Responses to Reviewers: Ch3MS-RF

Reviewer 1

This work presents a new method for predicting organic molecule properties (carbon number,
mean oxidation state, oxygen-to-carbon ratio, vapor pressure) for compounds measured by gas
chromatography and mass spectrometry but not listed in mass spectral databases. The novel
idea is to use a statistical model trained on compounds listed in such databases together with
parameters extracted from measurement, which is available regardless of the compound being
listed in such a database. The authors include the caveat that this approach requires two-
dimensional gas chromatography measurements that capture both volatility and polarity and
on dimension is insufficient, which does require more complicated instrumentation than
commonly deployed. Nonetheless, the general idea can be useful for the atmospheric science
community, and is recommended for publication in Atmospheric Measurement Techniques. |
note a few comments regarding the generalizability below.

We thank the reviewer for this helpful summary and these comments. We do wish to clarify that
two-dimensional gas chromatography is only required for quantification factor prediction which utilized
second dimension retention information, as all chemical properties were well predicted using exclusively
first dimension retention index (equivalent to standard GC-MS retention index) and mass spectrum. We
clarify this point in lines 636 to 642 of newly added section 5.3, Considerations for Adaptation Across
Instruments and Methods.

The authors refer to their "extrapolation set" in they are not included in the training set, but in
reality it appears that new samples span a subset of the feature domain spanned by the training
set. The consideration of whether extrapolation in this sense is happening or likely to happen in
new data sets is relevant because random forest is not capable of such extrapolations - and this
would limit the model's utility substantially. Can the authors clarify this point?

We thank the reviewer for this very helpful note. As noted, random forest modelling does not effectively
extrapolate beyond the feature space of the training data set, and as such our terminology was somewhat
unclear. We added the following text to section 3.2 Training, test, and extrapolation set curation (lines
376-385) to clarify that the extrapolation set is intended to test whether the training set is sufficiently
similar to the sample medium of interest to indicate that the model will be capable of appropriately
modelling the target compound properties, as follows:

“The methodology described in this work cannot effectively extrapolate beyond the feature space
of the training data set, and the identifiable organic compounds in the Amazonian aerosol samples
are defined as an “extrapolation set” not because they test the abilities of the model to extrapolate
beyond the feature space boundaries of the external standard training data, but because they
represent the true range of individual isomer-specific identities observed in ambient samples.
These compounds test the model’s ability to extrapolate property prediction beyond the
compound groups included in the external standard and indicate whether the sample is
sufficiently similar to the training data to make this approach appropriate for the target sample
medium, as extremely high prediction inaccuracies indicate compound classes too dissimilar from
the training data to be appropriately modelled using Ch3MS-RF.”



I assume the results are solely applicable to samples run on the same instrument with the same
protocol, as the retention time is dependent on the operating procedure. For any new protocol a
new model would have to be trained. Can this model be used to generate predictions using
measurements on similar instruments using the same protocol, or does a new model have to be
trained on each instrument? For publication, the authors should include a statement regarding
what is required for adaptation by other users.

Thank you for this helpful comment. The protocol utilized in this methodology normalizes retention
times to an alkane internal standard series such that retention indices are indicative of when
compounds elute relative to known compounds (normal alkanes). Using a retention index is a very
standard technique in chromatography to compare results for samples run on different instruments. In
cases where elution times are normalized to known compounds such as normal alkanes, and similar
phase columns are utilized, this technique is highly adaptable across instruments and techniques. To
more quantitatively address this point, we have added section 5.3 Considerations for Adaptation
Across Instruments and Methods and figure 8, in which we test how sensitive prediction
performances for each property are to drifts in retention indices. The results of this analysis indicate
that O:C and average carbon oxidation state predictions are not significantly affected by retention
time drifts between the training set and the test set, while carbon number and vapor pressure
predictions are more sensitive but still robust within drifts the equivalent of up to 1 carbon number
unit. Section 5.3 now addresses this and other concerns, highlighting that spectra and retention
times/indices produced by other instruments may be used, so long as retention index drifts can be
normalized to less than the equivalent of the elution time between two linear alkanes difference, the
column type is standardized, and the retention times and spectra of oxygenated species are
consistently either derivatized or underivatized.

Reviewer 2

This study developed new machine learning techniques to characterize unidentifiable
organic compounds using GC-MS and GCxGC-MS techniques. The authors provided a
detailed discussion and demonstration of this model and its potential to improve the current
understanding of undefined organic species in the atmosphere. This new method is able to
improve the quantification accuracy compare with manual proxy modeling, which will lead
to a better understanding of atmospheric organic aerosols formation and chemical
properties. I'm supportive of this paper and recommend for publication in Atmospheric
Measurement Techniques.

Here are a few minor comments:

Authors have mentioned that the vapor pressures were calculated for model training and
evaluation, a few external standards test set and extrapolation set species were
incompatible with vapor pressure prediction, can the author provide more explain more
about how it is incompatible and the evaluation process for vapor pressure? Based on
Figure 4, it seems like the predicted vapor pressure has more variability than other
perimeters, and the more accurate vapor pressure can improve the model accuracy.



We thank reviewer 2 for this opportunity to clarify the reasoning behind restricting the vapor
pressure training and prediction datasets. The Nanoolal and SIMPOL vapor pressure estimates were
generated using the GECKO-A tool, which in its current form does not allow certain molecular
structures (eg PAHs) or functional groups (e.g. amines) to be processed. While some of these species
could have been predicted by hand, manual vapor pressure predictions were not feasible at the
number scale of compounds utilized in this analysis. The referenced version of EVAPORATION
does not contain parameterizations for some functional groups such as amines and heterocyclic
compounds, rendering these species outside the scope of estimates using these methods. Under ideal
circumstances, validated experimental vapor pressures for all test and training compounds would be
used to produce the most accurate predictions possible, but experimental vapor pressures are not
available for many more species than were excluded due to lack of structurally predicted vapor
pressures and other compounds have conflicting experimental vapor pressures reported in the
literature. The method described in this work was selected for a few reasons. First, there is a high
overlap between compounds whose vapor pressures could be predicted by SIMPOL,
EVAPORATION, and Nannoolal and compounds in our training test and validation sets. Second, the
referenced work in Isaacman-Van Wertz and Aumont et al., 2021 finds that the average of these
methods produces optimally accurate vapor pressure predictions for the compound classes most
commonly observed in the extrapolation set. Third, the structural vapor pressure predictions were
both efficient and internally consistent, particularly when compared to compiling often conflicting
values from the literature. The following language has been added (line 318) to clarify the limitations
which rendered some compounds incompatible with predictions.

“Seven of the external standard test set species and fifteen of the extrapolation set species were
incompatible with the prediction capabilities of one or more of the three structural vapor pressure
prediction methods (most frequently due to functional group types for which the models are not
parameterized) and were therefore not utilized in performance analysis.”

Author mentioned that the model underestimated the high carbon oxidation state region
and the high carbon number region, but there is no predicted data shown in the plot? it also
seems like the model is a little bit overpredicted for the carbon number region between 20
and 30, can author comment on that?

Thank you so much for this very helpful note- we intended to state that the high carbon oxidation
state compounds (which have low carbon numbers) have underpredicted carbon oxidation states, and
that the high carbon number compounds (which have low carbon oxidation states) have
underpredicted carbon oxidation states- however this was unclear and we see how this may have
been interpreted as referring to compounds that have both high carbon number and high carbon
oxidation state, of which there were none. The wording has now been altered (line 498) to clarify that
these are independent observations and not descriptive of any group of compounds.

“This is apparent in both the high 0S, region and the high carbon number regions of
the O0S,-nc space, where high carbon oxidation states and high carbon numbers were each
independently underpredicted.”

For the compounds in the region between carbon number 20 and 30, while the distribution of
predicted values in this region is higher than observed, this effect is primarily caused by the
underprediction of carbon numbers, as now clarified in the description of Figure 5. This is to say, the



predicted points are shifted to the right of the true properties positions for those compounds rather
than shifted up. We believe that the clarification regarding underprediction of carbon numbers for
high carbon number species now clarifies this point.

“As illustrated in Error! Reference source not found., the real and predicted
chemical properties spaces for the ambient data set indicate both strengths and
weaknesses for this application of chemically properties modelling. As noted earlier,
random forest modelling does not extrapolate and has a tendency to underpredict
property extremes. This is apparent in both the high OS,. region and the high carbon
number regions of the OS,-nc space, where high carbon oxidation states and high
carbon numbers were each independently underpredicted. These errors could be
moderated by adding more oxygenated species and higher carbon number species to
the external standard, which would provide the model with more information to
predict properties in these regions.”

Does this model capable of any GC-MS system or is there any specific requirement for the
instrument? Can author add some discussion of the limitation of this model as well?

Thank you for this comment, which is highly aligned with similar questions from Reviewer 1. To
better address appropriate considerations in adapting this technique to different instruments and for
incorporating data produced by multiple instruments and techniques, we have now added section 5.3
Considerations for Adaptation Across Instruments and Methods and figure 8, reproduced below.

5.3 “Considerations for Adaptation Across Instruments and Methods

The approach presented in this work prioritizes continuity between training, test, and sample
data by exclusively training the model on data produced by a single instrument using a
standardized methodology. This approach was selected to ensure that the patterns identified by
Ch3MS-RF modelling in the training data were as directly relevant as possible to the unidentifiable
sample compounds of interest. However, in some cases, accumulation of a representative external
standard spanning the entire feature domain of unidentifiable compounds of interest may not be
practical or possible. Electron ionization (70 eV) mass spectrometry is an extremely well
characterized and consistent technique, but chromatographic retention times and indices can vary.
In order for data produced by multiple instruments and techniques to be integrated within Ch3MS-
REF, it is therefore important to establish the tolerance of prediction performance to drifts in
retention index.

To test sensitivity to retention index or retention time shifts across instruments and methods,
the vapor pressure, carbon number, 0S,, and O:C of the external standard test set compounds were
predicted using retention index inputs that were shifted from their observed retention indices. A
broad range of shifts from -200 (indicating the equivalent of a two-carbon number shift, for
example if in the test sample heptadecane were to elute at the time that pentadecane eluted in the
training standard run) to +200 were tested (including -200, -150, -100, -50, -25, +25, +50, +100,
+150, +200). A new mean average error was calculated for each set of predictions based on the
shifted retention indices and compared to the unshifted mean average error to calculate the %



increase in mean average error as a function of test set retention index shift. These results are
visualized in Figure 8. The two measures of oxidation, 0S, and O:C were relatively insensitive to
retention index shifts, as their mean average errors increased by less than 10% at a retention index
shift of 200 and by < 5% within retention index shifts of £100. Carbon number and vapor
pressure predictions were more sensitive to retention index shifts, as would be expected given that
retention times are more directly physically related to these two properties. At retention index
shifts of + 200, mean average error of carbon number prediction increased by 44%, while a shift of
-200 produced vapor pressure predictions that increased by 39%, both of which significantly
decrease the utility of the produced predictions. However, within retention index shifts of =100,
increases in vapor pressure and carbon number prediction errors are modest, with all calculated
MAE % error increases < 10%, with the exception of a 12% increase in error for vapor pressure
predictions at a retention index shift of -100. Vapor pressure prediction in fact appears to slightly
improve at shifts of +<25-50, but these improvements are extremely modest (<3%), are attributable
to the generally higher uncertainties in vapor pressure prediction, and are not significantly different
from predictions produced at a retention index shift of 0. Reported n-alkane normalized kovats
indices of compounds within standardized column types (semistandard non-polar, standard non-
polar, etc.) typically vary by <50, meaning that where methodologies allow test compound kovats
or retention indices to be calculated, predictions utilizing training data from instruments and
analysis protocols not used on the test samples are likely to be robust, particularly for O:C and
0S... For methodologies that do not use internal standards and that cannot otherwise easily yield
kovats indices, protocols using similar columns and temperature ramps would likely produce
retention times that could be substituted for retention indices in the Ch3MS-RF methodology. This
approach would be usable across multiple instrumentations, provided it could be established that
the retention times of any given compound produced by the training and test instrument drift by
less than 1 carbon number equivalent.

In summary, training and/or test data from multiple instruments and protocols can be
combined to meet user needs, provided the following criteria are met: 1) the same ionization
energy (typically 70 eV) is used 2) retention index or retention time drifts between instruments or
protocols can be normalized to less than the difference of the elution time between two sequential
linear alkanes (retention index drift of <100) 3) similar phase columns are used (semistandard
nonpolar, standard nonpolar, etc) 4) samples and training data are consistently either derivatized or
underivatized, and if derivatized use a consistent derivatization agent. It is also important to keep
in mind that the training data must span the anticipated feature space of the use data set, and that in
cases of doubt this can be tested by adding extrapolation set compounds identified from the sample
medium. For chemical properties modelling, this approach can be adapted from the GCxGC
approach presented for any instrument using chromatography- electron ionization-mass
spectrometry that has the capacity to yield at least unit resolution mass spectra and for which
spectra can be sufficiently deconvoluted to yield clean analyte spectra. The model structure and
provided sample code are highly flexible and could be utilized to predict any property of interest
that might reasonably be expected to be reflected in the combination of compound mass spectra
and chromatographic retention time, although performance evaluation is always important for
ensuring that the patterns are sufficiently strong to enable accurate property prediction using
Ch3MS-RF.
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Figure 8: % increases of mean average error in chemical property prediction as a function of shift in test set retention
index relative to training set retention index. Retention indices are normalized to a linear alkane series, making an
increment of 100 indicate the retention time differences between two linear alkanes separated by 1 carbon number.



