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Abstract. The chemical composition of ambient organic aerosols plays a critical role in driving their climate and health 

relevant properties and holds important clues to the sources and formation mechanisms of secondary aerosol material. In most 

ambient atmospheric environments, this composition remains incompletely characterized, with the number of identifiable 

species consistently outnumbered by those that have no mass spectral matches in the literature or NIST/NIH/EPA mass spectral 30 

databases, making them nearly impossible to definitively identify. This creates significant challenges in utilizing the full 

analytical capabilities of techniques which separate and generate spectra for complex environmental samples. In this work, we 

develop the use of machine learning techniques to quantify and characterize novel, or unidentifiable, organic material. This 

work introduces Ch3MS-RF (Chemical Characterization by Chromatography-Mass Spec Random Forest Modelling), an open-

source R-based software tool for efficient machine-learning enabled characterization of compounds separated in 35 

chromatography-mass spec applications but not identifiable by comparison to mass spectral databases. A random forest model 

is trained and tested on a known 130 component representative external standard to predict the response factors of novel 

environmental organics based on position in volatility-polarity space and mass spectrum, enabling reproducible, efficient, and 

optimized quantification of novel environmental species. Quantification accuracy on a reserved 20% test set randomly split 

from the external standard compound list indicate that random forest modelling significantly outperforms the commonly used 40 

methods in both precision and accuracy, with a median response factor % error of -2% for modelled response factors compared 

to >15% for typically used proxy assignment-based methods. Chemical properties modelling, evaluated on the same reserved 

20% test set as well as an extrapolation set of species identified in ambient organic aerosol samples collected in the amazon 

rainforest, also demonstrates robust performance. Extrapolation set property prediction mean absolute errors for carbon 

number, oxygen to carbon ratio (O:C), average carbon oxidation state (𝑂𝑆തതതതത), and vapor pressure are 1.8, 0.15, 0.25, and 1.0 45 

(log(atm)), respectively. Extrapolation set Out-of-Sample R2 for all properties modelled are above 0.75, with the exception of 

vapor pressure. While predictive performance for vapor pressure is less robust compared to the other chemical properties 

modelled, random forest-based modelling was significantly more accurate than other commonly used methods of vapor 

pressure prediction, decreasing mean vapor pressure prediction error to 0.24 (log(atm)) from 0.55 (log(atm)) (chromatography-

based vapor pressure prediction) and 1.2 (log(atm)) (chemical formula-based vapor pressure prediction). The random forest 50 

model significantly advances untargeted analysis of the full scope of chemical speciation yielded by GCxGC-MS techniques 

and can be applied to GC-MS as well. It enables accurate estimation of key chemical properties commonly utilized in the 

atmospheric chemistry community, which may be used to more efficiently identify important tracers for further individual 

analysis and to characterize compound populations uniquely formed under specific ambient conditions.  

1 Introduction 55 

Organic aerosols play a critical role in global radiative forcing and regional aerosol-attributable public health concerns, 

making up a significant (20-90%) fraction of fine particulate matter around the globe (Jimenez et al., 2009). This organic 

material is highly complex in terms of chemical composition and constantly changing; Goldstein and Galbally, 2007 estimates 
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the number of gas and aerosol-phase atmospheric organic constituents to lie in the millions, while Ditto et al., 2018 reports 

molecular level variability of 60-80% between consecutive samples collected at fixed sites for samples comprised of high 60 

thousands of resolvable species. While there has been significant progress towards achieving mass closure of atmospheric 

reactive carbon using an ensemble of both bulk and speciated measurement techniques over the past two decades, speciated 

and isomer identified mass closure remains challenging (Heald et al., 2010; Hunter et al., 2017; Isaacman-Vanwertz et al., 

2018). A comprehensive review of the challenges and utility of different levels of molecular identification, Nozière et al., 

2015, compares the utility of many types of incomplete identification of atmospheric organic compounds, but defines that “An 65 

organic compound is fully identified only if its molecular structure is entirely known, including its isomeric and spatial (stereo) 

configuration.” Important chemical information can be gleaned from formula-based identifications and bulk characterization, 

but isomer-specific identifications provide critical atmospheric chemistry-relevant insights. As described in Isaacman-

Vanwertz and Aumont, 2021, different isomers of the same chemical formula vary over orders of magnitude in volatility and 

Henry’s constant, and by a factor of 2 in reactivity with the hydroxyl radical, all critical properties for characterization of 70 

aerosol formation and properties. Isomer specific identifications also play a crucial role in elucidation of important chemical 

reaction mechanisms.  

Gas chromatography coupled with electron ionization mass spectrometry (GC-MS) is a commonly utilized technique for 

isomer specific speciation of atmospheric constituents. Observed ambient species may be matched to authentic standards or 

mass spectral database entries by both retention index (chromatographic elution time relative to that of a series of alkanes) and 75 

mass spectrum. Two dimensional gas chromatography (GCxGC-MS), a methodologically similar technique which achieves 

advanced separation by passing compounds through multiple GC columns configured for different chemical properties, 

increases the scope of isomer-specific identification by separating species that would coelute in single dimension GC-MS 

applications (Goldstein et al., 2008; Worton et al., 2011, 2017). However, a significant challenge of fully utilizing the data 

from these techniques is the novelty and diversity of the atmospheric constituents; most observed organic species have never 80 

been synthesized and are not in any mass spectral library and are therefore not directly identifiable from GC-MS or GCxGC-

MS techniques. Although the size of mass spectral libraries are rapidly increasing, with ~30,000 new compounds added to the 

NIST/EPA/NIH mass spectral database between the 2011 and 2014 versions (bringing the number of compounds catalogued 

in NIST14 EI library to ~250,000), the numbers of identifiable constituents in typical atmospheric samples remain low (Vinaixa 

et al., 2016). As described in Hamilton et al., 2004, in an urban aerosol sample analyzed by GCxGC-MS, of >10,000 unique 85 

observed species, fewer than 2% were identifiable from authentic standard or mass spectral matching. Low numbers of matched 

relative to novel ambient species persist; Worton et al., 2017 finds that fewer than 35% of ~500 compounds isolated from 

aerosol samples collected at a forested site match mass spectral database entries, while this work (as later described) finds that 

fewer than 10% of ~1500 aerosol phase organic species can be matched to published spectra. As described in Worton et al., 

2017, species that cannot be identified are often not included in GC-MS and GCxGC-MS-based analyses, meaning that the 90 

majority of acquired data is not fully utilized. Note that in accordance with the definition of complete molecular identification 

previously quoted from Nozière et al., 2015, “unidentified” compounds are from here on defined as any species that is not 
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identifiable by comparison (on the basis of retention index and mass spectrum) to either authentic standards or mass spectral 

database entries of positively identified species. Pairing GC-EI-MS systems with complementary measurements such as 

chemical ionization (described in Bi et al., 2021) or switching to softer election ionization techniques (specifically through 95 

employing 14 ev vacuum ultraviolet rather than traditional 70 ev EI, intended to preserve sufficient precursor ion mass for 

formula identification, as described in Worton et al., 2017) can enable more separated but unidentified  compounds to be 

characterized by formula identification, even where isomer-specific identification remains elusive. That said, these 

instrumental configurations are rare, and fragmentation under 14 ev is still sufficiently significant to leave many species’ 

formulae not identifiable and therefore still uncharacterized (Worton et al., 2017). Recent efforts to embrace a larger fraction 100 

of the full complexity of chemical information yielded by highly speciated organic aerosol measurements (on the scale of low 

to mid 100’s of compounds) have categorized unidentified  species by likely source groups and chemical families through time 

series correlations with known tracer species (Zhang et al., 2018) or by manual group assignments by individual researcher 

judgements based on mass spectral features (Liang et al., 2021). These methods are difficult to standardize and reproduce and 

become prohibitively inefficient when pushing towards the full chemical complexity of speciated observations produced from 105 

typical atmospheric samples, which extend into the low to mid thousands of species. 

Quantification of unidentified compounds faces similar challenges.  Where possible, compounds in GC and GCxGC-MS 

are directly quantified by calibration curves of authentic standards, but direct quantifications are limited by standard expense 

and availability, even for species that can be positively identified. Compounds that cannot be directly quantified, both in 

GCxGC-MS and in GC-MS, are most commonly quantified by assigning quantification factors from compounds resolved 110 

closely in chromatographic space, compounds that are identified as sharing chemical structures, or some interpolation of 

multiple nearby proxies (Hatch et al., 2015; Jen et al., 2019; Liang et al., 2021; Zhang et al., 2018). The errors associated with 

these assignments/choices are usually estimated from the range of quantification factors of close or chemically similar species 

and are assumed to be high (up to a factor of 2 depending on degree of certainty in assigning chemical class as described in 

Jen et al., 2019 and Liang et al., 2021). To our knowledge, this work presents the first quantitative error analysis of these 115 

techniques based on applying proxy quantification techniques to compounds with known quantification factors.  

Current manual characterization and quantification proxy-assignments are essentially an exercise of pattern recognition, 

as researchers use experience in analysing spectra and position in chromatographic space to categorize or otherwise 

characterize unidentifiable species. Given the scale of the novel compound characterization challenge (on the order of hundreds 

to thousands of species for a given sampling location using current methods), transitioning to automated characterization 120 

methods will be necessary to keep up with data acquisition, and will offer co-benefits in increased reproducibility and reduced 

susceptibility to researcher biases. Decision tree-based machine learning methods including gradient boosting and random 

forests have demonstrated robust performance in pattern recognition-based regression applications including nonlinear features 

across a wide range of fields (Bentéjac et al., 2021; Rokach, 2016). Random forests, a decision tree-based method which 

generates predictions based on a combination of diverse trees generated by randomized feature selection and resampling on a 125 

training data set (Breiman, 2001), are particularly suited to this application and intended audience. They have demonstrated 
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robust performance across a range of applications, including predictions of chemical properties (Whitmore et al., 2016) and 

do not require extensive hyperparameter tuning to achieve high performance (Bentéjac et al., 2021). In this work, we develop 

machine learning models, specifically based on the random forests methodology, that use  chromatographic and mass spectral 

feature inputs to predict a diverse suite of chemical properties, including quantification factor in a TD-GCxGC-MS system, 130 

oxygen to carbon ratio (O:C), carbon number, average carbon oxidation state (𝑂𝑆തതതതത), and vapor pressure.  Coinciding with this 

manuscript, we have released a repository template including an Rmarkdown notebook (https://github.com/ebarnesey/Ch3MS-

RF) that enables users with general atmospheric chemistry background, who do not necessarily have special expertise in 

machine learning data science applications, to tailor our analysis for their specific use cases.  As such, robust performance 

evaluation and ease of applicability to a range of potential use cases are emphasized over extensive application-specific 135 

hyperparameter tuning.  

In summary, this work aims to provide the GC-MS and GCxGC-MS atmospheric chemistry community with tools to 

achieve the following objectives:  

1) Enable accurate chemical characterization of organic constituents separated in gas chromatographic space but not 

necessarily published (in mass spectral databases) 140 

2) Improve the quantification accuracy for species that cannot be directly calibrated using authentic standards 

2 Instrumentation and Data 

2.1 Calibration Curves Using an External Standard Mixture of Authentic Standards 

A custom calibration standard mixture (referred to hereafter as “external standard”) was created containing ~130 unique 

authentic standards selected for maximal coverage of the compounds and compound classes typically observed in atmospheric 145 

regions with significant biogenic emissions, as well as influences from anthropogenic activities and biomass burning. The 

selection of these standard species was informed by previous work targeting similar sample types using the same 

instrumentation (Worton et al., 2011; Yee et al., 2018; Zhang et al., 2018), and covers species including sugars, PAH’s, and 

both monoterpene and isoprene oxidation products. In addition to commercially available external standards, 6 sesquiterpene 

oxidation products were custom synthesized by collaborators (as described in Bé et al., 2019) for expanded coverage of 150 

potentially important chemical tracers. The full list of standard components can be found in Table A1, and the standard property 

distribution in volatility-polarity space is illustrated in Figure 2. The standard was prepared from pure components immediately 

prior to sample analysis in 1:1 methanol:chloroform solution, replicating the methodology utilized in Zhang et al., 2018. 

Standards were introduced to the instrument by injecting onto tissuquartz filter material to maximize consistency between filter 

samples (organic aerosol also collected on tissuquartz filters) and calibration runs. At 5 points throughout sample analysis, 6-155 

point calibration curves (5 loaded points and a zero point) were performed to determine the “quantification factors” (internal 

standard normalized signal/ng compound) of each external standard species. The internal standard, described in detail in 

section 2.3.1, is a solution of ~30 deuterated organics applied identically to all sample and calibration analysis runs to enable 
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correction for instrument condition and matrix effects. For efficiency, outlier calibration points (significantly deviating from 

the slope of other points in the quantification factor, which are often caused by coelution with a contaminant) were removed. 160 

A minimum of 3 calibration points above the zero point was maintained to ensure robust quantification factors.  

2.2 GoAmazon Field Data 

The ambient extrapolation data utilized in this work originates from the Green Ocean Amazon (GoAmazon) field 

campaign which was conducted in central Amazonia in 2014. This campaign and the collection of ambient filters for offline 

analysis are described in detail in Martin et al., 2016, 2017 and Yee et al., 2018. Briefly, the campaign was conducted at a semi 165 

remote site occasionally downwind of the city of Manaus and periodically impacted by smoke from biomass burning. The 

campaign spanned two intensive operating periods, one during the Amazonian wet season (February through March) and one 

during the dry season (August through early October). Submicron aerosol samples were collected on tissuquartz filters 

(Pallflex), stored in pre-baked foil, double contained in sealed mylar bags, and frozen prior to analysis. The samples were 

analysed by TD-GCxGC-EI-ToF-MS, as described below.   170 

2.3 Instrumentation: TD-GCxGC-EI-ToF-MS 

Both external standard species (during calibration runs) and GoAmazon filter samples were analysed by thermal 

desorption two-dimensional gas chromatography coupled with electron ionization time-of-flight mass spectrometry (TD-

GCxGC-EI-ToF-MS, hereafter abbreviated GCxGC-MS). This instrumentation is described in detail in Goldstein et al., 2008 

and Worton et al., 2011, and instrument specifics including sub-component models, column materials, and temperature settings 175 

are described in Franklin et al., 2021. For ambient filter samples, 0.4 cm2 aliquots of filter material are directly introduced into 

the instrument. Standards are stored in solution and introduced by injection onto pre-baked quartz filter material. An internal 

standard (described in section 2.3.1) is applied on top of the sample or external standard filter aliquots immediately prior to 

analysis. Briefly, the instrument functions as follows: a thermal desorption oven heats filter material, causing analytes and 

standards to evaporate into a flow of helium. The desorbed components are focused on a cooled inlet system (Gerstel CIS), 180 

which at the end of the thermal desorption cycle is rapidly heated to simultaneously release all organic species onto the head 

of the first column. Compounds are separated by both volatility and polarity by two gas chromatography columns in sequence, 

with the transition of compounds from the first to the second column modulated by a cryogenic focus and rapid thermal release 

system. Separated analytes are ionized by 70 eV electron ionization (EI) and detected by HR-ToF-MS (TOFWERK, EI-

HTOF), with a resolving power of 4000 acquired at 100 Hz. While the mass spectra produced by this technique are high 185 

resolution, these high resolution mass spectra are converted to unit mass resolution spectra to increase the applicability of this 

technique to unit mass resolution techniques. The vertical (polar) axis of separation is extremely short relative to the horizontal 

(volatility) axis separation with a vertical stride length of 2.3 seconds compared to a retention time of ~ 1 hr for low volatility 

organics. As a result, GCxGC-MS deuterated alkane normalized retention indices are directly comparable to retention indices 

(or, with a linear conversion to non-deuterated retention indices, kovats indices) in single dimension GC-MS applications. This 190 
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instrument’s volatility range spans approximately C13-C36 n-alkane volatility equivalents, covering the atmospherically 

important transition regime between IVOC (intermediate volatility organic carbon) and LVOC (low volatility organic carbon) 

species. 

During the thermal desorption process, the carrier flow of helium is enriched with the derivatization agent MSTFA (n-

methyl-n-trimethylsilyl-trifluoro-acetamide). This silylating reagent replaces the active hydrogen of polar OH groups with a 195 

trimethylsilyl group, -Si(CH3)3, a process which significantly enhances the recovery of polar organics. This approach is critical 

to increase the scope and degree of oxygenation of species recovered by thermal desorption-gas chromatography techniques 

(Isaacman et al., 2014). However, it poses some challenges for data interpretation for diverse, complex, and novel chemical 

mixtures, because in the case of many polar species, the compound that is separated and detected by the GCxGC-MS 

instrumentation has been chemically altered from the species that was collected. This can create challenges in compound 200 

identification, as not all species have published derivatized spectra, as well as challenges for mapping chemical properties onto 

the GCxGC-MS space, as the volatility-polarity distributions of derivatized compounds do not directly reflect their 

underivatized properties.  

2.3.1 Internal Standard Normalization 

Both filter samples and external standard impregnated filters (for calibration curves) were doped with a custom 23 205 

component deuterated internal standard covering the full range of volatility sensitivity and a broad variety of functional group 

types immediately prior to analysis. The internal standard enables normalization for matrix effects, configuration of retention 

indices relative to the elution times of a deuterated alkane series, and normalization for instrument condition drift for improved 

consistency and quantification accuracy throughout intensive instrument use. In prior methods, the selection of internal 

standard involved either1) assigning each analyte an internal standard nearest in chromatographic space (by retention times) 210 

or 2) manual assignment of analytes to their most chemically similar internal standards regardless of proximity in GCxGC 

space. Analyte signal would then be normalized (divided) by the signal of the selected internal standard obtained during the 

same chromatographic run. In a new approach employed in this work, in order to maximize the reliability and consistency of 

normalization across a large number of samples and complex sample media, internal standard signals were each normalized 

by their own mean signals (throughout the entire analysis period) to yield an indicator of self-normalized instrument sensitivity. 215 

Analyte  signal was then normalized by the mean self-normalized responses of the three closest internal standard species. This 

approach has multiple benefits. First, the responses of sample or external standard compounds are not artificially deflated or 

inflated due to their proximity to internal standard compounds that have higher or lower sensitivities based on their functional 

groups and derivatization. Second, this approach enables inclusion and utilization of incomplete data; in previous approaches, 

if an internal standard cannot be recovered in every sample it cannot be used for normalization, as this would create 220 

inconsistencies for the species that are otherwise assigned to that compound. Compounds at the very high and very low ends 

of the volatility space are chemically important but detectable at baseline low levels that can drop below limits of detection 

during periods of low sensitivity. Having to discard these species due to a few instances of missing corresponding internal 
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standard data causes losses of valuable information. Finally, this approach decreases analysis sensitivity to any errors and noise 

in internal standard identification or isolation, as erroneously high or low individual internal standard responses are moderated 225 

by averaging with the other nearby internal standard species. Volatility-based sensitivity corrections, which can be achieved 

by raw internal standard normalization, were achieved in this work through normalization by an external standard-determined 

response curve, as described in “Featurization and Target Selection for Quantification Modelling.” 

3 Data Preparation and Featurization 

The analytical pipeline for data preparation through performance evaluation of this random forest modelling work is 230 

illustrated in Figure 1. The processes and decision making around featurization, feature selection, and target selection for both 

chemical properties modelling and quantification modelling, as well as the curation of the training, test, and extrapolation data 

sets, is described below.  

3.1 Featurization, Feature Selection, and Target Selection 

As the aim of this work is to develop methods that can be applied to novel species not included in mass spectral 235 

databases, features utilized in this analysis rely solely upon the information readily available for unidentifiable species. Given 

the size and complexity of the intended use data suites, features must also be automatically generatable from the instrument 

data output and not rely upon any visual or manual categorization by researchers. In order to make these models more broadly 

useful to the atmospheric community, less common features produced by the GCxGC-MS instrumental setup (e.g. second 

dimension retention time and high resolution spectra) are not utilized for chemical properties modelling in order to increase 240 

the method’s applicability to single dimension GC-MS systems and instruments with lower resolution mass spectra.  

3.1.1 Mass Spectral Featurization 

The only chemical information directly produced by GCxGC-MS for unidentified organic species are their locations 

in GCxGC volatility-polarity space and mass spectra. These sources of information are therefore exclusively utilized in 

creating and selecting the features for chemical properties modelling. The retention index of each compound was directly 245 

utilized as a feature, but the mass spectra require interpretation in order to be used. 

The unit mass resolution spectra utilized in this analysis include each charged fragment represented by its measured 

mass to charge ratio (m/z) and a relative signal score out of 1000 (normalized by the most abundant fragment’s peak signal). 

EI is a high energy or “hard” ionization technique which typically leaves only a small fraction of molecular ions intact and 

creates positively charged ion fragments that are almost all singly charged, with any multiply charged ions at extremely low 250 

abundance. This means that the molecular formulae cannot generally be directly determined from the mass spectrum, even 

when the spectra are high resolution, and measured ions can be assumed to have a single charge. That said, the m/z of charged 

fragment ions yield useful information into chemical characteristics and functional groupings that can provide critical chemical 
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information; for example, a peak at m/z=73 corresponds to a fragment of Si(CH3)3
+, a derivatization fragment which indicates 

that the ionized compound contained an OH group which was derivatized (see section 2.3). The mass differences between 255 

charged peaks also represent important pieces of information, as they can indicate losses of uncharged molecular fragments 

that similarly point to the structure and characteristics of the original compound. It is important to note that not all neutral mass 

differences between charged peaks can be interpreted as direct neutral losses as not all high m/z charged fragments directly 

fragment onto lower m/z charged fragments in a manner that can be directly interpreted from neutrally charged fragment losses. 

However, frequently occurring neutral differences may still hold value in reflecting a common coordination of neutral loss 260 

processes.  

The greatest chemical information lies in features that exist in an intermediate range of occurrence frequency in the 

data set. A feature which appears in all the training species does not provide any useful information in predicting properties of 

the test species. Neither does a feature which is totally unique to a single species, as it does not provide any information on 

patterns which can be used to adjust prediction of properties for other species. This logic can be applied to mass spectral 265 

featurization; while it would be possible to convert every m/z to a feature and so input the entire raw mass spectrum of each 

compound as a series of features for the random forest model, this approach would be inefficient, open to error introduced by 

noise, and miss the important information provided by neutral mass differences between charged fragments.  

Multiple approaches for mass spectral featurization were tested to optimize the number of features and representation 

of features. Given the final choice in model structure (random forest, as described in section 4), inclusion of covarying features 270 

or more features than necessary did not introduce significant sources of error. Target-specific feature restriction based on 

importance is discussed in section 4. The final mass spectral featurization method selected for this analysis, a simplified 

adaptation of methodology described in Eghbaldar et al., 1998, was as follows: the top 5 charged fragments (mass spectral 

peaks) from each training set mass spectrum are selected. The mass differences between these 5 peaks (a maximum of 10 

numbers, if all fragments occur at differently spaced m/z) were then compiled into a list of “neutral losses”. The charged 275 

fragment lists and the neutral loss lists of all training set external standard compounds were next combined in a frequency list, 

with each charged fragment or neutral loss quantified by frequency (how many compounds in the external standard test set 

exhibited that charged fragment or neutral loss among their top 5 peaks). The top 40 most common charged fragments and top 

20 most common neutral losses were converted into features. The identities of these 40 most common fragments and 20 most 

common neutral mass differences (along with possible identities and notes) can be found in tables A2 and A3, respectively. 280 

The mass spectra of all training, test, and extrapolation set compounds were then simplified using the previously described 

method (top 5 peaks extracted and mass differences between those peaks calculated). Each m/z feature was assigned the 

normalized signal of that peak in the mass spectrum if the feature m/z was one of the top 5 peaks; otherwise, it was set to zero. 

Each neutral loss feature was assigned true or false for each compound depending on whether the neutral loss appeared in the 

mass differences between the 5 most significant peaks. An example mass spectral featurization for the example compound 285 

hexadecane can be found in Table A4, and the mass spectral featurization process is included in the open-source R script 

accompanying this publication.  
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3.1.2 Target Selection for Chemical Properties Modelling 

The goal of chemical properties modelling is to enable inclusion of “ unidentified” species in aerosol organic analysis 

that has previously been restricted to species for which the identity or at least chemical formula is known. One way in which 290 

complex organic mixtures are visualized and analyzed is through orientation of observed species in chemical properties spaces 

that have been developed and broadly utilized in the field of aerosol science. Two such spaces include the Volatility Basis Set 

(VBS (Donahue et al., 2006)) and the visualization by average carbon oxidation state and carbon number developed in Kroll 

et al., 2011, hereafter referred to as 𝑂𝑆തതതതത-nc space. Compounds can be plotted in VBS space by their O:C or 𝑂𝑆തതതതത (average carbon 

oxidation state(Kroll et al., 2011)) against some measure of volatility, either log(Vapor Pressure) or log(C0), where C0 is the 295 

pure component sub-cooled liquid vapor pressure in atm. In 𝑂𝑆തതതതത-nc space, compounds are plotted by their average carbon 

oxidation state (𝑂𝑆തതതതത) against carbon number. The ability to map novel or unidentifiable compounds in these spaces would 

provide critical information about the properties of the individual species, enable identification of groups of chemically distinct 

novel compounds deserving particular consideration, and more completely visualize the distribution of chemical characteristics 

for complex mixtures and potential routes of chemical transformation (e.g. oligomerization, functionalization, fragmentation) 300 

beyond the identifiable components. With these goals in mind, the properties selected to be the targets of these modelling 

efforts were number of carbons (nc), O:C, 𝑂𝑆തതതതത, and vapor pressure.  

Carbon number, O:C, and 𝑂𝑆തതതതത (based on the equation in Kroll et al., 2011) can all be directly calculated from chemical 

formula, which was known for each standard and ambient extrapolation compound (see section 3.2). Vapor pressure is not 

directly calculatable from chemical formula and not all identified compounds in the external standard and extrapolation data 305 

sets have reliable experimental vapor pressure measurements available, so structurally-based vapor pressure predictions are 

utilized instead. Isaacman-Vanwertz and Aumont, 2021 finds that of all structure-based vapor pressure prediction methods 

available, the average of predictions generated by the EVAPORATION (Compernolle et al., 2011), Nannoolal (Nannoolal et 

al., 2008) , and Simpol (Pankow and Asher, 2008) models yields the most accurate vapor pressure prediction. These methods 

were therefore utilized to predict the vapor pressures of all standard and extrapolation set compounds, and the average 310 

structurally predicted vapor pressures were utilized as the “true” vapor pressures for model training and evaluation. Seven of 

the external standard test set species and fifteen of the extrapolation set species were incompatible with the prediction 

capabilities of one or more of the three structural vapor pressure prediction methods (most frequently due to functional group 

types for which the models are not parameterized) and were therefore not utilized in performance analysis. Two additional 

potential targets, double bond equivalent and H:C ratio, were tested but failed to produce sufficiently robust property 315 

predictions.  

The final components of the chemical properties random forest models are as follows: 

Targets: Carbon number, 𝑂𝑆തതതതത, O:C, vapor pressure (structurally modelled) 

Features: Retention index, 40 feature representation of mass spectral charged fragments, 20 feature representation of 

neutral mass differences between charged fragments 320 
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A table listing the entire set of input features for chemical properties modelling of the example compound Hexadecane 

can be found in table A4, and the instrument-produced mass spectrum for this species can be found in Figure A1.  

3.1.3 Featurization and Target Selection for Quantification Modelling 

Compound quantification factor is significantly and reliably related to retention index across all compound classes 

tracked, but this relationship is not linear and changes much more rapidly in some retention index windows than others. This 325 

phenomenon, caused by incomplete cold inlet trapping of species in the most volatile sensitivity region and incomplete thermal 

desorption of species in the least volatile sensitivity region, is illustrated in Figure A2 and is consistent with findings presented 

in Zhang et al., 2018. A variety of retention index corrections were tested, including the following: a) factorizing the retention 

indices of each compound (rounded to the nearest 100) and including as a feature in model training and testing, and b) 

normalizing (dividing) each compound by the raw signal of its nearest deuterated alkane internal standard, the method utilized 330 

in Zhang et al., 2018. Both methods however performed poorly in the 1600-1900 RI range, where response increases extremely 

rapidly with RI (Figure A2). The most reliable normalization method and the method selected for this analysis was normalizing 

(dividing) all compound quantification factors by the average response curve for alkanes, defined by the combination of 2 best 

fit exponential curves, which intersect at RI ≈ 1950 as illustrated in Figure A2, and training on/predicting this normalized 

response factor rather than the raw quantification factor. The r2 of the exponential fit of individual calibration period 335 

quantification factors around the response curve in the volatile region is .77, while the r2 of the curve describing the less volatile 

region is .65. Note that these fits take into account each quantification factor of each calibration window, and are therefore 

influenced by the variations in the measured quantification factors of the same compounds measured at different points 

throughout analysis. RI-normalized response factors were translated back to predicted quantification factors for performance 

evaluation, as other methods of quantification do not utilize this normalization method.  340 

Unlike in the case of chemical properties modelling, quantification modelling performance was significantly improved 

by inclusion of second dimension retention time information, and it was therefore included as a feature in response factor 

prediction. As a result, this approach in its current form is only usable by GCxGC-MS applications, but could be adapted to 

single dimension chromatography-mass spec.  

In this analysis, continuous measurement periods (consecutively collected samples) were analysed in sequences 345 

bounded by calibration curve runs. To preserve the quantification continuity in these consecutive measurements and avoid step 

changes in calculated concentration that might occur due to switching between quantification factors, the two quantification 

factors bookending an analysis period are averaged to assign the quantification factors for samples run in that interval. To 

replicate this approach, the compound quantification factors were sequentially averaged to yield 5 quantification periods (the 

final calibration curve experienced an instrument failure, and the last calibration period is therefore based solely on the final 350 

curve). 

The mass spectral featurization is described in “Mass Spectral Featurization” above.  

The final components of the quantification model are as follows: 
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 Target: Normalized response factor (RI curve-normalized, calibration period averaged) 

 Features: Retention index, second dimension retention time, calibration period, 40 feature representation of mass 355 

spectral charged fragments, 20 feature representation of neutral mass differences between charged fragments 

3.2 Training, Test, and Extrapolation Set Curation 

To generate a training and test set from the external standard data, each external standard was assigned to a chemical 

group (alkane, sugar, PAH, etc), and the list of external standard compounds was randomly split 80:20 (80% of compounds in 

the training set, 20% in the test set) maintaining the ratios of different chemical groups. 200 possible splits were generated, 360 

and the split which demonstrated the greatest similarity in median retention index and median second dimension retention time 

between the test and training sets was selected to avoid potential extrapolation problems that might occur with a highly skewed 

distribution of test and training compounds across the GCxGC space. This process is documented in Supporting Information.  

The extrapolation set was curated from the compounds isolated from the GoAmazon samples by comparing the spectra 

and retention indices of compounds to the external standard and matches in the NIST14 mass spectral database. Of the ~1500 365 

unique compounds identified across 11 template samples, 63 were determined to match external standard compounds and an 

additional 71 compounds were identifiable from the NIST library due to high (>800, (Worton et al., 2017)) mass spectral match 

factor and retention index agreement with database entries. Based on number of silicon atoms in the assigned formulae from 

the NIST identification, each chemical formula was converted to its underivatized form. Only the 71 compounds that were 

identifiable from the NIST library but not from external standards were included in the extrapolation set to ensure that 370 

performance metrics for the extrapolation set would not be skewed by the inclusion of species that may have been in the 

training data, and to ensure that the test set and extrapolation set performance evaluations would be entirely independent. The 

methodology described in this work cannot effectively extrapolate beyond the feature space of the training data set, and the 

identifiable organic compounds in the Amazonian aerosol samples are defined as an “extrapolation set” not because they test 

the abilities of the model to extrapolate beyond the feature space boundaries of the external standard training data, but because 375 

they represent the true range of individual isomer-specific identities observed in ambient samples. These compounds test the 

model’s ability to extrapolate property prediction beyond the compound groups included in the external standard and indicate 

whether the sample is sufficiently similar to the training data to make this approach appropriate for the target sample medium, 

as extremely high prediction inaccuracies indicate compound classes too dissimilar from the training data to be appropriately 

modelled using Ch3MS-RF. As illustrated in Figure 2, the distribution of training, test, and extrapolation set species utilized 380 

in this work effectively span the distribution of unknown compounds in GCxGC volatility-polarity space.  

4 Model Selection, Training, and Tuning  

The number and complexity of input features and lack of clear linear relationships between target properties and input 

features in this analysis is well suited to a decision tree-based analytical approach (Bentéjac et al., 2021; Rokach, 2016). 
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Random forest and gradient boosting methods were both preliminarily tested for response factor prediction. Random forests 385 

demonstrated slightly better performance and was selected for this and additional methodological reasons, as follows.  Random 

Forests are more robust to overfitting than gradient boosting, which is a particular concern in this case given the small number 

of training compounds (~100) compared to the large numbers of novel environmental organics that are the intended subjects 

of unverifiable modelling. Additionally, random forests perform well using the default settings and do not require extensive 

tuning to achieve optimal performance (Bentéjac et al., 2021). As the aim of this work is to produce models that the atmospheric 390 

science community, including non-experts in machine learning, can easily implement for novel compound analysis, this 

robustness and simplicity is a significant advantage. 

The training and tuning processes for chemical properties prediction are visualized in Figure 1. For each target property, 

the model was trained on the external standard training set data, the curation of which is described above. As previously 

referenced, random forests do not require extensive tuning, and for ease of use reasons most parameters were maintained at 395 

their default values. Tuning primarily focused on feature restriction. Feature restriction to enforce tree diversity (mtry) was 

optimized by 5-fold cross validation, with the mtry value that minimized mean absolute error (MAE) selected. Although 

random forest modelling is comparatively not influenced by the inclusion of features that do not contribute significant 

predictive capabilities, the inclusion of unnecessary features can contribute to overfitting of the training data which decreases 

prediction performance for the test and extrapolation data sets. To address this problem, the feature importance (a measure of 400 

increase in node purity when this feature is used in a split) of each input feature was extracted from the original predictive 

model. The importance metrics were normalized by the total importance of all features to generate a percent importance score 

for each feature. Importance distributions were highly skewed, with a relatively low number of features contributing the 

majority of decrease in node purity. Features that contributed less than 1% to the total importance score were removed, and 

the model was re-trained on only the important features.  Extrapolation set performance improvements from removal of low 405 

importance features was low, with an improvement in OSR2 (out of sample R2, defined in detail in section 5.1) on the order of 

0-0.03. This indicates that this step is not crucial for chemical properties or quantification factor prediction. The cross 

validation-optimized mtry number, number of important features, and identity of important features for the chemical properties 

models (one optimized model per property predicted) are summarised in Table 1. For quantification modelling, mtry is 

optimized at 44 features and 46 features meet an importance criterion of >1 %. 410 

5 Model Performance Evaluation 

5.1 Chemical Properties Modelling Performance 

Three performance metrics are utilized to evaluate target predictions for the four chemical properties models. The first, 

out-of-sample r2 (OSR2), provides a measure of how significantly a model improves upon a baseline assumption that all target 

property values are equal to the mean of those values in the training data. It approaches a maximum of 1 for perfect predictions. 415 

The second metric, mean absolute error (MAE) provides the mean absolute prediction residual in the units of the target 
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property. This metric is particularly important, as it provides a benchmark for prediction accuracy which can be translated into 

visualization and utilized to determine which applications are appropriate given prediction errors. The final performance 

metric, root mean square error (RMSE), is also a scale dependent error metric and provides the quadratic mean of prediction 

residuals. The equations for these metrics are provided below: 420 
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In this notation, for each test or extrapolation set compound i summed across a population of n compounds, Ti indicates 

the true value of the property being tested, Pi indicates the predicted value of that property, and 𝑅തT indicates the mean of the 

selected property in the training data set.   

The prediction performance for the tuned and trained chemical properties model are evaluated independently on both 

the external standard test set (Figure 3, Table 2) and the ambient sample extrapolation set (Figure 4, Table 3). Both of these 430 

performance evaluations are important for different reasons. The external standard contains many series of highly chemically 

similar species (for example alkane and carboxylic acid series), meaning that the test set is likely to be more chemically similar 

to the training set than a real distribution of ambient organic species would be. Performance evaluation on the extrapolation 

set therefore provides a more realistic assessment of likely prediction accuracies on the large number of novel ambient organic 

compounds that are the intended focus of this modelling effort. That said, prediction performance on the external standard test 435 

set also yields important information. The external standard is designed to cover the entire space of anticipated chemical 

features for the environmental samples and is therefore more diverse relative to the number of compounds included compared 

to the extrapolation set (which is primarily CHO-type compounds). Performance evaluation on the external standard test set 

therefore yields more information about model performance across a broad suite of compound classes. 

5.1.1 Test Set Performance Evaluation  440 

By all evaluation metrics applied (summarised in Table 2), performance for carbon number, O:C, carbon oxidation 

state, and log(VP) predictions on the external standard test set are robust. The O:C and carbon number predictions are 

particularly strong, with OSR2 of .89 and .88 respectively and mean absolute errors of .072 element ratio units and 1.8 carbon 

number units. For context, given the range in true values from O:C= 0-1 and carbon number = 4-31, both mean absolute errors 

are approximately 7% of the range of measured values. For 𝑂𝑆തതതതത and vapor pressure, the mean absolute errors normalized by 445 

the measurement range are both approximately 12%. As illustrated Figure 3, this means that the distribution of predicted 

(1) 

(2) 

(3) 
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properties usefully and reliably reflects the distribution of true properties and indicates that the random forest-based model 

provides useful information that allows a wide range of compound classes to be reliably characterized based on mass spectrum 

and retention index. 

5.1.2 Extrapolation Set Performance Evaluation 450 

As discussed above, while the external standard test set provides useful information on model performance across a 

wide range of compound types, its performance is potentially inflated by high degree of chemical similarity between the 

training and test set compounds. Performance evaluation on the ambient sample extrapolation set is therefore likely a more 

accurate indicator of prediction performance on novel or uncatalogued species. Of the four properties modelled, the 

performances for carbon number prediction and carbon oxidation state remain consistent or slightly improve (carbon number 455 

OSR2 increases to .93), while O:C and log(VP) prediction performances decrease, both in terms of OSR2 and MAE (Table 3).  

The weakest extrapolation set performance by far is vapor pressure prediction, which drops to an OSR2 of .68. The 

correlation between predicted and true properties is also the weakest (as illustrated in Figure 4), with particularly large 

prediction residuals for the highest volatility species. For example, the extrapolation set compound with the highest vapor 

pressure prediction error is 1,2-Benzenedicarboxylic acid, which has a retention index of <1400 making it more volatile than 460 

the most volatile internal standard compound. While this compound does not lie outside of the volatility and polarity boundaries 

of the external standards in GCxGC space, is significantly more volatile than any diacid compound in the standard mixture, 

and the influence of double derivitization on its true ambient volatility relative to the chromatographic elution time of its 

derivatized form may not have been appropriately captured. Unlike the other properties targeted in this analysis, vapor pressure 

is not directly calculable based on chemical formula and poses challenges for many techniques; as discussed in Isaacman-465 

Vanwertz and Aumont, 2021, molecular structure plays an important role in volatility, which significantly limits the accuracy 

with which techniques that identify formula but not structure (typically chemical ionization techniques) can predict the true 

volatility of their measured components. A more complete comparison between the random forest model’s performance in 

vapor pressure prediction compared to other techniques used throughout the field is therefore required to provide context for 

vapor pressure prediction errors in the ambient sample extrapolation set (further discussed below in section 5.1.3). 470 

For both O:C and 𝑂𝑆തതതതത (which are highly related properties), extrapolation set prediction performance suffers at the high 

end of the oxygenation scale, although the performance reduction is far more pronounced for O:C prediction. This is due to 

the lack of highly oxygenated species in the external standard; random forest models do not extrapolate beyond the range of 

properties in the training data and therefore cannot predict O:C ratios of higher than 1.5 when that is above the maximum in 

the training data. The extraneously highly oxidized species for which O:C and 𝑂𝑆തതതതത prediction accuracy suffers lie almost 475 

exclusively in the most volatile region instrument sensitivity, where vapor pressure prediction inaccuracies have been 

previously described. As a result, extrapolation set property prediction for O:C, 𝑂𝑆തതതതത, and log(VP) were restricted to compounds 

above a retention index of 1500. As illustrated in Figure A3 and Figure 2, the significant majority of ambient analytes were 

above the 1500 retention index threshold, justifying the decision to restrict prediction of these properties to the retention index 
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window in which their performance is better optimized. In applying these techniques to the larger suite of novel species, 480 

maintaining these retention window restrictions is critical to avoid the introduction of significant sources of error.  

Given the strong and consistent performance of carbon number and 𝑂𝑆തതതതത predictions across the majority of the retention 

index space and between both test and extrapolation sets, the most robust visualization of chemical properties based on random 

forest predictions is likely to be in 𝑂𝑆തതതതത-nc space (Kroll et al., 2011). Predicting the carbon numbers and 𝑂𝑆തതതതത of the known 

ambient compounds and superimposing the true and predicted property distributions in the 𝑂𝑆തതതതത-nc space highlights the 485 

strengths and weaknesses of chemical properties modelling.  To better represent the prediction capabilities of the full chemical 

space and the scope of information that would be provided for properties prediction on a complex sample including hundreds 

of individual species, all identifiable ambient compounds (including those that overlap with the external standard) were 

included in property prediction and visualization. As illustrated in Figure 5, the real and predicted chemical properties spaces 

for the ambient data set indicate both strengths and weaknesses for this application of chemically properties modelling. As 490 

noted earlier, random forest modelling does not extrapolate and has a tendency to underpredict property extremes. This is 

apparent in both the high 𝑂𝑆തതതതത region and the high carbon number regions of the 𝑂𝑆തതതതത-nc space, where high carbon oxidation 

states and high carbon numbers were each independently underpredicted. These errors could be moderated by adding more 

oxygenated species and higher carbon number species to the external standard, which would provide the model with more 

information to predict properties in these regions. In a context of extended continuity of analysis of similar sample media, this 495 

suggests an iterative approach in which the addition of new standards to a calibration mixture can be prioritized through 

analysing the chemical features of poorly predicted compounds in the sample media and adding new standards that replicate 

those features. Despite the prediction errors visualized in Figure 5, the overall shape of the true chemical properties space was 

extremely well represented by predictions. While conclusions based on the presence or absence of extremes in predicted 

properties would not be appropriate, analyses based on the relative distributions of populations of interest provides valuable 500 

insight comparable to other parameterizations of compound properties from incomplete knowledge.  

5.1.3 Vapor Pressure Modelling: Comparison to Prior Methods 

Chromatography using a non-polar column is intended to separate compounds by volatility and has been used to directly 

predict novel compound vapor pressures in previous studies (Isaacman-VanWertz et al., 2016). It is therefore important in this 

context to evaluate both how significantly random forest modelling improves upon simple linear modelling of volatility based 505 

on retention index as well as how this method compares to other parameterizations of vapor pressure. As illustrated in Figure 

6 and Table 4, the log(VP) prediction residuals for random forest model predictions indicate that random forest-generated 

predictions are both more accurate and more precise than predictions by the linearized retention index method or from the Li 

et al., 2016 chemical formula-based parameterization, as they demonstrate a tighter distribution that is more centered around 

zero. The mean absolute error for random forest vapor pressure prediction is significantly lower than errors from both 510 

predictions based on retention index (t-test p value = .01) and predictions based on chemical formula (t-test p value = 3.1×10-

5).  
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5.2 Quantification Modelling Performance 

The approach for evaluating performance for quantification modeling requires slight alterations compared to property 

prediction. Although the random forest model predicts the residuals of quantification factors around the retention index 515 

response normalization curve (Figure A2) rather than directly, these residuals are converted back to quantification factors for 

both the true and predicted properties for performance evaluation. This serves two purposes; first, other quantification methods 

do not use this retention index-based normalization so conversion to absolute prediction errors is necessary to compare 

methods, and second, a direct quantification error assessment provides more useful and applicable information about how 

significantly quantification errors could influence conclusions based on model-quantified data.  520 

The test set compounds were quantified using two alternative quantification methods, Manual or Closest proxy 

quantification (described in Liang et al., 2021, which utilizes a combination of both), to benchmark random forest model 

performance. Manual proxy quantification entails manually assigning a compound to a chemically similar external standard 

based on researcher judgement on what chemical class the unidentified compound would likely belong to based on some 

combination of location in GCxGC space and mass spectrum. This is the current preferred method for quantification of 525 

compounds that are not in the external standard and in theory should provide the most reliable results in cases where an 

extremely chemically similar standard is available, but it is highly inefficient and relies upon researcher judgement calls which 

are difficult to standardize. Closest proxy quantification assigns each compound to its nearest external standard in GCxGC 

space, or to an average of the nearest standards within a set radius limitation. In this work, the average of the quantification 

factors of the 3 nearest standard species was used, as this demonstrated improved performance compared to single closest 530 

proxy quantification. This method is efficient, but it introduces potentially significant error by assigning species with different 

chemical characteristics (and therefore different quantification factors) the same response factor if they are sufficiently close 

in GCxGC space. Each test set compound was assigned to a proxy quantification factor from the training set based on each of 

these two methods, and each proxy compound’s quantification factor at each time point was substituted as a prediction of the 

test set compound’s quantification factor at that calibration window.  535 

The standard performance metrics for quantification factor prediction using the random forest model, manual proxy 

quantification and closest proxy quantification, are compared in table 5. The random forest model significantly outperforms 

both other methods; it has a relatively high OSR2 of .65 compared to negative OSR2 values for the two proxy methods 

(indicating that at least on average, assuming all test compounds have the same quantification factor as the average of all 

training set compounds would have performed better than proxy quantification). MAE and RMSE also indicate improved 540 

performance when using the random forest model over other methods. While these metrics provide useful information on 

model performance, they do not reveal why the performance (particularly of the proxy methods) is so poor and do not provide 

useful information to evaluate likely propagation of quantification errors. Unlike for the chemical properties modelling, for 

quantification modelling % error is a much more important metric than absolute error, because it translates directly to how 

significant total quantification error across a large suite of compounds is likely to be and provides insights into underlying 545 
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biases in different methods. Figure 7 illustrates the quantification factor % error distributions of the three methods and 

demonstrates the improved performance of random forest modelled quantification predictions on three criteria. First, as 

illustrated by panel A, random forest modeling produces far fewer and less extreme outlier prediction errors that are orders of 

magnitude different from the true values. These result when a compound that the instrument is extremely insensitive to (which 

would have a true extremely low quantification factor) is assigned a moderate or high quantification factor. In practice the 550 

influence of these types of quantification inaccuracies is very limited as few ambient species that the instrument is this 

significantly insensitive to would occur above detection limits, but they could introduce errors nonetheless. Here it is important 

to keep in mind that each point represents a single quantification from a single calibration period; some outliers therefore 

indicate compounds that exhibited extremes in quantification factors during a single calibration period.  This was most common 

among standard compounds at the edges of the instrument’s sensitivity window, as these species are more significantly 555 

impacted by alterations in instrument performance. Second, as illustrated by Figure 7 panel B, the error distribution for the 

random forest model is significantly more centered around zero compared to either proxy model. Median random forest model 

quantification error is -2%, compared to 17% for closest proxy quantification and 19% for manual proxy quantification. In 

practice, this indicates that over a large number of quantified species, random forest modeling is unlikely to introduce biased 

quantifications that might skew results, while the two proxy methods would likely inflate the apparent mass of novel 560 

compounds. Third, also illustrated by Figure 7 panel B (though less directly), random forest modeling produces prediction 

errors more tightly distributed around the median, meaning that the absolute % error distribution for random forest modelling 

also outperforms the two proxy methods. Median absolute % error for random forest model predictions is 37%, compared to 

57% for the closest proxy method and 41% for the manually assigned proxy method. The average % error improvements from 

random forest modeling compared to both proxy methods are statistically significant (t-test p values both < .0004), but the 565 

median absolute % error distributions of the random forest and manually assigned proxy quantifications are not significantly 

different based on a Mood’s median test. The random forest and closest proxy method absolute % error distribution differences 

are statistically significant, with a Mood’s test p value of .001. While critical for contextualizing the potential impact of 

quantification errors on mass attribution of complex mixtures, a % error-based analysis of prediction accuracy is necessarily 

asymmetrical, as a predicted quantification factor can produce a minimum of -100 % error (the case if the predicted value were 570 

to be zero) but far more than +100% error if the quantification factor is significantly overpredicted. A symmetrical error 

analysis of log(predicted quantification factor/true quantification factor), illustrated in Figure A4, is required to probe the 

frequency and dynamics of underprediction in greater depth.  Figure A4 demonstrates that the random forest model is more 

prone to underprediction outliers, but continues to outperform the other methods in achieving a narrow error distribution 

centered at zero.   575 

 A final benefit of random forest modeling-based quantification not captured in the performance metrics is the ability 

to utilize incomplete data. With proxy quantification, any standard compound that cannot be calibrated for at any point over 

the course of an analysis cannot be used, as the species that are calibrated by that compound would not be quantifiable during 

the window with missing calibration data. The random forest-based quantification method relies upon the entire external 
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standard suite to inform corrections for instrument performance over time and can therefore produce robust quantification 580 

factor predictions even when individual standard calibration curves are missing for a particular calibration window. This allows 

for significantly greater flexibility in analysis, as compounds can be added to the external standard if they are observed in 

initial samples and still be usable to inform quantifications for periods before they were present.  

In summary, random forest quantification factor modelling significantly outperforms both closest proxy and manual 

proxy quantification methods. It is significantly more efficient than manual proxy modeling, exhibits fewer outliers of multi 585 

order of magnitude overestimations, produces an error distribution that is more centered around zero (preventing significant 

biases in total mass over large numbers of quantified and summed species), and exhibits improvements in absolute percent 

error of predictions. 

5.3 Considerations for Adaptation Across Instruments and Methods 

The approach presented in this work prioritizes continuity between training, test, and sample data by exclusively training 590 

the model on data produced by a single instrument using a standardized methodology.  This approach was selected to ensure 

that the patterns identified by Ch3MS-RF modelling in the training data were as directly relevant as possible to the 

unidentifiable sample compounds of interest.  However, in some cases, accumulation of a representative external standard 

spanning the entire feature domain of unidentifiable compounds of interest may not be practical or possible.  Electron ionization 

(70 eV) mass spectrometry is an extremely well characterized and consistent technique, but chromatographic retention times 595 

and indices can vary.  In order for data produced by multiple instruments and techniques to be integrated within Ch3MS-RF, 

it is therefore important to establish the tolerance of prediction performance to drifts in retention index.   

To test sensitivity to retention index or retention time shifts across instruments and methods, the vapor pressure, carbon 

number, 𝑂𝑆തതതതത, and O:C of the external standard test set compounds were predicted using retention index inputs that were shifted 

from their observed retention indices. A broad range of shifts from -200 (indicating the equivalent of a two-carbon number 600 

shift, for example if in the test sample heptadecane were to elute at the time that pentadecane eluted in the training standard 

run) to +200 were tested (including -200, -150, -100, -50, -25, +25, +50, +100, +150, +200).  A new mean absolute error was 

calculated for each set of predictions based on the shifted retention indices and compared to the unshifted mean absolute error 

to calculate the % increase in mean absolute error as a function of test set retention index shift.  These results are visualized in 

Figure 8. The two measures of oxidation, 𝑂𝑆തതതതത and O:C were relatively insensitive to retention index shifts, as their mean 605 

absolute errors increased by less than 10% at a retention index shift of ±200 and by < 5% within retention index shifts of ±100.  

Carbon number and vapor pressure predictions were more sensitive to retention index shifts, as would be expected given that 

retention times are more directly physically related to these two properties.  At retention index shifts of + 200, mean absolute 

error of carbon number prediction increased by 44%, while a shift of -200 produced vapor pressure predictions that increased 

by 39%, both of which significantly decrease the utility of the produced predictions.  However, within retention index shifts 610 

of ±100, increases in vapor pressure and carbon number prediction errors are modest, with all calculated MAE % error 

increases < 10%, with the exception of a 12% increase in error for vapor pressure predictions at a retention index shift of -100.  
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Vapor pressure prediction in fact appears to slightly improve at shifts of +<25-50, but these improvements are extremely 

modest (<3%), are attributable to the generally higher uncertainties in vapor pressure prediction, and are not significantly 

different from predictions produced at a retention index shift of 0. Reported n-alkane normalized kovats indices of compounds 615 

within standardized column types (semistandard non-polar, standard non-polar, etc.) typically vary by <50, meaning that where 

methodologies allow test compound kovats or retention indices to be calculated, predictions utilizing training data from 

instruments and analysis protocols not used on the test samples are likely to be robust, particularly for O:C and  𝑂𝑆തതതതത. For 

methodologies that do not use internal standards and that cannot otherwise easily yield kovats indices, protocols using similar 

columns and temperature ramps would likely produce retention times that could be substituted for retention indices in the 620 

Ch3MS-RF methodology. This approach would be usable across multiple instrumentations, provided it could be established 

that the retention times of any given compound produced by the training and test instrument drift by less than 1 carbon number 

equivalent.  

In summary, training and/or test data from multiple instruments and protocols can be combined to meet user needs, 

provided the following criteria are met: 1) the same ionization energy (typically 70 eV) is used 2) retention index or retention 625 

time drifts between instruments or protocols can be normalized to less than the difference of the elution time between two 

sequential linear alkanes (retention index drift of <100) 3) similar phase columns are used (semistandard nonpolar, standard 

nonpolar, etc) 4) samples and training data are consistently either derivatized or underivatized, and if derivatized use a 

consistent derivatization agent.  It is also important to keep in mind that the training data must span the anticipated feature 

space of the use data set, and that in cases of doubt this can be tested by adding extrapolation set compounds identified from 630 

the sample medium. For chemical properties modelling, this approach can be adapted from the GCxGC approach presented 

for any instrument using chromatography- electron ionization-mass spectrometry that has the capacity to yield at least unit 

resolution mass spectra and for which spectra can be sufficiently deconvoluted to yield clean analyte spectra. The model 

structure and provided sample code are highly flexible and could be utilized to predict any property of interest that might 

reasonably be expected to be reflected in the combination of compound mass spectra and chromatographic retention time, 635 

although performance evaluation is always important for ensuring that the patterns are sufficiently strong to enable accurate 

property prediction using Ch3MS-RF.  

6 Conclusions 

This work presents a new machine-learning based method for quantifying and predicting chemical properties of novel 

organic compounds observed in the atmosphere. Based on a relatively small combined training and test set of ~130 known 640 

compounds, we are able to predict the carbon numbers, vapor pressures, carbon oxidation states, and O to C ratios of ambient 

organic compounds with sufficient accuracy to usefully represent compound distributions in chemical property spaces that are 

important in atmospheric science. That these predictions are generated solely from retention indices and unit mass resolution 

mass spectra marks a significant step forward in ability to characterize the novel organic components of earth’s atmosphere 
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based on measurements generated from a wide range of commonly available atmospheric instrumentation. In GCxGC-MS 645 

applications, these methods contribute significant improvements in both accuracy and analytical efficiency for novel 

compound quantification that enable users to perform untargeted analysis of the rich complexity of data generated by advances 

in instrumentation. While the untargeted analysis data science techniques described in this work have been developed for and 

tested on atmospheric applications, they are not structurally limited in scope and could be applied to a wide range of 

chromatographic-mass spectral data sets to enable characterization of complex organic mixtures. The open-source R script 650 

published in supplement to this work is intended to provide a framework for groups throughout the atmospheric chemistry 

community to efficiently apply and adapt these methods to broadly enhance our ability to take advantage of the increasingly 

complex information provided by ever accelerating advances in environmental chemistry instrumentation.  

Code Availability 

Sample code designed for adaptation and use by other users is available in the GitHub repository associated with this 655 

manuscript (https://github.com/ebarnesey/Ch3MS-RF, https://doi.org/10.5281/zenodo.6320122). The knit R markdown 

including primary analysis is included in “Supporting Information.” 
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FIGURES 

 

Figure 1: Analytical pipeline for chemical properties modelling using a random forest model. ES indicates external standard; CV 815 
indicates cross validation 

 

Figure 2: Distribution of training, test, extrapolation, and unidentified sample compounds in two-dimensional chromatographic 
chemical properties space 
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Figure 3: External standard test set true and predicted chemical properties from random forest modelling 

 

Figure 4: Ambient extrapolation set true and predicted chemical properties from random forest modelling 
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 825 

 

Figure 5: True versus predicted chemical properties distribution of ambient sample organic species within a Carbon Number v. 
Carbon Oxidation State space 

 

Figure 6: Vapor pressure prediction residuals (Log(VP), VP in atm) for vapor pressure predictions of the ambient extrapolation set 830 
based on formula-based parameterization (Li et al., 2016), linearized retention index-based modelling, and random forest modelling.  
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Figure 7: Quantification performance comparison between random forest model (orange) and two previously utilized quantification 835 
methods, specifically closest proxy quantification and manually assigned proxy quantification. Midline of boxes indicates sample 
median, while top and bottom indicate 25th and 75th percentiles. Linear “whiskers” extend to the least extreme values within 1.5 × 
the inner quartile range of the sample. Disconnected dots indicate sample outliers that fall beyond the whisker parameters.  

 

 840 

 

 

 

 

Figure 8:  % increases of mean absolute error in chemical property prediction as a function of shift in test set retention index relative 845 
to training set retention index. Retention indices are normalized to a linear alkane series, making an increment of 100 indicate the 
retention time differences between two linear alkanes separated by 1 carbon number.  
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TABLES 

Table 1: Tuning parameters and important features for chemical properties prediction models. m/z indicates charged fragment 
features and n indicates neutral mass difference features 850 

Property Model Optimized 
mtry 

Number of 
Important Features 

Important Features 

O:C  4 19 Retention index, m/z 41, m/z 43, m/z 45, m/z 
57, m/z 69, m/z 73, m/z 74, m/z 75, m/z 103, 
m/z 113, m/z 147, m/z 189, m/z 204, m/z 217, 
n 2, n 15, n 28, n 30 

Carbon Number  6 9 Retention index, m/z 41, m/z 45, m/z 55, m/z 
57, m/z 73, m/z 99, n 14 

Average Carbon 
Oxidation State  

4 17 Retention index, m/z 41, m/z 43, m/z 45, m/z 
55, m/z 57, m/z 69, m/z 73, m/z 75, m/z 91, 
m/z 93, m/z 117, m/z 119, m/z 147, n 1, n 2, n 
30 

Log(Vapor Pressure)  9 9 Retention index, m/z 55, m/z 73, m/z 75, m/z 
129, m/z 145, m/z 147, n 3, n 30 

 

Table 2: Performance metrics for random forest-based modelling of chemical properties of the external standard test set. “Range of 
true properties” units in units of property: O:C in unitless atom#/atom#, Carbon Number in atom#, average carbon oxidation state 
in mean charge, and Log(Vapor Pressure) in Log(atm). 

Property Out of Sample R2 Mean Absolute Error Root Mean Square 
Error 

Range of True 
Properties 

O:C  .89 .072 .094 0-1 

Carbon Number  .88 1.8 2.4 4-31 

Average Carbon 
Oxidation State  

.79 .24 .33 (-2.1)- 0 

Log(Vapor Pressure)  .82 .72 .93 (-12)-(-4.2) 

 855 

Table 3: Performance metrics for random forest-based modelling of chemical properties of the ambient aerosol sample extrapolation 
set. “Range of true properties” units in units of property: O:C in unitless atom#/atom#, Carbon Number in atom#, average carbon 
oxidation state in mean charge, and Log(Vapor Pressure) in Log(atm). 

Property Out of Sample R2 Mean Absolute Error Root Mean Square 
Error 

Range of True 
Properties 

O:C*   .78 .11 .17 0-1.5 

Carbon Number  .93 1.8 2.2 3-32 

Average Carbon 
Oxidation State*  

.80 .25 .37 (-2.1)- (1.5) 

Log(Vapor Pressure)*  .68 1.1 1.4 (-13)- (-5.7) 

*Restricted to retention index > 1500  

 860 
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Table 4. Error distribution metrics random forest model, retention index linear model, and formula-based predictions of vapor 
pressure. All reported errors in units of log(VP(atm)). 

Vapor Pressure 
Prediction Method 

Mean Error Median Error Mean Absolute 
Error 

Median Absolute 
Error 

Random Forest 
Model 

.24 .21 1.1 .76 

Retention Index 
Linear Model 

.55 .52 1.5 1.1 

Formula-Based 
Parameterization 

1.2 1.3 2.0 1.3 

 

Table 5. Performance metrics for quantification factor prediction for three methods of unidentified compound quantification: 
random forest modelling, manually assigned proxy quantified, and closest proxy quantified. 865 

Quantification Method Out of Sample R2 Mean Absolute Error Root Mean Square Error 
Random Forest Model .65 .00085 .0021 
Manually Assigned Proxy 
Quantified  

-4.1 .0036 .0080 

Closest Proxy Quantified -1.8 .0026 .0059 
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Appendix A: Supplementary Tables and Figures 

FIGURES 

 

 

Figure A1: Mass Spectrum of Hexadecane as measured by GCxGC-MS and featurized in table A2. 890 

 

Figure A2: Quantification factor normalization curve based on average response factors of alkanes  
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Figure A3: Normalized prediction residuals of carbon oxidation state and vapor pressure v. retention index for ambient data 
compound property predictions set, overlaid with compound number distribution over the retention index for ambient data set. The 895 
yellow highlighted region indicates compounds below a retention index of 1500. 

 

Figure A4: Quantification factor prediction errors expressed in Log(predicted quantification factor/true quantification factor) for 
test set quantification factors predicted by random forest model (orange), closest proxy, and manual proxy methods.  
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TABLES 

Table A1: External standard names, formulae (underivatized), retention indexes, split (training set versus test set), and manually 
assigned quantification proxies. 

Name Chemical Formula Retention Index*  Split Manual Proxy 
12-OH C18 acid C18H36O3 2470 Train 

 

16-OH C16 acid C16H32O3 2429 Train 
 

2-ketoglutaric acid C5H6O5 1629 Train 
 

3-5-dimethoxyphenol C8H10O3 1525 Train 
 

4, 4 dimethoxy-
benzophenone 

C15H14O3 2293 Train 
 

4-hydroxybenzoic acid C7H6O3 1651 Test 2-ketoglutaric acid 

4-nitrocatechol C6H5NO4 1769 Train 
 

4-terpineol  C10H18O 1206 Train 
 

9H-florenone C13H8O 1778 Train 
 

a-amyrin C30H50O 3479 Train 
 

abietic acid C20H30O2 2468 Train 
 

anthraquinone C14H8O2 2017 Test xanthone 

benzophenone C13H10O 1664 Train 
 

beta-caryophyllene aldehyde C15H24O2 1715 Train 
 

beta-caryophyllinic acid C14H22O4 2060 Train 
 

beta-caryophyllonic acid C15H24O3 1931 Train 
 

beta-nocaryophyllinic acid C13H20O5 2127 Train 
 

beta-nocaryophyllone 
aldehyde 

C14H22O3 1757 Train 
 

beta-nocaryophyllonic acid C14H22O4 1985 Train 
 

beta-sitosterol C29H50O 3406 Train 
 

bisabolol C15H26O 1770 Train 
 

borneol C10H18O 1254 Test nonanol 

C10 carboxylic acid C10H20O2 1479 Test dimethyl glutaric acid 

C10 diacid (sebacic acid) C10H18O4 1922 Train 
 

C12 diacid C12H22O4 2120 Test beta-caryophyllinic acid 

C13 acid C13H26O2 1776 Test vanillic acid 

C14 alkane C14H30 1422 Train 
 

C14 diacid C14H26O4 2317 Train 
 

C16 alkane C16H34 1626 Train 
 

C16 acid C16H32O2 2078 Train 
 

C17 alkane C17H36 1730 Test C17 alkane 

C17 acid C17H34O2 2177 Test linoleic acid 

C18 alkane C18H38 1830 Train 
 

C18 acid C18H36O2 2280 Train 
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C19 alkane C19H40 1934 Test C20 alkane 

C20 alkane C20H42 2034 Train 
 

C21 alkane C21H44 2137 Train 
 

C22 alkane C22H46 2238 Train 
 

C22 acid C22H44O2 2684 Train 
 

C23 alkane C23H48 2341 Test C24 alkane 

C24 alkane C24H50 2443 Train 
 

C24 acid C24H48O2 2886 Train 
 

C25 alkane C25H52 2545 Train 
 

C26 alkane C26H54 2649 Train 
 

C26 acid C26H52O2 3088 Train 
 

C27 alkane C27H56 2750 Train 
 

C28 alkane C28H58 2852 Train 
 

C28 acid C28H56O2 3291 Train 
 

C29 alkane C29H60 2955 Train 
 

C30 alkane C30H62 3058 Train 
 

C31 alkane C31H64 3159 Test C30 alkane 

C32 alkane C32H66 3259 Train 
 

C33 alkane C33H68 3363 Train 
 

C35 alkane C35H72 3564 Train 
 

C7 acid C7H14O2 < 1400 Train 
 

C8 acid C8H16O2 1293 Train 
 

C9 acid C9H18O2 1381 Train 
 

C9 diacid (azelaic acid) C9H16O4 1822 Train 
 

cholesterol C27H46O 3209 Train 
 

chrysene C18H12 2531 Train 
 

cis-vaccenic acid C18H34O2 2259 Train 
 

citronellol C10H20O 1338 Train 
 

cycloisolongifolene C15H24 1355 Test pyrocatechol 

DEET C12H17NO 1600 Train 
 

deoxycholic acid  C24H40O4 3347 Train 
 

dibenz(ah)anthracene C22H14 3280 Train 
 

dimethyl glutaric acid C7H12O4 1456 Train 
 

dodecyl benzene C18H30 1920 Train 
 

eicosanol C20H42O 2390 Train 
 

ergosterol C28H44O 3296 Train 
 

erythreitol C4H10O4 1528 Train 
 

FAME16 (methyl palmitate) C17H34O2 1957 Train 
 

FAME18 (methyl stearate) C19H38O2 2161 Train 
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farnesol C15H26O 1832 Test bisabolol 

galactosan C6H10O5 1684 Train 
 

gamma dodecalactone C12H22O2 1709 Train 
 

glyceric acid  C3H6O4 1352 Train 
 

hexadecanamide C16H33NO 2212 Train 
 

hexadecanol C16H34O 1989 Train 
 

homosalate C16H22O3 2054 Test beta-caryophyllinic acid 

hydroquinone C6H6O2 1420 Train 
 

ionone C13H20O 1449 Train 
 

isoeugenol C10H12O2 1591 Train 
 

isopimaric acid C20H30O2 2385 Test C14 Diacid 

ketopinic acid C10H14O3 1530 Test pinonic acid 

levoglucosan C6H10O5 1726 Train 
 

linoleic acid C18H32O2 2245 Train 
 

lupeol C30H50O 3483 Train 
 

maltol C6H6O3 1316 Train 
 

mannosan C6H10O5 1706 Test galactosan 

MBTCA C8H12O6 1776 Train 
 

Me-OH-glutatric acid  C6H10O5 1623 Test 2-ketoglutaric acid 

monopalmitin C19H38O4 2628 Test monostearin  

monostearin C21H42O4 2788 Train 
 

nonanol C9H20O 1318 Train 
 

octadecanal  C18H36O 2056 Train 
 

octadecanol C18H38O 2191 Train 
 

octadecanone C18H36O 2031 Train 
 

oleic acid C18H34O2 2251 Train 
 

palmitoleic acid C16H30O2 2056 Train 
 

p-anisic acid (4-
methoxybenzoic acid) 

C8H8O3 1544 Train 
 

pentadecanone C15H30O 1726 Test pinic acid, isomer 1 

perylene C20H12 2967 Train 
 

phthalic acid C8H6O4 1714 Train 
 

phthalimide C8H5NO2 1593 Train 
 

pinic acid, isomer 1 C9H14O4 1692 Train 
 

pinic acid, isomer 2 C9H14O4 1697 Train 
 

pinonic acid C10H16O3 1550 Test hexadecanamide 

pyrene C10H16 2171 Train 
 

pyrocatechol C6H6O2 1339 Train 
 

quinoline C9H7N 1278 Train 
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resorcinol C6H6O2 1399 Test hydroquinone 

retene C18H18 2267 Train 
 

Sesquiterpene 1† C15H24 1404 Train 
 

Sesquiterpene 2† C15H24 1442 Test Sesquiterpene 3 

Sesquiterpene 3† C15H24 1449 Train 
 

Sesquiterpene 4† C15H24 1451 Train 
 

Sesquiterpene 5† C15H24 1471 Train 
 

Sesquiterpene 6† C15H24 1493 Train 
 

Sesquiterpene 7† C15H24 1537 Train 
 

Sesquiterpene 8† C15H24 1569 Train 
 

Sesquiterpene 9† C15H24 1610 Train 
 

sinapinaldehyde C11H12O4 2032 Train 
 

squalene C30H50 2868 Train 
 

stigmasterol C29H48O 3344 Test ergosterol 

syringaldehyde C9H10O4 1726 Test 9H-florenone 

syringic acid C9H10O5 1924 Test C10 diacid (sebacic acid) 

syringol C8H10O3 1418 Train 
 

threitol C4H10O4 1521 Test erythreitol 

triacetin C9H14O6 1362 Train 
 

tridecanal  C13H26O 1537 Train 
 

vanillic acid C8H8O4 1789 Train 
 

vanillin C8H8O3 1558 Train 
 

verbenone (-) C10H14O 1237 Train 
 

xanthone C13H8O2 1906 Train 
 

*Normalized by deuterated alkane standard series 
†Isomer identity undetermined, only quantification factor and properties related to chemical formula included in modelling 905 

Table A2: 40 most common charged fragments featurized for mass spectral featurization, with possible formulae and implications 
of published peaks. 

Fragment m/z Possible Formulae Notes 
41 C3H5+  
43 C3H7+, C2H3O+ Propyl group, ketone indicator 
45 CHO2 Carboxyl indicator, underivitized 
55   
56   

57 
C4H9+, C3H5O+ Signature alkane fragment, 

ketone/ester 
67   
69   
71 C4H7O+ Ketone/ester 

73 
Si(CH3)3+ Indicates derivatization and 

therefore presence of OH group 
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74   
75   
77 C6H5+ phenyl 
79   
81   
83   
85   
91   
92   
93 C6H5O+ Oxygenated aromatics 
95   
99   
103   
105   
107   
109   
111   
113   
117   
119   
121   
129   
131   
132   
135   
145   
147   
189   
204 Si2C8H20O2+ Indicative of sugars 
217 Si2C9H21O2+ Indicative of sugars 

 

Table A3: 20 most common neutral mass differences between charged peaks, selected for mass spectral featurization, with possible 
formulae and implications of commonly reported neutral losses. 910 

Neutral Loss/Mass Difference (amu) Probable Formulae/ Interpretation Notes 
1 Loss of H  
2   
3   
4   
6   
8   
10   
11   
12   
13   
14   
15 CH3 Methyl 
16 O Alcohol- derivatization agent loss 
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18   
20   
26   
27   
28 CO Carbonyl 
30   
42   

 

Table A4. Full chemical properties modelling features for Hexadecane 

Feature Feature Class Feature Input 
Retention Index            
(d-alkane normalized) 

Chromatography 1627 

m/z 41 Mass Spectrum Common Fragment 238 
m/z 43 Mass Spectrum Common Fragment 512 
m/z 45 Mass Spectrum Common Fragment 0 
m/z 55 Mass Spectrum Common Fragment 144 
m/z 56 Mass Spectrum Common Fragment 116 
m/z 57 Mass Spectrum Common Fragment 999 
m/z 67 Mass Spectrum Common Fragment 0 
m/z 69 Mass Spectrum Common Fragment 0 
m/z 71 Mass Spectrum Common Fragment 757 
m/z 73 Mass Spectrum Common Fragment 0 
m/z 74 Mass Spectrum Common Fragment 0 
m/z 75 Mass Spectrum Common Fragment 0 
m/z 77 Mass Spectrum Common Fragment 0 
m/z 79 Mass Spectrum Common Fragment 0 
m/z 81 Mass Spectrum Common Fragment 0 
m/z 83 Mass Spectrum Common Fragment 0 
m/z 85 Mass Spectrum Common Fragment 519 
m/z 91 Mass Spectrum Common Fragment 0 
m/z 92 Mass Spectrum Common Fragment 0 
m/z 93 Mass Spectrum Common Fragment 0 
m/z 95 Mass Spectrum Common Fragment 0 
m/z 99 Mass Spectrum Common Fragment 0 
m/z 103 Mass Spectrum Common Fragment 0 
m/z 105 Mass Spectrum Common Fragment 0 
m/z 107 Mass Spectrum Common Fragment 0 
m/z 109 Mass Spectrum Common Fragment 0 
m/z 111 Mass Spectrum Common Fragment 0 
m/z 113 Mass Spectrum Common Fragment 89 
m/z 117 Mass Spectrum Common Fragment 0 
m/z 119 Mass Spectrum Common Fragment 0 
m/z 121 Mass Spectrum Common Fragment 0 
m/z 129 Mass Spectrum Common Fragment 0 
m/z 131 Mass Spectrum Common Fragment 0 
m/z 132 Mass Spectrum Common Fragment 0 
m/z 135 Mass Spectrum Common Fragment 0 
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m/z 145 Mass Spectrum Common Fragment 0 
m/z 189 Mass Spectrum Common Fragment 0 
m/z 204 Mass Spectrum Common Fragment 0 
m/z 217 Mass Spectrum Common Fragment 0 
loss of 1 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 2 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 3 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 4 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 6 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 8 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 10 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 11 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 12 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 13 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 14 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 15 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 16 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 18 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 20 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 26 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 27 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 28 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 30 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 42 Mass Spectrum Neutral Loss/Mass Diff. FALSE 

 


