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Abstract. The RainGaugeQC scheme described in this paper is intended for real-time quality control of telemetric rain gauge 9 

data. It consists of several checks: detection of exceedance of the natural limit and climate-based threshold, and checking of 10 

the conformity of rain gauge and radar observations, the consistency of time series from heated and unheated sensors, and the 11 

spatial consistency of adjacent gauges. The proposed approach is focused on assessing the reliability of individual rain gauge 12 

observations. A quantitative indicator of reliability, called the quality index (QI), describes the quality of each measurement 13 

as a number in the range from 0.0 (completely unreliable measurement) to 1.0 (perfect measurement). The QI of a measurement 14 

which fails any check is lowered, and only a measurement very likely to be erroneous is replaced with a “no data” value. The 15 

performance of this scheme has been evaluated by analysing the spatial distribution of the precipitation field and comparing it 16 

with precipitation observations and estimates provided by other techniques. The effectiveness of the RainGaugeQC scheme 17 

was also analysed in terms of the statistics of QI reduction. The quality information provided is very useful in further 18 

applications of rain gauge data. The scheme is used operationally by the Polish national meteorological and hydrological 19 

service (Institute of Meteorology and Water Management – National Research Institute). 20 

1 Introduction 21 

The accuracy of telemetric rain gauge data is vital both for scientific research and for real-time modelling. Reliable 22 

precipitation measurements with high temporal and spatial resolution are essential input data for numerous operational 23 

applications in meteorology and hydrology, such as quantitative precipitation estimation (QPE), nowcasting, real-time initial 24 

conditions for numerical weather prediction, hydrological modelling, etc. Incorrect values may affect the results of these 25 

applications; this applies especially to unreasonably high or false zero precipitation values. 26 

In recent decades, the number of automated weather station networks providing measurements with high temporal 27 

resolutions (e.g. 1-, 5-, or 10-minute) has rapidly increased. Consequently, procedures for data quality control (QC) have 28 

developed from manual or semiautomatic to fully automatic checks that provide relevant quality information, such as quality 29 

flags or quality indices (Lewis et al., 2021). However, in the case of precipitation, the effectiveness of automatic quality control 30 

methods has been proven to be much lower than in the case of other meteorological parameters (You et al., 2007). The key 31 

issue is the spatiotemporal variability of the precipitation field, which can be very intermittent and small-scale, depends 32 

strongly on the type of precipitation (e.g. convective or frontal), and also depends on topographic variables in mountainous 33 

areas with complex terrain (Scherrer et al., 2011). 34 

This paper presents the RainGaugeQC software, which is a package of automatic QC proceduresThis paper presents 35 

the RainGaugeQC scheme with automatic QC procedures, developed at the Institute of Meteorology and Water Management 36 

– National Research Institute (IMGW), which operates the Polish national meteorological and hydrological service. The 37 

scheme focuses on telemetric rain gauge measurements, and is designed to identify erroneous or suspicious data and to assign 38 

a quality index (QI) to the individual measurements. The RainGaugeQC was designed specifically for quality control of sub-39 
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hourly rain gauge data. This is a particularly challenging task because of the higher spatial variability and lower spatial 40 

consistency of such data (Villalobos Herrera et al., 2022). 41 

1.1 Sources of errors in rain gauge data  42 

Ground rain gauge measurements, like other observations, are affected by different types of errors, usually classified as 43 

random, systematic and gross errors. Random errors vary in an unpredictable manner, while systematic errors remain constant 44 

or vary in a predictable way, and can often be reduced. Gross errors are characterised by rare occurrence and large magnitude 45 

(WMO-No. 488, 2017). 46 

Problems relating to the accuracy of precipitation measurement have been well documented (e.g. Sevruk, 1996; Habib 47 

et al., 2001; Golz et. al., 2005; Sieck et al., 2007; Sevruk et al., 2009). The magnitude of measurement errors depends on many 48 

factors, including weather conditions at the collector, the location of the rain gauge, and the gauge type. The most significant 49 

measurement errors are related to wind (Sevruk et al., 2009; Rasmussen et al., 2012; Martinaitis et al., 2015). Wind-induced 50 

losses mainly depend on wind speed and turbulence, as well as the type of precipitation (e.g. rain, mixed snow and rain, or 51 

snow). The measurement error is usually greater for solid than for liquid precipitation (WMO-No. 8, 2018). Because of slow 52 

falling, snow hydrometers are more susceptible to deflection by wind-induced turbulence around the gauge, making snowfall 53 

measurements prone to large systematic errors (Rasmussen et al., 2012). In windy conditions, the underestimation of snowfall 54 

accumulation frequently ranges from 20% to 50% or even higher, and additionally depends on other variables, such as exposure 55 

and the type of rain gauge (Rasmussen et al., 2012; Buisán et al., 2017; Grossi et al., 2017). Other systematic error sources are 56 

related to physical processes, such as evaporation from a bucket, wetting, and splashing. All such errors are typically referred 57 

to as catching losses. 58 

Additional difficulties occur in winter precipitation measurements as a result of snow collecting on the gauge or snow 59 

accumulating within wind shields, either of which can completely or partially block the gauge orifice (Goodison et al., 1998; 60 

Rasmussen et al., 2012; Martinaitis et al., 2015; Kochendorfer et al., 2020). In consequence, Martinaitis et al. (2015) identified 61 

a secondary but important impact from gauges that had become partially or completely stuck during winter precipitation events. 62 

Thawing due to increased surface ambient temperatures resulted in gauges reporting false non-zero precipitation after having 63 

collected solid precipitation. These impacts became increasingly complex when rainfall occurred simultaneously with the 64 

thawing of accumulated solid precipitation. 65 

Moreover, the accuracy of precipitation measurements may be affected by improper exposure of the gauge, site altitude, 66 

shielding or obstacles (e.g. trees, buildings) near the rain gauge, the impact of topographic variables in complex areas, and the 67 

seeder–feeder effect (when precipitation from an upper-level cloud falls through a lower-level orographic stratus cloud capping 68 

a small mountain) (Førland et al., 1996; Sevruk and Nevenic, 1998). 69 

Additionally, mechanical problems specific to each type of rain gauge influence the accuracy of precipitation 70 

measurements. Tipping bucket rain gauges are subject to random errors related to partial or total blockages of the mechanism 71 

due to accumulated mineral or biological particulates: dust, insects, blown grass, etc. (Sevruk, 1996; Upton and Rahimi, 2003). 72 

In consequence, even partial clogging of the gauge can result in erroneous estimates of the intensity and duration of rainfall. 73 

Another specific problem with tipping bucket rain gauges relates to high-frequency bucket tips (double tips), which lead to the 74 

recording of spurious high rainfall intensities, while on the other hand very slow tips (i.e. a limited tipping rate) may result in 75 

misleading underestimates of rain rates (Upton and Rahimi, 2003; Shedekar et al., 2016). 76 

In the case of weighing gauges, the most relevant sampling errors are related to the response time of the measurement 77 

system and the consequent systematic delay in assessing the exact weight of the accumulated precipitation in the container, 78 

especially in the case of high resolution (e.g. a 1-minute time resolution). Sampling errors may also affect the measurement of 79 

low-intensity rain (Colli et al., 2013). 80 

https://glossary.ametsoc.org/wiki/Precipitation
https://glossary.ametsoc.org/wiki/Cloud
https://glossary.ametsoc.org/wiki/Orographic
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Electronic weighing precipitation gauges are less susceptible to evaporation losses than tipping bucket gauges and have 81 

better accuracy in assessing the beginning of snowfall events. A heated tipping bucket gauge starts recording with a delay due 82 

to the time needed to melt the snow and fill the first tip, and measures less precipitation due to heating-related losses (Savina 83 

et al., 2012). 84 

Furthermore, precipitation measurements may be affected by gross errors, mainly caused by the malfunctioning of 85 

measurement devices, or occurring during data transmission. 86 

1.2 Approaches to quality control of rain gauge data 87 

Quality control is a vital part of data processing. The World Meteorological Organisation (WMO) encourages the use of data 88 

QC in order to achieve a certain standard for international data exchange (WMO-No. 488, 2017). The World Meteorological 89 

Organisation (WMO) WMO recommends initially to perform real-time basic QC of raw data at sensor level, then near-real-90 

time QC, and finally non-real-time extended QC (semi-automatic) at the headquarters (WMO-No. 488, 2017). Performing QC 91 

at various stages of data processing makes it possible to identify the majority of errors in the dataset. 92 

Generally speaking, some precipitation data QC checks consider each single observation separately (Upton and Rahimi, 93 

2003; Taylor and Loescher, 2013; Blenkinsop et al., 2017), whereas more complex ones also take into account data from 94 

neighbouring stations (Steinacker et al., 2011; Scherrer et al., 2011) or multi-source data, such as weather radar data (Yeung 95 

al., 2014; Baserud et al., 2020) and output from a numerical weather prediction model (Qi et al., 2016). Recently, due to the 96 

increased utilisation of crowdsourced observations, specific QC methods applicable for this type of precipitation data have 97 

been developed (de Vos et al., 2019; Bárdossy et al., 2021; Niu et al., 2021). 98 

For assessing the reliability of observations, several approaches are adopted. In practice, various measures of the quality 99 

of precipitation data are used. They, which indicate the reliability of individual sensors resulting from measurement precision, 100 

which is strongly conditioned by construction and technology (Førland et al., 1996), location, current meteorological 101 

conditions (wind, temperature), etc. Often, flags describing the quality of the data are used qualitatively; for example, the 102 

WMO recommends a scheme of five quality flags, defined as good, inconsistent, doubtful, erroneous, and missing (WMO-No. 103 

488, 2017, p. 201). 104 

In the simple approach to QC outputs, the only possible result is the acceptance or rejection of particular observations. 105 

An observation that passes all of the checks is flagged as correct. If an observation fails a check, it is flagged as incorrect and 106 

does not undergo the remaining checks (Baserud et al., 2020); however, it is possible to retrieve information on which test was 107 

failed for each observation. Some QC schemes integrate the results of individual QC checks to generate a final flag for each 108 

observation. In this case an adjustment test or specially designed rule base is applied to minimise the number of correct 109 

observations that are flagged as “erroneous”. F – for example, if an observation failed a climate-based range test but passed 110 

the spatial check, then an adjustment test may reduce the severity of the flag obtained from the climate-based range check 111 

(Fiebrich et al., 2010; Lewis et al., 2018; 2021).  112 

In another approach, after failing specific checks the measured values are not removed, but corrected. Such a method 113 

may be used to replace suspicious data with values obtained from interpolation data from neighbouring stations (Michelson, 114 

2004), but it does not provide any additional information. Also, the use of data from other measurement systems is not a 115 

satisfactory solution, as these data are generally inconsistent with each other due to their different spatial distributionsdue to 116 

the extremely different error structures. Generally, the correction of measured values can give unreliable results due to the high 117 

level of arbitrariness.  118 

Recently, machine learning using artificial neural networks has been employed as a tool for automated quality control 119 

as well as for the correction of errors and reconstruction of missing values in precipitation data (Moslemi and Joksimovic, 120 

2018). 121 
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Quantitative indicators describing the quality of the observations based on various forms of quality indicator can also 122 

be used, describing the quality of the observations expressed in numbers, most oftendescribing the quality of the measurement 123 

by means of a number, most often as a quality index (QI)in the rangeing from 0.0 (completely unreliable measurement) to 1.0 124 

(perfect measurement) (Einfalt et al., 2010; Szturc et al., 2022).  125 

Theis latter approach is adopted in the QC scheme described in this paper. In the developed RainGaugeQC scheme, the 126 

quality of uncertain measurements is lowered and only measurements very likely to be erroneous are removed – they are 127 

replaced with “no data” values. The advantage of this approach is that the quality information can be very useful in further 128 

applications. F, for example, it is employed in quality-based spatial interpolation of rain gauge data and in merging observations 129 

from different measurement techniques (e.g. Jurczyk et al., 2020). It seems optimal to take into account quantitative 130 

information about the quality of individual measurements in such a way that the more uncertain data are assigned a lower 131 

weight than more reliable data. 132 

1.3 Structure of the paper 133 

The paper is structured as follows. After sSection 1, provides an overview of the factors influencing the accuracy of rain gauge 134 

measurements and the main approaches to data quality control procedures. Section section 2 briefly describes the rain gauge 135 

data on which the RainGaugeQC scheme proposed in the paper was developed and calibrated, as well as the radar data used 136 

as auxiliary data in this scheme. In section 3, the checks that constitute the RainGaugeQC system are presented (their detailed 137 

descriptions are included in the appendices). Section 4 presents and discusses specific examples of the scheme’s performance 138 

and a general analysis of its operation. The article ends with a list of conclusions resulting from the operational use of the 139 

RainGaugeQC scheme at IMGW (section 5). 140 

2 Data sources 141 

2.1 Rain gauge station network in Poland 142 

The Polish national meteorological and hydrological service, provided by IMGW, operates a nationwide meteorological 143 

telemetric network which consists of 503 rain gauges stations equipped mainly with tipping bucket sensors (Fig. 1). At the 144 

synoptic stations, SEBA Hydrometrie (https://www.seba-hydrometrie.com/) RG-50 devices are installed, whereas lower-145 

levelprecipitation stations use mainly the Met One Instruments (https://metone.com/) 60030 and 60030H devices (unheated 146 

and heated, respectively). Telemetric precipitation measurements are available with a 10-minute time resolution: all year round 147 

for heated sensors, and in the warm part of the year – from April to October – for unheated ones.  148 

 149 
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 151 
 152 
Figure 1: Networks of telemetric rain gauges stations and weather radars in Poland. 153 

The reliability of individual rain gauges depends on the type of the gauge and its location, and changes with time. The 154 

network’s tipping bucket devices often malfunction, and moreover these sensors lower the precipitation values by an average 155 

of about 8–20% (Urban and Strug, 2021). 156 

Fig. 2 shows the relationships between measurements of 10-minute precipitation accumulations from unheated and 157 

heated sensors on two sample rain gaugesstations: in Dzierżoniów, located in the foothills area, during July 2021 (left), and in 158 

Nowa Wieś Podgórna, located in the lowland Wielkopolska (Greater Poland) region in central Poland, during June 2021 (right). 159 

Both gauges stations are equipped with two tipping bucket devicessensors. The following denotations are introduced for the 160 

precipitation values they measure: 𝐺ℎ is the 10-min precipitation amount observed by the heated sensor, and 𝐺𝑢ℎ is the 161 

analogical value observed by the unheated one. The correlation coefficient calculated for pairs of values in which at least one 162 

is different from zero is extremely high for Dzierżoniów, being equal to 0.997 (Fig. 2a), while for Nowa Wieś Podgórna it is 163 

only 0.694 (Fig. 2b), a fairly low result caused by very large differences between the values measured simultaneously by the 164 

two sensors at the same location. The reason for such low correlation may be that tipping bucket gauges are susceptible to 165 

frequent sensor failures. 166 
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Generally, the left graph of Fig. 2 corresponds to a well-functioning rain gaugestation, and the right graph corresponds 167 

to a rain gauge station providing data with large errors. For the latter, one or both sensors not functioning correctlyrecorded 168 

erroneous precipitation values, and therefore they therefore require effective quality control. It is shown in section 4.3, 169 

concerning an example case study, how the quality control scheme presented in this paper worked on these obviously incorrect 170 

measurements. 171 

  172 

173 

 174 
 175 
Figure 2: Relationships between observations of 10-minute precipitation accumulations measured with tipping bucket rain gauges 176 
stations equipped with two sensors – unheated and heated – in Dzierżoniów during July 2021 (left) and in Nowa Wieś Podgórna 177 
during June 2021 (right). The blue lines mark the trends of these relationships. The data from 3 rain stations showed at the bottom 178 
map are discussed in the examples. 179 

2.2 Weather radar data 180 

Weather radar data are employed in the RainGaugeQC scheme as auxiliary data to verify rain gauge observations. They are 181 

generated by the Polish radar network POLRAD, which consists of eight C-band Doppler radars from Leonardo Germany 182 

GmbH (formerly Gematronik and Selex) (Szturc et al., 2018). Three of them are dual-polarisation radars, and work is currently 183 

underway on upgrading all the radars, including dual polarization functionalitythe others will be upgraded to that functionality 184 

in the near future. Three- and two-dimensional radar products are generated by Rainbow 5 software every 10 min, with a 1 km 185 

spatial resolution within a 215 km range. The Marshall–Palmer formula is used to transform the reflectivity values measured 186 

by radar into the precipitation rate, this being the most common form of such a relationship (Neuper and Ehret, 2019). The 187 

data are quality controlled by the dedicated RADVOL-QC system developed at IMGW (Ośródka et al., 2014; Ośródka and 188 

Szturc, 2022). The system also generates quality fields, 𝑄𝐼(𝑅), based on analyses of particular errors disturbing radar data. 189 

2.3. Other data 190 

In addition, the fields of the following precipitation estimates were used for the case studies:  191 

− satellite precipitation fields determined from various NWC-SAF (Satellite Application Facilities on Support to 192 

Nowcasting and Very Short Range Forecasting) products based on Meteosat data (Jurczyk et al., 2020),  193 
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− QPE fields produced by the RainGRS system, which operationally combines precipitation data from rain gauges, 194 

weather radar and meteorological satellites, based on conditional merging and additionally taking quality information 195 

into account (Jurczyk et al., 2020). 196 

3 General description of the developed quality control scheme 197 

3.1 Set of RainGaugeQC algorithms 198 

A shortened version of the description of the algorithms used in the scheme was presented in works by Otop et al. (2018) and 199 

Jurczyk et al. (2020). This section and the related appendices provide a full description of the developed algorithms. All 200 

parameters defined here were optimised for 10-minute precipitation accumulations (mm/10 min). 201 

 202 

Table 1. List of sequential checks for precipitation QC. 203 

ID Abbreviation Name Main approach Result of the check 

1 GEC Gross Error Check Detection of exceedance of the natural limit Removal of incorrect values 

2 RC Range Check Detection of exceedance of climate-based 

threshold at an individual gauge 

QI reduction for suspiciously high precipitation 

value 

3 RCC Radar Conformity 

Check 

Checking of the conformity of rain gauge 

and radar observations 

Removal of false “no precipitation” data. 

For false precipitation reports, QI reduction 

depending on 𝑆𝐹(𝐺ℎ , 𝐺𝑢ℎ) and location 

4 TCC Temporal 

Consistency Check 

Checking of the consistency of time series 

from heated and unheated sensors 

QI reduction for inconsistent sensors 

5 SCC Spatial 

Consistency Check 

Checking of the spatial consistency of 

adjacent gauges 

QI reduction for outliers depending on the 

inconsistency level 

 204 

The rain gauge quality control procedure developed at IMGW consists of several checks (Table 1). Firstly, simple 205 

plausibility tests – the gross error check and range check – are performed on a single measurement. T; then more complex 206 

checks are performed, using data from both measurement sensors at the site and data from weather radars. 207 

Before the checks, each sensor is assigned the perfect QI value (1.0). In case of failure of a particular check, the QI 208 

value is decreased by a specified value. If the final QI value (after all of the checks) is very weak ( 0.0), the sensor is 209 

considered useless and the measurement value is replaced with “no data”. 210 

The sensor which obtained a higher final quality index is used for further applications, but if both sensors are of the 211 

same quality, then the heated sensor is taken. 212 

3.2 Similarity function (SF) 213 

It is useful to introduce a tool to check the similarity of two sums of precipitation. For this purpose a similarity function (SF) 214 

has been proposed and is used in some of the checks. The function 𝑆𝐹(𝐺ℎ, 𝐺𝑢ℎ), comparing precipitation data from two sensors 215 

𝐺ℎ and 𝐺𝑢ℎ (heated and unheated) installed at a giventhe same rain gauge station 𝐺 location, 𝑆𝐹(𝐺ℎ, 𝐺𝑢ℎ), in order to check 216 

whether the precipitation measured values are consistent, is defined as follows: 217 

If (𝐺ℎ < 1.0 mm or 𝐺𝑢ℎ < 1.0 mm), then    218 

if (|𝐺ℎ − 𝐺𝑢ℎ| < 1.0 mm), then 𝑆𝐹(𝐺ℎ, 𝐺𝑢ℎ) = “true”      (1) 219 

else 𝑆𝐹(𝐺ℎ, 𝐺𝑢ℎ) = “false” 220 

whereas: 221 

If (𝐺ℎ ≥ 1.0 mm and 𝐺𝑢ℎ ≥ 1.0 mm), then        222 

 if (0.5 <
𝐺ℎ

𝐺𝑢ℎ
< 2.0 or |𝐺ℎ − 𝐺𝑢ℎ| < 1.0 mm), then 𝑆𝐹(𝐺ℎ, 𝐺𝑢ℎ) = “true”    (2) 223 
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else 𝑆𝐹(𝐺ℎ, 𝐺𝑢ℎ) = “false” 224 

In the above formulae, precipitation units are given in “mm”, but they may refer to different accumulation periods, for 225 

example, mm per 10 minutes (mm/10 min) or 1 hour. 226 

The result of the use of SF to assess the similarity of measurements between two sensors (heated and unheated) in rain 227 

gauges stations is presented in Fig 3. The graph shows example data for one day, 22 May 2019, obtained from all measuring 228 

stations. It is indicated which measurements from the two sensors are shown by the SF function to be similar (marked blue) 229 

and which are not similar (marked brown). The two blue dashed lines delimit the area in which the values measured by the 230 

unheated and heated sensors are similar according to the SF function. 231 

 232 

  233 
 234 
Figure 3: Precipitation data from Guh and Gh sensors that are similar (blue) and not similar (brown). The similarity of the 235 
measurements from all rain gauges stations on 22 May 2019 was determined using the similarity function SF. The two dashed lines 236 
delimit the area in which the measurements are considered similar. 237 

3.3 Gross Error Check (GEC) 238 

GEC is a preliminary check to identify gross errors which have a strong effect on the further analyses. These errors are mainly 239 

caused by the malfunctioning of measurement devices or by mistakes occurring during data transmission or processing 240 

(Steinacker et al., 2011), which have a strong effect on the further analyses. GEC examines whether the rain gauge 241 

measurement is within the physically acceptable range limits: not less than 0 mm and not above 56 mm/10 min (i.e. 51 dBZ). 242 

The upper limit was determined on the basis of a formula developed to estimate the maximum reliable precipitation for various 243 

durations in Poland (Burszta-Adamiak et al., 2019). A measurement that fails the check is rejected from further processing. 244 

3.4 Range Check (RC) 245 

RC verifies a single measurement against a threshold value, which is based on local climatological data with respect to seasonal 246 

variation of observations in the specific location of the rain gaugestation. This test identifies data as implausible when they 247 

exceed the expected maximum value, that is, the threshold empirically estimated from long-term climatological data. It is 248 

essential to ensure reliable values of the threshold, because, for example, too low a threshold may cause extreme values of 249 

precipitation to fail the test (Taylor and Loescher, 2013). Therefore, Fiebrich et al. (2010) recommend developing regionally 250 

specific thresholds for the test. In the proposed QC procedure, the thresholds were defined as 10-minute precipitation values 251 

with a 1% probability of being exceeded, determined separately for warm and cold seasons. These values were calculated for 252 

each telemetric gaugestation, based on the statistical distribution of 10-minute accumulations in a 30-year time series (1986-253 



9 
 

2015)over a long time. In the case that the examined measurement exceeds the relevant threshold value, it is treated as 254 

suspicious and its QI is reduced by 0.25. 255 

3.5 Radar Conformity Check (RCC) 256 

RCC is performed to identify false precipitation – false zero and false gauge-reported precipitation measurements – on the 257 

basis of radar data, which quite reliably indicate the spatial distribution of precipitation. RCC compares each gauge observation 258 

lower than 0.2 mm/10 min with radar observations at the gauge location and its surrounding of 3 pixels x 3 pixels (the pixel 259 

size is 1 km x 1 km).RCC compares each precipitation observation lower than 0.2 mm/10 min with radar observations at the 260 

gauge station location and in a surrounding grid of 3 pixels x 3 pixels (the pixel size is 1 km x 1 km). If the radar data for the 261 

vicinity of the gauge station are above a predefined threshold, then a “no precipitation” result measured by the sensor is 262 

assumed to be false and the QI is reduced to 0.0. 263 

On the other hand, the RCC compares every sensor observation G > 0 mm/10 min with radar observations at the gauge 264 

location and its neighbouring of 3 pixels x 3 pixels. If the radar data is of a quality QI(R) above a predefined threshold and 265 

indicates “no precipitation” (0 mm), then the precipitation measured by the sensor is assumed to be false and the QI of that 266 

observation is reduced. The reduction depends on whether data are available from one or two sensors, on their similarity, and 267 

on the gauge location. (in mountains, foothills, or lowland areas).On the other hand, the RCC compares every precipitation 268 

observation with radar observations at the gauge station location and in a neighbouring grid of 3 pixels x 3 pixels. If the radar 269 

data indicate “no precipitation” (0 mm), with radar data quality above a predefined threshold, then the precipitation measured 270 

by the sensor is assumed to be false and the QI of that observation is reduced. The reduction depends on whether data are 271 

available from one or two sensors, on their similarity, and on the gauge station location (in mountains, foothills, or lowland 272 

areas). The following regions based on altitude are distinguished: lowlands (areas below 300 m a.s.l.). foothills (between 300 273 

and 600 m a.s.l.), and mountainous (areas above 600 m a.s.l.). 274 

For a detailed description of the RCC algorithm and the criteria for determining the reduction of QI, see Appendix 1. 275 

3.6 Temporal Consistency Check (TCC) 276 

This check, in the form described below, is possible only when two sensors are installed at each measuring station, most often 277 

heated and unheated, as is currently the case in the IMGW network. If this is not the case, then a method commonly used in 278 

quality control of various meteorological quantities is to checking of the time continuity of the measured values. For some 279 

types of meteorological data the time consistency checks are efficient; however, in the case of precipitation data, this check 280 

would eliminate not only all questionable data but also a large amount of true data, in particular extreme values, because of 281 

the high variability of precipitation (WMO-No. 305, 1993, p. VI.21, VI.23). 282 

A preliminaryThe first step of this check is performed to detect a clogged sensor, which occurs if the same value is 283 

repeated over a certain period of time. In this case, the sensor’s quality is reduced to 0.0. 284 

In the next step, pairs of rain gauge sensors (Gh, Guh) are tested for the existence of large differences between them. 285 

This check requires measurements from both rain gauge sensors at the same location, and can thus be conducted only in the 286 

warm half of the year, because only then two time series from the same station are available.half of the year. In this procedure, 287 

if the number of measurement pairs is sufficient, they are accumulated and their similarity is checked using the SF function 288 

(see section 3.2). If the sums differ, the data from both sensors have failed the TCC check and their quality is reduced. 289 

For a detailed description of the TCC algorithm see Appendix 2. 290 
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3.7 Spatial Consistency Check (SCC) 291 

SCC is applied to identify outliers based on a comparison with neighbouring gaugesstations. Additionally, radar data are 292 

introduced to assess the level of QI reduction for outliers. 293 

There are several steps in the operational procedure for SCC. Firstly, the domain area is divided into basic subdomains 294 

with a spatial resolution of 100 km x 100 km. For each subdomain, a set of percentiles of rain gauge data and the median 295 

absolute deviation (MAD) are calculated.  296 

The criterion for the spatial consistency of an individual sensor is implemented based on the index 𝐷, calculated using 297 

the formula of Kondragunta and Shrestha (2006). Thise index is compared with the threshold values defined by its set of 298 

percentiles of the index D, making it possible to determine the different classes of outliers. The check is repeated for 299 

subdomains obtained by making shifts of 25 km in all four directions. If the sensor value is identified as an outlier in the basic 300 

subdomain and in the shifted subdomains, the sensor is detected as an outlier and a further procedure is applied to assess the 301 

relevant quality reduction. 302 

For each detected outlier, two criteria are checked: (i) if data from both sensors are available for a given rain gauge and 303 

they are similar, i.e. SF (Gh, Guh) = “true”, and (ii) if the data passed the TCC test. If both criteria are met, then the QI for the 304 

sensor is not reduced. Otherwise, for additional verification, radar data in a grid of 5 pixels x 5 pixels around the gauge location 305 

are considered if they are of good quality;. In this case then the reduction of the QI value depends on the class of the outlier 306 

(weak, medium, or strong) and the magnitude of the disparity with the radar data (the limitation imposed on the magnitude of 307 

this disparity has been determined empirically). 308 

A detailed description of the SCC algorithm and the criteria for reduction of the QI value are given in Appendix 3. 309 

The check may optionally analyse data from both sensors together or separately, and may or may not include or not 310 

data from the previous time step. It was investigated how these two settings influence the performance of the check. 311 

Fig. 4 presents graphs showing the percentage of data with reduced QI values, as a result of analysing the spatial 312 

conformity of data from two types of sensors (unheated and heated) separately or together. The obtained sample results 313 

generally showed large variation; however, the numbers of strong outliers increased significantly (about 2.35% versus 0.6%) 314 

when the two types of sensors were analysed separately – in that case the algorithm appears much less tolerant. 315 

 316 

 317 
 318 
Figure 4: Percentage of classes of outliers (weak, medium, and strong) when analysing the data from two types of sensors (unheated 319 
and heated) separately (blue) or together (brown). Data from 22 May 2019. 320 

If the algorithm takes into account data not only from the current time step, but also from 10 minutes ago (both sensors 321 

analysed together), then these numbers are slightly higher for weak and medium outliers and slightly lower for strong ones. 322 

This observationThe latter suggestsindicates that the inclusion of data from the previous time step makes the algorithm more 323 

tolerant.. The percentage of the data belonging to all classes of outliers together was slightly over 3%The percentage of the 324 

data belonging to different classes of outliers was slightly over 3% (Fig. 5), and for particular classes varies from about 1.5–325 
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1.7% for the weak to about 0.6–0.9% for the strong outliersand for particular classes ranged from about 1.5–1.7% for weak to 326 

about 0.6–0.9% for strong outliers. This observation suggests that the inclusion of data from the previous time step makes the 327 

algorithm more tolerant. 328 

 329 

 330 
 331 
Figure 5: Percentage of classes of outliers (weak, medium, and strong) when analysing measurements from the given time only (blue) 332 
and also from the previous time step (brown). Data from two days: 20–21 June 2020. 333 

In the RainGaugeQC scheme currently used by IMGW in real time, in the SCC check both types of sensors are analysed 334 

together, also taking account of the data from the previous time step. 335 

3.8 Quality index of spatially distributed rain gauge data 336 

In most applications of rain gauge data, spatial interpolation of the point data is required and this procedure can be carried out 337 

by any of a number of, which can be performed using one of the many commonly known methods. However, it is not enough 338 

to spatially interpolate the QI values assigned to individual rain gauges,. but Iit is also necessary to take into account the fact 339 

that the uncertainty of the estimated field increases very quickly with increasing distance from the nearest rain gaugedue to the 340 

natural high variability of the precipitation field, the uncertainty of the estimated field increases decreases very quickly with 341 

increasing distance from the nearest rain gauge. Therefore, the quality field for the spatially distributed precipitation data 342 

depends on two factors: the QI point values for individual rain gauges (denoted by the QI with the index “p”) and a factor that 343 

depends linearly on the distance from the nearest rain gauge (with the index “d”). 344 

The precipitation and QI point values from rain stations are spatially interpolated simultaneously by the same method 345 

using the same parameters, so in both cases there are the same contributions from the individual rain gauges. Hence the 346 

obtained quality field 𝑄𝐼(𝐺int(𝑥, 𝑦))𝑝 is completely consistent with precipitation field (𝐺int(𝑥, 𝑦)).The QI point values from 347 

rain gauges should be spatially interpolated by the same method as the precipitation field is interpolated; hence the quality 348 

field 𝑄𝐼(𝐺int(𝑥, 𝑦))𝑝 is obtained. In the case of the operational scheme used by IMGW, ordinary kriging is applied, where the 349 

domain of 900 km x 800 km is divided into 16 subdomains of 225 km x 200 km and interpolation is performed separately in 350 

each of them. 351 

The factor related to the distance from the rain gauges 𝑄𝐼(𝐺int(𝑥, 𝑦))𝑑  takes into account the decrease in the quality of 352 

the rainfall field depending on the distance 𝑑(𝑥, 𝑦) to the nearest rain gauge. The distance factor for each pixel is calculated 353 

from the linear formula: 354 

𝑄𝐼(𝐺int(𝑥, 𝑦))𝑑 =
𝑑𝑚𝑎𝑥–𝑑(𝑥,𝑦)

𝑑𝑚𝑎𝑥
          (3) 355 

where 𝑑max is the limit value of the distance to the nearest rain gauge, above which the quality at that pixel is assigned a value 356 

of zero (the adopted limit is 100 km). 357 
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The field of the final quality index for the rain gauge-based precipitation field is calculated from the product of the two 358 

above factors: 359 

𝑄𝐼(𝐺int(𝑥, 𝑦)) = 𝑄𝐼(𝐺int(𝑥, 𝑦))𝑝 ∙ 𝑄𝐼(𝐺int(𝑥, 𝑦))𝑑        (4) 360 

4 Examples of QC scheme operation for a rain gauge with low quality measurement 361 

4.1 Influence of differences in values from two sensors on precipitation field estimation 362 

 363 
 364 
Figure 6: Spatially interpolated rain gauge station data obtained from: (a) unheated and (b) heated sensors, and (c) after quality 365 
control (considered optimal). Data from 5 August 2021, 17:40 UTC, excerpt fragment from the Polish domain (240 km x 250 km). 366 

In the example presented in Fig. 6, it can be seen that the data from the two sensors can sometimes be significantly different. 367 

In simpler solutions tThe final rainfall field can be generated by taking the mean or the higher values of the two sensors at the 368 

same location, and both of these approaches can be justified depending on the final application of the datacan be simply 369 

generated by taking the mean or the higher values of the two sensors at the same location, and both of these approaches can 370 

be justified depending on the final application of the data. The approach used in the RainGaugeQC scheme makes it possible 371 

to choose the better value according to defined checks,. and mMoreover, it enables to apply that precipitation value along with 372 

the relevant QI value in quality-based interpolation algorithms which generate the optimal rain gauge field. 373 

4.2 Result of the performance of the QC scheme after the introduction of erroneous values 374 

Fig. 7 illustrates the performance of the proposed QC scheme. If the rain gauge data are not subjected to QC algorithms, then 375 

two alternative data sets can be considered: from unheated (Fig. 7a) and heated (Fig. 7b) sensors. The third diagram shows an 376 

example of data disturbed with an artificial value of 10 mm/10 min at the heated sensor of the Siercza rain gauge station (Fig. 377 

7c), the location of which is marked with a red circle in all diagrams. Location of the Siercza rain station is shown in Fig. 2 378 

(bottom). 379 

 380 
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 381 
 382 
Fig. 7. Example of the RainGaugeQC performance after the introduction of erroneous precipitation value: (a) original rain gauge 383 
data from unheated sensors (Guh) (in all fields the Siercza rain gauge station is marked with a red circle), (b) original data from 384 
heated sensors (Gh), (c) data from heated sensors disturbed with an artificial value at Siercza (10 mm/10 min), (d) rain gauge data 385 
after quality control, and (e) after spatial interpolation. Data from 5 August, 2021, 17:40 UTC, excerpt fragment from the Polish 386 
domain (240 km x 250 km). 387 

Fig. 7d shows the values from individual rain gauges stations after quality control, and Fig. 7e shows the precipitation 388 

field after spatial interpolation using the ordinary kriging technique (this field is identical to the one shown in Fig. 6c).Fig. 7e 389 

shows the same values after spatial interpolation using the ordinary kriging technique (this field is identical to the one shown 390 

in Fig. 6c). As these images show, the precipitation values obtained after data quality control are some mixture of those data 391 

from both sensors that passed the QC with higher QI (see section 3.1). The Siercza rain gaugestation, marked with a red circle, 392 

serves here as an example of a gauge station with incorrect measurement (the original values were 0.2 and 0.0 mm/10 min for 393 

unheated and heated sensors, respectively). The erroneous value of 10 mm/10 min was eliminated as a result of the QC 394 

algorithms, so the rainfall value for this rain gauge station after QC is 0.2 mm/10 min measured by the unheated sensor.  395 

4.3 Example for Nowa Wieś Podgórna rain gauge station from 22 June 2021, 13:30 UTC 396 

An example of a rain gauge station with low-quality measurements, taken from the Nowa Wieś Podgórna rain gauge station 397 

during June 2021, is shown in Fig. 2b (section 2.1). The low quality is evidenced by large differences between the values 398 

measured with heated and unheated sensors: the heated sensor recorded much higher 10-minute precipitation accumulations 399 

than the unheated one. The data from 22 June 2021, 13:30 UTC are analysed in detail below. The heated sensor of the Nowa 400 

Wieś Podgórna rain gauge station reported a very high rainfall of 18.9 mm/10 min, whereas the unheated one reported only 401 

2.7 mm/10 min (Table 2). If QC is not performed, then the heated sensor is generally considered the primary sensor as it 402 

operates all year round. The precipitation field resulting from the interpolation of rain gauge data without QC obtained by the 403 

ordinary kriging method is shown in Fig. 8a. 404 

 405 
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 407 
 408 
Figure 8: Various fields of 10-minute precipitation accumulation (in mm/10 min) in the vicinity of the Nowa Wieś Podgórna rain 409 
gauge station (marked with a red triangle; the locations of other rain gauges stations are marked with empty triangles): a) spatially 410 
interpolated field from rain gauge data without QC (𝑮int), b) radar-based precipitation field (𝑹), c) satellite-based precipitation field 411 
(𝑺), d) spatially interpolated field from rain gauge data after QC ((𝑮𝒄𝒐𝒓)𝐢𝐧𝐭), e) QI field for the precipitation field from rain gauge 412 
data after QC (𝑸𝑰((𝑮𝒄𝒐𝒓)𝐢𝐧𝐭)), f) multi-source precipitation field (𝑹𝒂𝒊𝒏𝑮𝑹𝑺) obtained from raw rain gauge data, g) multi-source 413 
precipitation field (𝑹𝒂𝒊𝒏𝑮𝑹𝑺𝒄𝒐𝒓) obtained from rain gauge data after QC. Data from 22 June 2021, 13:30 UTC, excerpt fragment 414 
from the Polish domain (110 km x 80 km). 415 

In order to diagnose the large difference between the two sensors, a detailed investigation of the situation was performed 416 

based on precipitation data from other sources. The radar composite map from the SRI (surface rainfall intensity) product 417 

showed 3.95 mm/10 min at this location (Fig. 8b), which is much closer to the value from the unheated sensor. Satellite rainfall, 418 
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determined from various NWC-SAF products based on Meteosat data (see Section 2.3)(Jurczyk et al., 2020), showed only 419 

0.05 mm/10 min (Fig. 8c); however, measurements based on data from visible and infrared channels are much less accurate 420 

than radar measurements. ThusT, the radar data confirmed that the rainfall that occurred in the analysed time step in the close 421 

vicinity of this rain gauge station is significantly higher than in the surroundings, but not by as much as the heated sensor 422 

reported – it is much closer to the observation of the unheated sensor. 423 

Visually, this conclusion seems to be unquestionable, but it may be interesting how the designed RainGaugeQC scheme 424 

functioned in this situation. 425 

 426 

 427 

Figure 9: Precipitation time series at Nowa Wieś Podgórna station in comparison to maximum of four neighbouring rain stations on 428 
22 June 2021, from 11:30 to 14:30 UTC. 429 

Fig. 9 shows the recorded precipitation time series from 12 time steps (i.e. two hours) before the analysis date (13:30 430 

UTC), and 6 time steps after this date, at Nowa Wieś Podgórna station (two sensors) and maximum values of the four 431 

neighbouring stations. These stations are located between 19 and 35 km from the analysed Nowa Wieś Podgórna station. Until 432 

the analysis date, precipitation measured by the sensors of these stations was not high, as it was up to about 1 mm/10 min, but 433 

20 min later a significant increase in precipitation of about 6 mm/10 min was observed on both sensors of one of the nearby 434 

stations. At the analysed time-step only Nowa Wieś Podgórna station recorded a slightly higher precipitation on the heated 435 

sensor, while it was drastically higher on the unheated sensor (Table 2). 436 

 437 
Table 2. Results of QC of the Nowa Wieś Podgórna rain gauge station on 22 June 2021, 13:30 UTC. 438 

Sensor 
G 

(mm/10 min) 

Check QI (G) 

(–) RC RSC TCC SCC 

Unheated 2.7 Passed Passed Failed Weak outlier 0.75 

Heated 18.9 Passed Passed Failed Strong outlier 0.50 

 439 
The quality of the data from this rain gauge station was 0.75 for the Guh sensor and 0.50 for Gh. This difference in QI 440 

values was a result of the SCC test, which showed that the Guh sensor differs slightly, and the Gh sensor differs significantly, 441 

from the rainfall values in the neighbouring rain gauges stations within the given subdomain. At the same time, both sensors 442 

failed the TCC test, which in turn indicates that the accumulated values measured by these two sensors over the last 12 time 443 

steps differ significantly (Table 2). This also contributed to a reduction in the final QI value. 444 

Thus, finally, the value from the unheated sensor Guh is taken for further processing. The precipitation field after the 445 

spatial interpolation of QC data obtained by the ordinary kriging method is shown in Fig. 8d. The precipitation values around 446 

this rain gauge station location are clearly lower than those shown in Fig. 8a (without QC). The QI field for spatially 447 

interpolated rain gauge datas is shown in Fig. 8e – the Nowa Wieś Podgórna rain gauge station is of lower quality than the 448 

neighbouring rain gaugesstations. 449 

QC of rain gauge data influences the precipitation fields produced by applications for the generation of multi-source 450 

fields. This is shown by the example of the QPE fields produced by the RainGRS system, which operationally combines 451 
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precipitation data from rain gauges, weather radar and meteorological satellites (see Section 2.3), based on conditional merging 452 

and additionally taking quality information into account (Jurczyk et al., 2020). In Fig. 8 two fields generated by RainGRS are 453 

presented: based on rain gauge data without QC and after QC (Figs. 8f and 8g, respectively). Applying quality controlled rain 454 

gauge data, the RainGRS estimate decreases from 16.19 to 3.26 mm/10 min, which is a very significant effect. 455 

4.4 General effects of the operation of the scheme 456 

The performance of the RainGaugeQC scheme can be analysed in terms ofassessed by the degree of QI reduction. This is 457 

presented in Fig. 910, for individual months representative for autumn, winter, spring and summer conditions (October, 458 

January, April, and July, respectively). 459 

 460 

 461 
 462 
Figure 910: Percentage of rain gauge observations with a specified QI reduction after quality control. From top: percentage 463 
contribution in each QI interval; cumulative percentage contribution (in %); from left: October 2020, January, April, and July 2021. 464 

The graphs shown do not include the percentage contribution of measurements that were assigned a quality of 1.0; this 465 

is equal to about 98.5–99.1%92.0–94.5%, many timesmuch higher than the total contribution of all other values. In general, it 466 

can be seen from Fig. 9 10 that by far the greatest number of reductions in QI values was to values in the range ([0.75, 0.90)], 467 

and this is observed in all seasons of the year. Relatively large numbers of QI reductions to values in the range ([0.50, 0.75)] 468 

occur in winter (January) and spring (April), and relatively many data with quality reduced to zeroreductions to a zero value 469 

occur in summer (July) and autumn (October). 470 

The number of rain gauge observations with reduced quality is relatively small, below 1.5%. For example, the 471 

contribution of data with QI reduced to zero (i.e. QI = 0.0) ranges from about one-third to one-tenth, but grows to about one-472 

half over the summer (July). In practice, this means that these data were rejected. Probably the most important reason is that 473 

in the summer there often occurs convective precipitation, characterised by high intensities and strong spatial variability, and 474 

moreover rain gauges in no-rain situations react to morning dew condensation, which gives false rainfall measurements 475 

sometimes as high as 0.3 mm/10 min.  476 
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The most diversified diverse distribution of QI reductions is observed in winter (January): most often there are small 477 

decreases in the QI value. In summer (July), this distribution is the least varied, which can be partially explained by the 478 

numerous QI reductions to zero. 479 

5 Conclusions 480 

1. Quality control of rain gauge data is essential, especially from the perspective of operational applications, when it is 481 

not possible to verify gauge data employing highly reliable precipitation measurements, such as manual Hellmann 482 

rain gauges, which are not available in real time. 483 

2. It seems that the RainGaugeQC approach to the QC of rain gauge data, which consists in estimating the value of the 484 

QI of individual observations, enables more effective use of the data. On the one hand, it is a more cautious approach, 485 

as it does not eliminate all suspicious observations, and on the other hand, it enables flexible treatment of any 486 

suspected case of data incorrectness. 487 

3. The IMGW rain gauge station network consists mostly of rain gauges stations equipped with two sensors: unheated 488 

and heated. This unique equipment allows the use of pairs of data to conduct much more effective QC. Comparing 489 

the observations from two sensors installed at the same location significantly increases the possibility of obtaining 490 

information about the uncertainty of measurements, for example by checking the time consistency of the data (TCC 491 

check). This is especially important when measurements are carried out with tipping bucket rain gauges, which have 492 

relatively low reliability. The availability of observations from both sensors is especially important during the warm 493 

season, when convective phenomena prevail. The frequent lack of two sensors installed at the same location reduces 494 

the scheme’s effectiveness to some extent; however, it remains at a satisfactory level. 495 

4. It is worth considering the possibility of employing radar data in the RCC and SCC algorithms to detect erroneous 496 

rain gauge measurements and to assess their reliability, based on the difference between the values from rain gauge 497 

and weather radar. The case study proved that the RainGaugeQC system can identify regionally inconsistent data 498 

thanks to the use of radar data as well as neighbouring rain gauge data. 499 

5. The presented set of algorithms is based on empirical relationships that are strongly dependent on local conditions, 500 

both technical and geographic. The most important factors are the density of the rain gauge station network, the 501 

availability of other data that can be used as a reference for QC (e.g. from the weather radar network), the type of 502 

sensors (their failure rate and measurement uncertainty), as well as terrain orography, wind conditions, and surface 503 

precipitation type. Therefore, any changes in the network configuration necessitate recalibration of the algorithms. 504 

6. The number of rain gauge observations with reduced QI following QC under the RainGaugeQC scheme is relatively 505 

small, as it is below 1.5%. In all seasons, the highest number of QI value reductions was to values in the range [0.75, 506 

0.90). The highest number of erroneous data (with QI reduced to zero) is found in summer (July) (approximately 507 

0.4%), whereas in other seasons it ranges from about 0.10% to 0.23%.  508 

Appendix 1. Detailed description of the Radar Conformity Check (RCC) algorithm 509 

RCC is performed to identify false zero precipitation and false gauge-reported precipitation measurement by applying radar 510 

data. 511 

1. Identifying false zero precipitation.  512 

Each gauge sensor value (G) less than 0.2 mm/10 min is checked against radar observations (R) at the gauge location 513 

and in its vicinity within a grid of 3 pixels x 3 pixels. 514 
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If at least one pixel of radar data had precipitation above 0.4 mm/10 min, then the gauge value measured by 515 

this sensor is assumed to be erroneous, thus the sensor value is replaced by “no data” and the quality of this sensor 516 

is reduced to 0. 517 

2. Identifying false gauge-reported precipitation.  518 

Each gauge sensor value (G) above 0 mm/10 min is checked against radar observations (R) at the gauge location and 519 

in its vicinity within a grid of 3 pixels x 3 pixels. 520 

If at least two radar pixels with QI > 0.85 returned “no precipitation” (R = 0 mm/10 min), then the following 521 

conditions are checked: 522 

(a) If for a given rain gaugestation, data are available only from one sensor (G) and G > 0 mm/10 min, then: 523 

− if the gauge station is located in a mountain or foothill area, the sensor is considered erroneous and its 524 

value is replaced by G = 0 mm and its quality reduced by 0.5; 525 

− if the gauge station is located in a lowland area, the sensor is considered erroneous and its value is 526 

replaced by G = 0 mm and its quality reduced by 0.25. 527 

(b) If for a given rain gaugestation, data are available from two sensors (heated Gh and unheated Guh) and Gh > 0 528 

mm/10 min and Guh > 0 mm/10 min, then: 529 

− if the gauge station is located in a mountain or foothill area and values from both sensors are similar, i.e. 530 

SF (Guh, Gh) = “true”, then the quality of both sensors is reduced by 0.75, but if SF (Guh, Gh) = “false” 531 

then their qualities are reduced to QI = 0 and the sensor values are replaced by “no data”; 532 

− if the gauge station is located in a lowland area, then the sensor qualities are reduced to QI = 0 and the 533 

sensor values are replaced by “no data”. 534 

(c) If for a given rain gaugestation, data are available from two sensors (heated Gh and unheated Guh) and one of 535 

them reports “no precipitation” (i.e. Gh = 0 mm/10 min or Guh = 0 mm/10 min), then: 536 

− if the rain gauge station is located in a mountain or foothill area and the values from both sensors are 537 

similar (i.e. SF (Guh, Gh) = “true”), then the QI of the sensor which observed precipitation G > 0 mm/10 538 

min is reduced by 0.75, but if SF (Guh, Gh) = “false”, then the QI of the sensor which reports G > 0 mm/10 539 

min is reduced to QI = 0 and the sensor value is replaced by “no data”; 540 

− if the rain gauge station is located in a lowland area, then the quality of the sensor that reports G > 0 541 

mm/10 min is reduced to QI = 0 and the sensor value is replaced by “no data”. 542 

Appendix 2. Detailed description of the Temporal Conformity Check (TCC) algorithm 543 

The first step of this check is performed to detect constant values observed by a given sensor.A preliminary check is performed 544 

to detect constant values. If the same value (e.g. 0.1 mm/10 min) is reported for a certain number of time steps (e.g. nine 545 

consecutive observations), then the sensor is probably clogged. In this case, the blocked sensor has failed the TCC test, its QI 546 

is reduced to 0, and the TCC test cannot be performed for the other sensor. 547 

The main part of TCC serves to identify rain stations for which there are large differences between values measured 548 

simultaneously by pairs of rain sensors (Gh, Guh), which may be evidence of their low quality.The main part of TCC serves to 549 

identify pairs of rain gauge sensors (Gh, Guh) for which there are large differences between simultaneously measured values, 550 

which may be evidence of their low quality. This check requires measurements from both rain gauge sensors at the same 551 

location; it can thus be conducted only in the warm season, when both sensors provide measurements. This lasts from April to 552 

October, when data from unheated sensors (Guh) are available; the heated sensors (Gh) operate all year round. 553 

1. Pairs of simultaneous measurements from two sensors are verified for the last 12 time steps, but excluding 554 

observations with of poor quality are not taken into account. If the number of quality-verified pairs (which QI is 0.0 555 
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for previous time steps with QI > 0.0, and for the current one passing the previous checks, i.e.time step failed GEC, 556 

RC, and or RCC check). If the number of the pairs is high enough (at least 9), the cumulative sums are calculated: 557 

𝑆ℎ = ∑ 𝐺ℎ,𝑖 ,     𝑆𝑢ℎ = ∑ 𝐺𝑢ℎ,𝑖
𝑛
𝑖=1

𝑛
𝑖=1         (5) 558 

2. The similarity of the accumulated sums is checked by means of the SF function. If they differ significantly, i.e. if 559 

SF(𝑆ℎ ,  𝑆𝑢ℎ) = “false”, then the data from both sensors have failed the TCC test and their quality is reduced by 0.25. 560 

Appendix 3. Detailed description of the Spatial Consistency Check (SCC) algorithm 561 

The SCC procedure consists of the following steps: 562 

1. The Polish domain (900 km x 800 km) is divided into subdomains with dimensions of 100 km x 100 km. Only data 563 

with QI > 0 after previous tests are subject to this check. It is optional: (i) to analyse both sensors, heated and 564 

unheated, together or separately, (ii) to include also data from the previous time step (10 min ago) if their QI = 565 

1.0.Both sensors, heated and unheated, can be analysed together or separately, and these data can also be analysed 566 

together with data from the previous time step (10 min ago) if their QI = 1.0. In order to perform this check there 567 

must be data available from at least three stations in a subdomain, the number of data in a subdomain must be at 568 

least three; otherwise the test is not performed for that subdomain. 569 

2. Based on data from rain gauges stations (𝐺) located in a given subdomain, the following percentiles are determined: 570 

25%, 50% (median), and 75% (𝑄25(𝐺), 𝑄med(𝐺), and 𝑄75(𝐺), respectively). 571 

The median absolute deviation (MAD) for a given subdomain is determined from the formula: 572 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝐺𝑖 − 𝑄𝑚𝑒𝑑(𝐺)|𝑛

𝑖=1          (6) 573 

where 𝑛 is the number of data, 𝐺𝑖is the i-th sensor value, and 𝑄med(𝐺) is the median. 574 

3. The index 𝐷𝑖 , which determines numerically the deviation of the precipitation value measured with the i-th sensor 575 

from the median of all sensors from the values of sensors within a given subdomain, is calculated from the formula 576 

(Kondragunta and Shrestha, 2006): 577 

𝐷𝑖 = {

0 𝑀𝐴𝐷 = 0
|𝐺𝑖−𝑄𝑚𝑒𝑑(𝐺)|

𝑀𝐴𝐷
𝑀𝐴𝐷 ≠ 0 𝑎𝑛𝑑 𝑄75(𝐺) = 𝑄25(𝐺)

|𝐺𝑖−𝑄𝑚𝑒𝑑(𝐺)|

𝑄75(𝐺)−𝑄25(𝐺)
𝑀𝐴𝐷 ≠ 0 𝑎𝑛𝑑 𝑄75(𝐺) ≠ 𝑄25(𝐺)

      (7) 578 

Following calculation of the 𝐷𝑖  values for all sensors within a given subdomain, three percentiles are 579 

determined: 90%, 95%, and 99% (𝑄90(𝐷), 𝑄95(𝐷), and 𝑄99(𝐷), respectively).  580 

4. If 𝐷𝑖 ≤ 𝑄90(𝐷), then the i-th sensor is not an outlier and the test is passed. 581 

If this is not the case, the i-th sensor is flagged and the formula (8) is applied to compare the index 𝐷𝑖  with 582 

the three percentile values, in order to determine to which class of outliers the given value belongs: 583 

outlier = {

strong 𝐷𝑖 > 𝑄99(𝐷)

medium 𝑄95(𝐷) < 𝐷𝑖 ≤ 𝑄99(𝐷)

weak 𝑄90(𝐷) < 𝐷𝑖 ≤ 𝑄95(𝐷)
       (8) 584 

The procedure is repeated in four subdomains resulting from shifting the given subdomain vertically (west-585 

east) and horizontally (south-north), i.e. in four directions, with offsets of 25 km (except for subdomains on the 586 

edges and corners of the domain, which are shifted in three and two directions, respectively). If the value measured 587 

with a given sensor is flagged in all analysed subdomains, it fails the SCC check. If the values belonged to different 588 

classes of outliers, the weakest one is assigned to the sensor for further processing. 589 
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5. For sensors that failed the SCC check, if the data from both sensors are available for a given rain gauge station and 590 

they are similar, i.e. 𝑆𝐹(𝐺ℎ, 𝐺𝑢ℎ) = “true”, and passed the TCC check, then the QI for the sensor is not reduced. 591 

Otherwise, each outlier is verified against radar data. For this purpose the following values are determined 592 

within a grid of 5 pixels x 5 pixels around this rain gauge station location: min(𝑄𝐼(𝑅)) – the minimum quality QI 593 

of the radar precipitation R; 𝑅𝑚𝑎𝑥 = max(𝑅: 𝑄𝐼(𝑅) > 0.75) – the maximum value of radar precipitation with a 594 

quality above 0.75; 𝑄𝐼(𝑅max) – the quality of the maximum value of radar precipitation 𝑅𝑚𝑎𝑥. This verification 595 

algorithm is as follows: 596 

If min(𝑄𝐼(𝑅)) > 0.75, then:          (9) 597 

if 𝑅𝑚𝑎𝑥 = 0, then the quality is reduced by 1.0 and 𝐺 = “no data”; 598 

if (𝐺 > 1.0 mm) and (
𝐺

𝑅𝑚𝑎𝑥
<

𝑄𝐼(𝑅max)

4.0
  or  

𝐺

𝑅𝑚𝑎𝑥
>

4.0

𝑄𝐼(𝑅max) 
), then: 599 

𝑄𝐼 = {

𝑄𝐼 − 1.00 strong outlier
𝑄𝐼 − 0.50 medium outlier
𝑄𝐼 − 0.20 weak outlier

 600 

if (𝐺 > 1.0 mm) and (
𝐺

𝑅𝑚𝑎𝑥
≥

𝑄𝐼(𝑅max)

4.0
  and 

𝐺

𝑅𝑚𝑎𝑥
≤

4.0

𝑄𝐼(𝑅max) 
), then: 601 

𝑄𝐼 = {

𝑄𝐼 − 0.25 strong outlier
𝑄𝐼 − 0.10 medium outlier
𝑄𝐼 weak outlier

 602 

If (𝐺 ≤ 1.0 mm) or (min(𝑄𝐼(𝑅)) ≤ 0.75), then:   603 

𝑄𝐼 = {

𝑄𝐼 − 0.25 strong outlier
𝑄𝐼 − 0.10 medium outlier
𝑄𝐼 weak outlier

 604 

where 
4.0

𝑄𝐼(𝑅max) 
 is the limitation to the magnitude of disparity 

𝐺

𝑅𝑚𝑎𝑥
 determined empirically. 605 

An alternative simplified analysis of the spatial consistency of rain gauge data may be performed analogously to steps 606 

1–4, especially if radar data are unavailable. In this case, it is sufficient to determine only the 𝑄95(𝐷) percentile. Here, if in all 607 

subdomains 𝐷𝑖 > 𝑄95(𝐷), the sensor fails the SCC, and the QI is decreased by 0.10.A simpler analysis of the spatial 608 

consistency of rain gauge data may be performed (especially if radar data are unavailable), analogously to steps 1–4, but with 609 

only the 𝑄95(𝐷) percentile being determined. Here, if in all subdomains 𝐷𝑖 ≤ 𝑄95(𝐷), the sensor fails the SCC, and the QI is 610 

decreased by 0.10. 611 
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