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Abstract. Raindrop size distributions (DSD) play a crucial role in quantitative rainfall estimation using weather radar. Thanks

to dual-polarization capabilities, crucial information about the DSD in a given volume of air can be retrieved. One popular

retrieval method assumes that the DSD can be modeled by a constrained gamma distribution in which the shape (µ) and rate

(Λ) parameters are linked together by a deterministic relationship. In the literature, µ-Λ relationships are often taken for granted

and applied without much critical discussion. In this study, we take another look at this important issue by conducting a detailed5

analysis of µ-Λ relations in stratiform rain and quantifying the accuracy of the associated DSD retrievals. Crucial aspects of our

research include the sensitivity of µ-Λ relations to the temporal aggregation scale, drop concentration, inter-event variability

and adequacy of the gamma distribution model. Our results show that µ-Λ relationships in stratiform rain are surprisingly

robust to the choice of the sampling resolution, sample size and adequacy of the gamma model. Overall, the retrieved DSDs

are in a rather decent agreement with ground observations (correlation coefficient of 0.57 and 0.74 for µ and Dm). The main10

sources of errors and uncertainty during the retrievals are calibration offsets in reflectivity (Zhh) and differential reflectivity

(Zdr). Measurement noise and differences in scale between radar and disdrometers also play a minor role. The most difficult

to retrieve parameter remains the raindrop concentration (NT ), which can be off by several orders of magnitude. After careful

data filtering and removal of problematic Zhh/Zdr pairs, the correlation coefficient for the retrieved NT values remained low,

only slightly increasing from 0.12 into 0.24.15
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1 Introduction

Understanding the natural variability of raindrop size distributions (DSD) is crucial for radar remote sensing applications

and microphysical parametrizations in numerical weather prediction models (e.g. Thompson et al., 2004). Most precipitation-

related quantities (e.g. rain rate, mean drop diameter, number concentration, fall velocity or liquid water content) directly20

depend on the DSD. Similarly, most radar observables (e.g. Zhh, Zdr) are weighted moments of the DSD. For these reasons,

DSD retrieval methods play a central role in numerous weather radar studies.

Efforts to improve quantitative rainfall estimates by retrieving information about DSDs from radar and satellite observa-

tions have captured a great deal of interest in the meteorological community, especially after the introduction of polarimetric

weather radar (Seliga and Bringi, 1976). Retrievals based on the reflectivity factor at horizontal polarization (Zhh), differential25

reflectivity (Zdr) and specific differential phase (Kdp) are the most common choices, because of their natural link to raindrop

concentrations, sizes and shapes.

According to literature, DSDs can be parameterized in the form of relatively simple models such as a gamma distribution with

three parameters µ, Λ and N0 representing the shape, scale and concentration respectively. Algorithms for DSD retrievals take

advantage of different relationships between radar observables and the three parameters of the gamma. Three main categories30

of retrieval methods can be distinguished: the first one consists of methods that use two radar observations Zhh and Zdr, and

a constrained relationship between µ and Λ (Zhang et al., 2001, 2003) or N0 and µ (Ulbrich, 1983). The second category

proposed by Bringi et al. (2002) and Gorgucci et al. (2002) uses three radar observables Zhh, Zdr and Kdp. However, this

method is known to be very sensitive to noise in Kdp estimates. To reduce the uncertainty, the differential phase needs to

be filtered and down-sampled, which limits the accuracy and spatial resolution of the retrievals. The last category consists35

of various retrieval techniques that require special types of radars or measurements, such as double frequency (Rose and

Chandrasekar, 2006), triple frequency (Mróz et al., 2020) and/or Doppler power spectra (Unal, 2015). In this paper, only the

first category will be discussed.

The main challenges when retrieving DSDs from Zhh and Zdr are the choice of the N0-µ or µ-Λ relationship and its validity

across different rain types and spatial and temporal aggregation scales. In the literature, µ-Λ relationships are often taken for40

granted or transferred from one location or scale to another without much critical discussion. And while some studies have

documented large differences in relationships across rain types (e.g., stratiform vs convective), little remains known about the

sensitivity of µ-Λ relationships to the temporal sampling resolution of the disdrometer data used to infer them or the validity

of the gamma assumption. Another important issue concerns the fact that the disdrometer data used to define µ-Λ relationships

correspond to much smaller sampling volumes than the radar measurements on which they are applied. Therefore, it might45

be necessary to first apply a statistical transformation to the radar data before retrieving DSDs based on µ-Λ relationships or,

equivalently, modify the µ-Λ relation to account for the difference in scale.

Finally, one last issue that tends to be overlooked is that radar measurements are likely to contain systematic errors in the

form of calibration offsets in Zhh and Zdr. A possible error in the latter could induce large biases in the retrieved DSDs,

especially in light rain with low Zdr and small signal to noise ratio. Several operational polarimetric weather radar networks50
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such as the US Nexrad (Hubbert and Pratte, 2006) and the German DWD network (Frech and Hubbert, 2020) have already

devoted extensive efforts toward mitigating these calibration issues. However, achieving and maintaining good calibration over

time for research radars remains challenging.

In this paper, we perform a detailed analysis of the sensitivity of DSD retrievals from polarimetric radar to various error

sources such as the validity of the µ-Λ relationship and its sensitivity to the temporal sampling resolution, inter-event variability,55

changes in number concentrations and adequacy of the gamma distribution model. We also examine the sensitivity of the

retrievals to measurement biases in Zhh and potential biases in Zdr due to differences in measurement scale. We illustrate the

importance of all these issues by retrieving DSDs during several episodes of light to moderate stratiform rain in Cabauw, the

Netherlands and indirectly validating our retrievals by comparing them to disdrometer observations on the ground. The main

focus is not on optimizing the DSD retrieval algorithm but on understanding its sensitivity to potential sources of errors, either60

directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method.

This paper is organized as follows. In Section 2, the data used are introduced. In Section 3, the methodology is presented.

In Section 4, the main results for the µ-Λ relationship analysis are shown, followed by the sensitivity analysis on the DSD

retrievals in Section 5. Finally, the conclusions are provided in Section 6.

2 Data65

The data used in this study were collected in the Netherlands during the ACCEPT (Analysis of the Composition of Clouds

with Extended Polarization Techniques) campaign between October and November 2014. During this campaign, a variety of

different in-situ and remote sensing measurements were collected at the CESAR (Cabauw Experimental Site for Atmospheric

Research) observatory.

2.1 The disdrometer data70

The ground DSD spectra used for calibration and validation were collected by a PARSIVEL2 (PARticle SIze and VELocity)

optical disdrometer. The working principle, strengths and limitations of the PARSIVEL2 have already been discussed in great

depth in previous studies and will not be part of this study (Löffler-Mang and Joss, 2000; Tokay et al., 2014; Battaglia et al.,

2010; Thurai et al., 2011; Raupach and Berne, 2015). For example, the Parsivel is susceptible to errors in the lower drop

diameter range which can affect the DSD shape and number concentrations. However, no efforts have been done to try to75

correct for these issues within the context of this study. The raw DSD data consist of particle counts across 32 non-uniformly

spaced diameter classes ranging from 0 to 25 mm with a sampling resolution of 30 seconds. From the raw DSD, integrated

quantities such as rainfall rate (R) and radar equivalent reflectivity factor (Z) can be derived (Bringi and Chandrasekar, 2001;

Thurai and Bringi, 2008). The disdrometer measurements were used to fit gamma DSD models and derive constrained relations

between µ and Λ parameters at different temporal resolutions, which is necessary for retrieving DSDs from polarimetric radar80

measurements. At the same time, the disdrometer measurements were also used to (indirectly) validate the radar retrievals and

study their consistency over time and across different events.
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Similarly to Gatidis et al. (2020), pre-processing is applied to the disdrometer data:

1. Only the liquid type of precipitation was considered for further analysis. All DSDs with observations above the twenty-

second diameter class (drop diameters greater than 7 mm) were discarded, since they correspond to mixed or solid85

precipitation.

2. Each DSD should be comprised of at least three different diameter size classes in order to exclude spurious observations

not related to rain.

2.2 Radar data

The radar data used to perform the DSD retrievals were collected by TU Delft’s polarimetric S-band (λ=9.1 cm) FMCW90

radar TARA (Transportable Atmospheric RAdar; Heijnen et al., 2000) in Cabauw, the Netherlands. The TARA radar was

collocated with additional sensors. This included a Parsivel disdrometer (see Pfitzenmaier et al., 2018, Fig. 1) provided by the

Leibniz Institute for Tropospheric Research (TROPOS). For this experiment, the radar antenna elevation angle of TARA was

fixed at 45° with constant azimuth. The collected polarimetric radar observables included the reflectivity factor at horizontal

polarization (Zhh) and differential reflectivity (Zdr) at 200 m height (corresponding to the minimum range of TARA). The full95

specifications of TARA during the ACCEPT campaign are given in Table 1 of Pfitzenmaier et al. (2018).

In order to make the radar data comparable with the disdrometer data, all Zhh and Zdr measurements were down-sampled

over successive 30 s sampling intervals. The radar and disdrometer data were then syncronized by determining the time shift

that maximized the correlation coefficient between Zhh Parsivel and Zhh TARA.

Concerning the calibration of Zhh and Zdr, noise measurements were performed every day to account for possible variations100

in range, especially at the beginning and the end of the IF-filter. Before the start of the campaign, the calibration of Zdr was

verified using vertical profiling of drizzle and very light rain. The resulting histograms showed a mean offset of -0.11 dB with

a standard deviation of 0.05 dB. Consequently, an offset of +0.11 dB was added to the measured Zdr for the whole ACCEPT

campaign. For the calibration of Zhh, the transmit power was stored in the data set, and there was a near-field correction for

the non-full-overlapping of the transmit and receive antenna beams using the method described in (Sekelsky and Clothiaux,105

2002). However, an end-to-end calibration for Zhh was missing.

2.3 List of events

A total of 7 rain events over the whole measurement campaign were selected for further analysis. The criteria used to select

events were as follows:

1. Each event must consist of predominantly stratiform rain and exhibit a well-defined melting layer signal in the radar110

data.

2. Each rain event must be at least two hours long in duration. This was deemed necessary to have enough data to fit a

reliable µ-Λ relation and compute relevant performance metrics.
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3. There should be no clear sign of changes in dynamics or microphysics (Jameson and Kostinski, 2001; Gorgucci et al.,

2001; Uijlenhoet et al., 2003) with no long dry periods within each event.115

4. Each event must contain several Zdr and Zhh values larger than 0.1 dB and 5 dBZ respectively.

Table 1 presents a summary of the duration, rain intensity and mass-weighted mean diameter (based on the disdrometer data)

for each of the seven selected events. As can be seen, most of the events last between 120 and 150 minutes. The longest on

November 3 is slightly longer than 4 hours. The low rain intensity and mass-weighted mean drop diameter values confirm that

the selected events are mostly comprised of light to moderate stratiform rain. This makes sense given the criteria used to select120

the events and the fact that the ACCEPT campaign took place in October-November in the Netherlands, at a time when heavy

convective events are rare.

For illustration purposes, one of the 7 events (E2, 11 October, 2014) is plotted in Fig. 1. As can be seen, this event mostly

consists of stratiform rain with a moderate intensity of approximately 1.8 mm h−1 and a total duration of approximately 3 hours

between 10:30 and 13:45 UTC, including a short break between 12:45 and 12:55 UTC according to disdrometer observations125

on the ground (Fig. 2). The mass-weighted mean diameter is 1.1 mm, which is typical for light stratiform rain and small

raindrop sizes. Event 2 was chosen because it has a relatively stable, well defined melting layer around 2 km height as shown

by the enhanced values of Zhh and Zdr in Fig. 1 top and bottom respectively. The event also has a relatively low horizontal

wind speed which makes it easier to compare the radar retrievals aloft with the disdrometer measurements on the ground.

3 Methods130

3.1 DSD model

The model used to approximate raindrop size distributions (DSDs) in this paper is the gamma distribution proposed by Ulbrich

(1983):

N(D) =N0D
µe−ΛD =NT

Λµ+1Dµ

Γ(µ+ 1)
e−ΛD, (1)

135

where N(D) is the raindrop size distribution in mm−1m−3, µ is the shape parameter (unitless), Λ is the slope parameter (mm−1),

N0 is the intercept parameter (mm−1−µm−3) and NT is the total number concentration (m−3). The advantage of NT over N0

is that its unit does not depend on µ (Bringi and Chandrasekar, 2001). For convenience, the gamma model is reformulated in

terms of the mass-weighted mean diameter Dm (mm) and the generalized intercept parameter Nw (mm−1m−3) (Testud et al.,

2001; Bringi et al., 2003) to:140

N(D) =Nwf(µ)

(
D

Dm

)µ
e−(4+µ) D

Dm , (2)
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where f(µ), Nw and Dm are given by:

f(µ) =
6

44

(µ+ 4)(µ+4)

Γ(µ+ 4)
, (3)

145

Nw =
44

πρw

(
LWC

Dm
4

)
, (4)

Dm =
4 +µ

Λ
. (5)

In the equations above, LWC denotes the liquid water content (in g m−3) and ρw is the density of liquid water (10−3 g mm−3).150

It should be mentioned that even though the gamma distribution is the most popular and widely accepted model for representing

DSDs in the literature, several studies have questioned its adequacy (Gatidis et al., 2020; Thurai et al., 2019; Cugerone and

De Michele, 2015; Adirosi et al., 2016), setting criteria and proposing different tools to check the gamma hypothesis on a

case-by-case basis.

3.2 Parameter fitting155

The best parameters (µ, Dm and Nw) for describing the DSDs measured by the disdrometer are obtained by using normalized

parameterization of the gamma DSD model based on Dm (ratio of 4th to 3rd order moment). To estimate µ, we first calculate

Dm and Nw (directly from the measured DSD spectra). The value of µ is determined by testing all possible values of µ between

-3 and 15 and choosing the one that minimises the cost function (CF, Eq.6). Finally, we derive Λ through its relationship with

Dm and µ (Eq.5).160

CF =

22∑
i=3

| log10(Nobs(Di))− log10(N(Di | µ)) |, (6)

where Di is the center of the ith diameter class in the Parsivel disdrometer and Nobs(Di) are the volumetric size distribution

measurements for each diameter class. Note that the index i ranges from 3 to 22 because the first two diameter classes in the

Parsivel are always zero and the diameter classes above 22 correspond to particles that are too large to be associated with rain.165

3.3 µ-Λ relation

When an empirical relation between shape and scale parameters is used the gamma model is often called constrained-gamma.

Note that the term “constrained-gamma” denote a gamma DSD model in which the shape and rate parameters are linked by a

6



deterministic function. Mathematically, this is equivalent to reducing the number of free parameters from three to two, which

is convenient in radar-based DSD retrievals. However, the uncertainty related to estimating µ and Λ based on observed DSD170

spectra remains. Hence the constrained gamma DSD model and all its associated moments still remains stochastic in nature.

Numerous studies have used and proposed constrained relationships between these two DSD parameters. The most com-

mon models are based on second-order polynomial fits, firstly introduced by Zhang et al. (2001, 2003). Since then, several

other studies have proposed updated polynomial µ-Λ relationships based on either seasonal (Seela et al., 2018) or regional

criteria (Chen et al., 2016). Polynomial models between µ and Λ were also proposed for DSD retrievals using microwave link175

measurements (Berne and Schleiss, 2009; van Leth et al., 2020). In this study, µ-Λ relationships are modeled using a slightly

different power-law model:

Λ = α(µ+ 3)β , (7)

with two coefficients α and β as given in Eq. 8.180

The power-law model above was chosen mainly for mathematical reasons since it ensures that Λ remains positive across all

scales and avoids the problem of having to choose between a first, second or third-order polynomial. The power law model is

also easier to justify than a parabola from a physical and mathematical point in light of the scale-invariance of DSDs under

proper normalization, as pointed out by previous researchers (Torres et al., 1994; Testud et al., 2001). However, for the sake of185

completeness, we also examined the polynomial model during our study and concluded that it did not make a big difference

from a practical point of view (i.e., it has similar goodness of fit over the considered range of µ values). Nevertheless, we

decided to use the power-law model in this study since it is more appropriate than a polynomial from a theoretical point of

view.

Note that the goal of this study is not to question the validity of previous µ-Λ relationships nor optimize the parameters190

behind them (which depend on the used dataset) but to take a closer look at the sensitivity of the obtained fits to various

underlying assumptions. Critical aspects that were investigated are whether the µ-Λ relation remains stable with respect to

different sampling resolutions, drop number concentrations, types of stratiform rain events or the validity of the gamma DSD

hypothesis itself. At the same time, one has to keep in mind that the limitation of the Parsivel in terms of detection of small

droplets might lead to overestimated Dm and µ values, since the width of the distribution will be underestimated.195

3.4 DSD retrieval method

Because the gamma DSD model involves three parameters, three different radar measurements representative of three weighted

moments of the DSD are required to retrieve the DSD in a given radar resolution volume. The retrieval method used in this

paper is described in Zhang et al. (2001). It involves a combination of reflectivity factor at horizontal polarization (Zhh),
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differential reflectivity (Zdr), and a empirical relationship between the DSD shape parameter (µ) and slope parameter (Λ),200

commonly referred to as a µ-Λ relationship. The main steps of the retrieval method can be summarized as follows:

1. Impose a µ-Λ relationship Λ = g(µ) based on nearby disdrometer observations or literature values. In our case, a power-

law relationship is used:

Λ = 0.514(µ+ 3)1.339 (8)

where the prefactor and exponent were determined by combining all the data from all seven events in Table 1.205

2. Consider all possible values of µ between -3 and 15 in steps of 0.01. For each µ value, calculate Zdr through Eq. 9:

Zdr =
Zhh
Zvv

=

∫Dmax
0

N(D)σhh(D)dD∫Dmax
0

N(D)σvv(D)dD
=

∫Dmax
0

Dµe−g(µ)Dσhh(D)dD∫Dmax
0

Dµe−g(µ)Dσvv(D)dD
=
h1(µ)

h2(µ)
, (9)

where σhh (mm2) and σvv (mm2) are the copolar radar cross-sections of raindrops with equivolume spherical diameter

D, at horizontal and vertical polarizations, respectively, and Dmax (mm) is a reasonable maximum drop diameter (e.g.,210

7 mm in our case). In the literature several studies tried to link Dmax with D0 such as Ulbrich and Atlas (1984), who

concluded that Dmax / D0 > 2.5 is what is typically observed in natural rainfall, or Carey and Petersen (2015) who

recommended using Dmax = 3 * D0. The detailed expression of the radar cross-sections can be found in Eq. 3 in Unal

(2015).

3. Keep the µ value for which the Zdr value in Eq.(9) is closest to the measured Zdr value by the radar.215

4. Infer Nw from Zhh in Eq. (10), where µ̂ is the retrieved µ value from the previous step:

Zhh =Nw
λ4f(µ̂)

π5|Kw |2

Dmax∫
0

(
D

D̂m

)µ̂
e
−(4+µ̂) D

D̂m σhh(D)dD, (10)

where λ is the radar wavelength in mm, (i.e., 90.96 mm for TARA), |Kw |2 is the dielectric factor of water and D̂m =
4+µ̂
g(µ̂) .

5. Retrieve N̂T by integrating the retrieved DSD:220

N̂T =

Dmax∫
0

N̂(D)dD =

Dmax∫
0

N̂wf(µ̂)

(
D

D̂m

)µ̂
e
−(4+µ̂) D

D̂m dD. (11)
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4 Analysis of µ-Λ relationship

4.1 Variations in µ-Λ relationship from one event to another

In the following, we analyze the variations of the µ-Λ relationships from one event to another. For this, a filter was applied

identical to Gatidis et al. (2020) and only the cases which satisfied the gamma model hypothesis were considered. The adequacy225

of the gamma model was assessed based on a combination of Kolmogorov–Smirnov goodness-of-fit test and Kullback–Leibler

divergence. In total, approximately 40% of the DSDs passed the tests and were accepted. On an event to event basis, that

number varies between 36% to 45%.

In order to investigate and visualize possible differences between events, all 7 events were plotted using different colors in

Fig. 3. The overall relationships by Zhang et al. (2001, 2003) were added for comparison. As can be seen in Fig. 3, most of230

the event-specific µ-Λ relations stay relatively close to the overall relation, except for events 2 and 6 where larger deviations

for higher values of µ (i.e., µ>8) are visible. For event 6, the differences can be explained by the limited range of µ, with most

values remaining between 3 and 5, and only a single observation falling between 5 and 15. This limited range of variability

significantly affects the reliability of the estimated µ-Λ relationship, especially for values smaller than 3 and larger than 5.

For event 2, the differences can be explained by the presence of a few outliers in the upper-right part of the scatter plot,235

corresponding to DSDs with low number concentrations and high sampling uncertainties.

For each selected event, the sample sizes, the fitted power-law parameters α, β and their percentage relative differences

against the overall relation are presented in Table 1. The relative errors of the parameters depend on the characteristics of each

event, with event 1 being the closest to the overall relation and event 6 exhibiting the largest differences. In order to have a

more complete picture of each event, the correlation coefficient between µ and Λ and root-mean-square deviation (RMSD)240

between µ and Λ points of each event and the overall relationship were calculated and are presented in Table 1. Even though

event 6 has the weakest correlation coefficient, it has the lowest RMSD mainly due to its small sample size (the smallest in the

event list) and the way the data are concentrated close to the fitted line. Event 1 shows the strongest relation between µ and Λ

while at the same time event 2 has the highest RMSD because of its outliers in the upper-right part of the scatter plot.

The event-specific and overall µ-Λ relations are clearly different from previously proposed relations by Zhang et al. (2001, 2003).245

For a fixed µ value, the overall µ-Λ relation for the 7 selected events predicts higher Λ values compared with the ones by Zhang

et al. (2001, 2003). This can be explained by the fact that Λ is inversely proportional to the mass-weighted mean diameter and

that the Zhang et al. (2001, 2003) relations were derived under different climatological conditions in Oklahoma U.S. where

convective rain events with larger raindrops are more common than in the Netherlands.

Although the overall relationship might not necessarily be optimal for each individual event, our results show that it still250

provides a fairly good approximation of the average µ-Λ relationship across all the 7 considered events. Also, one has to keep in

mind that the low sample sizes and limited ranges for µ make it practically impossible to derive reliable and representative µ-Λ

relations for each individual event. To avoid sampling issues such as those encountered in event 6, and increase the robustness

of our results, all remaining sensitivity analyses and retrievals were therefore conducted using the overall µ-Λ relation.
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4.2 Sensitivity of µ-Λ relationship to gamma hypothesis255

One crucial factor that could affect the µ-Λ relationship is the gamma DSD assumption. To investigate this issue, we temporarily

added back all DSDs that were excluded from the previous analysis because they were not conforming to the gamma model,

according to the criteria set by Gatidis et al. (2020). For each event, we re-calculated the individual µ-Λ relationship and

compared the new results to the ones obtained using only the DSDs that satisfied the gamma assumption. In six out of seven

cases, the inclusion of the non-gamma cases resulted in larger α and smaller β values. However, these changes were not260

reflected visually in the µ-Λ scatterplot as the two opposite changes compensate for each other. Therefore, apart from slightly

changing the parameter values, the gamma hypothesis does not appear to have a strong effect on the overall µ-Λ relation. Also,

the changes to α (0.518 from 0.514) and β (1.328 from 1.339) were rather small and not statistically significant. The fact that

the overall µ-Λ relation is rather stable with respect to the gamma DSD hypothesis is an interesting result, especially given the

fact that there are large differences in sample sizes between non-gamma (1829) and gamma DSDs (652).265

4.3 Sensitivity of µ-Λ relationship to NT

Using the overall relationship from Section 4.1 as a reference, the influence of the number concentration on the µ-Λ relation-

ship was investigated. It would be interesting to investigate whether the events for which the DSD is predominantly number

controlled lead to more/less stable µ-Λ relationships than events with size-controlled DSDs. Three different NT thresholds

corresponding to different percentiles of NT (25%, 50% and 75%) were applied, and only the DSDs with number concentra-270

tions above these thresholds were considered. In Fig. 4, the three derived µ-Λ relations obtained after applying the NT filters

are shown against the overall relation (no filter). As the NT threshold is increased from 225 to 300 and 390 m−3 (Figs. 4b-d),

the µ-Λ relation remains relatively stable for lower µ values, gradually getting closer to the one proposed by Zhang et al.

(2003), especially for higher values of the shape parameter (µ>7). This can be explained partly by the fact that on average,

higher NT values correspond to higher rainfall intensities and larger drop diameters. Also, the average mass-weighted mean275

diameter increases by approximately 10% as we increase the threshold on NT . This may not represent a big change, but can

be enough to slightly affect the µ-Λ relation. However, we believe the main reason the µ-Λ relation changes with increasing

NT is sampling uncertainty. Indeed, our dataset predominantly features stratiform rain events with low rainfall intensities,

low number concentrations and relatively low and constant mass-weighted mean diameters (see Table 1). As we apply higher

thresholds on NT , the DSD samples that only contain a small number of drops and are associated with a higher sampling280

uncertainty get removed. Consequently, the remaining DSDs with higher number concentrations tend to be associated with

lower sampling uncertainties which leads to more reliable µ-Λ estimates. Moreover, it is worth pointing out that because of

the way µ is estimated through the cost function in Eq.6, the error distribution of µ tends to be positively skewed. On average,

we are therefore more likely to overestimate µ and underestimate the spread of the DSD rather than the opposite. Since µ and

Λ values are positively correlated through their relation with Dm in Eq.5, any overestimated µ value automatically results in285

an overestimated Λ value (to compensate and get the correct Dm). Consequently, as we increase the NT threshold, sampling

errors get reduced and the positively skewed outliers with high µ and Λ values progressively disappear. This removes more
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and more points on the upper side of the µ-Λ curve, pushing the new relation down towards the one proposed by Zhang et al.

(2003). Regarding the sensitivity of the α and β parameters describing the µ-Λ relationship, our analyses show that they exhibit

an opposite behaviour, increasing and decreasing respectively as we increase the threshold on NT . The latter can be attributed290

to a gradual flattening of the relationship and increase of the intercept parameter. Note that another similar approach to reduce

the uncertainty in the estimated µ-Λ relationship without applying a threshold on NT could be to consider longer temporal

aggregation intervals than 30 s. However, this would significantly reduce the amount of data available for analysis.

4.4 Influence of sampling resolution on the overall µ-Λ relation

In the following, the DSD data corresponding to the seven selected events were re-sampled at four different temporal resolutions295

of 30, 60, 240 and 480 seconds to investigate the sensitivity of the µ-Λ relationship to the choice of the temporal resolution.

Similarly to before, only the re-sampled DSDs which satisfied the gamma hypothesis were kept for analysis. Fig. 5 shows

that the overall µ-Λ relationship remains very stable, regardless of the considered sampling resolution. Table 2 shows more

details about the fitted power-law parameters α, β at each resolution, including their percentage relative differences against

the overall relation at 30 seconds. We can see that the relative error affecting the parameters slightly increases as the temporal300

resolution is reduced. The latter can be attributed to the lower number of samples available for fitting the parameters. Apart

from these obvious sampling effects, the choice of the temporal aggregation scale seems to have very little effect on the overall

µ-Λ relationship which remains rather stable across multiple aggregation time scales.

Note that as we decrease the temporal resolution, the mean values of µ and Λ (Fig. 5) also decrease. This means that there

is a progressive transition from peaked DSDs at higher sampling resolutions to broader, more widespread DSDs at lower305

resolutions. Decreasing the sampling resolution therefore causes the µ and Λ values to shift toward the bottom left part of

the scatter plot. However, while the points shift, they remain remarkably close to the initial µ-Λ curve derived at the highest

temporal resolution of 30 seconds. The fact that the µ and Λ values change with resolution but that the overall relation between

them is preserved across scales suggests that there is a fundamental physical link between certain moments of the DSD, such

as the spread and the mean. Also, this relation seems to be quite robust regardless of whether the gamma assumption is valid310

or not and is only slightly affected by NT . In steady rainfall conditions, it should therefore be possible to use the same µ-Λ

relationship for DSD retrievals across multiple temporal scales. This is of high importance given the fact that µ-Λ relations

are often used to retrieve DSDs from radar observations, which have different sampling volumes and levels of aggregation

than disdrometer data. Moreover, the use of a µ-Λ relationship may still be justified from a physical point of view, even if

the underlying DSDs do not strictly comply with the gamma distribution hypothesis. Obviously, the fact that we have selected315

relatively similar, stratiform events with low rainfall intensities and low temporal variability is a crucial factor here since it

means that by resampling, we do not significantly change the properties of the DSDs or mix together different rainfall regimes.

By contrast, larger differences in µ-Λ relationships can be expected for mixed-type rainfall events with multiple and rapid

alternations between stratiform and convective rain.

On the other hand there is still substantial controversy in the literature around the reason why µ-Λ relations exist in the first320

place and why certain DSD parameters are linked to each other. One justification could be that the effective number of param-
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eters needed to describe most DSDs is probably less than three. In other words, under proper normalization, all DSDs look

rather similar to each other. For example, Torres et al. (1994) introduced a single DSD normalization technique based on one

reference moment (usually the rain rate). Later, Testud et al. (2001); Lee et al. (2004) proposed a more general normalization

technique based on two reference moments (usually the 3rd and 6th moments). The existence of a µ-Λ relationship may just325

be the consequence of such scaling laws. In their study, Moisseev and Chandrasekar (2007) have also argued that data filtering

can have a strong influence on the relation itself, leading to spurious links between µ and Λ. However, this is not the case in our

study. On the contrary, our results show that when events with similar characteristics are chosen, the overall µ-Λ relationship

can be rather stable, barely depending on the different filters applied to the data (e.g. inclusion/exclusion of non gamma DSDs

or minimum threshold for Zhh and Zdr). Other studies have pointed out that the constraints linking µ and Λ during parameter330

fitting can lead to correlated errors between estimated gamma DSD parameters and biased relationships (Williams et al., 2014;

Moisseev and Chandrasekar, 2007). Indeed, because of the way we fit µ and Λ through Dm (see Section 3.1, DSD model), the

parameters end up positively correlated with each other. In other words, if µ is overestimated, Λ will also be overestimated

because it has to compensate for the bias in µ. To address this, Williams et al. (2014) proposed a σ’-Dm relationship, where Dm

is the mass-weighted mean diameter and σ’ a new mass spectrum standard deviation, defined and constructed to be statistically335

independent of Dm. Even though their approach seems to lead to smaller biases, our results show that it is also possible to

derive reliable µ-Λ relationships without defining a new σ, simply by excluding the non-gamma DSDs cases and carefully

filtering out DSDs with very low NT values.

5 Sensitivity of DSD retrievals

In this section, the sensitivity of the DSD retrieval method as a whole is evaluated. First, the TARA and Parsivel observations340

are compared with each other to highlight their differences and understand how possible biases in reflectivity or differential re-

flectivity affect the accuracy of the retrievals. Then, the sensitivity of the retrieved DSD parameters to different bias corrections,

scale corrections and data filters is quantified and possible ways to mitigate errors during retrievals are proposed.

5.1 Overall agreement between radar and disdrometer

5.1.1 Agreement of Zhh and Zdr observations between TARA and Parsivel345

In this section the agreement between the Parsivel and TARA measurements is investigated. For the sake of the comparison

between TARA and Parsivel observables, the radar equivalent reflectivity factor derived from disdrometer data was used as the

measured reflectivity factor at horizontal polarization (Zhh,Pars). As for the differential reflectivity, using Rayleigh scattering,

the calculated radar cross-sections of raindrops with equivolume spherical diameter D at horizontal and vertical polarization

were used (Eq. 9) for estimating reflectivity at horizontal and vertical polarization, respectively. From those, the differential350

reflectivity value from Parsivel (Zdr,Pars) can be obtained.
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The goal is to quantify how well the measurements of the two sensors agree with each other before the DSD retrievals. Fig. 6

shows the scatter plots of the reflectivity factor (Zhh, top) and differential reflectivity (Zdr, bottom) from the disdrometer versus

TARA at 200 m height. For this first comparison, the Zhh and Zvv measurements of TARA were aggregated (in linear scale)

to 30 seconds in order to be comparable with the disdrometer data. No other additional filter was applied. Fig. 6a shows that355

Zhh measurements are highly correlated (correlation coefficient=0.94). However, the radar significantly underestimates Zhh

compared with the disdrometer. The offset in Zhh slightly varies with time but is in the order of 6 to 7 dBZ (overall bias 6.44

dBZ). Additional bias analyses at a different height of 400 m show that the offset does not change substantially with height,

which suggests that the FMCW incomplete beam overlap correction at near ranges (see Section 2.2, radar data) works well

and that the offset in reflectivity is likely due to calibration issues of TARA rather than range-related issues. Unlike Zhh, the360

differential reflectivity measurements appear to be in much better agreement with the disdrometer (overall bias -0.03 dB), as

can be seen in the bottom panel of Fig. 6. However, the correlation for Zdr is lower (correlation coefficient=0.71) and there is

significant scatter, especially for higher values of Zdr. Note that the vast majority of Zdr values are small (less than 0.2 dB),

which makes sense given that we are mostly dealing with light stratiform rain and that the elevation angle of 45 degrees in

TARA further reduces the magnitude of Zdr.365

5.1.2 Zhh-Zdr relationships for TARA and Parsivel

In the top panel of Fig. 7, the Zhh-Zdr relation of each sensor is presented. It shows that most of the time, TARA measures

higher Zdr values for a given Zhh than the disdrometer. Once the calibration bias in Zhh is removed (Fig. 7, bottom), the

agreement improves and the radar and disdrometer-derived relationships nicely overlap with each other. Nevertheless, and

despite the bias correction, TARA still tends to measure slightly higher Zdr values than the Parsivel for a given Zhh. This can370

be due to a difference in height or scale between the two measurements. The absence of a clear relation between Zhh and Zdr

is not really a problem for the DSD retrieval method itself. In fact, a relation between Zhh and Zdr is not always expected

since Zhh does depend on NT while Zdr does not. However the fact that TARA and the Parsivel disdrometer exhibit different

Zhh-Zdr relationships might negatively impact the accuracy and consistency of the retrieved DSDs.

5.1.3 First retrievals375

In the following, we apply the DSD retrieval method described in Section 3.4 using Zhh and Zdr measurements from TARA

and compare the results to the disdrometer data at 30 seconds resolution. For the retrievals, we used the overall µ-Λ relationship

inferred in Section 3.4 (DSD retrieval method), from the disdrometer observations at 30 seconds sampling resolution.

For illustration purposes, the event on 11 October 2014 was chosen. The time series of retrieved µ, Dm, NT and observed

Zhh and Zdr values for this event are presented in Fig. 8 and Fig. 9, top. Overall, we see that there is a rather good agreement380

in terms of the retrieved µ and Dm values as long as the Zdr values are not too low (i.e., >0.1 dB). When Zdr is low (e.g.,

between 12:20-13:15 UTC), we see that the retrievals become very uncertain, exhibiting much larger fluctuations over time.

Compared with µ, the retrieved NT values are substantially more uncertain. There are some outliers and, on average, the

retrieved NT values from TARA are about 100 m−3 lower than those from the Parsivel disdrometer. This bias is attributed to
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the 6-7 dB offset in Zhh in TARA which propagates non-linearly to NT through the link between Zhh and NT in Eqs. 10-11.385

On the other hand, we also see some isolated cases where NT is overestimated, such as at the beginning (10:57 UTC) and the

end (13:15 and 13:23 UTC) of the event. These periods are characterized by underestimated Zdr and Dm values by TARA

which, in combination with the relatively high Zhh values, leads to an overestimation of NT .

For a better overview, the retrieved DSD parameters (µ, Dm and NT ) for all selected events are plotted against the ones

from the disdrometer in Fig. 10. We can see that the retrieved µ values from the radar tend to be lower compared with the390

disdrometer. The overall bias on the retrieved µ values is 2.11, which is rather large and is not immediately apparent from

the case study on October 11th (Fig. 8). Note that the retrieved µ values from TARA can never exceed 8 due to the 0.1 dB

cutoff applied to Zdr observations (very light rain, peaked DSDs). Because of this, there is a slight conditional bias on the

retrieved µ values for low Zdr values. Since µ values are unaffected by the bias in reflectivity and Zdr measurements appear to

be well calibrated, the bias we see in µ values must either be due to the µ-Λ relationship or to differences in scale, height and395

measurement principles between the two sensors. Unlike µ, there is better agreement for Dm retrievals with -0.09 overall bias.

This is the case for the case study on October 11th as well, where Dm retrievals from Parsivel and TARA are almost similar

throughout the event (Fig. 8, middle) except for the period between 12:45 and 13:00 when Zdr is low. Looking at the number

concentration (Fig. 10, bottom), we see a significant underestimation in NT from TARA (overall bias=276 m−3, multiplicative

bias=4.52), which can be explained by the large 6.44 dBZ bias on Zhh in TARA and is consistent with the previously reported400

underestimation for the event on 11 October 2014.

Despite the fact that NT values tend to be underestimated on average, we can also see several large spikes in retrieved NT

values, such as during the second half of the case study event (Fig. 9, top). If we perform a more in-depth analysis of this period

(i.e., between 12:30 and 13:30 UTC) in Fig. 9, middle and compare it with the Zhh and Zdr observations of the corresponding

period (Fig. 9, bottom), we see that all five spikes in NT correspond to low values of Zdr and relatively high Zhh values. The405

low Zdr leads to large µ values and underestimated raindrop sizes during the retrieval. To compensate for this and achieve the

correct reflectivity, NT needs to be increased by a lot. Note that spikes in NT can still occur even if Zhh is modest or decreasing

locally, as long as Zdr is very small, as for example for the spikes No 2 and 3 there is a local maximum for Zhh while for the

other spikes the Zhh decreases.

The differences documented above are important because they show that DSD retrievals can be very sensitive to combined410

biases in Zdr and Zhh relative to each other. The latter can be linked to calibration issues. However, inconsistencies can

also arise due to differences in height, sampling volumes and temporal aggregation scales between radar and disdrometer

measurements, also known as non-uniform beam filling problem (Ryzhkov, 2007; Durden and Tanelli, 2008).

5.2 Sensitivity to calibration bias correction

Given the systematic underestimation of the reflectivity factor in TARA, a bias correction was applied before proceeding with415

the DSD retrievals. Indeed, the bias correction was considered essential to get more reliable results, especially for NT . Since

the NT retrievals require the reflectivity to be converted from logarithmic (dB) to linear scale (mm6m−3), a multiplicative

adjustment factor known as the G/R ratio (i.e., the ratio of the sum of Parsivel to TARA reflectivity values) was used to bias-
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correct the TARA measurements, treating the disdrometer observations as the reference truth. The value of the G/R ratio was

4.52, which confirmed the large calibration bias of TARA. To address the bias, all TARA reflectivity values (in linear scale)420

were multiplied by 4.52 and the new DSD parameters were retrieved. As expected, the first two DSD parameters µ and Dm,

were completely unaffected by the bias adjustment, as they only depend on Zdr (see Section 3.4, DSD retrieval method).

Fig. 11 on the other hand, shows that NT retrievals were substantially improved, and the bias decreased from 276 m−3 to 89

m−3. Despite the lower bias, we can see that large uncertainties remain in the retrieved NT values, as highlighted by the large

scatter and frequent outliers.425

5.3 Sensitivity to scale bias correction

In the following, a small, additional, bias adjustment was applied to Zdr to try to account for the large difference in sampling

volumes between the TARA radar and the Parsivel disdrometer. This second adjustment is conceptually different from the one

applied to Zhh, which was primarily due to calibration issues. Contrarily to Zhh, the differential reflectivity Zdr of TARA is

assumed to be well-calibrated. Therefore, the differences in mean and standard deviation are primarily attributed to differences430

in scale, height and measurement principles. Note that this scale bias also applies to Zhh. However, for Zhh, the effect is masked

by the large calibration bias and the two cannot be separated.

According to Fig. 6, bottom, the average Zdr values measured by TARA are 0.03 dB larger than the ones from the Parsivel

disdrometer, which makes sense given that the radar sees a larger measurement volume, which makes it more likely to contain

at least a few larger drops. Even though a 0.03 dB difference seems small, such a bias can have a significant effect on the DSD435

retrievals given that the majority of Zdr values are rather small (e.g., between 0.1 and 0.2 dB). A 0.03 dB bias on Zdr therefore

represents a relative error of 15-30%.

Fig. 12 shows the retrieved DSD parameters after correcting for the scale bias. We see a reduction of the bias affecting µ and

Dm, which are directly linked to Zdr. The bias affecting µ is halved from 2.11 to 1.12 and the bias affecting Dm is reduced

from -0.09 mm to -0.02 mm. The correlation coefficient remains relatively stable, regardless of the scale correction. Despite440

the improvements for µ and Dm, the NT retrievals remain problematic, with low correlation coefficient of 0.12 (compared to

0.17 without scale bias correction) and moderate bias of -32 m−3 (compared to 89 m−3 without correction). Also, the average

NT value increased significantly, from 261 m−3 to 382 m−3 (+46%) which highlights the large sensitivity of NT to changes in

the differential reflectivity.

5.4 Sensitivity of NT to outliers445

The results presented in the previous sections have shown that unlike µ and Dm, the uncertainty surrounding the NT retrievals

tend to be much larger. This can be explained by the fact that NT is the last parameter to be retrieved in Eq. 11, which makes

it more susceptible to error propagation/accumulation during the first steps of the retrieval procedure. Errors on retrieved

NT values can be due to the retrieval method itself (e.g., the assumed µ-Λ relation and gamma DSD model), biased radar

observations (e.g., calibration errors in Zhh or/and Zdr) or additional biases due to differences in measurement scale, height and450
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principle between radar and disdrometers. Considering the fact that the events used in this study mainly consist of weak/light

stratiform rain, the errors/uncertainty affecting the measured Zdr values are very likely to play an important role.

The scatterplot of retrieved NT values versus disdrometer data in Fig. 10, bottom, shows a low correlation coefficient and

a significant underestimation from TARA mainly due to the huge bias in Zhh (6.44 dBZ). However, it is worth noticing that

even after applying a calibration bias correction on Zhh, there was no substantial improvement in terms of the NT retrievals455

(Fig. 11). Even though the bias in NT was reduced (89 m−3 compared to 276 m−3), the scatter increased and the correlation

coefficient remained low (0.17). The scale correction for Zdr results in an even worse agreement (correlation coefficient 0.12,

Fig. 12 bottom). In general, two distinct groups of data points with drastically different error properties can be seen. For the

first, the retrieved NT values are severely overestimated compared to the Parsivel disdrometer, by up to one order of magnitude.

For the second group, the retrieved NT values are up to ten times lower than the disdrometer values.460

The conclusion is that there are two different types of combinations of Zhh/Zdr that result in unreliable NT retrievals. The

first group is comprised of low Zdr values compared to Zhh, which results in overestimated NT values. These are all the pairs

of Zhh/Zdr in the lower right part of Fig. 14. Since Zdr is low, the only way to get a high reflectivity is by increasing NT . The

second group consists of relatively high Zdr values compared to Zhh, which leads to underestimated NT values. These points

correspond to the top left part of Fig. 14. Since Zdr is large, the only way to get a low Zhh is to decrease NT . Together, these465

two different types of outliers are responsible for the large scatter observed in retrieved NT values.

Each retrieval has its own uncertainty and error characteristic, depending on the pair of Zhh/Zdr. For example, the scale

correction has different impacts on the different subgroups. Even though there is a general increase in NT to compensate for

the new reduced value of Zdr, the aforementioned correction had a significant impact on the subgroup which corresponds to

the points which are overestimated by TARA and negligible for the ones which are underestimated.470

A possible way to reduce the uncertainty affecting the NT retrievals and thereby avoiding large errors is to filter out all

potentially problematic combinations of Zhh/Zdr. In the following, a filter which aims at controlling the uncertainty on NT

by removing certain Zhh/Zdr combinations which are difficult to handle is applied. Note that these "outliers" in the Zhh/Zdr

space are not necessarily wrong. They are just problematic in the sense that they can potentially result in very large errors

in terms of retrieved NT . The applied filter is two-dimensional depending on both Zhh and Zdr values since the uncertainty475

derives from their combination. A power-law model was used to fit the radar observables Zhh and Zdr after calibration and

scale bias correction, respectively. Based on that model, an upper and lower curve defining the limits of acceptable Zhh and

Zdr pairs is obtained by adding respectively subtracting a given tolerance from Zhh as in Fig. 14. For illustration purposes

± 6 dB was selected, but several other options (i.e., 2, 4 and 8 dB) were examined as well. Table 3 lists all options together

with their corresponding performances for µ, Dm and NT . We see that by removing certain points beyond the lower and upper480

limits in the Zhh/Zdr space, it is possible to improve the correlation between the observed and retrieved µ, Dm and NT values

while keeping a similar bias. For µ and Dm, the best tolerance (in terms of correlation) seems to be ± 2 dB and ± 4 dB.

However, these are rather strict, which means that a large fraction of the data points would have to be discarded (i.e, 56% and

23% respectively) for a modest gain in performance. For the NT retrievals, the optimal tolerance appears to be ± 6 dB, which

discards less than 9% of the data but still manages to increase the correlation (0.12 to 0.24) and decrease the absolute value485
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of the bias (-32 to 10 m−3). Note that contrarily to µ and Dm, filtering out more data points does not necessarily increase the

performance in terms of the NT retrievals. Fig. 13 shows the final radar DSD retrieval results, after applying a filter with a

tolerance of ± 6 dB.

6 Conclusions

A previously proposed method for retrieving DSDs based on radar reflectivity measurements (Zhh), differential reflectivity490

(Zdr) and an empirical relation between the shape (µ) and slope (Λ) parameters of a gamma DSD model was investigated.

Observations from a nearby optical disdrometer were used to derive the µ-Λ relationship as well as for performing an indi-

rect validation of the retrieved DSDs. While the retrieval method itself is well-known, this study primarily focused on the

critical assumptions behind it, in order to outline potential sources of errors and uncertainties. First, a thorough sensitivity

analysis of the µ-Λ relation to various factors such as the temporal sampling resolution, the adequacy of the gamma model495

hypothesis, sensitivity to the concentration number (NT ) and event by event variations was conducted. Then, the influence of

calibration errors in radar observations, and scale differences between radar and disdrometer observations were highlighted

and investigated. Finally, a filter designed to mitigate uncertainty during NT retrievals was proposed. According to the results

the following conclusions can be drawn.

1. The µ-Λ relationship derived from a nearby disdrometer proved quite robust to the choice of the temporal sampling500

resolution, validity of the gamma model hypothesis, sample size and event by event variability. However, only seven,

rather similar stratiform rain events were considered. More research is necessary to fully understand and quantify inter-

event variability of µ-Λ relationships in convective rain.

2. Radar calibration biases significantly affect the accuracy and reliability of the retrieved DSDs. Both Zhh and Zdr must

be bias-corrected before retrieving the DSD.505

3. Even for well-calibrated radars, a small, additional bias correction to account for the scale difference between radar and

disdrometer observations can be useful to reduce conditional biases in retrieved µ and NT values.

4. Finding the right bias and scale corrections for Zhh and Zdr is not straightforward. Often the bias due to scale differences

cannot be separated from the bias due to calibration errors and measurement noise. In our case, Zdr was very well

calibrated which allowed us to investigate the scale correction in more detail. However, due to the large calibration510

offset, the scale correction for Zhh could not be determined.

5. Despite our best efforts, the retrieved NT values remained highly uncertain. Two different types of outliers were iden-

tified, resulting in severely underestimated or overestimated NT values. A simple filter for removing outliers in the

Zhh/Zdr space was proposed. The filter gets rid of some problematic cases, which slightly improves the reliability of

the NT retrievals. But improvements remained modest and removing more data did not systematically result in better515

performances.
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Finally, it should be mentioned that we do not expect the exact same adjustments to hold for other DSD retrieval algorithms

or radar systems. The adjustments mentioned in this study are specific to the TARA radar and Parsivel optical disdrometer.

For example, the radar elevation angle was 45 degrees, which is not ideal for such retrievals. Uncertainties for lower elevation

angles would probably be smaller due to higher Zdr values. Depending on the radar system, more elaborate corrections than a520

simple shift in Zdr might be necessary to achieve optimal performance across a larger number of rain events. Similarly, more

convective rain events should be included to study the performance and reliability of DSD retrievals based on µ-Λ relationships

during heavy convective rain with larger drop sizes. Finally, future work could look at the importance of µ-Λ relations in DSD

retrievals from other relevant rainfall sensors, such as satellite observations, which have much larger sampling volumes and

errors than ground-based radar and for which the scale corrections might therefore play a more important role.525
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Table 1. Overview of the selected events. Date, duration, number of samples, average rain intensity (RR), average mass-weighted mean

diameter (Dm), average number concentration (NT ), parameters of the µ-Λ relationship (α, β), their corresponding percentage relative

errors, correlation coefficient between µ and Λ for each event and root-mean-square deviation (RMSD) between µ and Λ points of each

event and the overall relationship. Note that only the DSDs conforming to the gamma model (see Section 3.1, DSD model) were considered

when computing these statistics.

Percentage Percentage

Duration No. of RR Dm NT relative error relative error Correlation

Event Date (hh:mm) samples (mm h−1 ) (mm) (m−3 ) α α (%) β β (%) coefficient RMSD

1 8 Oct 2:00 77 1.22 1.08 279 0.514 0.00 1.347 0.59 0.971 0.836

2 11 Oct 3:15 88 1.81 1.12 383 0.227 -126.76 1.720 22.12 0.938 1.772

3 15 Oct 2:30 147 0.86 0.9 295 0.676 24.04 1.241 -7.92 0.95 1.339

4 16 Oct 2:20 110 2.46 1.18 418 0.354 -45.32 1.494 10.36 0.93 1.73

5 24 Oct A’ 2:00 38 1.0 1.02 254 0.415 -23.73 1.410 5.01 0.962 1.053

6 24 Oct B’ 2:00 27 2.76 1.44 315 0.178 -187.91 1.795 25.37 0.913 0.653

7 3 Nov 4:25 165 0.78 0.92 292 0.832 38.23 1.144 -17.08 0.922 1.617

Overall - 18:30 652 1.37 1.03 323 0.514 - 1.339 - - -
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Table 2. The parameters of the µ-Λ relationship (α, β) for different sampling resolutions and their percentage relative error against the

corresponding values at 30 seconds.

Percentage Percentage

relative error relative error No. of

Resolution (sec) α α (%) β β (%) samples

30 0.514 - 1.339 - 652

60 0.518 0.84 1.337 -0.25 519

240 0.529 2.75 1.329 -0.83 200

480 0.527 2.52 1.328 -0.88 115
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Table 3. Filter performance (correlation coefficient, bias) of DSD retrievals (µ, Dm and NT ) for different levels of tolerance (± 2, 4, 6, 8 and

10 dBZ).

± dBZ % of data removed µ (correlation coefficient, bias) Dm (correlation coefficient, bias) NT (correlation coefficient, bias)

10 (No filter) 0 0.57 / 1.12 0.74 / -0.02 0.12 / -32

8 2.34 0.59 / 1.19 0.75 / -0.02 0.20 / -17

6 8.57 0.60 / 1.14 0.78 / -0.03 0.24 / 10

4 23.12 0.61 / 1.06 0.81 / -0.03 0.21 / 33

2 56.36 0.62 / 1.20 0.85 / -0.03 0.15 / 51
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Figure 1. Height-time plots (top to bottom) of reflectivity factor (dBZ) and differential reflectivity (dB) on 11 October, 2014.
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Figure 2. Time series of (top to bottom) precipitation intensity (mmh−1), reflectivity factor (dBZ), mass-weighted mean diameter (mm) and

number concentration (m−3) from Parsivel disdrometer data on 11 Oct 2014.
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Figure 3. Scatter plot between µ and Λ of the selected events colored by event (only gamma DSDs were considered). The µ-Λ relationship

of each event was fitted and plotted against the overall relationship. The proposed relations by Zhang et al. 2001 and 2003 were plotted as a

reference from the literature.
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Figure 4. Four scatter plots between µ and Λ of the selected events using four different minimum NT thresholds corresponding to different

percentiles of NT . The µ-Λ relationship of each NT threshold was fitted and plotted against the proposed relations by Zhang et al. 2001 and

2003. (a) NT,min=0 m−3 (no filter), (b) NT,min=225 m−3, (c) NT,min=300 m−3 and (d) NT,min=390 m−3.
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Figure 5. Four scatter plots between µ and Λ of the selected events using different resolutions. The µ-Λ relationship of each resolution was

fitted and plotted against the proposed relations by Zhang et al. 2001 and 2003. (a) 30 s, (b) 60 s, (c) 240 s and (d) 480 s.
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Figure 6. Scatterplot between the observations of Zhh (dBZ) and Zdr (dB) from the disdrometer and the radar.
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Figure 7. Zhh-Zdr relations between the disdrometer and the radar (top to bottom) before and after the calibration bias in Zhh is removed.
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Figure 8. Time series of the DSD retrievals (µ and Dm), and Zhh and Zdr observations from the disdrometer and the radar.
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Figure 9. Time series of the NT retrievals (top), zoomed version for the period between 12:30 and 13:30 UTC (middle) and the corresponding

Zhh and Zdr observations from the disdrometer and the radar (bottom).
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Figure 10. Scatterplot of DSD retrievals (µ, Dm and NT ) between radar and disdrometer.
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Figure 11. Scatterplot of NT retrievals between radar and disdrometer after applying the calibration bias correction on Zhh.
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Figure 12. Scatterplot of DSD retrievals between radar and disdrometer after applying the scale bias correction on Zdr .
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Figure 13. Scatterplot of DSD retrievals between radar and disdrometer after applying the Zhh - Zdr relation outlier removal.
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Figure 14. Example of the filtering based on the Zhh - Zdr relationship with the overall power-law fit and the corresponding ones for the

upper and lower end using ± 6 dBZ.
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