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Abstract. Solar irradiance nowcasting and short-term forecasting are important tools for the integration of solar plants in the 

grid. Understanding the role of clouds and aerosols in those techniques is essential for improving their accuracy. In this study, 

we introduce the improvements in the existing nowcasting/short-term forecasting operational systems SENSE/NextSENSE, 20 

based on a new configuration and upgrading of cloud and aerosol inputs methods and also, we investigate the limitations of 

such model evaluation with surface-based sensors due to cloud effects. We assess the real-time estimates of surface global 

horizontal irradiance (GHI) produced by the improved SENSE2 operational system at high spatial and temporal resolution 

(~5km, 15min) for a domain including Europe and Middle East-North Africa (MENA) region and the short-term forecasts of 

GHI up to 3h ahead by the NextSENSE2 system, against ground-based measurements from 10 stations across the model 25 

domain, for a whole year (2017).   

Results show that the GHI estimates are within +/-50 W/m2 (or +/-10%) of the measured GHI for 61% of the cases, after the 

new model configuration and a proposed bias correction. The bias ranges between -12 W/m2 to 23 W/m2 (or 2% to 29%) with 

mean value 11.3 W/m2 (2.3%). The correlation coefficient is between 0.83 to 0.96 with mean value 0.93. Statistics are 

improved a lot when integrating in daily and monthly scales (mean bias 6.6 W/m2 and 5.7 W/m2, respectively). We demonstrate 30 

that the main overestimation of the SENSE2 GHI is linked with the underestimation of cloud optical thickness from the 

Meteosat Second Generation (MSG) satellites, while the relatively low overestimation linked with aerosol optical depth (AOD) 

forecasts (derived from Copernicus Atmospheric Monitoring Service - CAMS) results in low overestimation of clear sky GHI. 

The highest deviations are associated with cloudy atmospheric conditions with clouds obscuring the sun over the ground-based 

station. Thus, they are much more linked with satellite/ground-based comparison limitations than the actual model 35 
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performance. The NextSENSE2 GHI forecasts based on the cloud motion vector (CMV) model, outperform the smart 

persistence forecasting method, which assumes the same cloud conditions for the future time steps. The forecasting skill (FS) 

of the CMV based model compared to the persistence approach increases with cloudiness (FS up to ~20%), linked mostly to 

periods with changes in cloudiness, that persistence by definition fails to predict. Our results can be useful for further studies 

on satellite-based solar model evaluations and, in general, for the operational implementation of solar energy nowcasting and 40 

short-term forecasting, supporting solar energy production and management.       

1 Introduction 

Climate change mitigation along with energy production in a sustainable manner could be addressed with the deployment of 

renewable energy technologies (Edenhofer et al., 2011; Pörtner et al., 2022). Diverse technologies of renewable energy are 

investigated worldwide, and their deployment has been increasing, with solar energy markets growing rapidly, with a prospect 45 

to be the major source of energy supply in next decades (Arvizu et al., 2011; IEA, 2022). Since solar energy resources are 

strongly affected by atmospheric conditions, they are highly variable in space and time. The availability of solar resources is 

primarily affected by clouds and aerosols (e.g., Fountoulakis et al., 2021; Papachristopoulou et al., 2022). Therefore, there is 

a need for operational nowcasting and short-term solar forecasting for real time energy production, to better integrate solar 

energy exploitation technologies with national and international power systems. To increase the accuracy of those nowcasting 50 

and forecasting tools, it is imperative to understand the role of clouds and aerosols in their implementation.    

The continued development and improvement of earth observation (EO) techniques in the last two decades constitute a big 

source of new atmospheric information. Satellite-based information and atmospheric models provide high quality data of 

atmospheric composition and state at high spatial and temporal resolution, considered as big data. By exploiting that 

multiplatform information, accurate estimates of surface solar radiation can be produced in real time (nowcasting), with 55 

numerous applications in different fields like solar energy and health (e.g., Kosmopoulos et al., 2018, 2021). The operational 

solar energy forecasting methods are categorized into three base methods (Sengupta et al., 2021; Yang et al., 2022) with the 

time horizon (few seconds to few days) and the exogenous data, i.e., sky cameras, satellite data and numerical weather 

predictions (NWP). Additionally, there are many statistical and machine-learning methods, which are often combined with 

NWP data to improve their outputs (post-processing or blending). The use of cloud motion vector (CMV) technique on satellite 60 

data is commonly used for solar forecasting of few hours ahead (e.g., Garniwa et al., 2023; Kallio-Myers et al., 2020), giving 

better results than the persistence solar forecasting approach, a method that assumes constant cloudy conditions for the future 

time steps.  

SENSE is a nowcasting system of surface solar radiation developed under the EU project Geo Cradle, as a collaboration of the 

Beyond centre of EO research and satellite remote sensing at the National Observatory of Athens, Greece, in collaboration 65 

with the Physics and Meteorological Observatory Davos World Radiation Center, Switzerland (Kosmopoulos et al., 2018). It 

is a combination of geophysical input parameters from satellite-based and model data sources and a neural network (NN) 
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technique, trained on precalculated surface solar radiation simulations (look up table – LUT) by radiative transfer modelling. 

It uses the cloud optical thickness (COT) product from the Meteosat Second Generation (MSG) satellite and aerosol optical 

depth (AOD) forecasts form the Copernicus Atmospheric Monitoring Service (CAMS) as inputs to the NN to derive the solar 70 

radiation in real time. The validation of this method showed a good agreement on daily and monthly levels; however, various 

sources of uncertainties have been identified, concerning mainly the use of NN especially during high irradiance atmospheric 

conditions, the COT, and the structure/density of atmospheric parameters in the LUTs. In the new version of the model, that 

has been used in the present study, the model configuration changed, and these uncertainties were limited.   

The NextSENSE system was developed as a continuation of SENSE, during the EU project E-shape and by the same research 75 

groups. It was first introduced in the study of Kosmopoulos et al. (2020), as a novel short-term solar energy forecasting system 

(3h ahead), based on forecasts of satellite derived COT using a CMV technique, with solar irradiance estimated by the SENSE 

model. The employed CMV technique is based on state-of-the-art image processing technologies (dense optical flow). In the 

same study, a first evaluation of the CMV forecasts accuracy was performed, against the real MSG COT and the deviations of 

forecasted irradiances compared with nowcasting outputs ranged from 18% to 34% under changing cloudy conditions, 80 

outperforming the persistence method for certain conditions. However, this first evaluation was based on the satellite-derived 

COT, so the aim of the current study is to compare the irradiance forecasts with ground-based measurements. Additionally, as 

NextSENSE is based on the same hierarchy of SENSE with only addition the CMV analysis, all improvements of SENSE2 

are inherited in the NextSENSE2 system too. 

The present study aims to investigate the role of clouds and aerosols in nowcasting and short-term forecasting of global 85 

horizontal irradiance (GHI), using ground-based measurements, by: 

• Introducing the SENSE2 and NextSENSE2 upgrades of SENSE and NextSENSE systems, respectively.  

• Validating the improved nowcasted GHI using ground based pyranometer measurements for 1 year (2017). 

• Investigating cloud and aerosol effects on GHI estimates. 

• Proposing a possible correction for GHI estimation based on MSG COT real time information.  90 

• Validating CMV forecasted GHI and benchmarking the results with those by the persistence method. 

2 Data and methods 

2.1 SENSE2 

SENSE2 is an operational system that produces fast estimates of GHI in real time every 15min, for a wide area including 

Europe and Middle East-North Africa (MENA) region at high spatial resolution (~5km), calculated from earth observation 95 

(EO) data and LUTs derived from radiative transfer model (RTM) simulations. The SENSE2 presented in this study (Fig. 1) 

is an improved system, compared to the previous SENSE version, in terms of the parameterizations for radiative transfer 
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calculations and, mainly, the improvement of aerosol and cloud representation in the model using a more detailed look-up-

table (LUT) and multiparametric equations for different aerosol and cloud scenes, respectively.  

The first improvements of the SENSE2 system are that: 100 

• the computations of clear-sky GHI are performed in the previous day, for the whole domain (1.5M pixels), every 15 

min and, for the current day, the real-time cloud information is applied to provide all skies GHI in real time (no NN 

is used). 

• the computations of clear-sky GHI are based on a new, more detailed LUT of ~16M combinations of simulated GHI 

at the earth’s surface, that was generated using the GRNET High Performance Computing Services and the 105 

computational resources of ARIS/GRNET infrastructure. The RTM simulations were performed using the libRadtran 

package (Emde et al., 2016; Mayer & Kylling, 2005) and Table 1 summarizes the input variables and their resolution 

resulted to the ~16M runs.  

RTM simulations were performed spectrally from 280 to 3000nm, with 1nm spectral resolution using the DISORT radiative 

transfer solver in pseudo-spherical mode (Buras et al., 2011). The molecular absorption parameterization of representative 110 

wavelength approach – REPTRAN was used in the solar range (Gasteiger et al., 2014) to account for the absorption of 

atmospheric gases for the whole solar spectrum. The Kurudz 1.0nm (Kurucz, 1994) extraterrestrial solar spectrum and the U.S. 

Standard Atmosphere (Anderson et al., 1986) were used as inputs. The default aerosol model of Shettle (1989) was used as the 

basis with modified aerosol optical properties of AOD, single scattering albedo (SSA) and Angstrom exponent (AE) varied 

according to Table 1. The spectral global irradiances were integrated over the spectral range of the simulations to derive the 115 

GHI.  

The clear-sky GHI modelled values by SENSE2 (Fig. 1) are calculated in the previous day, by linear interpolation in the 7 

dimensions (7D) of the precalculated GHI LUT using the corresponding inputs. Specifically, the solar zenith angle (SZA) 

values are precalculated for every grid cell of the domain (1.5M in total), for 15 min time step. The main input parameter for 

the clear-sky computations is the forecasted AOD at 550nm from CAMS (CAMS AOD hereafter). The forecasts for the day 120 

of interest are values from the CAMS run of the previous day initialized at 00:00 UTC (e.g., the AOD used to simulate the 

GHI for the 24th of a month, has been derived from the CAMS run that started on the 23rd at 00:00 UTC). Climatological values 

are used for the interpolation in the 7D LUT for the additional aerosol optical properties of SSA and AE (MAcv2 climatology, 

Kinne, 2019), for the water vapor (WV) (CAMS reanalysis (Inness et al., 2019)), the total ozone column (TOC) (OMI TOC 

data (Bhartia, 2012) based climatology) and surface albedo (GOME-2 database (Tilstra et al., 2017, 2021)). It should be 125 

mentioned that the interpolation procedure in the 7D LUT was added in the new SENSE2 to further improve the accuracy of 

the GHI estimations. Finally, since the results of the RTM runs are at sea level and for the mean earth-sun distance, a post 

correction of the clear-sky GHI values from the LUT is performed for the surface elevation following the methodology 

described in Fountoulakis et al., (2021) and the actual earth-sun distance for the particular day of the year (DOY).  
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 130 

Figure 1 Schematic overview of solar energy nowcasting system (SENSE2) and short-term forecasting (NextSENSE2) up to 3h ahaid.  

Table 1 Input parameters to radiative transfer simulations performed at the ARIS GRNET supercomputer resulted to the 7D GHI 

LUT.  

 

 135 

Parameter  Range Resolution 

Solar zenith angle (SZA in deg) 1 to 89 1 

Aerosol optical depth at 550nm (AOD) 0 to 2, 2.5,3.0 0.05 

Single Scattering Albedo (SSA) 0.6 to 1 0.1 

Angstrom exponent (AE) 0 to 2 0.4 

Total Ozone Column (TOC in DU) 200 to 500 100 

Water Vapor (WV in cm) 0.5 to 3 0.5 

Surface albedo 0.05 to 0.8 0.15 

https://doi.org/10.5194/amt-2023-110
Preprint. Discussion started: 12 July 2023
c© Author(s) 2023. CC BY 4.0 License.



6 

 

Another improvement is related to the cloud representation in real time, using multi-parametric equations for different cloud 

scenes, based on the Cloud Modification Factor (CMF) concept, instead of using the COT as an input parameter in the RTM. 

The computation of the all-skies GHI in real time, every 15min, is based on the COT product we extract operationally in real 

time using broadcasted MSG satellite data and the software package provided by EUMETSAT Satellite Application Facilities 

of Nowcasting and Very Short Range Forecasting, NWC SAF. To provide timely the all skies GHI SENSE2 product for 1.5M 140 

pixels, neither the running of radiative transfer simulations nor the multi-dimension interpolations would be sufficiently fast. 

Instead, a multi-parametric equation was constructed, fitted on libRadtran simulations for a wide range of COT values for 

different SZAs (points in Fig.2a). In our simulations, spherical droplets were assumed having typical climatological mean 

heights (base at 2km, 3km height) and microphysical properties. Typical values for the effective radius (Reff = 10 μm) and the 

liquid water path (LWP = 1 g/m3) were used, given the unavailability of those data and their small impact on GHI (Oumbe et 145 

al., 2014; Qu et al., 2017). The simulated GHI for each COT was divided by the GHI for COT=0 (clear sky) for the same SZA 

to derive the CMF (Eq. 1). The CMF ranges from zero (overcast conditions) to 1 (clear sky) and it is easy to use to provide all 

skies GHI by simply multiplying clear-sky GHI with CMF (Eq. 3). The libRadtran-derived CMF for each SZA were fitted 

against COT using the hyperbolic tangent function. The resulting fits are shown as solid lines in Fig.2a and are mathematically 

expressed by the multi-parametric Eq. 2.  150 

𝐶𝑀𝐹 =
𝐺𝐻𝐼

𝐺𝐻𝐼𝑐𝑙𝑟

                                                                                 (1) 

𝐶𝑀𝐹 = 1 − tanh𝑏(𝐶𝑂𝑇𝑎)                                                                 (2)    

where a and b are polynomials of SZA 

𝑎 = 2.24 ∙ 10−1 + 2.81 ∙ 10−4 ∙ 𝑆𝑍𝐴 − 2.18 ∙ 10−5 ∙ 𝑆𝑍𝐴2 + 3.71 ∙ 10−7 ∙ 𝑆𝑍𝐴3 − 2.65 ∙ 10−9 ∙ 𝑆𝑍𝐴4        (2𝑎)                                             

𝑏 = 12.2 + 5.27 ∙ 10−3 ∙ 𝑆𝑍𝐴 − 2.24 ∙ 10−3 ∙ 𝑆𝑍𝐴2 + 8.33 ∙ 10−6 ∙ 𝑆𝑍𝐴3 + 3.94 ∙ 10−8 ∙ 𝑆𝑍𝐴4                     (2𝑏)   155 

The real time MSG COT is used as input in Eq. 2 every 15 min, along with SZA, for ~1.5M pixels, to calculate the CMF 

(CMFmsg hereafter). Apart from being very fast, the use of this formula to calculate CMFmsg is also accurate, as it can be 

seen by the comparison of the CMF values derived by Eq. 2 against those of libRadtran runs (Fig. 2b). CMF differences are 

less than 0.015 (or 1.5%) for SZA lower than 70 degrees, while they are up to 0.03 (3%) for SZAs between 80 and 90 degrees, 

showing the very good representation of the CMF as a function of COT with Eq. 2. In terms of accuracy this means that using 160 

Eq. 2 is almost the same as running RTM simulations, but in terms of computational time is by far more efficient in the 

operational mode. Finally, by multiplying CMFmsg with clear-sky GHI, the all-skies GHI product is provided (Eq. 3), in less 

than 1 min for 1.5M pixels.  

𝐺𝐻𝐼 = 𝐺𝐻𝐼𝑐𝑙𝑟 ∗ 𝐶𝑀𝐹𝑚𝑠𝑔                                                                    (3) 
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Figure 2 (a) Cloud modification factor (CMF) versus cloud optical thickness (COT) and solar zenith angle (SZA) based on radiative 

transfer simulations of global irradiances using the libRadtran package. CMF is the ratio of global horizontal irradiance (GHI) 

values to those under cloudless conditions (COT=0). (b) Differences between the CMF directly derived from libRadtran simulations 

against those derived from Eq. 2, as a function of COT and SZA. 

The new SENSE2 configuration was built for the improvement GHI nowcasting on the 15 min time scale. Additionally, it 170 

allows a greater flexibility for the system to: 

- include reanalysis or measured data of AOD and other optical properties e.g., CAMS reanalysis or AERONET 

measurements. 

- extent to other output products. Apart from GHI, direct normal irradiance (DNI) or total irradiance on tilted surface could 

be also produced. By introducing spectral information and making the appropriate modifications, products related to 175 

specific spectral regions could be also derived (e.g., UV Index by using real time input for TOC, photosynthetically active 

radiation (PAR) etc). 

- run a past time series of one or few locations, autonomously, using as input actual measurements. In this case, if there is 

no time constrain, model runs could be performed without the parametrizations (LUT and multiparametric functions). 

2.2 NextSENSE2 180 

NextSENSE2 is the operational system that provides forecasts of GHI up to 3-hours ahead with a 15-min time step by applying 

a CMV technique to the MSG COT product (Fig. 1). In this section, we describe the method employed to produce forecasted 
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COT, which is the main input to derive the operational forecasts of GHI. All the other EO inputs and the radiative transfer 

parameterizations for fast estimates of forecasted GHI are the same as those described in the previous section for the SENSE2 

model.  185 

We use CMVs to predict the motions of the clouds and project their future positions. The CMVs in NextSENSE2 are calculated 

by applying a state-of-the-art optical flow algorithm from the computer vision community. Optical flow is the apparent motion 

of objects between consecutive frames, caused by the relative movement between the object and a camera. We apply the 

Farnebäck (2003) two-frame motion estimation technique to images of COT product (Kosmopoulos et al., 2020). By applying 

the algorithm to two consecutive images of satellite derived COT the optical flow displacement vectors are calculated. This 190 

CMV field is applied to the later COT image (real) to get the next COT image (forecasted COT). This procedure is repeated 

for 12 times resulting to the 3h forecasting horizon. Main assumptions are the brightness constancy and that the cloud’s 

displacements are only two dimensional (image plane). More details regarding the CMV model and forecasted COT can be 

found in Kosmopoulos et al. (2020). 

2.3 Smart persistence 195 

We benchmarked the CMV forecasted GHI of NextSENSE2 system with the so-called smart persistence approach, which 

assumes that the state of the clouds remains constant for future time steps, while all other variables like SZA etc. dynamically 

change. Hence, it uses the same COT values from the later satellite information as input to the next 12 time-steps in order to 

forecast GHI up to 3h ahead.   

2.4 Ground based irradiance measurements 200 

To validate the modelled GHI, ground-based measurements from pyranometers were utilized. The 1-min GHI ground based 

measurements were collected from stations of the Baseline Surface Radiation Network (BSRN; Driemel et al., 2018) that are 

within the study area and have data throughout 2017, and from two additional stations at Athens (ASNOA: NOA’s 

Actinometric Station) and Thessaloniki. Table 2 summarizes the information of the 10 in total stations utilized and Fig. 3 

depicts their geographical locations.  205 

BSRN station-to-archive files were accessed and manipulated using the SolarData v1.1 R package (Yang, 2019). The function 

that reads the data from the station-to-archive files also computes several auxiliary variables such as solar zenith angle, clear 

sky irradiances using the Ineichen-Perez clear sky model (Ineichen & Perez, 2002) and extraterrestrial GHI. Using the same 

methodology, the Ineichen-Perez clear sky model values were also computed for the non BSRN station data.    

The BSRN recommended Quality Check (QC) tests (Long & Dutton, 2010) where performed to the collected measurements, 210 

to ensure the best quality of the measurements. Measurements that were not respecting the above QC tests, were flagged, and 

set to as a missing value.     
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Table 2 Detailed information about the ground-based sations used in this study. 

 Ground based pyranometer 
AERONET station 

Name  network Lat. (°N) Lon. (°E) location 

ATH - Athens - 37.9 23.7 Europe/Greece Co – located 

CAB – Cabauw BSRN 51.9711 4.9267 Europe/Amsterdam Co – located  

CAM – Camborne  BSRN 50.2167 -5.3167 Europe/London Co – located  

CAR – Carpentras  BSRN 44.083 5.059 Europe/Paris Co – located  

CNR – Cener  BSRN 42.816 -1.601 Europe/Madrid Co – located  

LER – Lerwick     BSRN 60.1389 -1.1847 Europe/London Co – located  

LIN – Lindenberg  BSRN 52.21 14.122 Europe/Berlin Co – located (metObs LIN) 

PAL – Palaiseau, SIRTA Obser BSRN 48.713 2.208 Europe/Paris Co – located  

TAM – Tamanrasset  BSRN 22.7903 5.5292 Africa/Algiers Co – located  

THE -Thessaloniki - 40.63 22.96 Europe/Greece Co – located 

 

 215 

Figure 3 Locations of the ground-based stations measuring global horizontal irradiance (GHI) that are used in the current study. 

These are eight BSRN stations, plus Athens, and Thessaloniki, Greece. 
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2.5 Ground based aerosol information 

To assess the CAMS AOD forecasts used as input to the model, ground-based measurements of AOD from the AERONET 

network (Holben et al., 1998) were used. All the ground-based stations with pyranometer data (BSRN, Athens and 220 

Thessaloniki) have a collocated AERONET station (see Table 2). The level 2, version 3 direct sun (Giles et al., 2019) AOD 

data at 500nm were collected and using the Ångström exponent for 440-675nm, the AOD values at 550nm were derived. Only 

for Cabauw, measurements of AOD at 500 nm weren’t available, therefore AOD at 440 nm was used instead and converted to 

550 nm using the Ångström exponent for 440-675 nm.   

2.6 Evaluation metrics 225 

For the validation of the SENSE2/NextSENSE2 derived GHI values against ground-based measurements, common statistical 

metrics have been adopted. Given that the error is defined as the difference between modelled values (xm_i) and observed 

values (xo_i), we have the following common metrics: 

Mean Bias error: 

𝑀𝐵𝐸 =
1

𝑁
∑(𝑥𝑚𝑖

− 𝑥𝑜𝑖
)

𝑁

𝑖=1

                          (4) 230 

Root mean square error:  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥𝑚𝑖

− 𝑥𝑜𝑖
)

2
𝑁

𝑖=1

                 (5) 

And Pearson correlation coefficient R. 

 

An additional metric the forecast skill (FS) was used to assess the performance of CMV forecasted GHI using persistence 235 

model as a benchmark model: 

𝐹𝑆 = 1 −
𝑟𝑅𝑀𝑆𝐸𝐶𝑀𝑉

𝑟𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑠.

                     (6) 

3 Results and Discussion 

The results are discussed separately for the evaluation of nowcasted GHI (Section 3.1) related to SENSE2 outputs (modelled 

GHI hereafter) and the evaluation of the short-term forecasted GHI (Section 3.2), namely the NextSENSE2 product (forecasted 240 

GHI, hereafter). The comparisons between ground based and estimated GHI where restricted to SZAs below 75° (i.e., for solar 

height above 25° from the local horizon) due to the limitations in the field of view of the satellite. 
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The CMF derived from the ground-based measurements of GHI was used in our analysis to categorize the cloudiness 

conditions. Specifically, the CMF was calculated as the ratio (Eq. 7) of measured GHI to the clear sky irradiance calculated 

by the Ineichen-Perez clear-sky model (Ineichen & Perez, 2002) (See Section 2.4).   245 

𝐶𝑀𝐹 =
𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐺𝐻𝐼𝑐𝑙𝑟

                 (7) 

Three categories according to CMF are used in the following: CMF>0.9 for clear sky conditions, 0.4<CMF<0.9 for partially 

cloudy conditions and CMF<0.4 for overcast conditions. 

3.1 Nowcasting 

3.1.1 Overall performance 250 

Figure 4 presents the overall performance of the SENSE2 system at the 15min time scale, by comparing the modelled GHI 

values against ground-based measurements, for all stations, for a whole year (2017). We can see that most of the points (Fig. 

4a, number of cases N>600) fall on the 1:1 line (blue line) which indicates the overall good performance of the system, with a 

correlation coefficient of 0.93. For 58 % of the cases, the absolute differences between modelled and ground-based 

measurements of GHI are within +/-50 W/m2 or +/-10 % (Fig. 4b). The SENSE2 system mostly overestimates the GHI, which 255 

corresponds to points above identity line (Fig. 4a), with MBE 23.8 W/m2 (4.9%). This overestimation is attributed to the 

underestimation of cloud related information from satellite (MSG COT), when we compare point measurements with a pixel 

in satellite images corresponding to a wide area of almost 5 km x 5 km. This overestimation is more pronounced for low 

irradiances (low left corner of Fig. 4a with GHI<250 W/m2), indicating the challenging task of accurately modelling GHI based 

on satellite data for stations with enhanced cloudiness. Especially at high latitudes, measurements with clouds and at large 260 

SZAs are more frequent. Lerwick is the most northern station and at the same time the station with the greatest MBE (Fig. 4b). 

There are also points below the identity line, which indicate that the measured GHI is greater than the modelled. This is 

attributed partly to the irradiance enhancement by clouds that occurs often when the sky above the ground station is partially 

cloudy, and the sun is visible. In this case, the reflection of solar radiation by clouds increases the diffuse component, and 

hence the GHI, at the ground, even though the satellite “sees” a cloudy pixel. The cloud effect on GHI estimates is investigated 265 

in more detail in Section 3.1.3.  
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Figure 4 (a) Comparison of the global horizontal irradiance (GHI) modeled versus measured for all ground based stations, for 2017. 

(b) Relative frequency of GHI MBE for all stations (grey bars) and for each station (lines with different symbols and colors).   

All the statistical metrics are drastically improved with increasing time scale for all stations (Fig. 5). Stations with similar 270 

results are the northern most stations CAB, CAM, LER, LIN, and PAL. At the 15 min time scale their MBE, RMSE and 

correlation coefficient range 29-43 W/m2, 104-131 W/m2 and 0.82-0.90, respectively. Those statistics are improved for the 

monthly means to 5-10 W/m2 for MBE, to 7-13 W/m2 for RMSE and to r~1. Similar results were found for the rest 

southernmost stations (MBE, RMSE and correlation coefficient range from -7 to 30 W/m2, from 84 to 104 W/m2 and from 

0.93 to 0.95, respectively, for 15 min time scale and from -4 to 8 W/m2, from 6 to 10 W/m2 and r~1, respectively, for monthly 275 

means). The overall MBE and RMSE is reduced to 6.6 W/m2 (3.3%) and 15.4 W/m2 (7.7%) for the daily mean GHI and to 5.7 

W/m2 (3.2%) and 9.2 W/m2 (5.2%) for the monthly means, while correlation coefficient reaches values up to almost 1, which 

was anticipated since the cloud effect is smoothed out for larger time scales.  

 

https://doi.org/10.5194/amt-2023-110
Preprint. Discussion started: 12 July 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

 280 

Figure 5 Comparison of the global horizontal irradiance (GHI) modeled versus measured per ground based station, for 2017, for 

different time scales (15 min, daily mean and montlhy mean). 

3.1.2 Aerosol effect on retrieved solar irradiance 

The CAMS AOD forecasts used as input to the operational model were assessed against ground-based measurements from the 

AERONET network, and the related uncertainty introduced to modelled GHI has been calculated. The AERONET AOD direct 285 

sun measurements were matched with CAMS AOD forecasts (1h time resolution) interpolated to the 15 min time steps of the 

model. The closest AERONET measurement +/- 10 minutes around the 15 min time steps were matched (or the mean value if 

more than one measurements were available). To estimate the model uncertainties due to forecasted AOD, the clear sky GHI 
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was calculated using as input first the forecasted CAMS AOD and second, the synchronized AERONET AOD measurements. 

The comparison for AOD and modelled GHI is presented in Fig. 6 per station in terms of MBE.  290 

CAMS forecasts mostly overestimate AOD with MBE 0.015 (10%) for all stations which results to an underestimation of 

modelled clear sky GHI -2.7 W/m2 (-0.4%). The greatest overestimation 0.05 (~50%) was found for CAM and CNR which 

resulted to the greatest underestimation of clear sky modelled irradiances -8.5 W/m2 (-1.4%). Underestimation of AOD was 

found for CAB and THE, with MBE<0.01 (<3%), resulting in negligible overestimation of modelled irradiances (MBE< 

1W/m2 or 1%). 295 

 

Figure 6 Upper panel: Mean bias error (MBE) of aerosol optical depth (AOD) at 550nm forecasted by CAMS (1 day ahead forecast) 

compared to AOD measured by ground based sun photometers of the AERONET network. Lower panel: MBE of global horizontal 

irradiance (GHI) modeled under clear sky conditions using as input CAMS forecasted AOD at 550nm versus measured values 

(AERONET).   300 

3.1.3 Cloud effects on retrieved solar irradiance 

Overall, the model relatively overestimates GHI, as we saw in Section 3.1.1, which can be attributed to the underestimation of 

cloud information from satellite (MSG COT). To decompose the error induced due to satellite cloud information, we classify 

the cloudiness conditions using CMF (Fig 7a). We can see that the GHI is overestimated by the model under cloudy conditions 

(CMF<0.9), while for clear sky conditions (CMF>0.9) the model closely resembles the measured GHI. The category of 305 
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CMF>0.9 contains apart from the conditions with actual clear sky, also the CMF >1 which exists due to the cloud enhancement 

of solar irradiance, responsible for the underestimation of modeled GHI in this category (see Section 3.1.1). For partially 

cloudy conditions (CMF <0.9 and >0.4), the MBE is 81.6 W/m2 (22.8%) and the greatest error occurs for the low CMF values 

(CMF<0.4) (MBE=100.1 W/m2 or 73.1%). In this category, the lowest values of measured GHI are found (<250 W/m2). The 

high modeled GHI values could be attributed to the underestimation of MSG COT product due to complex geometries related 310 

to high latitudes and large SZAs. Additionally, there are also situations when the low measured GHI values are related to 

partially cloudy sky, with clouds blocking the sun, a situation that cannot be resolved by the satellite COT retrieval. To 

demonstrate this last situation, we compared the modelled and measured GHI values for MSG COT=0 (Fig. 7b, clear sky from 

the satellite point of view). In this case, the model overestimates GHI with MBE 13.6 W/m2 (2.3%). Most of the points are 

above the 1:1 line, especially, for measured GHI<250 W/m2. The interesting part is that the same case stands for the whole 315 

range of measured GHI, indicating that it is a general limitation of satellite that it cannot take into account clouds that obscure 

the sun.  

To verify that the sun visibility is the main reason for the overestimation, we tried to separate those instances by using the 

pyrheliometer measurements of direct irradiance (DNI – direct normal irradiance) available by the BSRN network. The DNI 

measurements (1min) were divided with the clear-sky DNI, again from the Ineichen-Perez clear sky model (Ineichen & Perez, 320 

2002). According to this ratio values, we classified as sun visible the situations with ratio >0.8. This threshold was selected to 

account for the strong effect of aerosols in DNI, given that a monthly mean climatological value for aerosol attenuation factor 

is used by DNI clear-sky model (Ineichen & Perez, 2002). We classified as sun obscured situations with ratio <0.6, and we 

omitted as unclassified situations those with ratio values between 0.6 and 0.8, to be confident that direct irradiance is blocked 

by clouds by more than 40%. The results of the GHI comparison between modeled and measured values were grouped based 325 

on the sun visibility classification and are presented in Fig. 7c. We can see that the sun visible situations give quite good results 

(points close to the 1:1 line). In addition, several cloud enhancement events (points below 1:1 line), cannot be captured by the 

model. In contrast, the model overestimates GHI (MBE 74.5 W/m2 or 24.5%) when the sun is obscured, a situation that cannot 

be inferred from satellite information. Comparing station (point) data with model-derived, based on satellite pixel-based cloud 

retrievals, introduces deviations linked with the cloud features within this pixel. Even if the satellite imager can resolve a cloud 330 

within the pixel, the COT product for this pixel is a constant value, namely a spatially homogeneous cloud optical property for 

the corresponding area. In this atmospheric scene, GHI measured at the ground level, with the sun obscured or not, will affect 

the comparison dramatically. Cases with partial cloudiness and the sun obscured as seen from the ground sensor (almost total 

attenuation of direct irradiance) will be associated with low measured irradiance that cannot be captured by the model. This is 

the main reason of the overall model overestimation. 335 
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Figure 7 Comparison of the global horizontal irradiance (GHI) measured versus modeled for all ground based stations (a) for 

different cloudiness conditions based on the cloud modification factor (CMF) derived by the ratio of GHI ground based 

measurements devided by clear-sky GHI (clear-sky model) (b) for clear-sky conditions as determined by MSG satellite product by 

zero values of cloud optical thickness (COT=0) (c) for conditions characterized as sun visible or obscured.   340 

Since the main source of errors in this analysis is associated with clouds, we further investigate the cloud input from satellite 

data. The MSG COT is transformed to CMFmsg using Eq. (2) and this is the cloud related input in the SENSE2 model. We 

compared the CMFmsg with the CMF derived from GHI measurements (Eq. 7) and the results are presented in Fig. 8, as 

relative frequency distributions of CMFmsg, CMF and their difference (CMFmsg – CMF), for all cases and different 

cloudiness conditions. In Fig. 8a and b, for all situations, we can see the overall overestimation of CMF (0.17) by satellite 345 

(underestimation of MSG COT), which is the reason for the overall overestimation of modelled GHI. This overestimation is 

linked to the partially cloudy (CMF <0.9 and >0.4, Fig. 8g and h) and the overcast (CMF<0.4, Fig. 8i and j) conditions. The 

large relative frequencies of CMFmsg=1 in Fig. 8i are situations when the satellite cannot resolve any clouds giving COT=0 

or CMFmsg=1, but the measurements demonstrate the presence of clouds. There is also a large fraction of enhancement events 

(CMF > 1) which is not captured by the CMFmsg (Fig. 8a). During those events satellite cloud product gives mostly no clouds 350 

(CMFmsg=1, Fig. 8c and e).   
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 355 

Figure 8 Left panels (a, c, e, g, i): Distribution of cloud modification factor (CMF) from measurements of global horizontal irradiance 

(GHI) (blue bars) and from MSG cloud optical thickness (COT) (red bars), under all cases and under different cloudiness conditions. 

Right panels (b, d, f, h, g): Distribution of the CMF differences between those derived from measurements of GHI and those derived 

from MSG satellite COT.  
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3.1.4 Bias correction based on cloud input 360 

The model overall relatively overestimates GHI, which is attributed to the CMFmsg overestimation (COT underestimation) 

under cloudy conditions. Based on the main conclusions from CMF differences from the previous section, we tried to find if 

there is any common pattern for all stations, in those CMF differences (modelled against measured) as a function of CMFmsg, 

since the latest is the only operationally available input, every 15min. Additionally, we found that those differences hardly 

change with SZA (Fig. A1), so we will investigate their relation only with CMFmsg.   365 

We calculated the mean CMF difference and their standard deviation per CMFmsg bins for every station and the results are 

presented in Fig.9. A pattern of mean CMF differences was found for almost all station (apart from TAM, ATH and THE) 

with CFMmsg overestimation up to almost 0.1 starting from CMFmsg bin 0.3 up to 0.8, related also with low standard 

deviations over those bins. 

As we discussed in the previous section, this CFMmsg overestimation (up to ~0.1) is mostly related with the sun obscured 370 

conditions. Nevertheless, the sun’s visibility is information that couldn’t be provided by satellites. Consequently, we tried to 

correct CMFmsg (the operational input) with those CMF differences (modelled against measured). We used the mean of the 

of CMF differences per CMFmsg bin from seven out of ten stations (excluding TAM, ATH and THE) to derive the correction 

factor (the correction hereafter), which is depicted as the thick black dashed line in Fig. 9. The correction was applied to 

CMFmsg values falling in the bins 0.3-0.8 only. The correction was applied to all stations, including TAM, ATH and THE, 375 

which act as a test bed (low frequency of cloudy cases) for the general correction derived from the rest seven stations.   

Table 3 summarizes the statistics of corrected modeled GHI against ground-based measurements. We can see that the 

correction was successful for all stations. LER and CAM are the two stations with the greatest improvement in their statistics, 

following CAB and LIN, which was anticipated since those are stations at higher latitudes associated with high cloudiness. 

Even ATH and THE stations, that were independent from the correction construction procedure, exhibit better results after 380 

applying the correction. TAM is the only station where statistics weren’t improved. Due to its rare cloudiness, this station’s 

statistics were already good, indicating that probably a hybrid approach of the correction according to the area’s cloudiness 

would be better. Overall, after the correction for 61% of the cases the GHI differences (modeled against measured) were within 

+/-50 W/m2 (or +/-10%). The MBE for all stations was also improved to 11.3 W/m2 (2.3%), compared to the uncorrected 

values (23.8 W/m2 or 4.9%).  385 
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Figure 9 Upper panel: Mean cloud modification factor (CMF) difference between modeled (from MSG satellite cloud optical 

thickness) values CMFmsg and those derived from global horizontal irradiance (GHI) measuremnts per modeled CMFmsg bins. 

Lower panel: The coresponding standard deviation (STD) of CMF differences per modeled CMF bins. The different colors in lines 

and different symbols correspond to different stations.   390 
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Table 3 Performance of nowcasted irradiances before and after correction with CMFmsg. 

BSRN     

station  N 
MBE 

(W/m2) 

MBE cor. 

(W/m2) 

RSME RSME cor. r r cor. 

ATH 9472 14 8 97 97 0.94 0.94 

CAB  7749 31 11 115 110 0.88 0.88 

CAM  2376 34 13 104 98 0.89 0.89 

CAR  8985 30 23 84 80 0.95 0.96 

CNR  8806 19 6 104 102 0.93 0.93 

LER  5191 44 21 131 124 0.82 0.83 

LIN  7989 39 21 119 114 0.88 0.88 

PAL  8011 28 11 117 113 0.90 0.91 

TAM  9011 -8 -12 98 98 0.94 0.94 

THE 9188 27 18 91 88 0.95 0.95 

3.2 Short term forecasting  395 

3.2.1 Overall performance - Benchmark with Persistence method 

Figure 10 summarizes the performance of the CMV method (green points) in predicted GHI as function of forecasting horizon, 

by providing main statistics, after comparison with GHI ground based measurements, from all ten stations, for a whole year 

(2017). Detailed results per station, for representative statistics and selected time steps (+60, +120, +180 mins) can be found 

in Table 4. As a benchmark, the results of the commonly used persistence forecasting method are presented also in Fig. 10 400 

(black points). We can see that the CMV model systematically outperforms persistence for all time steps. It is interesting that 

the first time step (+15 min) is not the one with the maximum difference between the CMV and persistence statistics (or the 

maximum of CMV FS%), indicating that for such short time interval the probability of changing cloudiness is low, which 

favours the persistence method. The second time step is the one with the maximum of CMV FS% (best performance) compared 

to persistence up to ~10%. As the forecasting horizon increases all metrics deteriorate for both methods, while, at the same 405 

time, persistence is systematically worse than CMV.     
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Figure 10 Performance statistics of CMV modeled (green points) and persistance method (black points) forecasted global horizontal 

irradince (GHI) for every 15min time step up to 3h ahead.  

Table 4 Performance statistics of CMV modeled forecasted global horizontal irradince (GHI) for the 60min, 120min and 180min 410 
time steps. 

station  rRSME (%) R FS (%) 

 
Mean 

CMF 

time step (min) time step (min) time step (min) 

  +60 +120 +180 +60 +120 +180 +60 +120 +180 

ATH 0.97 22.0 24.5 25.3 0.90 0.87 0.86 0 1.7 3.2 

CAB 0.68 39.7 45.6 49.6 0.80 0.73 0.68 10.5 7.5 5.8 

CAM 0.63 54.1 62.0 68.9 0.66 0.58 0.50 2.7 3.4 1.5 

CAR 0.85 22.8 26.3 29.6 0.90 0.86 0.82 8.1 5.6 3.1 

CNR 0.81 31.0 34.8 37.4 0.85 0.79 0.75 2.4 2.9 2.6 

LER 0.61 50.8 56.0 59.6 0.73 0.67 0.62 10.4 9.5 9.4 

LIN 0.68 39.7 45.9 51.2 0.81 0.74 0.69 13.9 10.9 8.8 

PAL 0.68 38.9 44.9 48.8 0.82 0.75 0.71 11.6 7.6 6.0 

TAM 0.87 21.4 23.1 24.7 0.89 0.86 0.82 2.2 1.0 -1.3 

THE 0.91 23.9 27.2 29.2 0.89 0.86 0.84 6.8 5.1 2.4 
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An interesting grouping of stations resulted by comparing main statistics (rRMSE and FS) for both forecasting methods with 

stations’ mean CMF, representing their mean cloudiness (Fig.11). Three time steps were selected (+60, +120, +180 min) and 

are depicted with increasing transparency. Two groups of stations are evident. Those with high mean cloudiness (LER, CAM, 415 

PAL, LIN, and CAB), which show worse rRMSE than those of lower cloudiness (ATH, THE, TAM, CAR and CNR), 

independently of the method. Again, the CMV model (green symbols) outperforms the persistence method (black symbols) 

for all stations for these time steps (except of TAM for +240min). The interesting finding is that the FS (%) of the CMV 

method increases with decreasing CMF, namely the forecasting skill of CMV model is higher compared to persistence for 

stations with higher cloudiness, demonstrating the applicability of the CMV forecasting method on GHI under cloudy 420 

conditions.    

 

Figure 11 Mean bias error (MBE) and its relative values (rMBE%), relative root mean square error (rRMSE%) and forecasting 

skill expressed in percentage (FS%) of CMV model (green symbols) and persistence method (black symbols) forecasted global 

horizontal irradiance (GHI) versus the average cloudiness of stations (mean CMF) for the time steps +60, +120 and +240min 425 
(increasing transparency of symbols).  

 

 

 

 430 
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3.2.2 Performance for different cloudy conditions 

To demonstrate the value of the CMV model against the persistence method that assumes the same cloudy conditions for all 

future time steps, we compare their performance under different cloudy conditions and transitions in cloudiness. Figure 12 

presents the RMSE for both models (CMV green points and persistence black points) and the CMV model FS% as a function 

of CMF, for three time-steps (+60, +120 and +180 min). Persistence performs better than CMV model under clear sky 435 

conditions, namely CMF=1, for all times steps (as expected, as there is no change in cloudiness). This is also true for the CMF 

bin 0.9 only for time step +180 min and for CMF bin >1 for all time steps, a bin which contains mainly clear sky cases. For 

cloudy conditions, namely CMF<0.9, the CMV model outperforms persistence for all time steps (apart from +180 min time 

step and CMF bin 0.9). The cloudier the conditions (the smaller the CMF), the better the performance of CMV model and the 

greater the CMV FS% (up to ~ 20% for time step +60 min). The FS of CMV model decreases slightly with forecasting horizon, 440 

however, for the maximum of the forecasting horizon (+180 min) remains quite high ~+10% for CMF bins <0.7. 

 

Figure 12 Upper panel: Root mean square error (RMSE) of forecasted global horizontal irradiances (GHI) for all stations with the 

CMV model (green symbols) and with the persistence method (black symbols) versus cloud modification factor (CMF) derived from 

GHI measurements, for 3 time steps (+60, +120 and +180min). Lower panel: The CMV model forecasting skill against CMF classes 445 
for the same time steps with upper panel.   
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To demonstrate the better performance of CMV method compared to the persistence for all time steps under cloudy conditions, 

we calculated CMV FS% for partially cloudy conditions (CMF <0.9 and >0.4) and overcast conditions (CMF<0.4) and the 

results are presented in Fig. 13. We can see again that the FS of CMV model decreases with time, however, the minimum 

value is ~10% for both categories. The maximum of FS is for both categories at +15 min time step at ~16% and ~22% for 450 

CMF<0.9&>0.4 (triangle symbols) and CMF<0.4 (cross symbols), respectively. 

 

Figure 13 Forecasting skill (FS) expressed in percenateges of CMV model against the persistence method as a function of time 

horizon, from all stations, for two different cloudiness conditions: CMF >0.4 and <0.9 (triangles) and CMF <0.4 (crosses).   

The performance of the CMV model against the persistence method was assessed also for changing cloudiness, in terms of 455 

CMF changes (from ground-based measurements). The CMF changes were calculated for a time interval of 60min (as 

ΔCMF=CMFt+60 - CMFt), and the results of the CMV model FS (%) are presented for the +60min time step, as a function of 

CMF changes in Fig. 14. The high negative value of FS for zero CMF changes bin indicates that the persistence method is 

better for that bin, which was anticipated, since we have zero or almost zero changes of CMF, which practically is the 

persistence method definition. Persistence is still better than CMV for CMF changes from cloudy to clearer conditions, up to 460 

the +0.3 CMF change bin, but the FS is less negative than the zero bin. For CMF changes with higher magnitudes (bins > 0.4) 

from cloudy to clearer conditions, CMV is better that persistence, with FS values 15% for the CMF change bin +0.6. Consistent 

results were found for the opposite situation, namely from clearer to cloudy conditions, with CMV model always being better 

that persistence, with FS values up to ~20%.  

https://doi.org/10.5194/amt-2023-110
Preprint. Discussion started: 12 July 2023
c© Author(s) 2023. CC BY 4.0 License.



25 

 

Our analysis for different cloudiness conditions, highlights the limited ability of the persistence method compared to the CMV 465 

based nextSENSE2 to accurately forecast GHI under cloudy conditions (CMF values<0.9) and to follow the transitions in 

cloudiness (especially from clearer to cloudy conditions). 

 

Figure 14 Forecasting skill (FS) expressed in percenateges of CMV model against the persistence method from all stations as a 

function of CMF changes within 60 min time interval (from time 0 to +60 min time step). 470 

4 Summary and conclusions 

Our motivation is the continuous improvement of the EO based estimates and the accuracy of short-term forecasts of available 

solar resources to support solar energy exploitation systems on a regional scale (Europe and MENA region). In this study, we 

improve the SENSE/nextSENSE nowcasting/short-term forecasting operational systems, and analyze in detail the cloud related 

uncertainties, discriminating also situations based on sun visibility, using ground-based measurements.  475 

In terms of the aerosol related inputs, the slight overestimation of CAMS AOD that was found against the AERONET retrievals 

(<10%) resulted to SENSE2 clear-sky GHI underestimation lower than 1%, highlighting the applicability of CAMS forecasts 

as EO inputs for operational solar resources nowcasting. In terms of modeled all skies GHI, it was found that clouds are the 

main source of uncertainty. The SENSE2 mostly overestimates GHI with MBE 23.8 W/m2 (4.9%), which was attributed to the 

MSG cloud underestimation (overestimation of CMFmsg by ~0.17). We demonstrated that the most difficult situations to be 480 

modeled are related to high spatial variability of solar radiation within the satellite pixel due to clouds (e.g., the sun obscurity, 
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an information not possible to be derived from satellite data). Based on our cloud related analysis using ground-based data, a 

correction for the modelled GHI was used, resulting to an overall improvement of the SENSE2 modelled GHI with 61% of the 

cases within +/-50 W/m2 (+/-10%) of measured GHI and a final MBE of SENSE2 11.3 W/m2 (2.3%). Our main analysis was 

based on the 15 min time scale, however based on the application hourly, daily or monthly data could be used. The daily and 485 

monthly SENSE2 GHI showed much better statistics (MBE 6.6 W/m2 and 5.7 W/m2, respectively). NextSENSE2 was also 

improved due to the SENSE improvements. We also show that compared to the persistence method, the model works much 

better (as expected) at locations with increased cloudiness and for frequent cloudiness changes. 

The data and methods involved for the estimation/prediction of the GHI in this study also reveal their limitations. The pixel-

based approach of the model inputs (satellite and models) could not always reflect the reality above a (point) ground-based 490 

station. However, the model inputs are the state of the art of EO data and can be readily available in regional or global scale, 

at high spatial and temporal resolution, hence the GHI product is representative of an area (~5km x 5km in this model), which 

is useful for PV parks covering a wide area. In general, evaluating the performance of such EO based GHI models with ground-

based measurements must account for these comparison spatial representativity issues. The optical flow algorithm for 

calculating CMVs is also based on assumptions like 2D clouds and brightness constancy. However, it is a method based on 495 

cloud inputs from satellite data in real time and the applicability of those methods is demonstrated here compared with the 

persistence approach.     

Since satellite cloud information is the only real time input, a new straightforward configuration for estimating GHI was 

applied (SENSE2). The advantage of calculating clear sky GHI from the previous day, is what increases the accuracy of this 

product, since it is based on a detailed LUT of ~16M combinations of 7 different inputs, considering apart from AOD, 500 

additional aerosol optical properties and atmosphere/surface state inputs. Thus, the uncertainties in the estimated clear sky GHI 

practically result only from uncertainties in the inputs.  The new scheme of calculating all skies GHI by multiplying the clear 

sky GHI with CMFmsg (derived in real time by multiparametric function of MSG COT and SZA) was improved by applying 

a suitable CMFmsg correction. The correction was successful and improved the model performance, especially for areas with 

high cloudiness. Additionally, the new configuration of the SENSE2 is more flexible, and it is easy to adapt and provide more 505 

products like DNI, UV index, PAR, etc. which is one of the prospects for the new model or run in a retrospective way using 

reanalysis data or in situ observational data.     

According to the results, high resolution (every 15 min, at ~5km x 5km) and quite accurate GHI real time estimates/forecasts 

are produced from the upgraded SENSE2/NextSENSE2 operational systems that can contribute to solar energy systems 

management and planning.  510 

 

Appendix A 

To see if the CMF differences (MSG modelled against measured) changing with SZA, the MBE of CMF was calculated for 

bins of SZA every 10 degrees. The observed CMF was considered the one derived from GHI measurements (Eq. 7) and the 

modelled one derived by the Eq. 2. The results are presented in Fig. A1, for all cases and under different cloudiness conditions, 515 
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along with the relative values of CMF MBE expressed in percentages. We can see again the fact that the main overestimation 

of CMF values by MSG COT comes from the cloudy conditions (CMF <0.9). Specifically, for the partially cloudy conditions 

(CMF <0.9 and >0.4) the MBE reach values up to ~ 0.20 and for overcast skies (CMF <0.4) there are SZA bins (0 and 70 

degrees) that the MBE reach values up to 0.4. However, for those two categories the MBE hardly changes with SZA.    

 520 

Figure A 1 Cloud modification factor (CMF) mean bias error (MBE – left column) and relative MBE (% - right column) as a 

function of solar zenith angle (SZA) under all cases and under different cloudiness conditions. 
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