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Lidar and Ka-band Millimeter-Wave Cloud Radar (MMCR) are powerful equipment to detect the height 6 

distribution of cloud boundaries, which can monitor the whole life cycle of cloud layers. In this paper, we employ 7 

lidar and MMCR to jointly detect cloud boundaries under different conditions (e.g., single-layer clouds, multilayer 8 

clouds, and precipitating clouds). By enhancing the echo signal of lidar @1064nm and combining its SNR, he 9 

cloud signal can be accurately extracted from the aerosol signals and background noise. The interference signal is 10 

eliminated from the power spectrum of the MMCR by using SNRmin and the spectral point continuous threshold, 11 

and the quality control of the meteorological signal (echo reflectivity factor) obtained by the inversion is carried out, 12 

which improves the detection accuracy of the cloud signal. Based on the advantages and disadvantages of the two 13 

devices in detecting cloud boundaries under different conditions, cloud boundary statistical rules are established to 14 

analyze the characteristics of cloud boundary changes in Xi'an in 2021. The seasonal variation characteristics of 15 

clouds show that the frequency distribution of cloud boundaries in vertical height in spring and summer has a 16 

similar variation trend. The normalized cloud amount is the lowest in spring (0.65) and the highest in summer 17 

(2.46). The frequency distribution of high-level clouds (at 11~12 km) is the highest in autumn, and the clouds in 18 

winter are mainly distributed below 8 km. Furthermore, the cloud boundary frequency distribution results for the 19 

whole year of 2021 show that the cloud bottom boundary below 1.5 km is more than 10%, the frequency within the 20 

height range of 3.06 km~3.6 km is approximately 3.24%, and the frequency above 8 km is less than 2%. The cloud 21 

top boundary frequency distribution has the characteristics of a bimodal distribution. The first narrow peak lies at 22 

approximately 1.5~3.1 km, and the second peak appears at 7.5~10.5 km. 23 
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1 Introduction 26 

 Cloud is a mixture of water droplets or ice crystals suspended in the air at a certain height through condensation 27 

or condensation after the water vapor in the atmosphere reaches saturation (Wang et al., 1998; Zhou et al., 2016; 28 

Wild et al., 2012; Stephens et al., 2012). Cloud vertical structure information (Thorsen et al., 2013; Lohmann et al., 29 

2017; Stephens et al., 2005; Wang et al., 1995; Nakajima et al., 1991) reflects the thermodynamic and dynamic 30 

processes of the atmosphere and participates in the global water cycle through formation, development, movement 31 

and dissipation (Wild et al., 2012; Zhang et al., 2012; Zhang et al., 2017; Sherwood et al., 2014). However, the 32 

vertical structure distribution of clouds has great temporal and spatial heterogeneity and a high change rate, which 33 

leads to great challenges in accurately evaluating the radiation effects of clouds at different cloud types and heights. 34 
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Notwithstanding, research on the characteristics of cloud vertical structures has always been an important direction 35 

of cloud physics research (Zcab et al., 2019). Cloud boundaries are the main information in the study of cloud 36 

vertical structure, mainly referring to the cloud bottom and cloud top boundary, of course including the side 37 

boundary. The cloud boundary in this paper mainly refers to the cloud bottom and cloud top boundary. In the case 38 

of multilayer clouds, it also includes the boundary information of intermediate discontinuous clouds (Zhou et al., 39 

2019; Varikoden et al., 2011; Li et al.,2013; Ward et al.,2004; Zhang et al., 2018; Kuji et al.,2013; Kitova et al. 40 

2003; Cao et al. 2021). With the development of remote sensing detection technology, MMCR (Görsdorf et al., 41 

2015; Kollias et al., 2017; Kollias et al., 2007) and lidar (Apituley et al., 2000; Motty et al., 2018; Cordoba et al., 42 

2017) are effective instruments for cloud boundary detection. 43 

The common methods of detecting cloud boundaries by lidar include the threshold method and differential 44 

zero-crossing method. The threshold method (Kovalev et al., 2005) uses the background signal to measure the 45 

amplitude of the echo signal. The first point where the echo signal is higher than the background signal and exceeds 46 

the set threshold is the cloud bottom boundary. However, in fact, due to the existence of noise, the point with an 47 

obvious increase in amplitude may not be found under the condition of a low signal-to-noise ratio (SNR), so the 48 

cloud bottom boundary cannot be judged. The differential zero-crossing method proposed by Pal et al. (Pal et 49 

al.,1992) differentiates the echo signal to obtain dP/dr, and the zero crossing point from negative to positive is the 50 

cloud bottom boundary. The threshold method, differential zero crossing method and variant detection method are 51 

all based on feature points of cloud boundaries (Streicher et al., 1995). It is easily affected by noise, and some 52 

indicators must be introduced in the specific implementation process to determine the cloud boundary through 53 

complex detail debugging, which brings certain difficulties to accurate cloud boundary detection. Young (Young et 54 

al., 1995) designed an independent double-window algorithm to detect cloud bottom and top boundaries by 55 

combining the lidar signal and a known atmospheric backscatter signal, but the algorithm needs to manually adjust 56 

the window size or the selection of the threshold. Based on the WCT (wavelet covariance transform) method, 57 

Morille et al. ( Morille et al., 2007) determined the local maxima on both sides of the cloud peak as the cloud 58 

bottom and cloud top, but the cloud bottom and cloud top detected by this method will be overestimated and 59 

underestimated, respectively. Mao Feiyue (Mao et al., 2011) adopted a multiscale hierarchical detection algorithm, 60 

selected the starting and ending points of the feature area as the cloud bottom and cloud peak, and realized the 61 

detection of cloud top and cloud bottom through multiple iterative updates. 62 

The determination of the cloud boundary by MMCR is mainly based on the threshold of the echo reflectivity 63 

factor to detect the cloud boundary ( Haper et al., 1966; Hobbs et al.,1985; Platt et al., 1994; Brown et al., 1995). 64 

Kollias et al. (Kollias et al., 2007) judged the SNR value of a 5×5 grid centered on a distance library. If the SNR of 65 

more than 9 consecutive libraries reaches the threshold, the distance library is a cloud signal; otherwise, it is judged 66 

as a noncloud signal. Clothiaux et al. ( Clothiaux et al.,1999) used 35 GHz millimeter wave cloud measuring radar 67 

to analyze different types of clouds and considered that the dynamic range of the cloud reflectivity factor is -50~20 68 

dBZ. Due to the existence of certain ground object echoes and biological groups (including insects and other 69 

biological particles) in the lower atmosphere, it will interfere with the real cloud echo signal (Luke et al.,2008; 70 

Görsdorf et al.,2015; Oh et al.,2016; Melnikov et al.,2013; Melnikov et al., 2015 ). If the subjective reflectivity 71 

factor threshold is directly used to determine the cloud signal, it is not suitable for all cloud types. Therefore, when 72 
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the cloud signal cannot be accurately identified, it will result in large errors in the detection of cloud boundaries. 73 

Research on the macro- and microscopic structures of clouds in a specific area mainly relies on ground-based 74 

observations. At present, for better cloud detection, it is necessary to combine lidar and MMCR to observe and 75 

study local clouds ( Sauvageot et al.,1996; Intrieri et al., 1993; Wang et al., 2000; Sasse et al., 2001). This study 76 

will combine the advantages of lidar and MMCR in detecting clouds to achieve high-precision cloud boundary 77 

detection and inversion. We effectively identify cloud signals from the power spectrum data of MMCR, and 78 

through data quality control, the interference signal caused by floating debris is eliminated to improve the detection 79 

accuracy of the cloud boundary. Based on the idea that the MMCR only presents the cloud signal to make cloud 80 

boundary detection simple and easy to operate, in this paper, we effectively separate the cloud signal from aerosol 81 

and background noise by enhancing and transforming the lidar signal and combining the SNR (Xie et al., 2017) to 82 

realize the accurate detection of cloud boundaries. By analyzing the results of cloud boundary detection by two 83 

instruments under special weather conditions in Xi'an, the cloud boundary evaluation criteria for the joint 84 

observation of the two instruments are established, and the variation characteristics of cloud boundary height over 85 

Xi'an in 2021 are statistically analyzed in detail. 86 

2 Observation and Instrument 87 

Xi'an (107.40 ~ 109.49°E and 33.42 ~ 34.45°N) is located in the Guanzhong Basin in the middle of the Weihe 88 

River Basin, bordering the Weihe River and the Loess Plateau to the north and the Qinling Mountains to the south. 89 

Xi'an has a semihumid climate. Due to its special geographical location, it is particularly urgent to analyze cloud 90 

observations and analyses in Xi'an. The lidar and MMCR are installed at the Jinghe National Meteorological 91 

Station in China, placed side by side at a distance of 50 m, and both adopt vertical observation mode to obtain the 92 

vertical structure information of sky clouds. Fig. 1 shows the topography of Xi'an and the site location of the Jinghe 93 

Meteorological Station. 94 

 95 

Fig. 1. Geographical coverage of Xi'an (107.40-109.49°E, 33.42-34.45°N). The red dot indicates the location of the Jinghe National 96 
Meteorological Station in Xi'an. 97 

The lidar used in this paper was developed by Xi'an University of Technology. The Ka-band Millimeter-Wave 98 

Cloud Radar (MMCR) is the HT101 all-solid-state cloud radar researched by Xi'an Huateng Microwave Co., Ltd. 99 
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Its main parameters are shown in Table 1 and Table 2. 100 

Table 1 Main parameters of the lidar 101 

Indicators
 

Devices Main parameter 

Launch system Laser Nd:YAG; 0.75J@1064nm 

Receiving system 
Cassegrain telescope Φ400 mm 

Filter 0.5 nm 

Detection system 
Detector APD 

Sampling mode Analog detection 

Spatiotemporal 

resolution 

Time resolution 2 mins 

Range resolution 3.75 m 

Pulse accumulation 2000 

 102 

Table 2 Main parameters of MMCR 103 

Indicators Detailed description 

Radar system All solid-state; All coherent Doppler; Pulse compression 

Working frequency 35 GHz, and wavelength is 8.6 mm 

Detection altitude range ≥15 km 

Detection blind area 150 m 

Spatiotemporal 

resolution 

Time resolution
 

5s 

Range resolution
 

30 m 

Scanning mode Vertical headspace fixed pointing 

Pulse width 1μs、5μs、20μs  

Detection accuracy Z≤0.5 dB、V≤0.5 m/s、W≤0.5 m/s 

3 Method 104 

Using active instruments to determine cloud boundaries through remote sensing measurements, echo signals in 105 

clear sky areas decay rapidly with increasing detection distance. When the cloud signal is detected, the amplitude of 106 

the echo signal begins to increase sharply. Usually, in the actual observation process, the background noise or 107 

aerosol layer will also increase the amplitude of the echo signal, but the backscattering intensity of the cloud layer 108 

is more continuous and stronger than the aerosol layer and background noise. Therefore, cloud layer and cloud 109 

boundary detection can be realized according to the characteristic changes of echo signals. 110 

3.1 Lidar cloud boundary detection 111 

When using lidar for detection, the laser beam propagates in a clear atmosphere, and the received echo power 112 

continuously decreases with increasing detection height. However, the beam into the clouds (or aerosols, etc.), the 113 

echo power increases suddenly and becomes stronger at a distance above the cloud bottom. The lidar equation 114 

owing to elastic backscattering can be written as (Motty et al., 2018), 115 

( ) ( ) ( )2 0

,
, exp -2 , ' ' + ( , ) ( , '')

r

bcak

r r
P r C r dr E r N r

r
b λ

λ σ λ λ λ
∆ ⋅  = ⋅ ⋅ +  ∫       (1)

 116 
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where λ is the wavelength of the emitted light, r represents the detection distance, and C is the system constant, 117 

which is determined by the laser energy, the receiving area of the telescope, the quantum efficiency of the detector, 118 

etc. Δr is the detection range resolution of the system, and ( ), rβ λ and ( ), 'rσ λ  are the atmospheric backscattering 119 

coefficient and atmospheric extinction coefficient, respectively. ( , '')bcakN rλ  is the background noise received by 120 

the system. ( , )E rλ  represents noise brought to the detection system obtained by calibration. 121 

To avoid amplifying the high-level noise signals, we do not perform the distance square correction Eq. (1) and 122 

directly process it as follows: 123 

( ) ( ) ( ) ( ), , , ''
, bcak

new

P r E r N r
P r

C r
λ λ λ

λ
− −

=
⋅∆             

(2) 124 

For ground-based lidar, the echo signal at a certain height range (>15 km in this study) can be considered 125 

background and electrical noise, ( , '')bcakN rλ  can be estimated with the signal within this range, and the standard 126 

deviation of the noise within the distance range is calculated: 127 

1
2

1 1

1 1
1

n n

i i
i i

Sd x x
n n= =

  = −  −   
∑ ∑       (3) 128 

where x is the background noise signal. The noise of the lidar signal can be expressed as 129 

( )oiseN r k Sd= ⋅      (4) 130 

After statistical analysis of the system noise, we set k=4 in this paper. Usually, the moving average of ( ),newP rλ  131 

is performed to reduce the influence of random noise. However, the selection of the sliding window directly affects 132 

the quality of the signal. Therefore, in this paper, we use the soft-threshold wavelet denoising method to process 133 

( ),newP rλ  to obtain ( )_ ,new sP rλ . To avoid atmospheric turbulence and noise interference,  ( )_ ,new sP rλ  is processed 134 

in one step according to the algorithm flow in Fig. 2, and the enhanced signal ( )_ ,new spP rλ  is obtained, as shown in 135 

Fig. 3b) and Fig. 4b). The cloud signal is prominently increased from the background noise and the aerosol signal 136 

compared to Fig. 3a) and Fig. 4a). In this paper, we consider that the echo signal above 15 km is caused by 137 

background and electrical noise. By fitting the echo signal slope in the height range of 15 km~20 km, the slope is 138 

used as the base slope to distinguish the cloud layer and aerosol layer (as shown by the magenta line in Fig. 3b and 139 

Fig. 4b). Without considering the bottom echo signal (0~2 km), the amplitude of the echo signal received by the 140 

lidar will decrease with increasing detection height according to the fitted slope, as shown by the blue line baseline 141 

in Figs. 3b) and 4b). When the beam senses the presence of clouds, the amplitude of the echo signal will exceed the 142 

blue baseline. The SNR of the echo signal is an important parameter to distinguish the cloud layer and aerosol layer 143 

in the echo signal and calculate the SNR of Pnew_sf  with Eq. (5) (Xie et al., 2017), 144 

( ) ( )
( )

,
,

, back

N P r
SNR r

N P r N P
λ

λ
λ

⋅
=

⋅ + ⋅
   (5) 145 

where N is the pulse accumulation and Pback is the solar background noise power. As shown in Figs. 3c) and 4c), the 146 

SNR of the cloud layer is higher than that of the aerosol layer and background noise, and the SNR in the cloud 147 

layer is approximately equal to 5 (obtained based on multidata statistical analysis in different situations). Combined 148 

with the SNR threshold, the detected cloud information is shown in Figs. 3d) and 4d). 149 
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 150 

Fig. 2 The Pnew_sp of the lidar @1064 nm signal processing flow chart151 

 152 

Fig. 3 Detection results of the lidar at 19:15 on March 4, 2021: a) Pnew_sf of the 1064 nm signal, b) Pnew_sp of the 1064 nm signal, c) 153 
SNR of Pnew_sf, and d) cloud information detected 154 
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 155 

Fig. 4 Detection results of the Lidar at 22:44 on June 8, 2021 a) Pnew_sf of the 1064 nm signal, b) Pnew_sp of the 1064 nm signal, c) SNR 156 
of Pnew_sf, d) cloud information detected 157 

3.2 MMCR cloud boundary detection 158 

Identifying cloud signals from power spectrum of the MMCR is affected by the noise level, especially when the 159 

SNR is low. As shown in Fig. 5, if all the spectral points above the noise level are integrated, it will bring a large 160 

error to the inversion of its characteristic parameters (echo reflectivity, spectral width, radial velocity, etc.). 161 

Therefore, it is necessary to carefully identify the cloud signal in the power spectrum signal. When there is a 162 

meteorological signal in the power spectrum, the general signal has a certain SNR and the number of spectral points, 163 

while the SNR of the noise is very low or the number of continuous spectral points is small, indicating that there is 164 

no meteorological signal (Zheng et al., 2014). Accordingly, by calculating the noise and signal boundary, we count 165 

the number of continuous spectrum signal points greater than the noise and signal boundary. Set the SNR threshold 166 

and the spectral point threshold to evaluate whether each continuous data point is a cloud signal. SNRmin refers to 167 

the SNR of the smallest measurable cloud signal in the power spectrum. When the signal is greater than SNRmin, it 168 

is considered to have cloud signal; otherwise, there is only noise signal. Fig. 6 shows the algorithm flow chart of 169 

MMCR inversion cloud signal recognition. Referring to the empirical formula proposed by Riddle (Riddle et al., 170 

1989), the SNRmin can be calculated by Eq. (6), 171 

min

17025 2.1325
=

F
P

F P

N
N

SNR
N N

− +

⋅     
(6) 172 

where NF is incoherent accumulation, and NP is the number of FFT (Fast Fourier Transform) sampling points. The 173 

NF and NP of the MMCR used in this paper are 32 and 256, respectively, and the SNRmin is -17.74 dB by calculating 174 

the SNRmin. Adjust the SNRmin according to the measured data of the MMCR, and finally determine the SNRmin = 175 

-20 dB. Referring to the research results of Shupe et al. (Shupe et al., 2004), Nts is set to 5. When the spectral signal 176 

meets the thresholds of SNRmin and Nts, it is considered that there is a cloud signal in the power spectrum, and cloud 177 

feature parameter calculation is performed, flow of cloud signal recognition algorithm is shown in Fig. 6a. 178 

https://doi.org/10.5194/amt-2022-86
Preprint. Discussion started: 3 May 2022
c© Author(s) 2022. CC BY 4.0 License.



8 
 

 179 

Fig. 5. Schematic diagram of cloud signal recognition in the power spectrum 180 

The echo signals of the floating debris in the bottom atmosphere have the characteristics of a small reflectivity 181 

factor, small velocity and large spectral width. To further eliminate interfering wave information, we obtained the 182 

data quality control threshold by counting the characteristic changes of planktonic echoes in the boundary layer 183 

under cloud-free conditions. As shown in Fig. 6b), when the subjective echo intensity Z<-20 dBZ, the absolute 184 

value of radial velocity is less than 0.2, and the velocity spectrum width >0.3 is used as the threshold for removing 185 

nonmeteorological information, the expected data quality control requirements can be met. Cloud boundaries are 186 

detected using data quality-controlled cloud echo reflectivity factors. 187 

 188 

Fig. 6 Flow chart of MMCR cloud boundary detection 189 
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According to the algorithm flow of Fig. 6, the power spectrum data at 22:44:00 on June 8, 2021 are analyzed to 190 

obtain the meteorological signals of the MMCR reflectivity factor, radial velocity and velocity spectrum width, as 191 

shown in Fig. 7a)-c). The nonmeteorological signals at the bottom (0~2 km) are effectively eliminated by using the 192 

quality control algorithm shown in Fig. 6b). The cloud signal shown in Fig. 7d) realizes the accurate detection of 193 

the cloud boundary. 194 

 195 
Fig. 7 Meteorological signals of MMCR at 22:44 on June 8, 2021. a) echo emissivity factor, b) radial velocity, c) velocity spectrum 196 

width, d) reflectivity factor after quality control 197 

4 Results and discussion 198 

4.1 Joint observation and analysis of various types of clouds 199 

Clouds are rapidly changing (Veselovskii et al., 2017). They often appear in the form of single-layer clouds, 200 

multilayer clouds and precipitating clouds. Section 4 mainly uses the data inversion method proposed in Section 3 201 

to analyze the changing characteristics of clouds under different conditions to obtain reliable cloud macro 202 

information. Although the spatial and temporal resolutions of the two detection devices are different, their close 203 

proximity allows a good ‘point-to-point’ quantitative comparison between the lidar and MMCR. Before data 204 

comparison and analysis, the low spatial resolution of MMCR and the low temporal resolution of the lidar are 205 

interpolated to keep the spatial and temporal resolutions of the two consistent (the time resolution is 5 s, and the 206 

spatial resolution is 3.75 m). 207 

1) Case one studies of a single layer cloud 208 

Clouds in the sky often appear as single-layer clouds, and the inversion of macroscopic parameters is simpler than 209 

that of multilayer clouds. June 08-09, 2021 (19:00~06:00), the lidar and MMCR jointly monitored the appearance 210 

of monolayer clouds in Xi'an. According to the data method described in Section 3.1, the SNR of Pnew_sf and Pnew_sp 211 

of the echo signal of the lidar @1064 nm are obtained time-height-indicator information (THI) and are shown in 212 

Figs. 8a) and 8b). The inversion results show that the thickness of the cloud layer is approximately 2 km, and the 213 

height of the cloud bottom decreases from 8 km to 4 km with the passage of observation time. After 05:00, the 214 

cloud layer developed deeper, and the laser beam penetrated 0.1 km into the cloud layer and was quickly attenuated. 215 
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Rainfall begins at 06:00, and the lidar cannot continue effective observation and ends the experiment. The SNR in 216 

Fig. 8a) causes the SNR of the bottom signal to be large (0~2 km, and the echo signal within the range is not 217 

considered in the following cases). The cloud signals have higher SNR than the aerosol and background noise. 218 

Pnew_sp highlights the cloud information from the aerosol signal and background noise and displays the details of the 219 

instability of the laser energy from 23:00 to 00:30 in Fig. 8b). Combined with the thresholds of SNR and Pnew_sp of 220 

the cloud signal in Fig. 8a) and Fig. 8b), the cloud layer signal detected from the echo signal is shown in Fig. 8c). 221 

 222 

Fig. 8 The THI of the echo signal of the lidar @1064 nm from June 08 to 09, 2021. a) SNR of Pnew_sf, b) Pnew_sp of the 1064 nm signal, 223 
c) cloud information detection results (dotted line indicates rainfall time) 224 

Figure 9 shows the cloud echo reflectivity factor of the MMCR at the same observation time period, and the cloud 225 

signals observed by the two devices have good macrostructural similarity before 06:00. As shown in Fig. 9a), when 226 

the quality control of the echo reflectance factor is not carried out, there are obvious nonmeteorological signals in 227 

the range of 0~2 km, and there are also some interference signals around the cloud. If we directly detect the cloud 228 

boundary with the echo reflectance factor in Fig. 9a), it will inevitably lead to the underestimation or 229 

overestimation of the cloud boundary. We can effectively eliminate the nonmeteorological signals at the bottom 230 

atmosphere and the interference signals around the clouds by using data quality control for the echo reflectivity 231 

coefficient in Fig. 9b). From the THI of the echo reflectivity of the cloud, the cloud layer starts at 03:00 and 232 

gradually develops from 7 km to 12 km (the lidar signal fails to show this detail). When rain appeared at 06:00, the 233 

cloud bottom boundary detected by the MMCR became blurred, but lidar could detect effectively (the cloud bottom 234 

boundary was ~3.8 km). In this case, we can apply lidar and MMCR to detect cloud bottom and cloud top 235 

boundaries, respectively, to achieve high-precision detection of cloud boundaries. 236 
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 237 
Fig. 9 The THI of echo reflectivity factor of MMCR from June 08 to 09, 2021. a) echo emissivity factor without quality control, b) 238 

echo reflectivity factor with quality control 239 

The cloud boundary is retrieved from the cloud signals detected by the lidar and MMCR (Fig. 8c and Fig. 9 b), 240 

and the results are shown in Fig. 10. Between 19:00 and 05:00, the cloud bottom boundary height distribution 241 

retrieved by the two instruments is agreement. During the period of 21:00~06:00, with the deeper development of 242 

clouds, the MMCR can detect more cloud information than the lidar, especially from 03:00 to 06:00. Although lidar 243 

cannot penetrate more clouds in this period, it can obtain an effective cloud bottom boundary. 244 

 245 
Fig. 10 Cloud boundary detected by lidar and MMCR from June 08 to 09, 2021 246 

2) Case two studies of double-layer clouds 247 

From March 4 to 5, 2021, the MMCR and lidar conducted joint observations, with a total observation time of 23 248 

hours. By inverting the echo signal of the lidar @1064 nm, we obtained Pnew_sp of the echo signal and the SNR of 249 

Pnew_sf, and the plotted THIs are shown in Fig. 11a) and Fig. 1b). These THIs display that double layers of clouds 250 

appeared in the sky during the observation process. The low-level cloud is located at a height of 4 km, and its 251 

thickness is approximately 2 km, the high-level cloud lies at 7 km and its thickness is ~2.7 km. The SNR of the 252 

low-level cloud is significantly stronger than that of the high-level cloud, as shown in Fig. 11a. From the 253 

characteristic distribution of the Pnew_sp signal in Fig. 11b), the low-level cloud rained from 18:30 to 18:45, and the 254 
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cloud bottom height decreased sharply from 4 km to 0.6 km. Subsequently, the cloud layer gradually dissipated 255 

from 2 km to 0.05 km, and the dispersal that occurred from 02:00 to 10:00 was too strong for the lidar to detect 256 

more detailed information about the low-altitude cloud. We also notice the high-level cloud change characteristics 257 

shown in Fig. 11b). During the period from 17:00 to 01:00, there is a relatively weak Pnew_sp signal in the height 258 

range between 7 km and 10 km. This indicates that the high-level cloud may be in the formation stage at this time, 259 

and the particle diameter and number concentration of clouds are so small that the lidar can only receive a very 260 

weak echo signal. As the observation progresses, the development of high-level clouds is relatively mature, and the 261 

structure is relatively stable from 01:00 to 15:00 (except 13:00). Combined with the thresholds of the SNR and 262 

intensity information of the cloud signal in Fig. 11a) and Fig. 11b), complete cloud signal detection can be realized, 263 

as shown in Fig. 11c). 264 

 265 
Fig. 11 The THI of the echo signal of the lidar @1064 nm from March 4 to 5, 2021. a) SNR of Pnew_sf, b) Pnew_sp of the 1064 nm signal, 266 

c) cloud information detection results (dotted line indicates rainfall time) 267 

During the lidar observations, the MMCR also observed double clouds. Figs. 12a) and 12b) show the signal 268 

distribution characteristics of the echo reflectivity of MMCR without quality control and after quality control, 269 

respectively. It can be seen that in Fig. 12b), after data quality control, the nonmeteorological signals and 270 

interference signals at the bottom are effectively eliminated. From the joint observation results of the lidar and 271 

MMCR, it can be seen that the appearance and shape of clouds observed by the two are similar, and the occurrence 272 

of rainfall is monitored from 18:30 to 18:45. During the period from 15:00 to 01:00, the penetration ability of the 273 

MMCR is obviously better than that of the lidar, and more high-level cloud information is obtained. However, 274 

between 01:00 and 04:00 at high-level clouds (approximately 8 km), the MMCR detected only part of the debris 275 

cloud echo signal, while the lidar detected more cloud information. We can speculate that the main reason is that 276 
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clouds were in the growth stage during this time period, their particle diameters were small or their concentrations 277 

were low. The echo signal of the MMCR is proportional to the 6th power of the particle diameter, while the echo 278 

signal of the lidar is proportional to the 2nd power of the particle diameter, so the lidar can detect clouds that the 279 

MMCR cannot detect. From 10:00 to 15:00, the MMCR also failed to detect the thin cloud signal at the lower layer 280 

(a height of approximately 4 km). Another reason for MMCR failing to detect thin clouds may also be that the 281 

spatial resolution is lower than that of lidar, which makes it unable to detect thin clouds. 282 

 283 
Fig. 12 The THI of echo reflectivity factor of MMCR from March 4 to 5, 2021, a) Echo emissivity factor without quality control, b) 284 

Echo reflectivity factor with quality control 285 

Based on the cloud signals (Fig. 11c and Fig. 12b) jointly observed by the lidar and MMCR, the height 286 

distribution of the double-layer cloud boundaries is detected, as shown in Fig. 13. From the cloud boundary height 287 

distribution, it can be seen that the cloud boundary height distribution detected by the lidar and MMCR is relatively 288 

consistent for low-level clouds. For high-level clouds, the height of the cloud bottom boundary detected by the two 289 

instruments is similar, and the cloud top boundary detected by MMCR is higher than that detected by lidar. 290 

However, compared with MMCR, lidar has total supremacy in detecting the information of thin clouds. 291 

 292 
Fig. 13 Cloud boundary detected by the lidar and MMCR from March 4 to 5, 2021 293 
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3) Case three studies of precipitating cloud 294 

On March 10, 2021, the lidar and MMCR jointly observed the clouds before rainfall for 6 hours (06:00~11:00, 295 

and began to rain at 10:45). Fig. 14a) is the distribution of the SNR of Pnew_sf with time and space, Fig. 14b) lays 296 

out the THI of Pnew_sp of the @1064 nm echo signal, and Fig. 14c) shows the cloud signal detected by the 297 

thresholds of the SNR and Pnew_sp. We inverted the echo reflectivity factor of MMCR and performed data quality 298 

control operations on them. The results are shown in Fig. 14d) and Fig. 14e), which are the echo reflections of 299 

MMCR without quality control and quality control, respectively. From the comparison, it is obvious that the data 300 

quality control can eliminate the interference signal very well, which makes the process of merging the high-level 301 

convective cloud and the low-level stratiform cloud clearer. 302 

 303 
Fig. 14 The THI of echo signal of the lidar and MMCR on March 10, 2021. a) SNR of the 1064 nm signal, b) Pnew_sp of the 1064 nm 304 

signal, c) cloud information detection results of the lidar, d) echo emissivity factor of the MMCR without quality control, e) echo 305 
reflectivity factor of the MMCR with quality control (dotted line indicates rainfall time) 306 

By comparing the cloud information detected by the lidar and MMCR (in Fig. 14c) and Fig. 14e)), we can see 307 

that during the period from 06:00 to 10:00, the energy of the lidar beam is seriously attenuated at a height of 308 

approximately 4 km, resulting in a very weak echo signal and SNR above 4 km. As the observation time progresses, 309 

the phenomenon of rain storage (>15 dBZ) occurs in the cloud (Ellis et al., 2011; Williams et al., 2014). The severe 310 

attenuation of the lidar in the cloud leads to a sharp decrease in its detection ability, while the millimeter wave still 311 
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has a strong penetrating ability. When rainfall occurs (at 10:45), neither the lidar nor MMCR can effectively 312 

identify the cloud bottom boundary, but MMCR can still detect the cloud top boundary information. The height 313 

distributions of cloud boundaries detected by lidar and MMCR are shown in Fig. 15. The height distribution of the 314 

cloud bottom and cloud top boundary detected by the two instruments is almost the same from 06:00 to 09:00 (the 315 

cloud bottom boundary is approximately 3 km, and the cloud top boundary is approximately 4.1 km). There was a 316 

drizzle falling from 09:00 to 10:45, and the lidar obtained an effective cloud bottom boundary. The boundary of the 317 

high-level convective cloud at ~8 km and the deep cloud layer from 10:45 to the end of observation can only be 318 

detected by MMCR. 319 

 320 
Fig. 15 Cloud boundary detected by the lidar and MMCR on March 10, 2021 321 

From the differences in the height distribution of the cloud boundaries reached by the two devices in the above 322 

three different situations, it can be seen that when a single layer of stratiform clouds appears in the sky, the heights 323 

of the cloud bottom boundary detected by MMCR and lidar are approximately the same. When there are multilayer 324 

clouds, MMCR and lidar have good consistency in the detection results of the cloud bottom boundary height of the 325 

low-level cloud, but the energy of the lidar beam of attenuates seriously in the low-level cloud, resulting in the 326 

inability to fully obtain the effective bottom boundary of low-level clouds and the height boundary of high-level 327 

clouds. In this case, MMCR can obtain more complete height information of the multilayer cloud boundary. 328 

Usually, the closer to rainfall, the deeper the cloud layer develops, the beam of the lidar will be seriously attenuated, 329 

and more cloud information cannot be obtained. In other words, MMCR still has the ability to penetrate the cloud 330 

layer and detect the complete cloud information at this time. Therefore, the joint observation of the lidar and 331 

MMCR can comprehensively identify and detect cloud boundary conditions in detail. The difference between the 332 

cloud boundaries detected by the two may also be due to the different scattering mechanisms of cloud particles to 333 

millimeter-wave electromagnetic waves and laser beams or the difference in the methods used by the two devices 334 

to determine the cloud boundary, so that there are some differences in the cloud boundary height results. 335 

4.2 Statistics and analysis of cloud boundary distribution characteristics in Xi'an 336 

In 2021, the Lidar and MMCR radar conducted cloud observation experiments at the Jinghe meteorological 337 

station, in which the MMCR accumulated 302 days of data (7248 hours in total) and the lidar observed 126 days 338 

(872.5 hours in total). Due to some unavoidable external reasons, the lidar failed to carry out the observation 339 

experiment at the same time as the MMCR. To further analyze the changes in the height distribution of cloud 340 

boundaries in Xi'an in 2021, we plan to employ MMCR data to replace the data of periods when the lidar is not 341 

running. Accordingly, it is necessary to analyze the correlation of the cloud bottom boundary height detected by the 342 
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two devices. We randomly select 80 hours of data in the joint observation period (avoid the rainfall period) and 343 

calculate the cloud boundary detection results of the lidar and MMCR according to the data processing methods in 344 

sections 3.1 and 3.2. As shown in Fig. 16, when the quality control of the MMCR is performed, the correlation 345 

between the detected cloud boundary and the lidar detection result is increased from 0.627 (in Fig. 16a)) to 0.803 346 

(in Fig. 16b)). Moreover, under the premise that the difference in cloud boundaries caused by the different detection 347 

principles and detection algorithms of the two devices cannot be avoided, we can use the cloud boundary data 348 

detected by MMCR to replace the missing lidar data. 349 

  350 
Fig. 16 Correlation between lidar and MMCR cloud bottom boundary. a) without quality control; b) with quality control) 351 

From the above three cloud observation cases, it can be seen that MMCR has more advantages than lidar in 352 

detecting cloud top boundaries. Therefore, when calculating the cloud boundary height distribution characteristics 353 

over Xi'an in 2021, we only count the cloud top boundary height detected by MMCR and take it as the actual cloud 354 

top boundary. The statistical rules shown in Table 3 are established for the statistics of cloud bottom boundary 355 

information. The experimental data of 302 days (65 days in spring (January-March), 84 days in summer 356 

(April-June), 65 days in autumn (July-September) and 88 days in winter (October-December) observed in 2021 are 357 

classified and sorted out to ease the statistics and analysis of the variation characteristics of cloud boundary height. 358 

Table 3 Statistical rules of cloud bottom boundary information 359 

Detection equipment Observation Detection conditions Record cloud bottom boundary 

Both the lidar and 

MMCR 

Case 1 
Thin cloud: the lidar detects bottom; 

MMCR did not detect the cloud bottom 
Results of the lidar  

Case 2 
Drizzle: the lidar detects bottom;  

bottom of MMCR is blurred 
Results of the lidar 

Case 3 Both the lidar and MMCR detect cloud bottom 
Record the lower value of the 

cloud base boundary 

MMCR 
Case 4 MMCR detected cloud bottom Results of MMCR 

Case 5 Drizzle: bottom of MMCR is blurred No results are recorded 

 360 
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This study defines "cloud occurrence frequency" as the ratio of cloud occurrence times to total detection times 361 

during the analyzed period. It is observed that the total sample size is N, and the sample size of cloud boundaries 362 

appearing at different height levels (altitude range from 1.5 km to 12 km is divided into 50 levels) is ni. The 363 

seasonal distribution characteristics of the cloud boundary height are calculated according to Eq. (7), 364 

_ = ( , i 1....50)i
cloud i

ny n N
N

∈ =
        

(7) 365 

Fig. 17 shows that the cloud top boundary occurrence frequency in spring and summer presents a bimodal 366 

distribution. In spring, the height of the first peak lies approximately 1.5 ~ 1.9 km, and the second peak is 7.8 ~ 8 367 

km. The heights of the first and second peaks are approximately 1.5 ~ 3 km and 8 ~ 12 km, respectively, in summer. 368 

In autumn and winter, the frequency of cloud top boundary heights above 2 km is almost in the range of 0.3 to 0.4. 369 

For the vertical distribution characteristics of the cloud bottom boundary, there is a triple-mode pattern in four 370 

seasons. The frequency distribution characteristics of the cloud bottom boundary height in spring and summer are 371 

relatively similar. The first most obvious narrow peak < 1.5 km is the frequency change caused by boundary layer 372 

clouds, the second narrow peak is located at 3 ~ 4 km, and the third peaks in spring and summer are located at 6 ~ 8 373 

km and 7 ~ 9 km, respectively. From the distribution characteristics of the cloud bottom boundary in summer and 374 

spring, it can be guessed that convective and cirrus clouds may be dominant in these two seasons. The frequency 375 

distribution of clouds above 8 km in autumn is the largest in the four seasons, and we can speculate that stratus 376 

clouds and cumulus clouds are mainly in this season. In winter, the height range of clouds is narrow, and the 377 

numerical range is wide, which may be mainly stratiform clouds. This is consistent with the analysis results of 378 

Zhao et al. (Zhao et al., 2014) at the SGP site and Hailing Xie (Xie et al., 20217) at the SACOL site. Although there 379 

are some differences in the cloud boundary frequency distribution at some heights, the overall change trend is 380 

roughly the same. 381 

 382 
Fig. 17 Frequency distribution of cloud boundaries during (a) spring, (b) summer, (c) autumn and (d) winter from January to December 383 

2021 at Xi'an Jinghe National Meteorological Station 384 
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Fig. 18a) shows the monthly variation frequency distribution of clouds. The months with the largest (96%) and 385 
smallest (42%) cloud occurrence frequencies are August and December, respectively. Almost more than 34% of the 386 
clouds appear in the form of single layer clouds every month. Compared with January, February, November and 387 
December, the frequencies of double-layer clouds, triple-layer clouds and more clouds in other months are higher. 388 
It is also possible that there are some thin clouds and broken clouds in the upper layer, which are summarized as 389 
multilayer clouds by the algorithm. As shown in Fig. 18b), the normalized monthly distribution of cloud amount 390 
shows that the minimum cloud amount is 0.65 in spring and the maximum is 2.46 in summer, indicating that warm 391 
atmospheric conditions are more conducive to the formation and development of clouds. 392 

 393 
Fig. 18 The monthly variation in cloud frequency distribution and cloud amount in 2021 a) monthly variation in the frequency of the 394 

number of cloud layers. b) monthly variation in cloud amount 395 
Fig. 19 shows the frequency change characteristics of the cloud boundary vertical height distribution in 2021, in 396 

which the frequency of the cloud bottom boundary below the vertical height of 1.5 km is greater than 10%, the 397 

frequency within the height range of 3.06 km and 3.6 km is approximately 3.24%, and the frequency above 8 km is 398 

less than 2%. The frequency of the cloud top boundary at vertical heights has a bimodal distribution; the first 399 

narrow peak is located at 1.5~3.1 km, and the second peak lies at approximately 7.5~10.5 km. Combined with the 400 

changing characteristics of cloud layers, it can be seen that during the observation process in Xi'an in 2021, the 401 

frequency of stratiform clouds below 3.5 km is the largest, and the frequency of high-level ice clouds or cirrus 402 

clouds above 8 km is small. 403 

 404 
Fig. 19 Frequency distribution of cloud boundaries at vertical heights at Xi'an Jinghe National Meteorological Station in 2021 405 
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5 Conclusions 406 

Based on the detection principle of lidar and MMCR, this study realizes the accurate recognition of cloud signals 407 

from aerosols and background noise signals by enhancing the lidar echo signal and combining its SNR change. The 408 

SNRmin and spectral point continuous threshold are used to identify the cloud signal in the power spectrum of the 409 

MMCR, and data quality control technology is implemented for the echo reflectivity factor, which eliminates the 410 

interference of nonmeteorological signals on the cloud signal and improves the accuracy of cloud boundary 411 

detection. 412 

The case analysis results of the joint lidar and MMCR observations show that the two devices have their own 413 

advantages in detecting cloud boundaries. 1) For the development of deep clouds, the lidar beam will be seriously 414 

attenuated and cannot penetrate the clouds, while the MMCR can penetrate more clouds and obtain the real cloud 415 

top boundary. 2) In detecting low-level clouds, the echo reflectivity of MMCR is easy for ground-based clutter 416 

interference, and the echo signals observed by lidar can help eliminate clutter to obtain accurate cloud bottom 417 

boundaries. 3) When precipitation occurs (except for heavy precipitation), it is difficult to distinguish the cloud 418 

bottom height from the echo reflectivity factor of the MMCR, while lidar can reverse the effective cloud bottom 419 

boundary to a certain extent. 4) For thin clouds, lidar can obtain more complete information than MMCR. 420 

Therefore, when employing the lidar and MMCR to jointly observe the cloud boundary, their respective strengths 421 

can be exerted, and their shortcomings can be compensated for each other, making the detection of cloud boundary 422 

height more detailed and accurate. 423 

Based on the statistical analysis of the changes and distribution of cloud boundaries in Xi'an in 2021, it can be 424 

seen that more than 34% of the clouds appear in the form of a single layer of every month. The cloud amount is the 425 

lowest in spring and the highest in summer. The seasonal variation in cloud boundary height shows that the 426 

distribution characteristics of cloud boundaries in spring and summer are similar, and the frequency of high-level 427 

clouds in the range of 8 ~ 10 km is greater than that in the other two seasons. The stratiform clouds appearing 428 

below 3.5 km in autumn have the highest frequency, and the high-level ice clouds or cirrus clouds above 8 km in 429 

winter are less likely to appear. In this paper, by retrieving the cloud data observed by the lidar and MMCR in 2021, 430 

the results of the cloud boundary detected by the two instruments are analyzed and compared to determine the 431 

advantages and limitations of the lidar and MMCR in cloud boundary detection, which can provide more 432 

information for understanding and studying aerosol-cloud interactions, climate change and forecasting numerical 433 

models in Xi'an. 434 
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