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Abstract. Solar irradiance nowcasting and short-term forecasting are important tools for the integration of solar plants into the 

electricity grid. Understanding the role of clouds and aerosols in those techniques is essential for improving their accuracy. In 

this study, we introduce the improvements in the existing nowcasting/short-term forecasting operational systems 20 

SENSE/NextSENSE, based on a new configuration and by the upgradeing of cloud and aerosol inputs methods and also, we 

also investigate the limitations of such model evaluation with surface-based sensors due to cloud effects. We assess the real-

time estimates of surface global horizontal irradiance (GHI) produced by the improved SENSE2 operational system at high 

spatial and temporal resolution (~5 km, 15 min) for a domain including Europe and Middle East-North Africa (MENA) region 

and the short-term forecasts of GHI up to 3 hours ahead by the NextSENSE2 system, against ground-based measurements 25 

from 10 stations across the models’ domain, for a whole year (2017).   

Results for instantaneous (every 15 minutes) comparisons show that the GHI estimates are within +/-50 W/m2 (or +/-10%) of 

the measured GHI for 61% of the cases, after the new model configuration and a proposed bias correction. The bias ranges 

between -12 W/m2 to 23 W/m2 (or -2% to 6.129%) with mean value 11.3 W/m2 (2.3%). The correlation coefficient is between 

0.83 to 0.96 with mean value 0.93. Statistics are significantly improved improved a lot when integrating in daily and monthly 30 

scales (mean bias 6.6 3.3 W/m2 and 25.7 W/m2, respectively). We demonstrate that the main overestimation of the SENSE2 

GHI is linked with the uncertainties of the cloud related information within the satellite pixel underestimation of cloud optical 

thickness from the Meteosat Second Generation (MSG) satellites, while the relatively low overestimation linked with aerosol 

optical depth (AOD) forecasts (derived from Copernicus Atmospheric Monitoring Service - CAMS) results in low 

overestimation of is reported for cloudlessear sky GHI. The highest deviations for instantaneous comparisons are associated 35 
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with cloudy atmospheric conditions with clouds obscuring the sun over the ground-based station. Thus, they are much more 

linked with satellite/ground-based comparison limitations than the actual model performance. The NextSENSE2 GHI forecasts 

based on the cloud motion vector (CMV) model, outperform the smart persistence forecasting method, which assumes the 

same cloud conditions for the future time steps. The forecasting skill (FS) of the CMV based model compared to the persistence 

approach increases with cloudiness (FS up to ~20%), linked mostly to periods with changes in cloudiness, that persistence, by 40 

definition, fails to predict. Our results can be useful for further studies on satellite-based solar model evaluations and, in 

general, for the operational implementation of solar energy nowcasting and short-term forecasting, supporting solar energy 

production and management.       

1 Introduction 

Climate change mitigation along with energy production in a sustainable manner could be addressed with the deployment of 45 

renewable energy technologies (Edenhofer et al., 2011; Pörtner et al., 2022). Diverse technologies of renewable energy are 

investigated worldwide, and their deployment has been increasing, with solar energy markets growing rapidly, with a prospect 

to be the major source of energy supply in next decades (Arvizu et al., 2011; IEA, 2022). Since solar energy resources are 

strongly affected by atmospheric conditions, they are highly variable in space and time. Therefore, there is a need for 

operational nowcasting and short-term solar forecasting for real time energy production, to better integrate solar 50 

energy exploitation technologies with national and international power systems. Under all-skies tThe availability of solar 

resources is primarily affected by clouds (e.g., Fountoulakis et al. 2021) and for clear-sky conditions it depends on the 

atmospheric composition with the most important variables being aerosols (e.g., Fountoulakis et al., 2021; Papachristopoulou 

et al., 2022) and water vapor (Yu et al., 2021). Among those variables, clouds and aerosols are characterized by large temporal 

and spatial variability which constitutes them as key variables for solar energy applications. Therefore, there is a need for 55 

operational nowcasting and short-term solar forecasting for real time energy production, to better integrate solar energy 

exploitation technologies with national and international power systems. The continuously improved earth observation (EO) 

data (satellite-based and atmospheric models) are exploited to produce in real time (nowcasting) accurate estimates of spectral 

surface solar radiation, with numerous applications apart from the solar energy sector (e.g., Qu et al., 2014; Thomas et al. 

2016; Kosmopoulos et al., 2018) in different fields like human health (e.g., Kosmopoulos et al., 2021; Schenziger et al., 2023). 60 

To increase the accuracy of those nowcasting and forecasting tools, it is imperative to understand the spatiotemporal variability 

role of clouds and aerosols properties in their implementation.    

The continued development and improvement of earth observation (EO) techniques in the last two decades constitute a big 

source of new atmospheric information. Satellite-based information and atmospheric models provide high quality data of 

atmospheric composition and state at high spatial and temporal resolution, considered as big data. By exploiting that 65 

multiplatform information, accurate estimates of surface solar radiation can be produced in real time (nowcasting), with 

numerous applications in different fields like solar energy and health (e.g., Kosmopoulos et al., 2018, 2021). The operational 
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solar energy forecasting methods are categorized into three base methods (Sengupta et al., 2021; Yang et al., 2022) with the 

time horizon (few seconds to few days) and the exogenous data, i.e., sky cameras, satellite data and numerical weather 

predictions (NWP). Additionally, there are many statistical and machine-learning methods, which are often combined with 70 

NWP data to improve their outputs (post-processing or blending). The use of cloud motion vector (CMV) technique on satellite 

data is commonly used for solar forecasting of few hours ahead (e.g., Garniwa et al., 2023; Kallio-Myers et al., 2020), giving 

better results than the persistence solar forecasting approach, a method that assumes constant cloudy conditions for the future 

time steps.  

Solar resources assessment at a particular location is important for planning and management of solar energy technologies. 75 

The use of ground-based measurements of surface solar radiation is only available in a few locations with possible gaps in 

time. Those spatial and temporal gaps are filled by modelled estimates of surface solar radiation. Of particular importance are 

gridded surface solar radiation estimates with high spatial and temporal resolution and a large coverage (up to global scale), 

provided by satellite-based models or atmospheric models (e.g., an overview of those techniques in Sengupta et al., 2021). 

Geostationary satellite data due to their large area coverage and high temporal resolution are used to produce estimates of 80 

surface solar radiation both at real time as an operational service and to generate historical archives based on long term satellite 

measurements. Several methods exist for satellite estimates of surface solar irradiance. A well-established method considers 

cloud extinction through the cloud coverage index (Cano et al., 1986) or cloud index, calculated by normalized satellite 

reflectances. Using the cloud index, the transmission factor or the clear sky index (also called cloud modification factor - CMF 

hereafter) is calculated, which finally multiplied with the results of a clear sky model to retrieve solar irradiance at the earth 85 

surface (Hammer et al., 2003). This is the general idea behind the HELIOSAT method (Cano et al., 1986; Hammer et al. 2003), 

widely used in various European research projects and applications. The derivative Heliosat-2 method (Rigollier et al., 2004) 

is launched in real time by the SoDa service to produce the HelioClim-3 database (Qu et al., 2014), a real time solar radiation 

database from February 2004 onwards. The more recent and most advanced version 5 (HC3v5) of the HelioClim-3 database 

(Thomas et al. 2016) combines the McClear clear-sky model (Lefevre et al., 2013; Gschwind et al., 2019) with cloud index 90 

values extracted from Meteosat Second Generation (MSG) satellite images. The Satellite Application Facility on Climate 

Monitoring (CM SAF) provide satellite-based estimates of surface solar radiation using data from Meteosat geostationary 

satellites.  Currently, the third edition of the Surface Solar Radiation Data Set - Heliosat (SARAH-3, Pfeifroth et al. 2023a) 

covers the period 1983 - 2020 as climate data record (CDR) and is operationally extended as interim climate data record 

(ICDR) to the present with a delay of a few days. The retrieval algorithm MAGICSOL (Pfeifroth and Trentmann, 2023; Müller 95 

et al., 2015) is a combination of a modified Heliosat method to derive the effective cloud albedo (CAL) and the SPECMAGIC 

clear-sky model (Mueller et al., 2012). More available open access satellite-based surface solar radiation climatological 

datasets based on the cloud index method can be found in Müller and Pfeifroth (2022). 

There are also fully physical models, that directly estimate surface solar radiation using radiative transfer models (RTM) and 

geophysical parameters as inputs for given atmospheric state including clouds (cloud and aerosol optical properties, total 100 

column values for water vapor and ozone content) and surface conditions.  The combination of multi-channel information from 
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geostationary satellites with cloud retrieval schemes provides cloud optical properties that can be explicitly used in RTM to 

account for cloud extinction and finally calculate surface solar radiation. Parameterizations or look-up-tables based on RTM 

simulations are used instead of direct radiative transfer calculations, to optimize the computational time for operational use of 

the models. This is the case for the Heliosat-4 method (Qu et al., 2017) which is used in Copernicus Radiation Service (CAMS 105 

Radiation Service) estimates of surface solar irradiance. Their Heliosat-4 method is composed of two models considering 

independently the clear sky and cloudy conditions. Specifically, the McClear model (Lefevre et al., 2013; Gschwind, et al., 

2019) is used for calculations of cloud free irradiances and the McCloud model for calculating the extinction of irradiance by 

clouds (through the clear sky index), both based on look-up tables (LUTs) to speed up calculations. The input cloud properties 

of the current CAMS Radiation Service v4 are retrieved by the adapted APOLLO Next Generation scheme to the MSG/SEVIRI 110 

satellite images (Schroedter-Homscheidt et al., 2022).  The most recent version of the U.S. National Renewable Energy 

Laboratory’s (NREL’s) gridded National Solar Radiation Data Base (NSRDB 1998-2016, Sengupta et al., 2018) is also based 

on a fully physical model. This is the Physical Solar Model (PSM) which was developed by NREL and produces gridded 

surface solar irradiance estimates using satellite retrievals for clouds and other atmospheric properties from GOES data as 

input to the radiative transfer model. 115 

The continued developments and improvements since 80s in satellite estimates of surface solar radiation resulted to accurate 

climatological and real time datasets (Qu et al., 2014; Urraca et al., 2017; Pfeifroth et al., 2023b; Qu et al., 2017; Schroedter-

Homscheidt et al., 2022; Sengupta et al., 2018; Habte et al., 2017) although certain sources of biases and common factors that 

increase the uncertainty have been reported: the increase of the distance from the subsatellite point, the more frequent 

occurrence of clouds (especially fragmented cloud cover), complex terrain and  bright surfaces (snow, desert). In addition, it 120 

is a challenge per se and increases the evaluation uncertainties when any model is validated at an instantaneous time scale. 

Gridded satellite-estimates with ground-based point measurements of surface solar radiation differ not only due to model 

uncertainties but also due to different spatio-temporal scales involved (satellite pixels representative of a large area and large 

time intervals of few minutes, ground-based measurements representative of the area exactly over the station and for smaller 

time intervals). 125 

Motivated by the recent advances in satellite-based retrievals of surface solar radiation and building upon the knowledge of 

the already existing and well-established methodologies, an upgrade has been performed to an existing service that provides 

satellite estimates of surface solar radiation in real time, with the aim the improved nowcasting system to be the basis of the 

new forecasting system. The Solar Energy Nowcasting System (SENSE) is a nowcasting system of surface solar radiation was 

developed under the EU project Geo Cradle, as a collaboration of by the Beyond centre of EO research and satellite remote 130 

sensing at the National Observatory of Athens, Greece, in collaboration with the Physical Physics and Meteorological 

Observatory of Davos, of the World Radiation Center, Switzerland (Kosmopoulos et al., 2018). It is a combination of 

geophysical input parameters from satellite-based and model data sources and a neural network (NN) technique, trained on 

precalculated surface solar radiation simulations (look up table – LUT) using RTM by radiative transfer modelling. It uses the 

cloud optical thickness (COT) retrievals productproduced by the Application Facilities Support to Nowcasting and Very Short 135 
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Range Forecasting (NWC-SAF) algorithm based on from the Meteosat Second Generation (MSG) satellite data and aerosol 

optical depth (AOD) forecasts form from the Copernicus Atmospheric Monitoring Service (CAMS) as inputs to the NN to 

derive the surface solar radiation in real time. More details about the previous version of the SENSE service can be found in 

Kosmopoulos et al. (2018). In the same publication Tthe validation of this method showed a good agreement on daily and 

monthly levels; however, various sources of uncertainties have been identified, concerning mainly the use of the NN especially 140 

during under high irradiance valuesatmospheric conditions, the COT input, and the structure/density of atmospheric parameters 

in the LUTs. The reason for the development In of the new version of the model, called SENSE2, that has been used in the 

present study, the model configuration changed, and was to minimize thoese uncertainties were limited, before use it for the 

new forecasting system. For the new version of the model, it was decided to retain the fully physical approach of the model 

that benefits from the MSG satellites cloud optical properties monitoring and recent advances in EO and improve the scheme 145 

that replace the direct radiative transfer calculations.   

The solar energy forecasting methods are categorized into three base methods (Sengupta et al., 2021; Yang et al., 2022) with 

the time horizon (few seconds to few days) and the exogenous data, i.e., sky cameras, satellite data and numerical weather 

predictions (NWP). Additionally, there are many statistical and machine-learning methods, which are often combined with 

NWP data to improve their outputs (post-processing or blending). Each method fits the specific needs of different applications. 150 

The use of cloud motion vector (CMV) technique on satellite data is commonly used for solar forecasting of few hours ahead 

(up to 6 h). Using consecutive satellite images, the CMVs are calculated, and assuming constant cloud speed, the future cloud 

positions are derived by applying the CMV field to the latest cloud image. The early stages of the use of CMV for short term 

forecasting of surface solar radiation based on satellite data start almost twenty years ago (Hammer et al. 1999; Hammer et al. 

2003; Lorenz et al. 2004). In the last decade, the interest in using optical flow techniques from the computer vision community 155 

in satellite images for cloud motion estimation in the context of solar forecasting has been increased. One of the first works 

was by Urbich et al. (2018), where for the European domain two optical flow methods were used and compared in forecasting 

MSG satellite derived effective cloud albedo. Those forecasted values of effective cloud albedo combined with SPECMAGIC 

NOW delivers surface solar irradiance short-term forecasts (SESORA -seamless solar radiation, Urbich et al., 2019). An optical 

flow method to effective cloud albedo maps based on SEVIRI images used by Kallio-Myers et al. (2020) to forecasted global 160 

horizontal irradiance up to 4 h ahead with 15 min time resolution for southern Finland, by applying the Heliosat method to 

forecasted effective cloud albedo maps in combination with the Pvlib Solis clear sky model (Solis-Heliosat forecasting model). 

In the same study, they also found that their forecasting model mostly outperforms persistence, especially under changes in 

cloudiness. It is a common practice to benchmark forecasts of surface solar radiation with the persistence approach (e.g. Kallio-

Myers et al.,2020; Garniwa et al., 2023), a method that assumes constant cloudy conditions for the future time steps. 165 

The NextSENSE system was developed as a continuation of SENSE, during the EU project E-shape and by the same research 

groups. It The NextSENSE system was first introduced in the study of Kosmopoulos et al. (2020), as a novel short-term solar 

energy forecasting system (3 h ahead, every 15 min), based on forecasts of satellite derived COT using a CMV technique, with 

solar irradiance estimated by the SENSE model. The NextSENSE system was developed as a continuation of SENSE, during 
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the EU project E-shape and by the same research groups previously mentioned. The employed CMV technique is based on 170 

state-of-the-art image processing technologies (dense optical flow). In the same study, a first The evaluation of the CMV 

forecasts accuracy was performed by Kosmopoulos et al. (2020) for selected test days with different cloud movement patterns, 

against the real MSG COT and in term of irradiance estimates using both forecasted and real COT. They found that the 

deviations of forecasted irradiances compared with nowcasting outputs ranged from 18% to 34% under changing cloudy 

conditions, outperforming the persistence method for certain conditions. However, this first evaluation was based on the 175 

satellite-derived COT, so Tthe aim of the current study is to compare the validate the NextSENSE model for one full year of 

irradiance forecasts with ground-based measurements, for more robust conclusions. Additionally, as NextSENSE is based on 

the same hierarchy of SENSE with only addition the CMV analysis, all improvements of SENSE2 are inherited in the new 

NextSENSE2 system too. 

The present study aims to investigate the role of clouds and aerosols in nowcasting and short-term forecasting of global 180 

horizontal irradiance (GHI), using ground-based measurements, by: 

• Introducing the SENSE2 and NextSENSE2 upgrades of SENSE and NextSENSE systems, respectively.  

• Validating the improved nowcasted GHI using ground based pyranometer measurements for 1 year (2017). 

• Investigating cloud and aerosol effects on GHI estimates. 

• Proposing a possible correction for GHI estimation based on MSG COT real time information.  185 

• Validating CMV forecasted GHI and benchmarking the results with those by the persistence method. 

2 Data and methods 

2.1 SENSE2 

SENSE2 is an operational system that produces fast estimates of GHI in real time every 15 min, for a wide area including 

Europe and Middle East-North Africa (MENA) region at high spatial resolution (~5 km), calculated from earth observation 190 

(EO) data and look-up-tables (LUTs) derived from radiative transfer model (RTM) simulations. The SENSE2 presented in this 

study (Fig. 1) is an improved system, compared to the previous SENSE version, in terms of the parameterizations for radiative 

transfer calculations and, mainly, the improvement of aerosol and cloud representation in the model using a more detailed 

look-up-table (LUT) and multiparametric equations for different aerosol and cloud scenes, respectively. The new version of 

the SENSE2 system is available as a webservice via https://solar.beyond-eocenter.eu/#solar_short (last access: 2023-12-15).  195 

The first improvements of the SENSE2 system are that: 

• the computations of clear-sky GHI are performed in the previous day, for the whole domain (1.5M pixels), every 15 

min and, for the current day, the real-time cloud information is applied to provide all skies GHI in real time (no NN 

is used). 
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• the computations of clear-sky GHI are based on a new, more detailed LUT of ~16M combinations of simulated GHI 200 

at the earth’s surface, that was generated using the GRNET High Performance Computing Services and the 

computational resources of ARIS/GRNET infrastructure. The RTM simulations were performed using the libRadtran 

package (Emde et al., 2016; Mayer & Kylling, 2005) and Table 1 summarizes the input variables and their resolution 

resulted to the ~16M runs.  

RTM simulations were performed spectrally from 280 to 3000 nm, with 1 nm spectral resolution using the DISORT radiative 205 

transfer solver in pseudo-spherical mode (Buras et al., 2011). The molecular absorption parameterization of representative 

wavelength approach – REPTRAN was used in the solar range (Gasteiger et al., 2014) to account for the absorption of 

atmospheric gases for the whole solar spectrum. The Kurudz 1.0 nm (Kurucz, 1994) extraterrestrial solar spectrum and the 

U.S. Standard Atmosphere (Anderson et al., 1986) were used as inputs. The default aerosol model of Shettle (1989) was used 

as the basis with modified aerosol optical properties of AOD, single scattering albedo (SSA) and Ångström Angstrom exponent 210 

(AE) varied according to Table 1. The spectral global irradiances were integrated over the spectral range of the simulations to 

derive the GHI.  

The clear-sky GHI modelled values estimates by SENSE2 (Fig. 1) are calculated in the previous day, by linear interpolation 

in the 7 dimensions (7D) of the precalculated GHI LUT using the corresponding inputs. Specifically, the solar zenith angle 

(SZA) values are precalculated for every grid cell of the domain (1.5M in total), for the 15 min time step. The main input 215 

parameter for the clear-sky computations is the forecasted AOD at 550nm from CAMS (CAMS AOD hereafter). The forecasts 

for the day of interest are values from the CAMS run of the previous day initialized at 00:00 UTC (e.g., the AOD used to 

simulate the GHI for the 24th of a month, has been derived from the CAMS run that started on the 23rd at 00:00 UTC). 

Climatological values are used for the interpolation in the 7D LUT for the additional aerosol optical properties of SSA and AE 

(MAcv2 climatology, Kinne, 2019), for the water vapor (WV) (CAMS reanalysis (Inness et al., 2019)), the total ozone column 220 

(TOC) (OMI TOC data (Bhartia, 2012) based climatology) and surface albedo (GOME-2 database of directionally dependent 

Lambertian-equivalent reflectivity (Tilstra et al., 2017, 2021)). It should be mentioned that the interpolation procedure in the 

7D LUT was added in the new SENSE2 to further improve the accuracy of the GHI estimations. Finally, since the results of 

the RTM runs are at sea level and for the mean earth-sun distance, a post correction of the clear-sky GHI values from the LUT 

is performed for the surface elevation following the methodology described in Fountoulakis et al., (2021) and the actual earth-225 

sun distance for the particular day of the year (DOY). Based on simulations for various atmospheric and surface albedo 

conditions, Fountoulakis et al. (2021) estimated an average increase of the GHI by 2% per km, which has been also applied to 

the model output to correct the surface GHI for sites at higher altitudes than sea level.  

The use of LUTs at operational surface solar radiation retrievals instead of direct RTM calculations is well established (e.g., 

Qu et al. 2017; Mueller et al., 2009). From a technical point of view, various concepts exist which can reduce by several orders 230 

of magnitude the number of RTM simulations needed for a LUT generation. Mueller et al. (2009) developed a flexible, fast, 

and accurate scheme to retrieve the broadband surface solar irradiance (CM-CAF datasets) using the hybrid eigenvector 

approach, resulting in a combination of basis LUTs with optimized interpolation grid and parameterizations, using only almost 
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one thousand RTM calculations. This approach was extended by Mueller et al., (2012) to wavelength bands for spectrally 

resolved surface solar irradiance retrievals from spaceborne data. This optimization of the computing performance is of 235 

paramount importance for the reprocessing of a large amount of satellite data (up to a few decades). In this work, the main 

concept behind the generation of our clear sky LUT was to have spectral irradiance outputs (1nm spectral resolution). The 

choice to calculate spectral solar data and not directly shortwave radiation is based on the fact that the SENSE2 output could 

be used for other (health, agriculture, other) applications, based on the irradiance weighting of a relevant spectral range with 

an action spectrum (function) defined for each of the effects. So, a large number of RTM runs had to be performed (once) for 240 

spectral surface solar irradiance covering all possible combinations of atmospheric and surface states. Technically, since the 

operational set up of the SENSE2 model allows for the computation of the clear sky GHI values from the previous day, the 

processing time for interpolation to the 7 dimensions of the LUT has no effect in producing timely the real time output of the 

model every 15 min, while the accuracy of the clear sky output is almost identical with direct RTM simulations 

(Papachristopoulou et al., 2022) and the uncertainties of the clear sky GHI retrievals are related only to the uncertainties of the 245 

model inputs. In addition, this LUT includes various aspects especially for aerosols (AOD, SSA, AE) that can reduce the 

uncertainty under different aerosol conditions, for broadband solar radiation or specific spectral regions.  
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Figure 1 Schematic overview of solar energy nowcasting system (SENSE2) and short-term forecasting (NextSENSE2) up to 3h ahaid.  

Table 1 Input parameters to radiative transfer simulations performed at the ARIS GRNET supercomputer resulted to the 7D GHI 250 
LUT.  

 

 

Parameter  Range Resolution 

Solar zenith angle (SZA in deg) 1 to 89 1 

Aerosol optical depth at 550nm (AOD) 0 to 2, 2.5,3.0 0.05 

Single Scattering Albedo (SSA) 0.6 to 1 0.1 

Angstrom exponent (AE) 0 to 2 0.4 

Total Ozone Column (TOC in DU) 200 to 500 100 

Water Vapor (WV in cm) 0.5 to 3 0.5 

Surface albedo 0.05 to 0.8 0.15 
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Another improvement is related to the cloud representation in real time, using multi-parametric equations for different cloud 

scenes, based on the Cloud Modification Factor (CMF) concept, instead of using the COT as an input parameter in direct the 255 

RTM calculations. The computation of the all-skies GHI in real time, every 15 min, is based on the COT product we extract 

operationally in real time using broadcasted MSG satellite data and the software package provided by EUMETSAT Satellite 

Application Facilities of Nowcasting and Very Short Range Forecasting, NWC SAF (Meteo France, 2016; Derrien & 

LeGLeau, 2005). To provide timely the all skies GHI SENSE2 product for 1.5M pixels, neither the running of direct radiative 

transfer simulations nor the multi-dimension interpolations would be sufficiently fast. Instead, a multi-parametric equation 260 

was constructed, fitted on libRadtran simulations for a wide range of COT values for different SZAs (points in Fig.2a). In our 

simulations, spherical droplets were assumed having typical climatological mean heights (base at 2km, 3km height) and 

microphysical properties. Typical values for the effective radius (Reff = 10 μm) and the liquid water path (LWP = 1 g/m3) were 

used, given the unavailability of those data and their small impact on GHI (Oumbe et al., 2014; Qu et al., 2017).  The design 

of the cloud model was a trade -off between the relevance of the cloud property and the operational implementation of the 265 

model. It has been shown in previous studies (Qu et al. 2017) that for most of the cases (except for high surface albedo values 

>0.9), the cloud vertical position and extent has a small or negligible influence for the RTM simulations of surface solar 

irradiance. Under cloudy conditions, COT is the variable that has the greatest impact on simulating surface solar radiation (Qu 

et al., 2017, Oumbe et al., 2014, Taylor et al., 2016). In our simulations, spherical droplets were assumed, with typical values 

for the effective radius (Reff = 10 μm) and typical climatological mean heights (base at 2 km, 3 km height) (Taylor et al. 2016, 270 

Kosmopoulos et al., 2018), given the unavailability of height descriptors in the operational mode and the negligible influence 

of changes in droplet effective radius with respect to COT on simulating surface solar radiation (Oumbe, 2009) and towards 

simplify the cloud model. The COT of the cloud layer is additionally specified at 550 nm, which leads to an adjustment of the 

liquid water content default value of 1 g/cm3, using the parameterization by Hu and Stamnes (1993). Finally, for the libRadtran 

simulations homogeneous layer clouds were used, meaning cloud cover fraction value of 100%, which is one of model 275 

limitations, since assuming totally cloudy pixels is not always correct for low values of COT (Mueller et al. 2009). The 

simulated GHI for each COT was divided by the GHI for COT=0 (clear sky) for the same SZA to derive the CMF (Eq. 1). The 

CMF ranges from zero (overcast conditions) to 1 (clear sky) and it is easy to use to provide all skies GHI by simply multiplying 

clear-sky GHI with CMF (Eq. 3). The libRadtran-derived CMF for each SZA were fitted against COT using the hyperbolic 

tangent function. The resulting fits are shown as solid lines in Fig.2a and are mathematically expressed by the multi-parametric 280 

Eq. 2.  

𝐶𝑀𝐹 =
𝐺𝐻𝐼

𝐺𝐻𝐼𝑐𝑙𝑟
                                                                                 (1) 

𝐶𝑀𝐹 = 1 − tanh𝑏(𝐶𝑂𝑇𝑎)                                                                 (2)    

where a and b are polynomials of SZA 

𝑎 = 2.24 ∙ 10−1 + 2.81 ∙ 10−4 ∙ 𝑆𝑍𝐴 − 2.18 ∙ 10−5 ∙ 𝑆𝑍𝐴2 + 3.71 ∙ 10−7 ∙ 𝑆𝑍𝐴3 − 2.65 ∙ 10−9 ∙ 𝑆𝑍𝐴4        (2𝑎)                                             285 

𝑏 = 12.2 + 5.27 ∙ 10−3 ∙ 𝑆𝑍𝐴 − 2.24 ∙ 10−3 ∙ 𝑆𝑍𝐴2 + 8.33 ∙ 10−6 ∙ 𝑆𝑍𝐴3 + 3.94 ∙ 10−8 ∙ 𝑆𝑍𝐴4                     (2𝑏)   
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The real time MSG COT is used as input in Eq. 2 every 15 min, along with SZA, for ~1.5M pixels, to calculate the CMF 

(CMFmsg hereafter). Apart from being very fast, the use of this formula to calculate CMFmsg is also accurate, as it can be 

seen by the comparison of the CMF values derived by Eq. 2 against those of libRadtran runs (Fig. 2b). CMF differences are 

less than 0.015 (or 1.5%) for SZA lower than 70 degrees, while they are up to 0.03 (3%) for SZAs between 80 and 90 degrees, 290 

showing the very good representation of the CMF as a function of COT with Eq. 2. In terms of accuracy this means that using 

Eq. 2 is almost the same as running RTM simulations, but in terms of computational time is by far more efficient in the 

operational mode. Finally, by multiplying CMFmsg with clear-sky GHI, the all-skies GHI product is provided (Eq. 3), in less 

than 1 min for 1.5M pixels.  

𝐺𝐻𝐼 = 𝐺𝐻𝐼𝑐𝑙𝑟 ∗ 𝐶𝑀𝐹𝑚𝑠𝑔                                                                    (3) 295 

 

Figure 2 (a) Cloud modification factor (CMF) versus cloud optical thickness (COT) and solar zenith angle (SZA) based on radiative 

transfer simulations of global irradiances using the libRadtran package. CMF is the ratio of global horizontal irradiance (GHI) 

values to those under cloudless conditions (COT=0). (b) Differences between the CMF directly derived from libRadtran simulations 

against those derived from Eq. 2, as a function of COT and SZA. 300 

The new SENSE2 configuration was built for the improvement GHI nowcasting on the 15 min time scale. Additionally, it 

allows a greater flexibility for the system to: 

- include reanalysis or measured data of AOD and other optical properties e.g., CAMS reanalysis or AERONET 

measurements. 
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- extent to other output products. Apart from GHI, direct normal irradiance (DNI) or total irradiance on tilted surface could 305 

be also produced. By introducing spectral information and making the appropriate modifications, products related to 

specific spectral regions could be also derived (e.g., UV Index by using real time input for TOC, photosynthetically active 

radiation (PAR) etc). 

- run a past time series of one or few locations, autonomously, using as input actual measurements. In this case, if there is 

no time constrain, model runs could be performed without the parametrizations (LUT and multiparametric functions). 310 

2.2 NextSENSE2 

NextSENSE2 is the operational system that provides forecasts of GHI up to 3-hours ahead with a 15-min time step by applying 

a CMV technique to the MSG COT product (Fig. 1). In this section, we describe the method employed to produce forecasted 

COT, which is the main input to derive the operational forecasts of GHI. All the other EO inputs and the radiative transfer 

parameterizations for fast estimates of forecasted GHI are the same as those described in the previous section for the SENSE2 315 

model.  

We use CMVs to predict the motions of the clouds and project their future positions. The CMVs in NextSENSE2 are calculated 

by applying a state-of-the-art optical flow algorithm from the computer vision community. Optical flow is the apparent motion 

of objects between consecutive frames, caused by the relative movement between the object and a camera. We apply the 

Farnebäck (2003) two-frame motion estimation technique to images of COT product (Kosmopoulos et al., 2020). Several other 320 

optical flow algorithms like TV-L1 are available as free software (OpenCV) and are used for cloud motion estimation in solar 

energy short-term forecasting systems (Urbich et al., 2019). In this study we used Farnebäck based on the results of the previous 

study by Kosmopoulos et al. (2020). By applying the algorithm to two consecutive images of satellite derived COT the optical 

flow displacement vectors are calculated. This CMV field is applied to the later COT image (real) to get the next COT image 

(forecasted COT). This procedure is repeated for 12 times resulting to the 3h forecasting horizon. Main assumptions are the 325 

brightness constancy and that the cloud’s displacements are only two dimensional (image plane). More details regarding the 

CMV model and forecasted COT can be found in Kosmopoulos et al. (2020). 

2.3 Smart pPersistence forecast 

It is not easy to evaluate the quality of different forecasting methods of surface solar radiation using only statistical metrics, 

since the study period, the geographical area and other factors are affecting their forecasting accuracy. That’s why it is a typical 330 

practice of evaluation to benchmark the different forecasts against some simple forecast methods (Pelland et al., 2013). We 

used the persistence forecast to benchmarked the CMV forecasted GHI of NextSENSE2 system which is a commonly used 

reference in solar forecasting (e.g. Kosmopoulos et al., 2020; Kallio-Myers et al., 2020). with the so-called smart persistence 

approach, which  This method assumes that the state of the clouds remains constant for future time steps, while all other 

variables like SZA etc. dynamically change. Hence, it uses the same COT values from the later satellite information as input 335 

to the next 12 time-steps in order to forecast GHI up to 3h ahead.   
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2.4 Ground based irradiance measurements 

To validate the modelled GHI, ground-based measurements from pyranometers were utilized. The 1-min GHI ground based 

measurements were collected from stations of the Baseline Surface Radiation Network (BSRN; Driemel et al., 2018) that are 

within the study area and have data throughout 2017, and from two additional stations at Athens (ASNOA: NOA’s 340 

Actinometric Station) and Thessaloniki. Table 2 summarizes the information of the 10 in total stations utilized and Fig. 3 

depicts their geographical locations.  

BSRN station-to-archive files were accessed and manipulated using the SolarData v1.1 R package (Yang, 2019). The function 

that reads the data from the station-to-archive files also computes several auxiliary variables such as solar zenith angle, clear 

sky irradiances using the Ineichen-Perez clear sky model (Ineichen & Perez, 2002) and extraterrestrial GHI. Using the same 345 

methodology, the Ineichen-Perez clear sky model values were also computed for the non BSRN station data, by adjusting the 

functions of the SolarData v1.1 R package for the non-BSRN stations.    

The BSRN recommended Quality Check (QC) tests (Long & Dutton, 2010) wherewere performed to the collected 

measurements, to ensure the best quality of the measurements. Measurements that were not respecting the above QC tests, 

were flagged, and set to as a missing value. The GHI records that are available at the two Greek stations (1951 – present in 350 

Athens, 1993 – present in Thessaloniki) are among the longest continuous high quality GHI records at the Eastern 

Mediterranean Basin, an area where BSRN data are not available for the period of this study. The pyranometers in Athens and 

Thessaloniki are calibrated regularly and the GHI measurements have been subjected to quality control before being used in 

the study. More information for the GHI datasets at the two stations can be found in Bais et al., (2013) for Thessaloniki, and 

Kazadzis et al, (2018) for Athens.     355 

Table 2 Detailed information about the ground-based sations used in this study. 

 Ground based pyranometer 
AERONET station 

Name  network Lat. (°N) Lon. (°E) location 

ATH - Athens - 37.9 23.7 Europe/Greece Co – located 

CAB – Cabauw BSRN 51.9711 4.9267 Europe/Amsterdam Co – located  

CAM – Camborne  BSRN 50.2167 -5.3167 Europe/London Co – located  

CAR – Carpentras  BSRN 44.083 5.059 Europe/Paris Co – located  

CNR – Cener  BSRN 42.816 -1.601 Europe/Madrid Co – located  

LER – Lerwick     BSRN 60.1389 -1.1847 Europe/London Co – located  

LIN – Lindenberg  BSRN 52.21 14.122 Europe/Berlin Co – located (metObs LIN) 

PAL – Palaiseau, SIRTA Obser BSRN 48.713 2.208 Europe/Paris Co – located  

TAM – Tamanrasset  BSRN 22.7903 5.5292 Africa/Algiers Co – located  

THE -Thessaloniki - 40.63 22.96 Europe/Greece Co – located 
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Figure 3 Locations of the ground-based stations measuring global horizontal irradiance (GHI) that are used in the current study. 

These are eight BSRN stations, plus Athens, and Thessaloniki, Greece. 360 

2.5 Ground based aerosol information 

To assess the CAMS AOD forecasts used as input to the model, ground-based measurements of AOD from the AERONET 

network (Holben et al., 1998) were used. All the ground-based stations with pyranometer data (BSRN, Athens and 

Thessaloniki) have a collocated AERONET station (see Table 2). The level 2, version 3 direct sun (Giles et al., 2019) AOD 

data at 500nm were collected and using the Ångström exponent for 440-675nm, the AOD values at 550nm were derived. Only 365 

for Cabauw, measurements of AOD at 500 nm weren’t available, therefore AOD at 440 nm was used instead and converted to 

550 nm using the Ångström exponent for 440-675 nm.   

2.6 Evaluation metrics 

For the validation of the SENSE2/NextSENSE2 derived GHI values against ground-based measurements, common statistical 

metrics have been adopted. Given that the error is defined as the difference between modelled values (xm_i) and observed 370 

values (xo_i), we have the following common metrics: 
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Mean Bias error: 

𝑀𝐵𝐸 =
1

𝑁
∑(𝑥𝑚𝑖

− 𝑥𝑜𝑖
)

𝑁

𝑖=1

                          (4) 

Root mean square error:  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥𝑚𝑖

− 𝑥𝑜𝑖
)

2
𝑁

𝑖=1

                 (5) 375 

And Pearson correlation coefficient R. The relative values of those metrics rMBE and rRMSE were obtained with respect to 

the mean of the observed values of GHI. 

 

An additional metric the forecast skill (FS) was used to assess the performance of CMV forecasted GHI using persistence 

model as a benchmark model: 380 

𝐹𝑆 = 1 −
𝑟𝑅𝑀𝑆𝐸𝐶𝑀𝑉

𝑟𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑠.
                     (6) 

where rRMSECMV and rRMSEpers are the relative RMSE of the CMV and persistence forecasting models, respectively. 

3 Results and Discussion 

The results are discussed separately for the evaluation of nowcasted GHI (Section 3.1) related to SENSE2 outputs (modelled 

GHI hereafter) and the evaluation of the short-term forecasted GHI (Section 3.2), namely the NextSENSE2 product (forecasted 385 

GHI, hereafter). The comparisons between ground based and estimated GHI where restricted to SZAs below 75° (i.e., for solar 

height above 215° from the local horizon), because for higher SZAs the accuracy of the satellite cloud retrievals degrades due 

to the limitations in the field of view of the satellite. 

The CMF derived from the ground-based measurements of GHI was used in our analysis to evaluate CMFmsg and to categorize 

the cloudiness conditions. Specifically, the CMF was calculated as the ratio (Eq. 7) of measured GHI to the clear sky irradiance 390 

calculated by the Ineichen-Perez clear-sky model (Ineichen & Perez, 2002) (See Section 2.4).   

𝐶𝑀𝐹 =
𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐺𝐻𝐼𝑐𝑙𝑟
                 (7) 

Three categories according to CMF are used in the following: CMF≥>0.9 for clear sky conditions, 0.4<CMF<0.9 for partially 

cloudy conditions and CMF≤<0.4 for overcast conditions. 
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3.1 Nowcasting 395 

3.1.1 Overall performance 

Figure 4 presents the overall performance of the SENSE2 system at the (instantaneous) 15 min time scale, by comparing the 

modelled GHI values against ground-based measurements, for all stations, for a whole year (2017). We can see that most of 

the points (Fig. 4a, number of cases N>600) fall on the 1:1 line (blue line) which indicates the overall good performance of 

the system, with a correlation coefficient of 0.93. For 58 % of the cases, the absolute differences between modelled and ground-400 

based measurements of GHI are within +/-50 W/m2 or +/-10 % (Fig. 4b). The SENSE2 system mostly overestimates the GHI, 

which corresponds to points above identity line (Fig. 4a), with MBE 23.8 W/m2 (4.9%). This overestimation is attributed to 

the underestimation of cloud related information from satellite (MSG COT), when we compare point measurements with a 

pixel in satellite images corresponding to a wide area of almost 5 km x 5 km. This overestimation, which is more pronounced 

for low irradiances (low left corner of Fig. 4a with GHI<250 W/m2), indicating the challenging task of accurately modelling 405 

GHI based on satellite data for stations with enhanced cloudiness. Especially at high latitudes, measurements with clouds and 

at large SZAs are more frequent. Lerwick is the most northern station and at the same time the station with the greatest MBE 

(Fig. 4b and Fig A1,2 in Appendix A). There are also points below the identity line, which indicate that the measured GHI is 

greater than the modelled. This is attributed partly to the irradiance enhancement by clouds that occurs often when the sky 

above the ground station is partially cloudy, and the sun is visible. In this case, the reflection of solar radiation by clouds 410 

increases the diffuse component, and hence the GHI, at the ground, even though the satellite “sees” a cloudy pixel. The cloud 

effect on GHI estimates is investigated in more detail in Section 3.1.3.  
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Figure 4 (a) Comparison of the global horizontal irradiance (GHI) modeled versus measured for all ground based stations, for 2017. 

(b) Relative frequency of GHI MBE for all stations (grey bars) and for each station (lines with different symbols and colors).   415 

We investigated the influence of the mean cloudiness (CMF) of every station along with its latitude and the mean measured 

GHI to the GHI MBE and is presented in Fig. 5. The GHI MBE increases with an increase in cloudiness (decrease in mean 

CMF). At the same time the cloudiness increases with latitude, where lower values of mean measured GHI are observed as 

well. Those results are in line with previous studies (Qu et al., 2014; Qu et al., 2017). According to Qu et al., (2014) the error 

of the satellite estimates of surface solar radiation increases with an increase of the distance from the subsatellite point (lat=0°, 420 

lon=0° for Meteosat) and in occurrence of fragmented cloud cover. Qu et al (2017) found lower accuracy of their retrievals for 

the northernmost stations which was attributed to the more frequent cloud occurrence over those stations and the more 

erroneous satellite retrievals of clouds properties for large SZAs and satellite viewing angles. One of those stations was 

Lerwick, which is close to the edge of the field of view of Meteosat satellite, where errors due to parallax becomes important 
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(Marie-Joseph et al., 2013; Schroedter-Homscheidt et al. 2022). The cloud effect on GHI estimates is investigated in more 425 

detail in Section 3.1.3. 

 

Figure 5 GHI MBE dependence on the mean CMF for all stations. The colour of the points indicates the latitude of the station and 

their size the magnitude of the mean GHI observed at the ground-based stations. 

All the statistical metrics are drastically improved with increasing time scale for all stations (Fig. 65). Stations with similar 430 

results are the northern most stations CAB, CAM, LER, LIN, and PAL. At the 15 min time scale their MBE, RMSE and 

correlation coefficient range 29-43 W/m2, 104-131 W/m2 and 0.82-0.90, respectively. Those statistics are improved for the 

monthly means to 5-10 W/m2 for MBE, to 7-13 W/m2 for RMSE and to r~1. Similar results were found for the rest 

southernmost stations (MBE, RMSE and correlation coefficient range from -7 to 30 W/m2, from 84 to 104 W/m2 and from 

0.93 to 0.95, respectively, for 15 min time scale and from -4 to 8 W/m2, from 6 to 10 W/m2 and r~1, respectively, for monthly 435 

means). The overall MBE and RMSE is reduced to 6.6 W/m2 (3.3%) and 15.4 W/m2 (7.7%) for the daily mean GHI and to 5.7 

W/m2 (3.2%) and 9.2 W/m2 (5.2%) for the monthly means, while correlation coefficient reaches values up to almost 1, which 

was anticipated since the cloud effect is smoothed out for larger time scales.  
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 440 

Figure 65 Comparison of the global horizontal irradiance (GHI) modeled versus measured per ground based station, for 2017, for 

different time scales (15 min, daily mean and montlhy mean). 

3.1.2 Aerosol effect on retrieved solar irradiance 

The CAMS AOD forecasts used as input to the operational model were assessed against ground-based measurements from the 

AERONET network, and the related uncertainty introduced to modelled GHI has been calculated. The AERONET AOD direct 445 

sun measurements were matched with CAMS AOD forecasts (1h time resolution) interpolated to the 15 min time steps of the 

model. The closest AERONET measurement +/- 10 minutes around the 15 min time steps were matched (or the mean value if 

more than one measurements were available). To estimate the model uncertainties due to forecasted AOD, the clear sky GHI 
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was calculated using as input first the forecasted CAMS AOD and second, the synchronized AERONET AOD measurements. 

The comparison for AOD and modelled GHI is presented in Fig. 76 per station in terms of MBE.  450 

CAMS forecasts mostly overestimate AOD with MBE 0.015 (10%) for all stations which results to an underestimation of 

modelled clear sky GHI -2.7 W/m2 (-0.4%). The greatest overestimation 0.05 (~50%) was found for CAM and CNR which 

resulted to the greatest underestimation of clear sky modelled irradiances -8.5 W/m2 (-1.4%). Underestimation of AOD was 

found for CAB and THE, with MBE<0.01 (<3%), resulting in negligible overestimation of modelled irradiances (MBE< 

1W/m2 or 1%). 455 

An overestimation of the CAMS forecasted AOD at 550nm is also reported for 2017 over Europe (average modified 

normalized mean bias ranging from ~10 to 30%) from the continuous quarterly evaluation of the AOD forecasts against daily 

AERONET cloud-screened (i.e. Version 3 level 1.5) sun photometer data (Basart et al., 2023; Eskes et al., 2021). While this 

is the case on average, in contrast during high aerosol loads, CAMS forecasted AOD is underestimated, especially in desert 

regions and during dust events (Basart et al., 2023; Papachristopoulou et al., 2022) which might explain the almost zero bias 460 

for Tamanrasset station (the overestimation of small AODs masked out by the frequent underestimation of large AODs) 

compared to the greater values of bias (>0.01) found for most of the rest stations. Qu et al. (2017) analysed case studies at 

Tamanrasset and found that the CAMS (MACC) AOD at 550nm is frequently underestimated against AERONET data during 

summer dust events, explaining the strong positive bias they found for their modelled direct irradiance (using Heliosat-4 

method and the McClear clear sky model). In contrast to the CAMS AOD underestimation during dust events, in the same 465 

study (Qu et al., 2017) a systematic overestimation of AOD was found during periods free of those events for the two examined 

desert stations (Sede Boqer and Tamanrasset), to which they associated the underestimation of their modelled direct irradiance. 

The updated McClear v3 clear sky model used in study by Schroedter-Homscheidt et al. (2022) and for their GHI estimates 

under clear-sky conditions a negative bias was found for most of the station especially for those located in dust affected regions, 

which is in line to our results although not directly comparable since they compared directly with the BRSN measured 470 

irradiances. Our results demonstrate the good performance of the clear sky model using CAMS forecasts, highlighting that 

AOD product forecasted by CAMS is suitable for GHI nowcasting applications. 
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Figure 76 Upper panel: Mean bias error (MBE) of aerosol optical depth (AOD) at 550nm forecasted by CAMS (1 day ahead forecast) 

compared to AOD measured by ground based sun photometers of the AERONET network. Lower panel: MBE of global horizontal 475 
irradiance (GHI) modeled under clear sky conditions using as input CAMS forecasted AOD at 550nm versus measured values 

(AERONET).   

3.1.3 Cloud effects on retrieved solar irradiance 

Overall, the model relatively overestimates GHI, as we saw in Section 3.1.1., which The improvement of the statistics going 

from instantaneous comparison to integrated time scales (e.g. daily) points to the direction that such overestimation can be 480 

attributed both to the uncertainties related to the underestimation of cloud information from satellite retrievals, but also to 

satellite/ground-based evaluation representativity issues. (MSG COT). To  In order to investigate this more, we decomposed 

the error in modelled GHI for different conditions in cloudiness.induced due to satellite cloud information,  

Initially, we classifyied the cloudiness conditions using ground-based CMF (Fig 87a, b, c). We can see that the According to 

the results, GHI is overestimated by the model under cloudy conditions (CMF<0.9), while for clear sky conditions (CMF≥>0.9, 485 

Fig. 8a) the model closely resembles the measured GHI. The category of CMF>0.9 contains apart from the conditions with 

actual clear sky, also the CMF >1 which exists due to the cloud enhancement of solar irradiance, responsible for the 

underestimation of modeled GHI in this category (see Section 3.1.1). For partially cloudy conditions (0.4 < CMF <0.9, Fig. 

8b and >0.4), the MBE is 81.6 W/m2 (22.8%) and the greatest error in GHI occurs for the low CMF values (CMF≤<0.4, Fig. 
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8c) (MBE=100.1 W/m2 or 73.1%). In theis latest category, the largest occurrence of high deviations at low measured GHI 490 

values  lowest values of measured GHI are found (<250 W/m2) is found. The high modeled GHI values could be attributed to 

the underestimation of MSG COT product due to complex geometries related to high latitudes and large SZAs. Additionally, 

there are also situations when the low measured GHI values are related to partially cloudy sky, with clouds blocking the sun, 

a situation that cannot be resolved by the satellite COT retrieval. To demonstrate this last situation, w 

We compared also the modelled and measured GHI values for clear sky conditions according to the satellite data, MSG namely 495 

COT=0 (Fig. 8d7b, clear sky from the satellite point of view). In this case, the model overestimates GHI with MBE 13.6 W/m2 

(2.3%). Most of the cases are on the 1:1 line, with few ones being higher Most of the points are above the 1:1 line, especially, 

for measured GHI<250 W/m2,. meaning that there are clouds over the ground-based station that haven’t been resolved by the 

satellite pixel (COT=0). A positive bias was also found for all stations examined by Qu et al. (2017) for cases of clear sky 

pixels as defined by APOLLO/SEV cloud properties retrieval scheme which contributes to the overall overestimation for the 500 

all sky conditions, and it was attributed to small broken clouds causing large variability in surface GHI, and due to a false 

detection by the cloud retrieval algorithm being treated as clear sky cases. The interesting part is that the same case stands for 

the whole range of measured GHI, indicating that it is a general limitation of satellite that it cannot take into account clouds 

that obscure the sun.  

 505 
Figure 8 Comparison of the global horizontal irradiance (GHI) measured versus modeled for all ground based stations (a, b, c) for 

different cloudiness conditions based on the cloud modification factor (CMF) derived by the ratio of GHI ground based 
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measurements devided by clear-sky GHI (clear-sky model) (d) for clear-sky conditions as determined by MSG satellite product by 

zero values of cloud optical thickness (COT=0) (e, f) for conditions characterized as sun visible or obscured.   

To verify that the sun visibility is the main reason for the overestimationTo demonstrate the effect of sun visibility over the 510 

ground-based stations to the GHI error, we tried to separate those instances by using the pyrheliometer measurements of direct 

irradiance (DNI – direct normal irradiance) available by the BSRN network. The DNI measurements (1 min) were divided 

with the clear-sky DNI, again from the Ineichen-Perez clear sky model (Ineichen & Perez, 2002). According to this ratio 

values, Wwe classified as sun visible the situations with ratio of actual to clear sky model DNI >0.8. This threshold was 

selected to account for the strong effect of aerosols in DNI, given that a monthly mean climatological value for aerosol 515 

attenuation factor is used by DNI clear-sky model (Ineichen & Perez, 2002). We classified as sun obscured situations with 

ratio <0.6, and we omitted as unclassified situations those with ratio values between 0.6 and 0.8, to be confident that direct 

irradiance is blocked by clouds by more than 40%. The results of the GHI comparison between modeled and measured values 

were grouped based on the sun visibility classification and are presented in Fig. 78e,fc. We can see that the sun visible situations 

give quite good results (points close to the 1:1 line, with MBE -28.1 W/m2 or -4.4%). In addition, several cloud enhancement 520 

events (points below 1:1 line), cannot be captured by the model.  

In contrast, the model overestimates GHI (MBE 74.5 W/m2 or 24.5%) when the sun is obscured over the ground-based station. 

Comparing Fig. 8b and Fig. 8c with Fig 8f we can see that most of the above the 1:1 line cases happen when the sun is obscured. 

This is caused by the fact that the satellite-based cloud retrieval is representative of the whole pixel, while the information if 

the sun is obscured over the ground-based station is representative for the (point) station, and it cannot be inferred from the 525 

satellite cloud retrievals. This combined with the facts that the direct irradiance attenuation from clouds is completely different 

from GHI, it is not linearly decreasing with cloudiness or cloud optical thickness and finally its contribution to GHI depends 

on various parameters (mainly solar elevation), introduces an issue in any instantaneous comparison between satellite based 

GHI retrieval representing the whole pixel and single point measured GHI. So, the main result of this sun visibility over the 

station analysis is to discuss on possible systematic biases due to satellite pixel versus station evaluation representativeness 530 

issue. This issue makes the instantaneous model output evaluation difficult, especially in partly cloudy situations. , a situation 

that cannot be inferred from satellite information. Comparing station (point) data with model-derived, based on satellite pixel-

based cloud retrievals, introduces deviations linked with the cloud features within this pixel. Even if the satellite imager can 

resolve a cloud within the pixel, the COT product for this pixel is a constant value, namely a spatially homogeneous cloud 

optical property for the corresponding area. In this atmospheric scene, GHI measured at the ground level, with the sun obscured 535 

or not, will affect the comparison dramatically. Cases with partial cloudiness and the sun obscured as seen from the ground 

sensor (almost total attenuation of direct irradiance) will be associated with low measured irradiance that cannot be captured 

by the model. This is the main reason of the overall model overestimation. 
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Figure 7 Comparison of the global horizontal irradiance (GHI) measured versus modeled for all ground based stations (a) for 540 
different cloudiness conditions based on the cloud modification factor (CMF) derived by the ratio of GHI ground based 

measurements devided by clear-sky GHI (clear-sky model) (b) for clear-sky conditions as determined by MSG satellite product by 

zero values of cloud optical thickness (COT=0) (c) for conditions characterized as sun visible or obscured.   

Since the main source of errors in this analysis is associated with clouds, we further investigate assess the satellite derived 

cloud input in the model from satellite data. The MSG COT is transformed to CMFmsg using Eq. (2) and this is the cloud 545 

related input in the SENSE2 model. Since it cannot directly be evaluated with ground-based measurements, wWe compared 

indirectly evaluated the CMFmsg with the CMF derived from GHI measurements (Eq. 7) and the results are presented in Fig. 

98, as relative frequency distributions of CMFmsg, CMF and their difference (CMFmsg – CMF), for all cases and different 

cloudiness conditions. In Fig. 8a and b, for all situations, we can see the oOverall, the CMFmsg is overestimatedion of CMF  

(0.17, Fig. 9a and b) by satellite (underestimation of MSG COT), which is the reason for the overall overestimation of SENSE2 550 

modelled GHI. This CMFmsg overestimation is linked to the partially cloudy (CMF <0.9 and >0.4, comes mainly from 

situations that are characterized as cloudy (Fig. 98g, and h,) and the overcast (CMF<0.4, Fig. 8i and j) conditions and at the 

same time when the sun is obscured over the ground based station (Fig. 9m and n). The large relative frequencies of CMFmsg=1 

in Fig. 8i are situations when the satellite cannot resolve any clouds giving COT=0 or CMFmsg=1, but the measurements 

demonstrate the presence of clouds. There is also a large fraction of enhancement events (CMF > 1) which is not captured by 555 

the CMFmsg (Fig. 8a). During those events satellite cloud product gives mostly no clouds (CMFmsg=1, Fig. 8c and e).   
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There are also cases of CMFmsg underestimation (differences of CMF <0 in Fig. 9b), which come mostly from situations 

characterized as cloudless (CMF≥0.9, Fig. 9e and f) and explains the points below the 1:1 line in Fig. 4a and 8, indicating that 

the measured GHI is greater than the modelled. The first reason for this is a cloudy satellite pixel, namely CFMmsg<1 in Fig. 

9e, but the ground-based CMF=1 indicates that no clouds are over the station. There is also a large fraction of CMF > 1 (Fig. 560 

9e) that is attributed to the irradiance enhancement by clouds, that occurs often when the sky above the ground station is 

partially cloudy, and the sun is visible (see also Fig. 9k and l and Fig. 8e). In this case, the reflection of solar radiation by 

clouds increases the diffuse component from directions relatively close to the sun, and hence the ground based measured GHI. 

This is a 3-dimensional effect of clouds that cannot be reproduced using 1 dimensional radiative transfer modelling that used 

in this study. This is a limitation of the SENSE2 model that does not include 3-dimensional cloud effects (enhancement of 565 

GHI or parallax) which can be reproduced using 3D RT simulations (e.g. Mayer 2009). However, the 3-dimesional cloud 

structure information is not available for an operational solar energy nowcasting model from geostationary satellites (Qu et al., 

2017; Schroedter-Homscheidt et al., 2022) and on the other hand the introduction of parameterizations and techniques to 

improve the computational time (Tijhuis et al., 2023) is essential.  

Summarizing, to explain the overestimation of SENSE2 GHI retrievals, we have to consider that the direct comparison between 570 

point measurements of solar radiation at the ground and of satellite estimates representative of a pixel, introduces deviations 

(e.g., Kazadzis et al., 2009; Schenziger et al., AMT; Carpentieri et al., 2023) linked with the cloud features within this pixel 

and the limitations of cloud monitoring using satellite data (e.g. spatial resolution). We investigated both CMFs’ distribution 

and their differences separately again for clear sky conditions according to the satellite (namely COT=0, Fig.9 c and d). 

Regardless the unique value of CMFmsg=1 meaning no clouds resolved by the satellite, there are cloudy cases for the ground-575 

based station with CMF<1 (Fig.9 c). Due to the satellite spatial resolution, at some cases, small scale broken clouds cannot be 

resolved (e.g., Schenziger et al., 2023, Marie-Joseph et al., 2013; Qu et al., 2017), but those clouds may have a significant 

impact in ground based measured irradiance in case that they are obscuring the sun (almost total attenuation of direct 

irradiance). In case that they do not obscure the sun is the clear sky case also for the ground-based station, without excluding 

the effect of cloud enhancement of measured GHI (CMF=1 and CMF>1 in Fig.9 c, respectively). In a recent study by 580 

Schenziger et al. (AMT) using sky camera images, the limitation of MSG satellite based modelled CMF is demonstrated for 

small scale clouds. For two different stations inside the same satellite pixel that was characterized as cloud free different results 

were found. For one station that was cloud free the model agreed with measurements, while for the station that was covered 

by localized cumulus clouds that couldn’t resolved by the satellite, lead to discrepancies between ground based and satellite 

based modelled values. Nevertheless, even for the cases that the satellite imager can resolve clouds within a partially cloudy 585 

pixel, the COT product for this pixel is a constant value, namely a spatially homogeneous cloud optical property for the 

corresponding area. In this atmospheric scene with high spatial variability of clouds, GHI measured at the ground level, with 

the sun obscured or not, will affect the comparison dramatically.
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 590 

Figure 98 Left panels (a, c, e, g, i, k, m): Distribution of cloud modification factor (CMF) from measurements of global horizontal irradiance (GHI) (blue 

bars) and from MSG cloud optical thickness (COT) (red bars), under all cases and under different cloudiness conditions. Right panels (b, d, f, h, jg, l, n): 

Distribution of the CMF differences between those derived from measurements of GHI and those derived from MSG satellite COT. 
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3.1.4 Bias correction based on cloud input 

The model overall relatively overestimates GHI, which is attributed to the CMFmsg overestimation (COT underestimation) 595 

under cloudy conditions. Based on the main conclusions from CMF differences from the previous section, we tried to find if 

there is any common pattern for all stations, in those CMF differences (modelled against measured) as a function of CMFmsg, 

since the latest is the only operationally available input, every 15min. Additionally, we found that those differences hardly 

change with SZA (Fig. BA1 in the Appendix B), so we will investigate their relation only with CMFmsg.   

We calculated the mean CMF difference and their standard deviation per CMFmsg bins for every station and the results are 600 

presented in Fig.910. A pattern of mean CMF differences was found for almost all station (apart from TAM, ATH and THE) 

with CFMmsg overestimation up to almost 0.1 starting from CMFmsg bin 0.3 up to 0.8, related also with low standard 

deviations over those bins. 

As we discussed in the previous section, this CFMmsg overestimation (up to ~0.1) is mostly related withto partial cloudiness 

and the sun obscured conditions over the station. Nevertheless, the sun’s visibility is information that couldn’t be provided by 605 

satellites. Consequently, we tried to correct CMFmsg (the operational input) with those CMF differences (modelled against 

measured). We used the mean of the of CMF differences per CMFmsg bin from seven out of ten stations (excluding TAM, 

ATH and THE) to derive the correction factor (the correction hereafter), which is depicted as the thick black dashed line in 

Fig. 109. The correction was applied to CMFmsg values falling in the bins 0.3-0.8 only. The correction was applied to all 

stations, including TAM, ATH and THE, which act as a test bed (low frequency of cloudy cases) for the general correction 610 

derived from the rest seven stations.   

Table 3 summarizes the statistics of corrected modeled GHI against ground-based measurements. The ΜΒΕ and RMSE are 

improved after the correction. We can see that the correction was successful for all stations. LER and CAM are the two stations 

with the greatest improvement in their statistics, following CAB and LIN, which was anticipated since those are stations at 

higher latitudes associated with high cloudiness. Even ATH and THE stations, that were independent from the correction factor 615 

derivation construction procedure, exhibit better results after applying the correction. TAM is the only station where statistics 

weren’t improved. Due to its rare cloudiness, this station’s statistics were already good, indicating that probably a hybrid 

approach of the correction according to the area’s cloudiness would be better. Overall, after the correction for 61% of the cases 

the GHI differences (modeled against measured) were within +/-50 W/m2 (or +/-10%). The MBE for all stations was also 

improved to 11.3 W/m2 (2.3%), compared to the uncorrected values (23.8 W/m2 or 4.9%). For the daily mean GHI the overall 620 

MBE and RMSE was improved to 3.3 W/m2 (1.7%) and 13.1 W/m2 (6.6%), compared to the uncorrected values of 6.6 W/m2 

(3.3%) and 15.4 W/m2 (7.7%), respectively. For monthly means, the MBE improved to 2.7 W/m2 (1.6%) compared to 5.7 

W/m2 (3.2%) before correction and the RMSE to 6.3 W/m2 or 3.6% (before correction 9.2 W/m2 or 5.2%).  
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 625 

Figure 109 Upper panel: Mean cloud modification factor (CMF) difference between modeled (from MSG satellite cloud optical 

thickness) values CMFmsg and those derived from global horizontal irradiance (GHI) measuremnts per modeled CMFmsg bins. 

Lower panel: The coresponding standard deviation (STD) of CMF differences per modeled CMF bins. The different colors in lines 

and different symbols correspond to different stations.   

 630 
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Table 3 Performance of nowcasted irradiances before and after correction with CMFmsg. 

 15min daily monthly 

  MBE W/m2 (%) RMSE W/m2 (%) R MBE W/m2 (%) RMSE W/m2 (%) R MBE W/m2 (%) RMSE W/m2 (%) R 

station  N  cor.  cor.  cor.  cor.  cor.  cor.  cor.  cor.  cor. 

ATH 9472 14 (2.5) 8 (1.4) 97 (17.5) 97 (17.5) 0.94 0.94 4.1 (1.9) 2.1 (0.9) 13.2 (5.9) 12.3 (5.5)  0.99 0.99 4.5 (2.3) 1.8 (0.9) 5.6 (2.8) 3.3 (1.7) ~1 ~1 

CAB  7749 31 (7.8) 11 (2.9) 115 (29.0) 110 (28.0) 0.88 0.88 9.2 (5.5) 3.3 (2.0) 15.2 (9.2) 11.4 (6.9) 0.99 0.99 8.0 (6.0) 3.2 (2.4) 9.3 (7.0) 4.2 (3.2) ~1 ~1 

CAM  2376 34 (10.1) 13 (3.7) 104 (30.8) 98 (29.0) 0.89 0.89 7.9 (5.8) 3.6 (3.2) 14.7 (10.8) 11.5 (10.0) 0.98 0.99 8.1 (6.6) 3.7 (3.4) 8.2 (6.7) 4.5 (4.1) ~1 ~1 

CAR  8985 30 (5.8) 23 (4.5) 84 (16.2) 80 (15.4) 0.95 0.96 9.5 (4.5) 8.0 (3.8) 14.5 (7.0) 12.5 (6.0) 0.99 0.99 7.9 (4.2) 6.6 (3.5) 9.9 (5.3) 8.5 (4.5) ~1 ~1 

CNR  8806 19 (3.7) 6 (1.2) 104 (20.6) 102 (20.1) 0.93 0.93 5.0 (2.5) 2.1 (1.1) 14.0 (6.9) 11.1 (5.7) 0.99 0.99 4.2 (2.3) 1.8 (1.0) 7.6 (4.2) 4.7 (2.7) ~1 ~1 

LER  5191 44 (12.9) 21 (6.1) 131 (38.6) 124 (36.5) 0.82 0.83 9.9 (7.0) 3.6 (2.6) 21.6 (15.3) 17.9 (12.7) 0.97 0.97 10.9 (7.6) 4.1 (2.9) 12.9 (9.0) 5.4 (3.8) ~1 ~1 

LIN  7989 39 (10.0) 21 (5.3) 119 (30.8) 114 (29.6) 0.88 0.88 12.4 (7.3) 7.1 (4.2) 18.4 (10.8) 13.7 (8.1) 0.99 0.99 10.3 (7.6) 6.0 (4.5) 12.2 (9.0) 7.5 (5.5) ~1 ~1 

PAL  8011 28 (6.7) 11 (2.5) 117 (27.4) 113 (26.5) 0.90 0.91 6.6 (3.5) 1.9 (1.0) 14.1 (7.4) 11.6 (6.1) 0.99 0.99 5.1 (3.4) 1.4 (1.0) 7.4 (5.0) 4.9 (3.3) ~1 ~1 

TAM  9011 -8 (-1.2) -12 (-2.0) 98 (15.4) 98 (15.4) 0.94 0.94 -3.9 (-1.5) -4.1 (-1.6) 18.5 (7.2) 18.2 (7.2) 0.94 0.94 -3.7 (-1.5) -4.5 (-1.8) 9.8 (3.8) 8.8 (3.5) 0.97 0.97 

THE 9188 27 (5.2) 18 (3.6) 91 (17.6) 88 (16.9) 0.95 0.95 8.2 (3.8) 6.0 (2.8) 13.6 (6.3) 11.2 (5.2) 0.99 0.99 6.7 (3.5) 4.8 (2.5) 9.1 (4.7) 7.2 (3.7) ~1 ~1 
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Table 3 Performance of nowcasted irradiances before and after correction with CMFmsg. 

BSRN     

station  N 
MBE 

(W/m2) 

MBE cor. 

(W/m2) 

RSME RSME cor. r r cor. 

ATH 9472 14 8 97 97 0.94 0.94 

CAB  7749 31 11 115 110 0.88 0.88 

CAM  2376 34 13 104 98 0.89 0.89 

CAR  8985 30 23 84 80 0.95 0.96 

CNR  8806 19 6 104 102 0.93 0.93 

LER  5191 44 21 131 124 0.82 0.83 

LIN  7989 39 21 119 114 0.88 0.88 

PAL  8011 28 11 117 113 0.90 0.91 

TAM  9011 -8 -12 98 98 0.94 0.94 

THE 9188 27 18 91 88 0.95 0.95 

After the improvements in the configuration of the SENSE2 model and by correcting the bias in CMFmsg for partially cloudy 

conditions (for CMFmsg bins between 0.3 to 0.8, the “bell-shaped curved” that has been also reported in other studies e.g. 635 

Marie Joseph et al. (2013)), more accurate estimates of GHI have been produced, in line with the results from similar models 

(Qu et al., 2014; Thomas et al., 2016; Qu et al., 2017). These SENSE2 GHI estimates will be the basis for the new forecasting 

system NextSENSE2, evaluated in the next Section (3.2).  

Comparing out results with other studies, for HC3v3 database of surface solar irradiation (Qu et al., 2014), for the 15 min time 

scale, correlation coefficient values greater than 0.92 and relative RMSE between 14-38% were found. In the same study, for 640 

daily irradiation correlation coefficient values greater than 0.97 were found with relative RMSE between 6 and 20 %. For the 

latest version 5 of HelioClim-3 database (HC3v5) the validation against 14 BSRN stations (Thomas et al., 2016) resulted bias 

between -4 to 5% and rRMSE between 14.1 and 37.2% for GHI. Both studies highlight the good performance of the clear sky 

irradiation values from the McClear clear-sky model (which uses advanced inputs for aerosol, water vapor and ozone, instead 

of climatological values). The comparison of 15 min means of global irradiance estimated by the fully physical Heliosat-4 645 

method (combination of McClear and McCloud models) against ground-based measurements from 13 stations of the BSRN 

network (Qu et al. 2017) showed large correlation coefficients for all stations (0.91-0.97), and bias and RMSE of GHI that 

ranged between 2-32 W/m2 and 74-94 W/m2 respectively. In the same study, the greatest values of relative RMSE of the mean 

irradiances were found for stations with rainy climates and mild winters (26% to 43%, the greatest value for the northernmost 

station), while for stations in desert and Mediterranean climates values ranged between 15% and 20%, which are in line with 650 

our finding for the northernmost and southernmost stations in this study. The previously observed positive biases using 

APOLLO cloud retrieval in Heliosat-4 (Qu et al. 2017) for CAMS Radiation Service, have been significantly reduced and 

balanced after applying the new cloud retrieval scheme of APOLLO_NG (new cloud mask with cloud probability threshold to 

1% among other improvements, more details in Schroedter-Homscheidt et al., 2022). After the improvements, a relative RMSE 
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of hourly GHI between 10.3 and 25.5% with a mean of 13.7% has been reported for 2015 (Schroedter-Homscheidt et al., 655 

2022). An extensive validation (Urraca et al., 2017) of the operational product (ICDR) of the CM SAF over Europe for 2008-

2015 period gave for daily means of the product a MBE 4.5 W/m2 (4%) and RMSE 18.1 W/m2 (15.1%) and it was reported 

that it was overestimated at high latitudes in contrast to the climate data records (CDR). For the new SARAH-3 CDR SIS 

product for the period 1983-2020 the validation (Pfeifroth et al., 2023) showed for the 30-min instantaneous data, daily mean, 

and monthly mean biases of 4.2 W/m2, 2.18 W/m2 and 2.25 W/m2 respectively. The validation of the operational product 660 

(ICDR) with respect to the SARAH-3 CDR for the year 2020 showed that it consistently extent the SARAH-3 CDR in time. 

The reasons for differences between these two products were the different auxiliary data (like water vapor, etc.) and time range 

used for driving effective cloud albedo and daily snow cover. 

3.2 Short term forecasting  

3.2.1 Overall performance - Benchmark with Persistence method 665 

Figure 110 summarizes the performance of the CMV method (green points) in predicted GHI as function of forecasting 

horizon, by providing main statistics, after comparison with GHI ground based measurements, from all ten stations, for a whole 

year (2017). Detailed results per station, for representative statistics and selected time steps (+60, +120, +180 mins) can be 

found in Table 4. As a benchmark, the results of the commonly used persistence forecasting method are presented also in Fig. 

110 (black points). We can see that the CMV model systematically outperforms persistence for all time steps. It is interesting 670 

that the first time step (+15 min) is not the one with the maximum difference between the CMV and persistence statistics (or 

the maximum of CMV FS%), indicating that for such short time interval the probability of changing cloudiness is low, which 

favours the persistence method. The second time step is the one with the maximum of CMV FS% (best performance) compared 

to persistence up to ~10%. As the forecasting horizon increases all metrics deteriorate for both methods, while, at the same 

time, persistence is systematically worse than CMV.     675 
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Figure 1110 Performance statistics of CMV modeled (green points) and persistance method (black points) forecasted global 

horizontal irradince (GHI) for every 15 min time step up to 3 h ahead.  

Table 4 Performance statistics of CMV modeled forecasted global horizontal irradince (GHI) for the 60 min, 120 min and 180 min 

time steps. 680 

station  rRSME (%) R FS (%) 

 
Mean 

CMF 

time step (min) time step (min) time step (min) 

  +60 +120 +180 +60 +120 +180 +60 +120 +180 

ATH 0.97 22.0 24.5 25.3 0.90 0.87 0.86 0 1.7 3.2 

CAB 0.68 39.7 45.6 49.6 0.80 0.73 0.68 10.5 7.5 5.8 

CAM 0.63 54.1 62.0 68.9 0.66 0.58 0.50 2.7 3.4 1.5 

CAR 0.85 22.8 26.3 29.6 0.90 0.86 0.82 8.1 5.6 3.1 

CNR 0.81 31.0 34.8 37.4 0.85 0.79 0.75 2.4 2.9 2.6 

LER 0.61 50.8 56.0 59.6 0.73 0.67 0.62 10.4 9.5 9.4 

LIN 0.68 39.7 45.9 51.2 0.81 0.74 0.69 13.9 10.9 8.8 

PAL 0.68 38.9 44.9 48.8 0.82 0.75 0.71 11.6 7.6 6.0 

TAM 0.87 21.4 23.1 24.7 0.89 0.86 0.82 2.2 1.0 -1.3 

THE 0.91 23.9 27.2 29.2 0.89 0.86 0.84 6.8 5.1 2.4 
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An interesting grouping of stations resulted by comparing main statistics (rRMSE and FS) for both forecasting methods with 

stations’ mean CMF, representing their mean cloudiness (Fig.121). Three time- steps were selected (+60, +120, +180 min) 

and are depicted with increasing transparency. Two groups of stations are evident. Those with high mean cloudiness (LER, 

CAM, PAL, LIN, and CAB), which show worse rRMSE than those of lower cloudiness (ATH, THE, TAM, CAR and CNR), 685 

independently of the method. Again, the CMV model (green symbols) outperforms the persistence method (black symbols) 

for all stations for these time steps (except of TAM for +240 min). The interesting finding is that the FS (%) of the CMV 

method increases with decreasing CMF, namely the forecasting skill of CMV model is higher compared to persistence for 

stations with higher cloudiness, demonstrating the applicability of the CMV forecasting method on GHI under cloudy 

conditions.    690 

 

Figure 1211 Mean bias error (MBE) and its relative values (rMBE%), relative root mean square error (rRMSE%) and forecasting 

skill expressed in percentage (FS%) of CMV model (green symbols) and persistence method (black symbols) forecasted global 

horizontal irradiance (GHI) versus the average cloudiness of stations (mean CMF) for the time steps +60, +120 and +240 min 

(increasing transparency of symbols).  695 
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3.2.2 Performance for different cloudy conditions 700 

To demonstrate the value of the CMV model against the persistence method that assumes the same cloudy conditions for all 

future time steps, we compare their performance under different cloudy conditions and transitions in cloudiness. Figure 132 

presents the RMSE for both models (CMV green points and persistence black points) and the CMV model FS% as a function 

of CMF, for three time-steps (+60, +120 and +180 min). Persistence performs better than CMV model under clear sky 

conditions, namely CMF=1, for all times steps (as expected, as there is no change in cloudiness). This is also true for the CMF 705 

bin 0.9 only for time step +180 min and for CMF bin >1 for all time steps, a bin which contains mainly clear sky cases. For 

cloudy conditions, namely CMF<0.9, the CMV model outperforms persistence for all time steps (apart from +180 min time 

step and CMF bin 0.9). The cloudier the conditions (the smaller the CMF), the better the performance of CMV model and the 

greater the CMV FS% (up to ~ 20% for time step +60 min). The FS of CMV model decreases slightly with forecasting horizon, 

however, for the maximum of the forecasting horizon (+180 min) remains quite high ~+10% for CMF bins <0.7. 710 

 

Figure 1312 Upper panel: Root mean square error (RMSE) of forecasted global horizontal irradiances (GHI) for all stations with 

the CMV model (green symbols) and with the persistence method (black symbols) versus cloud modification factor (CMF) derived 

from GHI measurements, for 3 time steps (+60, +120 and +180 min). Lower panel: The CMV model forecasting skill against CMF 

classes for the same time steps with upper panel.   715 
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To demonstrate the better performance of CMV method compared to the persistence for all time steps under cloudy conditions, 

we calculated CMV FS% for partially cloudy conditions (0.4 < CMF <0.9 and >0.4) and overcast conditions (CMF≤<0.4) and 

the results are presented in Fig. 143. We can see again that the FS of CMV model decreases with time, however, the minimum 

value is ~10% for both categories. The maximum of FS is for both categories at +15 min time step at ~16% and ~22% for 

0.4<CMF<0.9&>0.4 (cross triangle symbols) and CMF≤<0.4 (triangle cross symbols), respectively. 720 
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Figure 1413 Forecasting skill (FS) expressed in percenateges of CMV model against the persistence method as a function of time 

horizon, from all stations, for two different cloudiness conditions: 0.4<CMF >0.4 and <0.9 (trianglescrosses) and CMF ≤<0.4 

(trianglecrosses).   725 

The performance of the CMV model against the persistence method was assessed also for changing cloudiness, in terms of 

CMF changes (from ground-based measurements). The CMF changes were calculated for a time interval of 60 min (as 

ΔCMF=CMFt+60 - CMFt), and the results of the CMV model FS (%) are presented for the +60 min time step, as a function of 

CMF changes in Fig. 154. The high negative value of FS for zero CMF changes bin indicates that the persistence method is 

better for that bin, which was anticipated, since we have zero or almost zero changes of CMF, which practically is the 730 

persistence method definition. Persistence is still better than CMV for CMF changes from cloudy to clearer conditions, up to 

the +0.3 CMF change bin, but the FS is less negative than the zero bin. For CMF changes with higher magnitudes (bins > 0.4) 

from cloudy to clearer conditions, CMV is better that persistence, with FS values 15% for the CMF change bin +0.6. Consistent 

results were found for the opposite situation, namely from clearer to cloudy conditions, with CMV model always being better 

that persistence, with FS values up to ~20%.  735 

Our analysis for different cloudiness conditions, highlights the limited ability of the persistence method compared to the CMV 

based NnextSENSE2 to accurately forecast GHI under cloudy conditions (CMF values<0.9) and to follow the transitions in 

cloudiness (especially from clearer to cloudy conditions). 

 

Figure 1514 Forecasting skill (FS) expressed in percenateges of CMV model against the persistence method from all stations as a 740 
function of CMF changes within 60 min time interval (from time 0 to +60 min time step). 
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A direct comparison of the results of the present study for the NextSENSE2 short-term forecasting model with other studies is 

not straightforward, as the study period, the geographical area and the validation methods are different. Kallio-Myers et al. 

(2020) validated their Solis-Heliosat satellite-based GHI forecast modelled over southern Finland and they found that the 

rRMSE reached 50% at 4h time step. Urbich et al. (2019) validated SESORA short-term forecast of solar surface irradiance 745 

over Germany and parts of Europe for seventeen different cases with different weather patterns for the period August to 

October 2017, with all forecasts initiated at 9:15 UTC and reported for the validation against the SARAH-2 data by CM SAF 

a RMSE of 59 W/m2 after 15 min which reaches its maximum (142 W/m2) after 165 min. 

One of the limitations and source of error for the NextSENSE2 is related to the satellite based optical flow method for the 

short-term forecasting and it is that it cannot reproduce cloud formation or dissipation. One example is the convective clouds 750 

that form very fast, violating the criterion of the optical flow of constant intensity of the pixels between two consecutive images 

(e.g., Urbich et al., 2018; 2019). Urbich et al. (2018) applied the common approach of the separation into subscales for the 

optimization process, which eventually didn’t improve the forecast, while increased at the same time the complexity of the 

implementation. As has already been discussed in the introduction, satellite based short term forecasting is the best choice for 

the time horizon up to 6h ahead, since it is available in real time and at high spatial resolution. However, its merge with NWP 755 

models it is a solution for increasing the time horizon and the quality of forecasts (Lorenz et al., 2012; Wolf et al., 2016) 

compensating for the effect of changes in intensities (during convection or cloud dissipation) that cannot be captured by CMV 

models (Müller and Pfeifroth, 2022). A comparison  has been presented by Urbich et al. (2019) between a short-term 

forecasting model of surface solar radiation (the SESORA model) with different NWP models (apart with the persistence 

model) and found that the intersection point that the NWP model delivers better results depends on the model and it is beyond 760 

3-4h, which is also in line with the finding of other studies (e.g., Lorenz et al., 2012; Wolf et al., 2016). The merge of our 

short-term forecasting model with NWP model is out of the scope of the present study. After the elaborative benchmark 

analysis of the NextSENSE2 system with persistence approach, its applicability as an operational tool for the time horizon up 

to 3h ahead has been demonstrated. 

4 Summary and conclusions 765 

Our motivation is the continuous improvement of the EO based estimates and the accuracy of short-term forecasts of available 

solar resources to support solar energy exploitation systems on a regional scale (Europe and MENA region). In this study, we 

improved the SENSE/NnextSENSE nowcasting/short-term forecasting operational systems, and analyzed in detail the cloud 

related uncertainties, discriminating also situations based on sun visibility, using ground-based measurements.  

In terms of the aerosol related inputs, the slight overestimation of CAMS AOD that was found against the AERONET retrievals 770 

(<10%) resulted to SENSE2 clear-sky GHI underestimation lower than 1%, highlighting the applicability of CAMS forecasts 

as EO inputs for operational solar resources nowcasting. In terms of modeled all skies GHI, it was found that clouds are the 

main source of uncertainty. The SENSE2 mostly overestimates GHI with MBE 23.8 W/m2 (4.9%) for instantaneous 
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comparisons, which was attributed to the uncertainties related to satellite cloud retrievalsMSG cloud underestimation 

(overestimation of CMFmsg by ~0.17) and also to the spatial representativeness between satellite based retrievals and ground-775 

based measurements. We demonstrated that the most difficult situations to be modeled are related to high spatial variability of 

solar radiation within the satellite pixel due to clouds (e.g., small broken clouds and the sun obscurity over the ground station, 

an information not possible to be derived from satellite data). Based on our cloud related analysis using ground-based data, a 

correction for the modelled GHI was used, resulting to an overall improvement of the SENSE2 modelled GHI with 61% of the 

cases within +/-50 W/m2 (+/-10%) of measured GHI and a final MBE of SENSE2 11.3 W/m2 (2.3%). Our main analysis was 780 

based on the 15 min time scale, however based on the application hourly, daily or monthly data could be used. The daily and 

monthly SENSE2 GHI showed much better statistics (MBE 3.36.6 W/m2 and 25.7 W/m2, respectively). The validation results 

of SENSE2 demonstrate high accurate nowcasted values of GHI which are in line with similar models. The recorded positive 

bias could be reduced by applying improvements in the NWC SAF cloud retrieval input to the SENSE2 regarding partially 

cloudy pixels. NextSENSE2 was also improved due to the SENSE2 improvements. We also show that compared to the 785 

persistence method, the model works much better (as expected) at locations with increased cloudiness and for frequent 

cloudiness changes. 

The data and methods involved for the estimation/prediction of the GHI in this study also reveal their limitations. As 

mentioned, tThe pixel-based approach of the model inputs (satellite and models) could not always reflect the reality above a 

(point) ground-based station. However, the model inputs are the state of the art of EO data and can be readily available in 790 

regional or global scale, at high spatial and temporal resolution, hence the GHI product is representative of an area (~5km x 

5km in this model), which is useful for PV parks covering a wider area. In general, evaluating the performance of such EO 

based GHI models with ground-based measurements must account for these comparison spatial representativity issues. The 

optical flow algorithm for calculating CMVs is also based on assumptions like 2D clouds and brightness constancy. However, 

it is a method based on cloud inputs from satellite data in real time and the applicability of those methods is demonstrated here 795 

compared with the persistence approach.     

Since satellite cloud information is the only real time input, a new straightforward configuration for estimating GHI was 

applied (SENSE2). The advantage of calculating clear sky GHI from the previous day, is what increases the accuracy of this 

product, since it is based on a detailed LUT of ~16M combinations of 7 different inputs, considering apart from AOD, 

additional aerosol optical properties and atmosphere/surface state inputs. Thus, the uncertainties in the estimated clear sky GHI 800 

practically result only from uncertainties in the model inputs.  The new scheme of for calculating all skies GHI by multiplying 

the clear sky GHI with CMFmsg (derived in real time by multiparametric function of MSG COT and SZA) was improved by 

applying a suitable CMFmsg correction. The correction was successful and improved the model performance, especially for 

areas with high cloudiness. Additionally, the new configuration of the SENSE2 is more flexible, and it is easy to adapt and 

provide more products like DNI, UV index, PAR, etc. which is one of the prospects for the new model or to run in a 805 

retrospective way, using reanalysis data or in situ observational data for certain locations.     
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According to the results, high resolution (every 15 min, at ~5km x 5km) and quite accurate GHI real time estimates/forecasts 

are produced from the upgraded SENSE2/NextSENSE2 operational systems that can contribute to solar energy systems 

management and planning.  
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Appendix A 

 

Figure A 1 Comparison of the global horizontal irradiance (GHI) modeled versus measured for (a) Athens, (b) Cabauw, (c) 

Camborne, (d) Carpentras and (e) Cener, for 2017. 
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Figure A 2 Comparison of the global horizontal irradiance (GHI) modeled versus measured for (a) Lerwick, (b) Lindenberg, (c) 

Palaiseau, (d) Tamanrasset and (e) Thessaloniki, for 2017. 

 

Appendix BA 

To see if the CMF differences (MSG modelled against measured) changing with SZA, the MBE of CMF was calculated for 820 

bins of SZA every 10 degrees. The observed CMF was considered the one derived from GHI measurements (Eq. 7) and the 

modelled one derived by the Eq. 2. The results are presented in Fig. A1, for all cases and under different cloudiness conditions, 
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along with the relative values of CMF MBE expressed in percentages. We can see again the fact that the main overestimation 

of CMF values by MSG COT comes from the cloudy conditions (CMF <0.9). Specifically, for the partially cloudy conditions 

(0.4<CMF <0.9 and >0.4) the MBE reach values up to ~ 0.20 and for overcast skies (CMF ≤<0.4) there are SZA bins (0 and 825 

70 degrees) that the MBE reach values up to 0.4. However, for those two categories the MBE hardly changes with SZA.    

 

Figure A B 31 Cloud modification factor (CMF) mean bias error (MBE – left column) and relative MBE (% - right column) as a 

function of solar zenith angle (SZA) under all cases and under different cloudiness conditions. 
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