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 2 

Abstract 19 

Knowledge of air pollution sources is important in policy making and air pollution mitigation. 20 

Until recently, source apportion analyses were limited and only possible with the use of 21 

expensive regulatory-grade instruments. In the present study we applied a two-step Positive 22 

Matrix Factorisation (PMF) receptor analysis at a background site in Birmingham, UK using 23 

data acquired by low-cost sensors (LCS). The application of PMF allowed for the 24 

identification of the sources that affect the local air quality, clearly separating different 25 

sources of particulate matter (PM) pollution. Furthermore, the method allowed for the 26 

contribution of different air pollution sources to the overall air quality at the site to be 27 

estimated, thereby providing pollution source apportionment. The use of data from 28 

regulatory-grade (RG) instruments further confirmed the reliability of the results, as well as 29 

further clarifying the particulate matter composition and origin. Comparing the results from 30 

a previous analysis, in which a k-means clustering algorithm was used, a good consistency 31 

between the k-means and PMF results was found in pinpointing and separating the sources 32 

of pollution that affect the site. The potential and limitations of each method when used 33 

with low-cost sensor data are highlighted. The analysis presented in this study paves the 34 

way for more extensive use of LCS for atmospheric applications, receptor modelling and 35 

source apportionment. Here, we present the infrastructure for understanding the factors 36 

that affect air quality at a significantly lower cost that previously possible. This should 37 

provide new opportunities for regulatory and indicative monitoring for both scientific and 38 

industrial applications.  39 



 3 

1. Introduction 40 

Air pollution is a major problem not only affecting human health (Pascal et al., 2013; Rivas 41 

et al., 2021; Shiraiwa et al., 2017; Wu et al., 2016; Zeger et al., 2008), but also causing 42 

environmental deterioration and social disparity due to its effect on climate change 43 

(Manisalidis et al., 2020; Mannucci and Franchini, 2017; Moore, 2009). Air pollution is 44 

typically more problematic in urban environments which have multiple air pollution sources, 45 

or locations near pollution hot spots (Valavanidis et al., 2008, Bousiotis et al., 2021). The 46 

knowledge of air pollution sources is vital in understanding the air quality at a given site as 47 

well as for policy making and action to improve air quality.  Such knowledge was provided, 48 

until recently, by the analysis of data from expensive regulatory grade (RG) instruments. The 49 

use of RG instruments was not extensive due to their high cost and bulky size limiting their 50 

use almost exclusively for scientific research. As a result, there is limited knowledge of the 51 

sources that affect the air quality. This is in part due to the small number of deployments 52 

and hence low spatial resolution of these expensive instruments (Kanaroglou et al., 2005), 53 

especially in low- and middle-income countries. In these areas the problem of air quality and 54 

its effect on human health is of great importance and expected to further increase in the 55 

coming years as a result of their rapid industrial and population growth (Kan et al., 2009; 56 

Petkova et al., 2013). To combat this, in the past decade, the development of low cost 57 

sensors (LCS) measuring either PM or gas phase pollutant concentrations has intensified 58 

(Lewis et al., 2018; Penza, 2019; Popoola et al., 2018). These LCS are still far from being an 59 

equal alternatives to the more expensive RG instruments. Many limitations are associated 60 

with their use, with the main shortcoming being the inconsistency of their measurements, 61 

even for similar sensors deployed at the same site (Austin et al., 2015; Sousan et al., 2016), 62 

either due to operational and detector sacrifices that allow them to be inexpensive or from 63 

the effect of meteorological conditions that affect their measurements (Crilley et al., 2020; 64 

Hagan and Kroll, 2020; Wang et al., 2021). Thus, consistent calibration (Kosmopoulos et al., 65 

2020; De Vito et al., 2020) and data corrections (Crilley et al., 2018; Liang et al., 2021; Vajs et 66 

al., 2021) are required for these sensors to provide reliable measurements, although 67 

sometimes even this is not enough (Giordano et al., 2021). Nevertheless, these sensors have 68 

the potential to change the state of air pollution monitoring by allowing wider use and 69 

better spatio-temporal coverage. 70 
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Many applications of LCS have been found in recent years at sites that were previously 71 

inaccessible by regulatory instrumentation, either due to them being cost prohibitive 72 

(Miskell et al., 2018; Omokungbe et al., 2020; Pope et al., 2018), or due to their physical size 73 

limitations (Jovašević-Stojanović et al., 2015; Nagendra et al., 2019, Whitty et al., 2022). 74 

Additionally, the use of LCS made possible higher spatial resolution measurements than RG 75 

instruments (Feinberg et al., 2019; Krause et al., 2019; Prakash et al., 2021). Thereby greatly 76 

improving the ability to measure air quality at multiple locations of interest, even down to 77 

the neighbourhood scale (Schneider et al., 2017; Shafran-Nathan et al., 2019; Shindler, 78 

2021). LCS have been shown to help supplement existing regulatory networks (Weissert et 79 

al., 2020). While the applications of LCS provided the information of the level of air quality 80 

at more sites, vital information on air pollution sources and the environmental conditions 81 

that enable or inhibit air pollution, as well as their relative contributions is yet to be 82 

exploited by LCS data. Pope et al., (2018) using PM ratios, managed to separate and identify 83 

the effect of major sources of pollution in several cities in East Africa LCS data. Popoola et al, 84 

(2018) identified the sources of pollution near Heathrow Airport, London using a network of 85 

LCS. Bousiotis et al., (2021) using k-means clustering on PM data from both a LCS and an RG 86 

instrument, showed the strengths and limitations of the sensor, in measuring particle 87 

number concentrations and using them to identify the sources of pollution at a background 88 

site in Birmingham, UK. While these studies identified many sources and conditions that 89 

affect air quality, they provided no information on their temporal variability and the relative 90 

contributions of different sources.  91 

In the present study, a two-step PMF technique proposed by Beddows and Harrison (2019), 92 

an advanced version of a statistical method for source apportionment successfully applied 93 

in many studies with RG instruments (Beddows et al., 2015; Harrison et al., 2011; Hopke, 94 

2016; Leoni et al., 2018; Pokorná et al., 2016), is applied on data collected from various LCS. 95 

This provides a quantitative separation of the different sources and their contributions to a 96 

background site located in Birmingham. Furthermore, data from RG instruments and an 97 

Aerosol Chemical Speciation Monitor (ACSM) were used to provide further nuance to the 98 

analysis. This was done not only to compare the results from the two sets, but to further 99 

characterise the sources of larger sized particles at the site as well. The results of the 100 

present analysis are also compared with those from a previous study at the same site made 101 

by Bousiotis et al., (2021) using k-means clustering, displaying the additional information 102 
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provided by the PMF as well as to check the consistency of the results between the two 103 

methods. To the authors’ knowledge source apportionment with LCS data has only been 104 

attempted previously by Hagan et al., (2019) using Non-negative Matrix Factorisation (NMF, 105 

a version of PMF in which all components of the data matrix are weighted equally rather 106 

than with individual errors) on a dataset from New Delhi, India. This study provided 107 

information about combustion and non-combustion air pollution sources as well as their 108 

partial contributions in a three-factor solution.  The present work prepares the ground for 109 

future use of source apportionment with LCS in a variety of scientific and industrial 110 

scenarios. This will make more feasible their wider use, either as standalone air pollution 111 

sources data sources, or in combination with RG instruments for increasing spatial coverage. 112 

 113 

2. Methods 114 

2.1 Location of the site and instruments 115 

The measurement site is the Birmingham Air Quality Supersite (BAQS) located at the 116 

grounds of the University of Birmingham (52.45oN; 1.93oW) (fig. 1). This is an urban 117 

background site within a large residential area about 3 km southwest of the city centre of 118 

Birmingham. For this site, PM concentration measurements in the range 0.35 to 40 μm were 119 

collected using an Alphasense OPC-N3 in a 10 second resolution (averaged in 1-hour 120 

resolution) for the period between 16/10/2020 to 30/10/2020. Additionally, data from 121 

several LCS were also collected. NO, NO2 and ozone measurements were collected using the 122 

Box Of Clustered Sensors (BOCS, Smith et al., 2019) in the same time resolution, as well as 123 

black carbon (BC) concentrations using the MA200 sensor by Magee Scientific. Finally, the 124 

data for the lung deposited surface area (LDSA) of particles in the range of 10 nm to 10 μm, 125 

which is found to strongly correlate with BC emissions (Lepistö et al., 2022), was collected 126 

using a set of two Naneos Partectors by Naneos Particle Solutions GmbH. One sensor 127 

measured the surface of all particles in this size range, while the second is placed after a 128 

catalytic stripper (Catalytic Instruments CS015) which removes the semi-volatile particles 129 

(Haugen et al. 2022).  130 

Apart from the data provided directly from the sensor before the catalytic stripper, the ratio 131 

between the measurements of the two Naneos Partectors was also considered according to: 132 

 133 
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𝐿𝐷𝑆𝐴!"#$% =	
𝐿𝐷𝑆𝐴	𝑎𝑓𝑡𝑒𝑟	𝑡ℎ𝑒	𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐	𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟
𝐿𝐷𝑆𝐴	𝑏𝑒𝑓𝑜𝑟𝑒	𝑡ℎ𝑒	𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐	𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟	 134 

 135 

This was done to resolve whether such a configuration can provide additional information 136 

for the origin of pollution or the age of the pollutants in the incoming air masses, as 137 

increased concentrations of semi-volatile compounds are usually associated with 138 

anthropogenic sources, especially in the urban environment (Mahbub et al., 2011, Schnelle-139 

Kreis et al., 2007, Xu and Zhang, 2011). Thus, a high LDSAratio is expected to be associated 140 

with fresher pollution which usually has a higher content of volatile compounds (i.e., 141 

pollution sources at a close distance from the site), while lower ratios are probably 142 

associated with either cleaner conditions or more regional and aged pollution with higher 143 

concentrations of semi-volatile compounds, generally associated with sources at a greater 144 

distance from the measuring site. This specific metric was also used in our previous study 145 

(Bousiotis et al., 2021) and the consistency of the results between the two will be 146 

compared.  147 

For better characterisation of the larger particles, the Aerodyne ACSM was used, providing 148 

information about its composition in the size range between 40 nm to 1 μm for NO3
-, SO4

2- 149 

and organic content. For the comparison of the results, data from RG instruments were also 150 

used, namely a Palas FIDAS (for PM), a Teledyne T500U (for NOx), a Thermo 49i (for O3) and 151 

an AE33 aethalometer from Magee Scientific (for BC). Comparison of the regulatory 152 

instruments and the LCS allows for consistency of the results between instrument types to 153 

be checked. A detailed description of the operation and more information about the sensors 154 

and instruments used in this study can be found in Bousiotis et al., (2021).  155 

 156 

 157 

2.2 Positive Matrix Factorisation and data analysis 158 

The PMF is a multivariate data analysis, developed by Paatero (Paatero and Tapper, 1993; 159 

1994), which is the most commonly used method for source apportionment and has been 160 

applied numerous times in the field of aerosol science. The method is a weighted least-161 

squares technique that describes relationships among species measurements (Reff et al., 162 

2007). It assumes that X is a matrix of observed data, typically either particle number size 163 
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distributions (PNSDs) or chemical composition data, and u is the known matrix of the 164 

experimental uncertainty of X. Both X and u are of dimensions n ´ m (where n is the number 165 

of measurements and m is the number of species measured). The method solves the 166 

bilinear matrix problem X = GF + E where F is the unknown right hand factor matrix 167 

(sources) of dimensions p ´ m, G is the unknown left hand factor matrix (contributions) of 168 

dimensions n ´ p, and E is the matrix of residuals. The problem is solved in the weighted 169 

least-squares sense: G and F are determined so that the Euclidean norm of E divided 170 

(element-by-element) by u is minimized. Furthermore, the solution is constrained so that all 171 

the elements of G and F are required to be non-negative (Paatero and Tapper, 1994). Higher 172 

F values account for better association of the given variable with the factor it is assigned to, 173 

while higher G values account for greater contribution of the factor at the given time period.  174 

In the present analysis, a combination of both PNSD and particle composition data were 175 

used. Such a combination may cause several shortcomings in the application of the PMF as 176 

different types of data are used, due to the significant difference between the nature of 177 

each variable. While this could be overcome by increasing the total weights of the primary 178 

group of measurements (the one considered better in driving the model), this could be 179 

problematic in the treatment and importance of the auxiliary dataset in the model 180 

(Beddows and Harrison, 2019). To overcome these shortcomings the two-step PMF method, 181 

proposed by Beddows and Harrison (2019), was used. In the first step of the method, a part 182 

of the dataset is PMF-analysed (i.e. composition) and a solution is provided. The time series 183 

G values (and errors) of the solution from the first step are then used as input variables to 184 

the second step, where they are combined with the additional measurements (i.e. PNSD 185 

data) dataset applying a second PMF analysis (a flow diagram of the method used as 186 

presented by Beddows and Harrison, 2019 is found in figure S1). In the present study the 187 

opposite path was considered, with the first step using the PNSD provided by the OPC 188 

sensor and the inclusion of particle composition data in the second step. This was explicitly 189 

done for two reasons: 1. to test the capabilities of the LCS in source apportionment, 2. to 190 

connect specific PNSD profiles with specific pollution sources. Furthermore, on the second 191 

step of the analysis detailed in Beddows and Harrison (2019) the explained variance of the 192 

factors from the first step were maximised. This directly connects the additional variables in 193 

the second step with the PNSD profiles found in the first step, excluding the possible factors 194 
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formed with the data from the additional LCS data. In the present study, this step in this 195 

method was omitted, as the aim is to present the results of the receptor model as they 196 

occur in real life using a combination of LCSs measuring both particle number 197 

concentrations and composition. 198 

As PMF is a descriptive model there is no objective criterion in the choice of the optimal 199 

number of factors (Paatero et al., 2002). In all cases several solutions were tested, and the 200 

solution chosen was the one that provided factors with unique properties. Solutions with 201 

additional factors provided no extra information on additional sources, rather the additional 202 

factors separated factors that had already found into smaller groups with no significant 203 

covariation. 204 

For the study site, particle number concentration data were available from the OPC for 205 

particles of diameter < 40 μm, but only data up to 10 μm were used. This was due to the 206 

lack of sufficient non-zero counts in the larger size bins above that size threshold, which 207 

disfavours PMF analysis to be completed. Additionally, separate LCS data for NO and NO2 208 

were available from the BOCS. The NO data showed sensible variation (which is the more 209 

important factor in the PMF analysis), however, a great number of the NO data points had 210 

low negative values due to their very low concentrations, which is impossible data for the 211 

PMF algorithm. Rather than removing the negative numbers or artificially calibrating the 212 

data upwards, we use NOx (NO + NO2) as the variable of interest.  213 

Finally, to avoid the increased uncertainties from the use of unavailable data (as missing 214 

data are treated with increased uncertainties), a time window for which all data were 215 

available was chosen. Thus, data availability is 100% and no special treatment was 216 

considered for missing data. 217 

Finally, for the present study the PMF analysis was performed using the second iteration of 218 

the PMF software developed by Paatero (2004a; 2004b). Data was analysed using the 219 

Openair package for R (Carlslaw and Ropkins, 2012), and back trajectory data were 220 

extracted by NOAA Air Resources Laboratory and calculated using the HYSPLIT model 221 

(Draxler and Hess, 1998). 222 

 223 

 224 
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3. Results 225 

3.1 General conditions at the BAQS site and overall performance of the low-226 

cost sensors 227 

The measuring period (16th to 30th of October 2020) was chosen as it is a period which 228 

presented rather typical meteorological conditions in the area, had no missing data from 229 

any of the instruments used, and because they were the last days before the second 230 

lockdown due to COVID-19 was applied (31st of October 2020). General meteorological 231 

conditions were rather typical for the period in Birmingham, UK. As a result, the conditions 232 

and activities in the surrounding area found in this period are considered almost consistent 233 

with the normal conditions at the site in the autumn season. Mean temperature was 10.0 ± 234 

2.5°C and mean relative humidity was 87.9 ± 7.5 % (standard deviations are calculated using 235 

hourly data) during the measurement period. The average wind profile (Fig. S2) was also 236 

typical for the UK with mainly southwestern winds of relatively low speed (2.1 ± 1.1 m s-1).  237 

 238 

Most of the LCS correlated well when compared to their more expensive RG counterparts, 239 

using the Pearson correlation coefficient as the measure of correlation. The OPC-N3 240 

presented a strong correlation for PM1 (r = 0.88), though its performance weakened with 241 

greater sized PM (r = 0.49 for PM2.5 and r = 0.46 for PM10). The decreasing correlation from 242 

PM1 to PM2.5 to PM10 is likely due to greater wall losses in the tubing for the bigger particles. 243 

Strong correlations were also found from the BOCS sensors as well, with both O3 and NOx 244 

concentrations presenting high r values when compared with their respective RG 245 

instrument measurements (0.95 and 0.82 respectively). Finally, the BC measuring LCS 246 

presented lower agreement with the measurements from the RG instrument, with a 247 

Pearson correlation value of 0.40. It is noted, in the present study the absolute performance 248 

of the LCS is not of great importance and thus it is not analysed in depth. For the PMF model 249 

to present meaningful results the representation of the relative values and variability of the 250 

variables is crucial instead, and this is thoroughly tested in the present study.” 251 

 252 

3.2 First step PMF analysis (PNSD analysis) 253 

Following the discussed methodology a 4-factor solution was chosen for this analysis. The 254 

PNSD profiles of the factors found are presented in Figure S3. Due to the limited variation of 255 
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the PNSD profiles when presenting all the size bins available, making some of them appear 256 

identical (i.e. Factor 2 and 3, due to the increasing particle number concentration as the size 257 

decreases), the smallest particle diameter size bin at 400 nm (particle diameter range 258 

between 350 to 460 nm) was removed to better present the variation on the larger sizes. 259 

Thus, the particle profiles without the smallest available size are presented in Figure 2. The 260 

profiles in the range between 500 nm to 10 μm for the four factors, associated with unique 261 

formations extracted from the method are: 262 

• Factor 1, that presents no significant peaks in the measured range of the OPC, but 263 

does show a steady increasing trend with particle diameters below 1 μm 264 

• Factor 2, with a distinct particle diameter peak at about 2 μm 265 

• Factor 3, with a distinct particle diameter peak at about 2 μm and an increasing 266 

trend below 750 nm 267 

• Factor 4, accounting for particle diameter peaking at about 750 nm and 1.5 μm. 268 

 269 

3.3 Second step PMF with LCS data (LC analysis) 270 

The four-factor solution was also chosen in the second step analysis, for which the results of 271 

the first step are combined with the additional particle and gas phase composition datasets 272 

from LCS. The addition of more factors instead of adding information or providing clearer 273 

associations with the factors from the first step, it separated the existing factors and their 274 

association with the particle composition data into mixed factor groups with less significant 275 

contributions of the variables. The association of the variables with each factor is presented 276 

in figure 3, while the temporal variation of the contributions G of all the factors from this 277 

analysis is presented in figure 4, along with the wind profile for some periods when each 278 

factor was dominant. 279 

 280 

The four new factors are: 281 

LC1 (Local and city centre pollution on calm conditions): The LC1 is strongly associated with 282 

the first factor from the initial PMF on the PNSD. For the period when the contribution of 283 

this factor is higher (18th and 19th of October, see fig. 4) rather slow winds prevail from 284 

many sectors (in this case mainly from the southwest). This factor has higher contributions 285 

during calm conditions and during periods with north-eastern winds, though with lower 286 
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contribution (Fig. 5). It is highlighted that at the northeast of the specific site is the city 287 

centre of Birmingham which is one of the main sources of pollution as found from a 288 

previous study (Bousiotis et al., 2021). Looking at the diurnal variation (Fig. S4) of this factor 289 

we see increased contributions during early morning and evening hours, likely associating it 290 

with the morning and evening rush hours. The increased contributions during night-time 291 

should not be overlooked and are probably the result of the lower boundary layer height 292 

(BLH) during this time of the day. Additional data analysis shows an increased association of 293 

this factor with PM1 (Fig. 3), though this association is reduced for particles of larger sizes, 294 

further confirming the lack of additional peaks on greater sizes. This along with the 295 

increased association with the LDSA indicates the presence of large number of particles 296 

below the detection limit of the instrument. This factor is also associated with almost all the 297 

pollutants used, such as NOx, CO and BC, though not as strongly as factor LC3 that is 298 

discussed below, probably associated with pollution sources in a closer range to the 299 

measuring station, as well as to a smaller extent with pollution from the city centre. Its 300 

connection with air masses from the northeast is also confirmed from the back trajectory 301 

analysis (Fig. 6), in which the highest contributions of this factor were found for air masses 302 

from the northeast. 303 

LC2 (Marine): This factor is strongly associated with the fourth PNSD factor from the initial 304 

analysis (fig. 3). It presents relatively high association with PM which increases as the size 305 

increases. No other significant association is found rather than relatively weak ones with 306 

ozone, CO and the LDSAratio. It does not have a clear diurnal variation (fig. S4), though it has 307 

slightly increased contributions during night-time. Higher contributions for this factor are 308 

found with south and south-eastern winds of high speed (fig. 4 and 5). This can be seen in 309 

Figure 4, where the highest contributions of this factor are associated with strong southern 310 

winds. The marine nature of this factor is clearly highlighted through the back trajectory 311 

analysis for this factor (Fig. 6) in which higher contributions are mostly found with air 312 

masses originating from the north Atlantic Ocean, while some contributions from southern 313 

Spain and Africa, which may be associated with Saharan dust and pollution from these 314 

areas. 315 

LC3 (midday city centre and southwest pollution): This factor does not have any significant 316 

association with any of the factors from the PMF analysis of the PNSD (fig. 3). It presents 317 

greater contributions during the midday (fig. S4), and it is associated with north-eastern and 318 



 12 

southwestern winds (fig. 5). It has high contributions with all the pollutants included in the 319 

analysis and the LDSAratio, which points to fresher pollution (pollution sources closer to the 320 

measuring station). Such sources of pollution in most cases are associated with particles of 321 

sizes smaller than that measured by the OPC, hence the lack of association with any of the 322 

factors found from the PNSD analysis. The back trajectory analysis provides no clear origin 323 

for the air masses of this factor (fig. 6), which may indicate a relatively smaller pollution 324 

lifetime, which is associated with incoming air masses from all directions. 325 

LC4 (Urban background): This factor has a rather strong association with the second factor 326 

from the PNSD analysis and a weaker one with the third one (Fig. 3). It does not have a clear 327 

diurnal variation (fig. S4) and it is mainly associated with north-eastern winds (Fig. 5). It 328 

presents weak associations with all the variables inputted in the PMF analysis making it hard 329 

to distinguish either a source or conditions for which this factor is enhanced. The back 330 

trajectory analysis though shows that this factor is associated with air masses from 331 

continental Europe as well as Scandinavia (Fig. 6), which for the UK, usually contain aged 332 

and hence typically larger secondary PM pollutants. 333 

 334 

3.4 Second step PMF with RG data (RG analysis) 335 

While the primary aim of the present study is to highlight the capabilities of LCS in source 336 

apportionment, the measurements provided by these devices are mainly focused on gas 337 

phase pollutants which are in most cases associated solely with ultrafine particles. The OPC 338 

measurements used for this site have a particle diameter range between 400 nm to 10 μm. 339 

Thus, apart from using data from RG instruments measuring gas phase pollutants, it was 340 

considered sensible to add data from an ACSM, which measures compounds associated with 341 

larger particles, such as nitrate, sulphate, and organic compounds (used in this analysis).  342 

Some of the factors in this analysis are rather similar with those formed from the analysis 343 

using LCS dataset. Thus, the RG1 factor in this analysis is mainly associated with the first 344 

factor from the PNSD analysis in the first step (Fig. 7), similar to that found also in LC1 (Fig. 345 

3). The wind conditions are also similar for which these factors from the two analyses 346 

present their highest contribution (Fig. 8), as well as their temporal variation (Fig. S5) and 347 

diurnal variation (Fig. S6). The additional information granted using the ACSM data is the 348 

strong association of this factor with nitrate, and a stronger association with NOx and BC are 349 
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also found, compared to the LC analysis. This further associates this factor with nearby 350 

sources of pollution which prevail with low wind speeds and may associate the conditions of 351 

this factor with the low BLH height found during that time, though high contributions were 352 

also found for early morning and evening hours, as in the LC analysis for the similar factor. 353 

Finally, the back trajectory analysis (fig. 9) shows higher contributions associated with air 354 

masses from the northeast, further confirming its similarity with the first factor from the LC 355 

analysis and its urban origins. 356 

The RG2 is unique and has no association with the factors from the PMF on PNSD data and 357 

is strongly associated only with sulphate (Fig. 7). It does not have a clear diurnal variation 358 

(fig. S6) and seems to have higher contributions with southwestern winds of rather high 359 

speed and to a lesser extent with north-easterly winds (Fig. 8). The back trajectory analysis 360 

(Fig. 9), while presenting few relatively high contributions from continental Europe, mainly 361 

associates this factor with incoming air masses from all sea origins surrounding the UK. This 362 

is expected as the ocean is a source of sulphate containing compounds (for the particles at 363 

the size range measured by the OPC), either sea-salt sulphate or marine biogenic sulphate 364 

(Lin et al., 2012; Raes et al., 2000). 365 

The RG3 is similar to the LC2 and is mainly associated with the fourth factor from the PNSD 366 

analysis and to a lesser extend with the third (Fig. 7). This factor has slightly increased 367 

contributions during night-time (Fig. S6) and south and southwestern winds (Fig. 8). It 368 

presents increased associations with increasing PM size, though in this case it is also 369 

strongly associated with O3. Unfortunately, no Cl or Na data were available to further 370 

determine the marine nature of this factor. The back trajectory analysis though once again 371 

presents higher contributions with marine air masses (Fig. 9), though some hot spots are 372 

also found from continental Europe, which probably explain to an extent the small 373 

associations found with NOx and organic compounds from the ACSM.  374 

Finally, the RG4 is mainly associated with the second factor and to a lesser extent with the 375 

third from the PNSD analysis (Fig. 7). It presents higher contributions with north-eastern 376 

winds (Fig. 8), has an unclear diurnal variation (Fig. S6), and presents higher contributions 377 

with air masses from continental Europe (Fig. 9), like the LC4 from the second-step analysis. 378 

While in that analysis it was difficult to characterise the sources for that factor, the strong 379 

association with organic compounds found here with the addition of the ACSM data helps in 380 

its clearer characterisation. 381 
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 382 

4. Discussion 383 

4.1 Comparison of the results from the second-step analysis 384 

It should be noted that regardless of any possible similarities between the two (second-385 

step) analyses, a direct comparison of the results should be conducted with great care. As 386 

different variables are considered, even minor differences may result in different trends, 387 

contribution of variables and the sources described. Regardless, the results of the two 388 

analyses have great similarities especially on specific factors that are associated with the 389 

same particle size distribution profiles (from the PNSD analysis), contribution of chemical 390 

compounds and diurnal variation. Three factors were found to have great similarities and 391 

were associated with similar particle profiles. Specifically, these are the factors describing 392 

the sources of particles which are either in close proximity to the measuring station or occur 393 

with almost calm conditions (Factor 1 on both analyses), the marine factor (Factor 2 on LC 394 

analysis and 3 on RG analysis) and the continental factor (Factor 4 on both analyses). 395 

Looking at their temporal contributions (Fig. 4 and S5), the first factors on both analyses 396 

appear to consistently peak on periods when the second set of factors (LC2 and RG3) 397 

presents lower G contributions (and vice versa), which is expected due to the nature of their 398 

sources. The factors on both sets though have almost identical temporal variation of their G 399 

contributions regardless of the dataset. For the fourth factors on both analyses, though 400 

presenting similar associations with their variables, differences are found in their temporal 401 

variations with the addition of the ACSM data. This shows that while these factors appear to 402 

be almost identical, small differences can still be found in their temporal variation and 403 

variable associations, when different datasets are considered. Nevertheless, the addition of 404 

the ACSM data shows a very high contribution of NO3
- on the first RG factor, SO4

2- for the 405 

second factor and the organic component on the fourth factor.  406 

The remaining factor from both analyses though is completely different between the two 407 

analyses and point towards the differences on the variables used for each. In the LC analysis 408 

the factor formed consists of sources that are associated with fresher pollution sources. 409 

Thus, a factor with strong associations with all the pollutants available was formed, it was 410 

not associated with any of the PNSD formations from the first-step analysis and presented a 411 

unique diurnal variation peaking midday. This should be expected as the particle size 412 



 15 

measured by the OPC is much larger compared to the size of the particles these chemical 413 

compounds are usually associated with. The occurrence of this factor was probably included 414 

partially to the first and fourth factor of the RG analysis, as these present relatively higher 415 

associations with NOx and BC and more enhanced contributions during midday hours 416 

compared to their LC analysis counterparts.  417 

Finally, using the RG instrument data, the additional factor is associated with sulphate 418 

alone. This is a result that was consistent regardless of the number of factors used, either 419 

greater or smaller. Sulphate containing compounds have a lower volatility compared to the 420 

other chemical compounds used in the analysis and is relatively more stable with a rather 421 

small seasonal variation (Utsunomiya and Wakamatsu, 1996), thus having a longer lifespan 422 

and distance of travel. As a result, sulphate was found not to be associated with any other 423 

chemical compound and always formed a factor of its own (regardless of the number of 424 

factors chosen).  425 

 426 

4.2 Comparison with the results from a previous study. 427 

Although different methodologies were used with the previous analysis for the BAQS site 428 

(Bousiotis et al., 2021), as well as for different time periods, many similarities were found 429 

for the sources of particles at the site. The main source of smaller particles at the site in the 430 

previous analysis is found to be the city centre in the northeast, for which relatively high 431 

concentrations of NOx were found. Similar is the case in the present analysis, as for the 432 

sources found to be associated with north-easterly winds an association was also found with 433 

NOx and the LDSAratio. Additionally, a source of sulphate found with southerly winds was also 434 

confirmed in the present study, with the association of high sulphate concentrations with a 435 

factor, which presents higher contributions with winds from the southern sector. While in 436 

the previous analysis the sources responsible for this source could not be pinpointed, in the 437 

present analysis, using a back trajectory analysis, the sulphate factor was associated with 438 

marine particle sources from all directions. Furthermore, a factor in the present analysis, 439 

which identifies hot spots south of the measuring station with strong presence of PM of all 440 

sizes, was also found with the k-means analysis in the previous study, though in that case it 441 

was more associated with the pollution sources from that side rather than the long-range 442 

transport found here.  443 



 16 

These similarities are very encouraging, as even though the analyses were made for 444 

different periods and using different methods, there is consistency between the results. This 445 

means that regardless of the different seasons studied (previous analysis was performed 446 

during winter to early spring), the sources of particles (and pollution) are relatively uniform, 447 

without significant changes.  448 

Additionally, the k-means method identified sets of conditions that either promote or 449 

supress the pollution at the sites (as this can be illustrated with the variable particle 450 

concentrations between the clusters found from the analysis), rather than separate sources 451 

of pollution that affect the site. While this provides a more realistic picture of the conditions 452 

it makes it harder to distinguish the specific sources and their effect in its air quality. On the 453 

other hand, the PMF not only provides clearer separation of the sources, but the temporal 454 

contribution of each source as well, which shows the real extent of the effect of each source 455 

of particles or pollutants, thus achieving source apportionment rather than just the 456 

identification of pollution sources that the k-means offers. The k-means approach identifies 457 

the effect of the sources of particles, but it also separates cleaner periods as separate 458 

clusters. These two effects gives a more complete overall picture of the air quality at a site.  459 

PMF could also provide this information, but it would be more difficult to obtain looking at 460 

the different sources and the conditions that keep them to low contributions (this would 461 

also require a much greater number of factors).  462 

Furthermore, due to the complexity of the clusters from the k-means, pinpointing the 463 

sources that the particles are associated with is difficult. This is due to the clusters, being a 464 

set of different sources and conditions rather than clearly separated sources, were not 465 

clearly associated with distinct wind directions, speeds or hot-spots. Contrary to that, the 466 

factors formed by the PMF present clearer association with specific sectors, thus making it 467 

easier to define the sources associated with them, as in the results they are presented as 468 

hot spots within the polar plots. 469 

The analysis of atmospheric data using either k-means or PMF are proven to provide 470 

adequate and trustworthy information for the sources of particles and by extension of 471 

pollution at a site, even with the sole use of LCS as shown in this paper and the preceding 472 

Bousiotis et al. 2021 paper. The combined use of both approaches provides a clearer picture 473 

of the different sources and their effect, as the PMF is able to better separate and provide 474 

the effect of the sources of pollution that affect the air quality at a site and the k-means 475 
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provides a more realistic representation of the conditions at a site, by showing the 476 

combined effect of these sources. The relative consistency of the results found between the 477 

two analyses, even being in different time periods, is very encouraging and shows that the 478 

very important information of pollution receptor modelling is viable with LCS, providing a 479 

much-needed alternative for countries or scenarios where the use of regulatory-grade 480 

instruments is not feasible. The significantly lower price point of LCSs means that in addition 481 

to hyperlocal measurement of air pollution, it should now be possible to deliver hyperlocal 482 

source apportionment of air pollution though as highlighted within this study, there are 483 

some limitations for specific sources associated with pollutants with certain properties. 484 

Further exploration of these limitations and design of methodologies to overcome them, 485 

can enhance their capability and open new research and industrial abilities to pinpoint air 486 

pollution sources and subsequently manage them.  487 

Finally, the LDSAratio, a variable that was introduced in the previous analysis, was included in 488 

the present one as well. As in the previous analysis, this ratio was found to be more 489 

associated with fresher pollution from combustion sources near to the measuring station, 490 

for which it has reliably performed in both analyses.  491 

 492 

5. Conclusions 493 

To solve air quality problems and to deliver the associated policy making effectively, it is 494 

vital to have a methodology to measure the sources of air pollution, and their relative 495 

importance. Historically, this has been achieved using expensive RG instruments. The cost 496 

implications of these studies make assessment at dense spatial resolutions limited. In this 497 

study, data from a low-cost OPC and other LCS, measuring gas phase pollutants, black 498 

carbon and the lung deposited surface area of particles in BAQS were analysed using the 499 

two-step PMF analysis. Four factors were formed from this analysis and were associated 500 

with their respective sources and to a great extent with unique PNSD profiles. The following 501 

factors were found: a factor associated with either combustion sources in close proximity of 502 

the measurement site or associated with calm conditions, a marine factor, a factor 503 

associated with midday activities from the city centre and a more constant factor from the 504 

northeast. The same analysis was also performed using data from RG instruments and the 505 

same PNSD factors. This was done to evaluate the results from the low-cost sensor analysis, 506 
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as well as to further characterise and clarify the sources associated with the factors formed. 507 

Significant agreement was found between the results of the two analyses, highlighting that 508 

the LCS are capable for carrying out such analyses. The additional ACSM data from the 509 

second analysis further helped in the characterisation of the composition of the particles of 510 

each factor, clarifying the sources associated with nitrate, sulphate and organic compounds 511 

at the site, as well as strongly associating some with unique PNSD profiles. While in their 512 

present state, the LCSs do not possess the full capability of the RG instruments for providing 513 

high accuracy measurements, considering the limitations they were found to be adequate in 514 

providing with the trends of the particles and pollutants measured which are important for 515 

source apportionment studies. This is done at a fraction of the equipment cost; see 516 

Bousiotis et al. 2021 for cost estimates. 517 

Furthermore, comparing the results from the PMF to those from the k-means analysis 518 

showed the different strengths and weaknesses of each approach. The PMF is better in 519 

pinpointing the effect of separate sources of pollution, but it is difficult to give a clear 520 

representation of the actual conditions when each factor affects the site. The k-means is not 521 

as efficient in clearly separating the different sources, but it does provide a more realistic 522 

picture of the air quality at a site in relation to the ambient conditions. The combined use of 523 

both methods though provided a clearer picture for the conditions at the site. 524 

The methodologies developed and used in this study will help to reliably facilitate source 525 

apportionment studies in the future, with either the sole use of LCS or their combination 526 

with RG instruments. As for a given site, specific PNSD formations are associated with 527 

specific conditions and sources (Harrison et al., 2011), by creating a repository of unique 528 

PNSDs at a site and associating them with their respective sources, in the future the source 529 

apportionment may be done to an extend using only PNSD profiles and meteorological data 530 

alone. This will do much in simplifying the source apportionment process allowing its wider 531 

application and help in dealing with environmental challenges, though it can be challenging 532 

in sites with particle emissions smaller than what the OPC can measure (ex. vehicle exhaust 533 

emissions). For this though, further testing in more diverse environments and scenarios is 534 

needed which, along with the anticipated development of the LCS, will provide a denser and 535 

reliable measuring network even for countries with lower incomes and help for cleaner and 536 

healthier environmental conditions. 537 

  538 
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FIGURE LEGENDS 850 

 851 

Figure 1:    Map of the measuring station. 852 

 853 

Figure 2:  Particle profiles of the factors from the PMF analysis (> 500 nm). The lines 854 

indicate the average particle count per second for each particle size bin. 855 

 856 

Figure 3:  Variable association for the factors from the LC analysis. Grey bars indicate 857 

the values of F, while red bars indicate the explained variations for each 858 

variable. 859 

 860 

Figure 4:  Temporal variation of the contributions of the factors from the LC analysis. The 861 

windroses refer to the wind conditions for the corresponding periods when 862 

specific factors presented higher G contributions. 863 

 864 

Figure 5:  Polar plot of the average G contributions of the factors from the LC analysis. 865 

 866 

Figure 6:  Average G contribution of the factors from the LC analysis for incoming air 867 

masses. Higher contributions indicate better association of the given factor 868 

with the corresponding air mass origin. 869 

 870 

Figure 7:  Variable association for the factors from the RG analysis. Grey bars indicate the 871 

values of F, while red bars indicate the explained variations for each variable.  872 

 873 

Figure 8: Polar plot of the average G contributions of the factors from the RG analysis. 874 

 875 

Figure 9:  Average G contribution of the factors from the RG analysis for incoming air 876 

masses. Higher contributions indicate better association of the given factor 877 

with the corresponding air mass origin. 878 

 879 
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 881 

Figure 1: Map of the measuring station. Imagery @2022 Bluesky, Getmapping plc, Infoterra 882 

Ltd & Bluesky, Maxar Technologies, The GoeInformation Group, Map data 883 

©2022 884 
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 889 

Figure 2: Particle profiles of the factors from the PMF analysis (above 500 nm). The lines 890 

indicate the average particle count per second for each particle size bin. 891 
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 895 

 896 
Figure 3: Contribution of the factors from the LC analysis. Grey bars indicate the values of F, 897 

while red bars indicate the explained variations for each variable.  898 

 899 



 34 

 900 

Figure 4: Temporal variation of the contributions of the factors from the LC analysis. The 901 

windroses refer to the wind conditions for the corresponding periods when specific factors 902 

presented higher G contributions. 903 
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 905 

Figure 5: Polar plot of the average G contributions of the factors from the LC analysis. 906 
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LC4 911 

Figure 6: Average G contribution of the factors from the LC analysis for incoming air masses. 912 

Higher contributions indicate better association of the given factor with the corresponding 913 

air mass origin. 914 
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 922 

Figure 7: Variable association for the factors from the RG analysis. Grey bars indicate the 923 

values of F, while red bars indicate the explained variations for each variable.  924 

 925 

 926 

 927 

Figure 8: Polar plot of the average G contributions of the factors from the RG analysis. 928 
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Figure 9: Average G contribution of the factors from the RG analysis for incoming air masses. 933 

Higher contributions indicate better association of the given factor with the corresponding 934 

air mass origin. 935 


