the cPMF of the winter dataset except CSOAW,C, because 11 

CSOAW,C is dominated by the signal from the protontated nicotine ([C10H14N2]H+) ion, which is both 12 

chemically different (reduced nitrogen) and has a different ionisation pathway than other measured ions. 13 

The four summer SOA factors are excluded as well, because the contribution from C6H10O5 in these 14 

factors was previously attributed to terpene and/or aromatic oxidation products (Stefenelli et al., 2019). 15 

An obvious qualitative trend of increasing sensitivity with increasing levoglucosan fraction is evident 16 

with Pearson r2 of 0.676, indicating the overwhelming influence of the high sensitivity species 17 

levoglucosan on the factor apparent sensitivity. 18 

For the primary BB-related factors, the uncertainties are generally higher than for the other factors (see 19 

Fig. S36). In contrast, the aggregated BB factor (BBW,C, and BBW,C = MABBW,C + LABBW,C + 20 

NitOA1W,C + NitOA2W,C + EVENTW,C) is less uncertain and has a narrower sensitivity distribution. This 21 

suggests that the overall classification of signal as biomass burning-related is robust, but the subdivision 22 

into more specific BB-related sources carries higher uncertainties. Likewise, the relative sensitivities of 23 

DaySOAsS,C and NightSOAsS,C are less uncertain compared to individual corresponding SOA factors 24 

in summer (as shown in Fig. S35). This contrast suggests that coarse classifications of factors may have 25 

higher precision, but provide less information, whereas fine classifications of factors may have higher 26 

uncertainties, but potentially provide more information from each factor. It also suggests that, at least 27 

for these datasets, factor mixing occurs primarily between factors with closely related sources. Despite 28 

their higher uncertainties, the finest classification levels explored here still appear to be meaningful. We 29 

also note that both datasets investigated here are of relatively short duration, and factor separation may 30 

improve in longer datasets. 31 

The final group of factors in Fig. 5 corresponds to SOA. The relative sensitivities of the SOA factors in 32 

winter are shown to be lower than any of the SOA factors resolved during summer. This is consistent 33 

with expectations regarding the seasonal differences in the dominant SOA precursors and the expected 34 

ASk of the resulting SOA. At this site, SOA precursors are expected to be dominated by monoterpenes 35 

in summer, and biomass burning (increasing the contribution of phenols, naphthalenes, and other 36 

aromatics) in winter, with traffic making a lesser contribution in both seasons (Daellenbach et al., 2016; 37 

Qi et al., 2020). This is supported by analysis of the characteristics of the retrieved factors as discussed 38 

above (Qi et al., 2019; Stefenelli et al., 2019). Previous studies have shown differences in the EESI-39 

TOF bulk sensitivity to SOA from different precursors, with terpene-derived SOA generally exhibiting 40 

higher sensitivity than SOA from light aromatics (Lopez-Hilfiker et al., 2019; Wang et al., 2021). Figure 41 

7 shows the 𝐴𝑆/𝐴𝑆େ୓୅തതതതതതതത  for two DaySOAS,C and NightSOAS,C factors in summer, as well as the 42 

DaySOAsS,C and NightSOAsS,C, which are the aggregates of the individual DaySOAS,C and 43 

NightSOAS,C factors (DaySOAsS,C = DaySOA1S,C + DaySOA2S_C; and NightSOAsS,C = 44 

NightSOA1S,C + NightSOA2S,C), respectively, and two SOAW,C factors in winter as a function of their 45 

H:C ratio calculated from the EESI-TOF component. A trend of increasing sensitivity with increasing 46 
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H:C ratio is observed for the summer SOAs andwinter SOAs (SOA1W,C and SOA2W,C), with an overall 1 

Spearman’s rank correlation of 0.833. Consistent with Wang et al. (2021), H:C is found to be a better 2 

predictor of ASk than either O:C or OSc, yielding Spearman’s rank correlation of 0.833 for ASk vs. H:C, 3 

-0.167 for ASk vs. O:C, and -0.452 for ASk vs. OSc (Fig. S37a and Fig. S37b). 4 

For the SOA factors, we compare ASk retrieved to ASk predicted using a molecular formula-based 5 

parameterisation trained with laboratory SOA measurements, as described in Sect. 2.2.3 (Wang et al., 6 

2021). No parameterisations presently exist for POA factors, so these are excluded from the comparison, 7 

although to allow comparison between campaigns the model is used to calculate a reference value for 8 

ASCOA. Figure 8 compares the ASk values based on model predictions against values determined from 9 

cPMF. For summer SOAs, the LMN (limonene)-based parameterisation is applied as a surrogate for 10 

terpene oxidation products. Regarding the winter SOAs, three scenarios (cresol, LMN and TMB) are 11 

applied, as the winter SOAs in Zurich are mainly related to oxidation of biomass burning emissions, 12 

which include monoterpenes, phenols, naphthalenes, and other aromatics (Rouvière et al., 2006; Bruns 13 

et al., 2016; Kelly et al., 2018). In Fig. 8, 1:1, 1:2, 1:4, and 1:8 lines are provided to guide the eye, 14 

although a 1:1 correspondence is not expected because the models are not trained on primary COA. The 15 

figure shows a monotonic increase in model sensitivity predictions with increasing cPMF-derived 16 

sensitivities, with the sole exception of SOA2W,C. Specifically, the summer-derived points fall mainly 17 

between the 1:1 and 1:2 lines, while for SOA1W,C, the model predictions are roughly a factor of 2 lower 18 

relative to the cPMF results. This offset may reflect differences in the appropriateness of the selected 19 

precursor surrogate. The SOA2W,C factor is a slight outlier, probably because the ASk for this factor is 20 

more uncertain than the others (and not fully captured by the error bars in Fig. 5) due to the high 21 

contribution from inorganic nitrate (~80 % of mass) in its factor profile. Given the limitations of the 22 

multi-variate parameterisation (see Sect. 2.2.3) and the several orders of magnitude variation in EESI-23 

TOF sensitivities to individual compounds, the qualitative agreement between ASk values independently 24 

retrieved from multivariate parameterisation and cPMF provide support for both methods. 25 

 26 

Figure 5. Comparison of 𝐴𝑆௞/𝐴𝑆େ୓୅ిതതതതതതതതത of different factors resolved from the cPMF on the summer and 27 

winter datasets. Mean values are shown as bars, and error bars indicate the standard deviation over all 28 

accepted bootstrap runs. The following factor aggregations are also shown: BBW,C = MABBW,C + 29 
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LABBW,C + NitOA1W,C + NitOA2W,C + EVENTW,C.; DaySOAsS,C = DaySOA1S,C + DaySOA2S_C; 1 

and NightSOAsS,C = NightSOA1S,C + NightSOA2S,C.  2 

   3 

Figure 6. Relative apparent sensitivity 𝐴𝑆௞/𝐴𝑆େ୓୅౓,ి
തതതതതതതതതതതത  as a function of levoglucosan fraction for all 4 

factors resolved from the cPMF of the winter dataset except CSOAW,C. Error bars denote standard 5 

deviation. 6 
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 1 

 2 

Figure 7. 𝐴𝑆௞/𝐴𝑆େ୓୅ిതതതതതതതതത of SOA factors retrieved from the summer and winter datasets as a function of 3 

the H:C ratio. Error bars denote standard deviation across all accepted runs. Spearman correlation is 4 

0.833, as indicated in the top-left corner.  5 
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 1 

 2 

Figure 8. The estimated relative apparent sensitivity to COA (𝐴𝑆௞/𝐴𝑆େ୓୅ిതതതതതതതതത) from the gradient boosting 3 

regression (GBR) model as a function of cPMF-derived 𝐴𝑆௞/𝐴𝑆େ୓୅ిതതതതതതതതത). The symbols indicate the 4 

different oxidation-precursor system (LMN for SOA produced from oxidation of limonene by ozone, 5 

cresol and TMB for SOA produced from oxidation of o-cresol and 1,3,5-trimethylbenzene by OH 6 

radicals, respectively). 7 

 8 

4. Atmospheric implications 9 
 10 

The application of factor-dependent sensitivities can qualitatively and quantitatively affect the source 11 

apportionment results. Figures 9a and 9b compare the source apportionment results from cPMF on the 12 

summer and winter datasets using the calculated factor sensitivities (𝐴S୩) (i.e., direct outputs of the 13 

cPMF analysis) vs. using a single bulk sensitivity (𝐴𝑆௕௨௟௞) for all factors, where the latter is calculated 14 

as the ratio of the total OA measured by the EESI-TOF (cps) to that measured by the AMS (µg m-3). 15 

Figures 10a and 10b compare the total OA concentrations returned from the cPMF using 𝐴𝑆௞  and 16 

𝐴𝑆௕௨௟௞ to the total OA measured by the AMS. Table S3 summarises the retrieved ASk values for each 17 

factor (note that although the relative ASk are believed to be intrinsic properties of the factors, the 18 

absolute sensitivities are instrument- and tuning-dependent, and will vary between campaigns). 19 

 20 

In the Zurich summer campaign, the bulk OA sensitivity 𝐴𝑆௕௨௟௞ೄ,಴
 (1254.0 cps (µg m-3)-1) is higher than 21 

that of 𝐴𝑆஼ை஺ೄ,಴
  (509.8 cps (µg m-3)-1). Four factors (HOAS,C, COAS,C, DaySOA1S,C and NightSOA1S,C) 22 

are underestimated, whereas three factors (CSOAS,C, DaySOA2S,C and NightSOA2S,C) are 23 

overestimated when 𝐴𝑆௕௨௟௞ೄ,಴
 is used. Using the calculated ASk, the contribution of COAS,C to total OA 24 

more than doubles, from 4.5 % to 11.7 % as shown in Fig. 9a). Similarly, the application of ASk increases 25 

the contributions of DaySOA1S,C and NightSOA1S,C from 22.7 % to 35.2 %, and from 10.3 % to 17.1 %, 26 

respectively. Among the overestimated factors, the largest decrease post-correction is found for 27 
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NightSOA2S,C, the contribution of which decreases by approximately a factor of three (from 29.7 % to 1 

10.3%). Smaller post-correction decreases are observed for the contributions of CSOAS,C (12.9 % to 2 

7.7 %) and DaySOA2S,C (19.9 % to 14.9 %). If factor-dependent sensitivities were ignored, 3 

NightSOA2S,C would be the largest contributor to total OA, followed by DaySOA1S,C whereas the full 4 

analysis indicates that DaySOA1S,C is the largest contributor.  5 

 6 

Similar to the summer campaign, application of ASk significantly affects the source apportionment 7 

results in winter. CSOAW,C, MABBW,C, and LABBW,C are shown to be overestimated, while HOAW,C, 8 

COAW,C, SOA1W,C, NitOA1W,C, NitOA2W,C and EVENTW,C are underestimated. If factor-dependent 9 

sensitivities were not considered, LABBW,C and MABBW,C would appear to be the dominant 10 

contributors to total OA (35.7 % and 18.2 % respectively) due to their high levoglucosan content. 11 

However, the full cPMF analysis indicates the LABBW,C and MABBW,C contributions to be 14.9 % and 12 

14.4 %, respectively, whereas accounting for ASk increases the contribution of SOA1W,C from 12.7 % 13 

to 22.0 %, making it the largest contributor.  14 

 15 

For both the summer and winter datasets, calculation of total OA from cPMF results using factor-16 

specific 𝐴𝑆௞ significantly outperforms that using a single 𝐴𝑆௕௨௟௞. This is evident from an increased r2 17 

(0.966 vs 0.821) for summer. However, the r2 is similar between the two approaches in winter (0.947 18 

vs 0.943). The difference after applying 𝐴𝑆௞ and 𝐴𝑆௕௨௟௞ in r2 might be related to the extent to which 19 

the contribution from factors with high 𝐴𝑆௞ and low 𝐴𝑆௞ to total OA changes over the time during the 20 

campaign, which can vary in different datasets. 21 

 22 

Box-and-whisker diagrams of factor contributions to total OA with/without applying ASk values for 23 

summer and winter are presented in Fig. 11. In the Zurich summer campaign, the box plots of the 24 

corrected contributions of all six factors fall completely outside of the interquartile range (IQR) of the 25 

uncorrected results, suggesting that the use of a single ASbulk would lead to significant biases. In contrast, 26 

the winter campaign exhibits a lack of overlap between the ASk and ASbulk-derived results for eight 27 

factors (HOAW,C, COAW,C, CSOAW,C, SOA1W,C, SOA2W,C, NitOA1W,C, NitOA2W,C and EVENTW,C) , 28 

whereas two factors overlap (SOA2W,C and MABBW,C,). This may result from statistical uncertainties 29 

in bootstrap analysis coupled with a less robust division between certain factors, yielding a wide 30 

distribution, e.g., MABBW,C, and/or ASk values that are similar to ASbulk (2271.1 cps (µg m-3)-1), e.g., 31 

SOA2W,C (2253.2 cps (µg m-3)-1), and MABBW,C (2619.0 cps (µg m-3)-1).  32 
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 1 

 2 
Figure 9. Comparison of source apportionment results between direct output from cPMF (i.e., 3 

accounting for factor-dependent sensitivities) and application of a single bulk OA sensitivity, applied 4 

to the Zurich summer (a) and winter (b) datasets. Stack plots of factor time series directly from 5 

combined PMF and factor time series calculated from bulk OA sensitivity compared with total AMS 6 

OA concentration are shown in the upper and lower panel, respectively in each subfigure, together with 7 

the corresponding factor contribution shown in the pie chart. Note that here the contribution of the 8 

InorgNit factor and the contributions of NO+ and NO2
+ from inorganic nitrate in each factor are excluded 9 

to account only for the total OA. 10 
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1 

 2 
Figure 10. Comparison between the sum of factor concentrations in each time point with (in red) and 3 

without (in blue) taking the factor-dependent sensitivity into account and total OA measured by AMS 4 

for summer in a) and winter in b). A linear fit is conducted based on the Levenberg-Marquardt least 5 

orthogonal distance method. Note that here the contribution of the InorgNit factor and the contributions 6 

of NO+ and NO2
+ from inorganic nitrate in each factor are excluded. 7 
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1 

 2 
 3 

Figure 11. Box-and-whisker diagrams of factor contributions to total OA with/without applying the 4 

factor dependent sensitivities, for summer in a) and winter in b) within accepted solutions. For each pair 5 

of factors, the contribution without factor-dependent sensitivity applied is shown in the left box (open 6 

symbols), whereas the contribution corrected by factor-dependent sensitivity is shown in the right box 7 

(filled symbols). The box-and-whisker diagram shows the mean (open/filled circle), median (horizontal 8 

bar), interquartile range (rectangle, the 25th percentile is the lower edge and the 75th is the upper edge), 9 

and minimum/maximum values (whiskers). Note that here the contribution of InorgNit factor and 10 

contribution of NO+ and NO2
+ from inorganic nitrate in each factor are excluded. 11 

  12 
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5. Conclusions 1 
 2 

We address the longstanding challenges in achieving quantitative source apportionment of SOA sources 3 

by conducting a positive matrix factorisation (PMF) analysis of a dataset combining measurements from 4 

an aerosol mass spectrometer (AMS) and an extractive electrospray ionisation time-of-flight mass 5 

spectrometer (EESI-TOF). This approach combines the strengths of the two instruments, namely the 6 

quantification ability of the AMS and the chemical resolution of the EESI-TOF. We demonstrate the 7 

utility of this approach by PMF analysis of combined EESI-TOF/AMS datasets collected during 8 

summer and winter in Zurich, Switzerland. The results retain the chemical resolution of the standalone 9 

EESI-TOF PMF, while additionally providing quantitative factor time series and the EESI-TOF bulk 10 

sensitivity to different OA factors.  11 

Note that while these methods provide a general procedure for cPMF analysis, the specific parameters 12 

employed (i.e., the number of factors (p), instrument weighting parameter (Cinst), and the factors to be 13 

constrained and the tightness of constraints (a value ranges)) are dataset-specific and should be 14 

determined independently for each new analysis. 15 

The cPMF method intrinsically provides factor-dependent sensitivities (cps (µg m-3)-1) for the EESI-16 

TOF. To account for organonitrate content, the AMS ions NO+ and NO2
+ are included in the cPMF 17 

analysis. Organic and inorganic contributions to these ions are estimated on a factor-by-factor basis 18 

using the method of Kiendler-Scharr et al. (2016). 19 

For practical reasons, sensitivities between winter and summer campaigns are compared using cooking-20 

related OA (COA) as a common reference. The retrieved factor sensitivities range from approximately 21 

1.3 to 7.5 times the sensitivity of COA. The relative sensitivities of SOA factors are precursor-22 

dependent, and qualitatively consistent with trends observed in lab measurements of SOA from single 23 

precursors (Lopez-Hilfiker et al., 2019). The SOA sensitivities estimated using our cPMF approach also 24 

agree with the sensitivities predicted by multi-variate regression models (Wang et al., 2021), which 25 

further demonstrates that SOA sensitivities are precursor- and/or source-dependent. Comparison of 26 

source apportionment results using factor-dependent sensitivities to uncorrected results show 27 

substantial differences, highlighting the importance of quantitative analysis. For example, before 28 

applying factor-dependent sensitivities, the contribution of a daytime SOA factor is underestimated by 29 

about 30 % (22.7 % before vs 35.2 % after), whereas the contribution of a nighttime SOA factor is 30 

almost overestimated by a factor of 3 in the summer campaign (29.7 % before vs 10.3 % after). As for 31 

the winter campaign, the contribution of less-aged biomass burning factor to total OA in Zurich winter 32 

dataset is 35.7 %, making it a major factor in winter without considering its factor-dependent sensitivity. 33 

However, this factor is significantly overestimated by more than a factor of 2 (35.7 %, before vs 14.9 % 34 

after). In contrast, the SOA1 factor in winter is underestimated, with its contribution increasing from 35 

12.7% to 22.0 %.   36 

These considerable differences in the source contributions between the uncorrected EESI-TOF and 37 

cPMF results highlight the challenges in interpreting standalone source apportionment results for 38 

instruments where ion-specific sensitivity information is not readily available, such as EESI-TOF or 39 

FIGAERO-CIMS.  Although the time trends of such analyses are likely robust, interpretation of the 40 

relative composition requires caution. Therefore, if such interpretation is desired, it is advised to employ 41 

analysis strategies such as cPMF that are capable of integrating quantitative measurements from 42 

reference instruments.  43 
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The cPMF method presented herein can be utilised as-is not only for the AMS/EESI-TOF combination, 1 

but to any dataset comprising data from multiple instruments. As such, it provides a promising strategy 2 

for utilising instruments with high chemical resolution but semi-quantitative performance (i.e., a linear 3 

but hard-to-calibrate response to mass) within the framework of a quantitative source apportionment.  4 
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