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Abstract. The development in uncrewed aerial vehicle (UAV) technologies over the past decade has led to a plethora of 12 

platforms that can potentially enable greenhouse gas emission quantification. Here, we report the development of a new 13 

air sampler, consisting of a pumped stainless coiled tube of 150 m in length with controlled time-stamping, and its 14 

deployment from an industrial UAV to quantify CO2 and CH4 emissions from the main coking plant stacks of a major 15 

steel maker in eastern China. Laboratory tests show that the time series of CO2 and CH4 measured using the sampling 16 

system is smoothed when compared to online measurement by the cavity ring-down spectrometer (CRDS) analyzer. 17 

Further analyses show that the smoothing is akin to a convolution of the true time series signals with a heavy-tailed digital 18 

filter. For field test, the air sampler was mounted on the UAV and flown virtual boxes around two stacks in the coking 19 

plant at Shagang Steel Group. Mixing ratios of CO2 and CH4 in air and meteorological parameters were measured from 20 

the UAV during the test flight. A mass-balance computational algorithm was used on the data to estimate the CO2 and 21 

CH4 emission rates from the stacks. Using this algorithm, the emission rates for the two stacks from the coking plant were 22 

calculated to be 0.12 ± 0.014 t h-1 for CH4 and 110 ± 18 t h-1 for CO2, the latter being in excellent agreement with material 23 

balance based estimates. A Gaussian plume inversion approach was also used to derive the emission rates and the results 24 

were compared with those derived using the mass-balance algorithm, showing a good agreement between the two methods.  25 
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1 Introduction 26 

Atmospheric carbon dioxide (CO2) and methane (CH4) are the two major anthropogenic greenhouse gases (GHGs). Both 27 

CO2 and CH4 in the atmosphere have been increasing since the industrial revolution, particularly rapidly over the past ten 28 

years. Global networks consistently show that the globally averaged annual mean CO2 molar fraction in the atmosphere 29 

increased by 5.0 % from 2011 to 2019, reaching 409.9 ± 0.4 ppm in 2019. Likewise, the globally averaged surface 30 

atmospheric molar fraction of CH4 in 2019 was 1866.3 ± 3.3 ppb, 3.5 % higher than in 2011 (Gulev et al., 2021). CH4 is 31 

a stronger absorber of Earth’s thermal infrared radiation than CO2, with its global warming potential (GWP) 32 times 32 

greater than that of CO2 over a 100-year horizon (Saunois et al., 2020). Although its molar fractions in the atmosphere 33 

are about 200 times lower than those of CO2, the total radiative forcing of ~1.0 W m-2 for CH4 is about half of that of CO2 34 

(~2 W m-2) (Arias et al., 2021), contributed by its direct radiative forcing of (0.6 ± 0.1) W m-2 and indirect forcing of 0.4 35 

W m-2 resulting from chemical reactions producing other GHGs including CO2, O3, and stratospheric water (Turner et al., 36 

2019). Furthermore, although global anthropogenic CH4 emissions are estimated to be only 3 % of the global 37 

anthropogenic CO2 emissions in units of carbon mass flux, the increase in atmospheric CH4 is responsible for about 20 % 38 

of the warming induced by long-lived greenhouse gases since pre-industrial times (Etminan et al., 2016). Both CO2 and 39 

CH4 are produced and released into the atmosphere from a variety of natural and anthropogenic sources. Natural emission 40 

sources include vegetation, oceans, volcanoes and naturally occurring wildfires, but most of the increases in atmospheric 41 

CO2 and CH4 are considered to have resulted from anthropogenic emissions, from sources including fossil fuel production 42 

and uses, agricultural activities, land use and industrial processes (Canadell et al., 2021). 43 

Quantification of CO2 and CH4 emissions from sources requires continuous measurements of their mixing ratios as 44 

well as meteorological parameters using a variety of stationary and mobile platforms, including ground-based vehicles 45 

(Rella et al., 2015; Brantley et al., 2014), towers (Helfter et al., 2016; Takano and Ueyama, 2021), aircrafts (Li et al., 46 

2017; Liggio et al., 2019) and sattellites (Miller et al., 2013; Turner et al., 2015). Small uncrewed aerial vehicles (UAVs) 47 

have become emerging platforms due to the recent rapid technological developments. They are flexible, versatile and 48 

relatively inexpensive. Most importantly, a UAV platform fills the sampling space between the ground and altitudes of 49 

up to hundreds of meters above ground, in which other mobile platforms have been unable to operate (Shaw et al., 2021). 50 

Due to their relatively low flying speeds, UAV platforms offer a high spatiotemporal resolution for sampling and thus 51 

enabling accurate plume mapping. On the other hand, UAVs have limited endurance, being constrained by battery 52 

capacities and payloads, making them more suitable for small facility flux quantification. 53 
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UAV platforms have been used to quantify CH4 emissions in several studies, mainly focused on facility-scale 54 

emission sources including landfills (Allen et al., 2019; Bel Hadj Ali et al., 2020), coal mines (Andersen et al., 2021), 55 

dairy farms (Vinkovic et al., 2022), wastewater treatment plants (Gålfalk et al., 2021) and oil and gas facilities (Golston 56 

et al., 2018; Li et al., 2020; Nathan et al., 2015; Shah et al., 2020; Tuzson et al., 2021). UAV-based CH4 measurements 57 

are generally made with three different methods: collecting on-board samples for subsequent analysis, tethered sampling 58 

to a sensor on the ground and on-line measurements (Shaw et al., 2021). Gas samples could be stored onboard a UAV for 59 

subsequent analyses on the ground after landing, using air bags (Brownlow et al., 2016) or sampling canisters (Chang et 60 

al., 2016). Andersen et al. developed a UAV-based active AirCoresystem, consisting of a long coiled stainless-steel tubing, 61 

a small pinhole orifice, and a pump that drags air through the tube (Andersen et al., 2018), which allows for a higher 62 

spatiotemporal resolution in the measurements. Direct comparisons between a quantum cascade laser absorption 63 

spectrometer (QCLAS) and the active AirCore measurements show that the active AirCore measurements are smoothed 64 

by 20 s and had an average time lag of 7 s. The active AirCore measurements also stretch linearly with time at an average 65 

rate of 0.06 s for every second of QCLAS measurement (Morales et al., 2022). The advances in active AirCore sampling 66 

have made UAV measurements for CH4 emissions feasible, even if still with rooms for improvement. Studies of using 67 

UAVs for CO2 plume detection and mappingfrom anthropogenic sources have also been reported (Reuter el al., 2021; 68 

Liu et al., 2022; Leitner et al., 2023; Chiba et al., 2019). Reuter et al. presented the development of a UAV platform  to 69 

quantify the CO2 emissions of anthropogenic point sourcrs by deployment of an NDIR (non-dispersive infrared) detector 70 

and a 2-D ultrasonic acoustic resonance anemometer on the platform (Reuter et al., 2021).  71 

In this study, we developed a new active air sampling system for deployment from a UAV  on a trajectory in the 72 

three-dimensional space to measure CO2 and CH4. The complete sampler plus UAV system was deployed to quantify 73 

CO2 and CH4 emissions from the stacks of the main coking plant of Shagang, the largest private steel maker in China. 74 

The top-down emission rate retrieval algorithm (TERRA) (Gordon et al., 2015) was applied to the UAV data to determine 75 

stack CH4 and CO2 emissions rates. The iron and steel industry is one of the largest contributing industries to global GHG 76 

emissions, accounting for around 7% of global total GHG emissions (Hasanbeigi, 2022). Coke production is one major 77 

process of iron and steel making that generate emissions of CO2 and CH4. During coke production, coking coal is used to 78 

manufacture metallurgical coke that is subsequently used as the reducing agent in the production of iron and steel (U.S. 79 

Environmental Protection Agency, 2016). Coke oven gas is the main sources of CO2 and CH4 emissions during coke 80 

production (Angeli et al., 2021; IPCC, 2006). China is the largest coke producer in the world, with a coke production of 81 

4.72 billion tons in 2020. The GHG emissions from coke production in China are reported based on the Tier 1 82 
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methodology of IPCC Guidelines, which multiplies generic default emission factors with the tonnage of coke produced 83 

(Ministry of Ecology and Environment of China, 2018). Tier 1 methodologies are the simplest and least complex requiring 84 

less resources on collection the necessary data and producing GHG emission estimates. The present UAV measurement-85 

based emission results can be compared with material balance based emission estimates and the emissions based on the 86 

Tier 1 emission factors and coke production at the plant, and to shed light on the uncertainties related to Tier 1 emission 87 

factors in the case of CH4 emissions. 88 

2.Method 89 

2.1 The air sampling system 90 

To realize GHG emission quantification by UAV measurement, a new compact air sampling system was developed based 91 

on a variation of the active AirCore method. The AirCore system contains a 150-m-long stainless steel tube, open at one 92 

end and closed at the other, that relies on positive changes in ambient pressure for passive sampling of the atmosphere 93 

(Karion et al., 2010). Figure 1 shows an overview of the patent-pending design for this sampler. It consists of a 150 m 94 

long thin-walled 1/8 inch outside diameter stainless-steel tubing, a pump, a micro-orifice, a CO2 marker generator, two 95 

three-way solenoid valves and electric relays, with all electrical devices powered by a 12V battery. The tubing is winded 96 

into a multilayer coil, in whose center the other components of the system are mounted. The system is housed in the 97 

highly compact patent-pending carbon fiber assembly design of 280 mm diameter and 98 mm height, that can be quickly 98 

mounted at and dismounted from the bottom of an UAV. The sampler weighs about 5.9 kg and allows for continuous 99 

sampling up to 35 minutes. 100 

The sampler air intake is mounted at 70 cm above the center of gravity of the UAV, placed nearby a sonic 101 

anemometer (below) for ensuring sampling the same air mass where wind speed is measured. The time stamp of the 102 

mixing ratio observation was corrected for the short time lag of 4 seconds between sampling at the air intake and the thin-103 

walled stainless-steel tubing attributable to the length of the Teflon inlet tube. Shortly before every flight, the pump is 104 

remotely turned on to sample the CO2 marker for 5 seconds and then to collect air samples. The CO2 markers help to 105 

identify the starting point and specific times subsequently during the UAV air sampling in data extraction and analysis. 106 

During flight, the pump would alternatively sample the marker and the ambient air on a preset timing schedule. The 107 

sampling flow rate remains at 18 ccm during the entire flight, controlled with the micro-orifice which is placed between 108 

the pump and the coiled tubing. After landing, the pump is remotely turned off and the air sample in the sampling tubing 109 
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is immediately analyzed with a cavity ring-down spectrometer (CRDS) (Picarro, Inc., CA, USA, model G2401) for CO2 110 

and CH4 mixing ratios in the sampled air. Waiting longer would lead to unwanted mixing of the samples in the tubing. 111 

The air sample enter the tubing from the air inlet during sampling and leave the tubing from a different air outlet during 112 

later analysis. As a result, the samples at the beginning of the flight spend the same amount of time within the tubing as 113 

those at the end of the flight.  Using the embedded CO2 marker data, the CO2 and CH4 data series can be mapped to the 114 

sampling times and GPS locations during flight. 115 

 116 

Figure 1.Design of the air sampler. 117 

2.2 The 3D sonic anemometer 118 

Previous studies that applied UAV platforms for GHG monitoring generally relied wind data from nearby ground weather 119 

stations (Morales et al., 2022; Allen et al., 2019). However, Gålfalk et al. shows that wind speeds were inconsistent 120 

between a ground weather station at a 1.5 m height and an anemometer mounted on their UAV, especially when altitude 121 

increases, showing the need to have an on-board weather station for accurate flux calculations (Gålfalk et al., 2021). In 122 

the present study, in order to obtain meteorological data along the flight track, a 3D sonic anemometer (Geotech Inc, 123 

Denver, US, model Trisonica Mini) is attached on the top of the UAV via a 450 mm carbon fiber pole. The anemometer 124 

measures three-component wind speed (𝑈𝑥, 𝑈𝑦, 𝑤) and temperature (𝑇). The measured data were further transformed into 125 

actual wind speeds and wind directions after corrections for UAV attitude (pitch, yaw, roll) changes and accounting for 126 

its airspeed, as well as the perturbations caused by the UAV rotor propellers using a correction algorithm (Yang et al. 127 
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2023). The GPS information, airspeed, and attitude data (pitch, yaw, and roll) were extracted from the UAV data 128 

transmitted to the ground control station. The anemometer measures wind speeds within the range of 0 to 50 m s-1, with 129 

an accuracy of ± 0.1 m s-1 below the wind speed of 10 m s-1. The accuracy for wind direction measurement is ± 1°. For 130 

temperature measurement, the operating range for the anemometer is between -40 °C to 85 °C and the accuracy is ± 2 °C. 131 

For anemometers mounted on multi-rotor UAVs, how to correct for the effects of the translational and rotational 132 

movements of the UAVs as well as the flows induced by the rotors to obtain accurate wind data is an on-going research 133 

topic (Gålfalk et al., 2021; Wolf et al., 2017; De Boisblanc et al., 2014; Palomaki et al., 2017; Zhou et al., 2018; Yang, 134 

2023). During flight, rotary wing UAVs create thrust by drawing air from above the rotors and expelling it downwards at 135 

a higher velocity. Such flows may extend to the anemometer position in addition to true atmospheric air flows, masking 136 

the true wind signals in the data from the anemometer (Wolf et al., 2017). Previous studies have conducted laboratory 137 

testing (Wolf et al., 2017; De Boisblanc et al., 2014; Palomaki et al., 2017) or flow field simulation (Zhou et al., 2018) to 138 

determine the appropriate distance to place anemometers onto multi-rotor UAVs to minimize the impact from the rotor-139 

induced air flows. The anemometer in this research is mounted at an upward distance of 70 cm from the center of gravity 140 

of the UAV. A full digital model of the UAV, the anemometer and its mounting frame, and the air sampler was created. 141 

Using this digital model, computational fluid dynamics (CFD) simulations were performed to quantify wind speed 142 

disturbances caused by the UAV's rotor propellers on the anemometer during flight under a vast array of different wind 143 

conditions. An overall correction algorithm was developed in which parameters for propeller disturbances determined 144 

based on the CFD simulations were included along with correction schemes for false signals resulting from translational 145 

motions and changes in UAV pitch, roll and yaw. The correction algorithm was verified with real-world UAV flight-146 

meteorological tower measurement intercomparisons (Yang et al., 2023). 147 

2.3 The UAV 148 

The air sampler and the anemometer are mounted on a hexacopter UAV (KWT-X6L-15). The UAV has a maximum flight 149 

time of ~30 minutes at a maximum payload of 15 kg, or longer with a lighter payload. Such flight endurance and carrying 150 

capacity meet our needs for loading the air sampler and the anemometer onto the UAV to realize emission quantification. 151 

The UAV is capable of flying at winds up to 14.4 m s-1 to an altitude of about 4000 m and has a maximum horizontal 152 

flying speed of 18 m s-1, a maximum ascending speed of 4 m s-1 and a maximum descending speed of 3 m s-1. The 153 

horizontal hovering precision of the GPS on the UAV is ± 2 m and the vertical hovering precision is ± 1.5 m. 154 
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2.4 Air sample analysis 155 

After landing, the air sample collected in the tubing is immediately analyzed with the CRDS analyzer. The withdrawal 156 

flow rate of the air from the sample tubing during analysis is an important parameter in optimizing the results. High 157 

withdrawal rates lead to unwanted mixing in the cavity of the analyzer. However, direct withdrawal of air from the sample 158 

tubing by the analyzer at a flow rate as low as the sampling flow rate of 18 sccm results in smoothing of concentrations 159 

from the inner wall surface drag and desorption inside the tubing. We optimized the flow rate of the air from the sample 160 

tubing into the CRDS analyzer at ∼ 54 sccm, 3 times the sampling flow rate, by diluting the air sample with zero air, with 161 

two mass flow controllers separately controlling the flow rate of zero air and the withdrawal rate of the air sample (Fig. 162 

2b). 163 

2.5 Mass balance approaches for determining emission rates 164 

The UAV-based measurements were coupled with the mass-balance approach TERRA to determine the emission rates of 165 

the measured pollutants using their measured mixing ratios and the meteorological data (three-component wind speed 166 

(𝑈𝑥, 𝑈𝑦, 𝑤) and temperature (𝑇)) collected on board the UAV during the flight. TERRA computes integrated mass fluxes 167 

through airborne virtual box/screen measurements including those made from aircraft and in this case UAVs. TERRA 168 

has been used successfully and extensively for emission rate determination of tens of volatile organic compounds (Li et 169 

al., 2017), CO2 (Liggio et al., 2019), CH4 (Baray et al., 2018), oxidized sulphur and nitrogen (Hayden et al., 2021), black 170 

carbon (Cheng et al., 2020) and secondary organic aerosol (Liggio et al., 2016) using aircraft measurements. To run 171 

TERRA based on a virtual box flight, the first step is to map the CH4 and CO2 mixing ratio data measured along the level 172 

flight tracks encircling a facility to the two-dimensional virtual walls of the virtual box, created from stacking the level 173 

flight tracks, that surrounds the facility. The two-dimensional virtual walls (or screens) are derived from the unwrapping 174 

of the virtual box, to assist the presentation of the CH4 and CO2 plumes along the flight tracks, with the horizontal path 175 

length (i.e., the ground line projection of the fitted flight track) and altitude as the two dimensions. The start of the 176 

horizontal path is typically defined as the south-east corner of the virtual box, but the selection of this starting position 177 

has no effect on the emission rate computation, and the horizontal path distance increases in a counter clockwise direction. 178 

This procedure results in a translation of each flight position point from a three-dimensional positionof latitude (y), 179 

longitude (x), and altitude (z, above mean sea-level) to a two-dimensional screen position of horizontal path distance s = 180 

f (x,y). Subsequently, TERRA applies the Simple Kriging algorithm to interpolate the data and produces a mesh on the 181 

two-dimensional virtual box walls whose resolution can be set depending on applications. The kriging weights were 182 
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obtained with an isotropic spherical semivariogram model. In TERRA, nugget, sill, and range can all be modified to fit 183 

the semivariogram model. The mixing ratios of both CH4 and CO2 are extrapolated from the lowest flight altitudes to the 184 

ground digital elevation using one of several methods or a combination thereof, namely (1) assuming a constant (2) linear 185 

extrapolation between a constant and background (3) a background value below flight altitudes (4) linear fit between the 186 

lowest flight altitude and zero at the ground and (5) exponential fit from the lower flight altitudes (Gordon et al., 2015). 187 

Concurrently measured wind speed from the UAV (Yang, 2023) is decomposed into northely and easterly components 188 

(𝑈E(𝑠, 𝑧), 𝑈N(𝑠, 𝑧)) based on the wind direction and similarly interpolated onto the 1 m x 2 m mesh. The decomposed 189 

wind speeds are further extrapolated to the ground digital elevation using a log profile fit (Gordon et al., 2015). Based on 190 

the interpolated/extrapolated CH4 and CO2 mixing ratio, temperature, pressure (calculated using barometric height 191 

formula), and wind speeds, TERRA computes the fluxes of CH4 and CO2 through the virtual walls and finally their facility 192 

emission rates by integrating the fluxes. 193 

To summarize, in TERRA the mass-balance in computing the emissions within a control box for a given inert 194 

pollutant such as CH4 or CO2 is presented by: 195 

𝐸𝐶 = 𝐸𝐶,𝐻 + 𝐸𝐶,𝑉 − 𝐸𝐶,𝑀 ,                 (1) 196 

where 𝐸𝐶  is the emission rate, 𝐸𝐶,𝐻 is the horizontal advective transfer rate through the box walls, 𝐸𝐶,𝑉 is the advective 197 

transfer rate through the box top and 𝐸𝐶,𝑀 is the increase in mass within the volume due to a change in air density. Other 198 

terms listed in the Gordon et al. computation algorithm that were used to solve for the total emission rate were often 199 

neglected as they contribute little to the total emission rates (Gordon et al., 2015). Each term from Eq. (1) is estimated as: 200 

𝐸𝐶,𝐻 = 𝑀𝑅 ∬ X𝐶 𝜌𝑎𝑖𝑟𝑈⊥𝑑𝑠𝑑𝑧 ,                (2) 201 

𝐸𝐶,𝑉 = 𝑀𝑅X𝐶,𝑇𝑜𝑝 ∬ 𝜌𝑎𝑖𝑟𝜔𝑑𝑥𝑑𝑧 ,                (3) 202 

𝐸𝐶,𝑀 = 𝑀𝑅 ∭ 𝑋𝐶
𝑑𝜌𝑎𝑖𝑟

𝑑𝑡
𝑑𝑥𝑑𝑦𝑑𝑧 ,                (4) 203 

where 𝑀𝑅 is the ratio of the compound molar mass to the molar mass of air, 𝑋𝑐(𝑠, 𝑧) is the mixing ratio of the compound 204 

in question, 𝜌𝑎𝑖𝑟(𝑠, 𝑧) is the air density, 𝑤 is the vertical wind velocity at the box top, X𝐶,𝑇𝑜𝑝 is the mixing ratio at the top 205 

of the box, and  𝑈⊥(𝑠, 𝑧) is the horizontal normal wind vector to the flight track calculated from the northely and easterly 206 

components (𝑈𝐸(𝑠, 𝑧), 𝑈𝑁(𝑠, 𝑧)): 207 
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𝑈⊥(s, z) =
𝑈𝑁(s,z)d𝑠/𝑑𝑥−𝑈𝐸(s,z)𝑑𝑠/𝑑𝑦

√(𝑑𝑠 𝑑𝑥⁄ )2+(𝑑𝑠 𝑑𝑦⁄ )2
 ,               (5) 208 

The vertical transfer rate term 𝐸𝐶,𝑉 is estimated by computing the air mass vertical transfer rate, determined from air 209 

mass balance within the box, and multiplying it with the CO2 or CH4 mixing ratios at the box top. This term is normally 210 

negligible in other top-down emission estimate approaches since it is typically miniscule compared to horizontal fluxes, 211 

but can affect the computed emission rates when vertical air movement becomes more significant such as under unstable 212 

atmospheric conditions.  𝐸𝐶,𝑀  is often ignored in other mass-balance approaches; in TERRA it is estimated by taking the 213 

time derivative of the ideal gas law in temperature and pressure during the flight time, and typically it does not change 214 

significantly over the duration of 30 minutes or so for the UAV flight. 215 

To suit the UAV measurements, the following modifications to the TERRA algorithm were made: (1) A much higher 216 

interpolation resolution for the kriging mesh was implemented for application to the UAV measurements in this study, 217 

with the interpolation mesh size adjusted to 1 m (vertical) by 2 m (horizontal), as UAVs fly significantly shorter distances 218 

compared to applications to piloted aircraft for which the interpolation resolution was 20 m (vertical) by 40 m (horizontal); 219 

(2) The modified TERRA now applies an embedded routine to automatically fit flight tracks using least squares, while 220 

this procedure was previously conducted manually offline through geographic information system when using TERRA. 221 

(3) The modified version of TERRA has added an algorithm for correcting negative weights during Kriging interpolation 222 

following Deutsch (Deutsch, 1995). TERRA has been updated at Peking University now recoded using the Python 223 

language and runs under a browser-server environment with a new GUI and new interactive data flow. 224 

3 Laboratory tests 225 

3.1 Validation of the air sampler 226 

Prior to flights in the field, we validated the air sampler in laboratory experiments by first sampling an artificial air while 227 

making simultaneous online measurements of the artificial air with the CRDS analyzer, and then analyzing the sampled 228 

artificial air was with the same CRDS analyzer and comparing the results from the air sampler to the online measurements. 229 

An experimental apparatus was constructed for the simultaneous sampling of the same artificial air with the air sampler 230 

and the CRDS analyzer through a tee junction (Fig 2(a)), and subsequent air sample analysis using the same CRDS 231 

analyzer (Fig. 2(b)). In the artificial air, CH4 and CO2 standards were control-released into the lab air from an 8 L gas 232 

cylinder filled with a gas mixture of 5 ppm CH4, 2 ppm CO and 600 ppm CO2 to generate the artificial air source. The 233 

outlet of the standard gas cylinder was held at varying distances to the tee junction over time to yield a time series of 234 
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different CH4 and CO2 mixing ratios, which was designed to mimic plumes expected in the real atmosphere. During 235 

analysis, the flow rate through the zero air (Mass Flow Controller 1) is adjusted to make sure that the flow rate through 236 

the air sampler (Mass Flow Controller 2) is stable and consistent at 54 sccm (Sec. 2.4). 237 

 238 

Figure 2. Diagram of the air sampler testing setup in the laboratory. (a) simultaneous sampling by the air sampler and the Picarro 239 

CRDS analyzer. (b) subsequent air sample analysis using the picarro CRDS analyzer. 240 

Figure 4(a) illustrates the mixing ratios of CO2 and CH4 time series obtained from the air sampler and online 241 

measurements by the CRDS analyzer. It can be seen that the measured results from the air sampler and the online CRDS 242 

measurements analyzer are in good agreement throughout the tests, and the correlation coefficient is estimated to be 0.89 243 

and 0.73 for CH4 and CO2 (Fig. 4(c) and (f)). For the measurements with the air sampler, short term variations and noises 244 

in the CH4 and CO2 mixing ratios, that were fully captured by the CRDS analyzer during the online measurements, were 245 

smoothed out, while the main features and tendencies were preserved. In fact, the air sampler measurement results should 246 

be a smoothed version of the CRDS analyzer online measurements, due to mixing in the analyzer cavity, molecular 247 

diffusion during sample storage in the sampler, inner wall surface drag and desorption during its withdrawal from the 248 

tubing during analysis, as well as Taylor dispersion during sampling and analysis (Karion et al., 2010). Dilution with zero 249 

air during later CRDS analysis also contributes to the smoothing.  250 
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3.2 Data deconvolution to achieve high time resolution 251 

While it is impractical to delineate the individual smoothing effects when the air sample passes through the coupled 252 

system of the sampler plus the analysis setup as described above, the measured concentration 𝑦(𝑡) can be treated as a 253 

result of the convolution of the air concentration before sampling 𝑥(𝑡) and a smoothing kernel 𝑔(𝑖) consisting of a series 254 

of weights, which are inherently determined by factors including the sampler properties (tubing length, inner diameter, 255 

temperature, absorptive properties, flow rates), storage time, dilution, and mixing in the cavity of the instrument. The 256 

smoothing can be described as: 257 

𝑦(𝑡)  =  ∑ 𝑔(𝑖)𝑥(𝑡 − 𝑖)𝑠
𝑖=𝑟 + 𝑛(𝑡), 𝑡 = 𝑠, 𝑠 + 1, … , 𝑛 − 1 + 𝑟 ,          (6) 258 

Or, expressed as a convolution of the form: 259 

𝑦(𝑡)  =  𝑔(𝑡) ∗ 𝑥(𝑡) + 𝑛(𝑡) ,                 (7a) 260 

where 𝑦(𝑡) is the measured concentration at time t, 𝑥(𝑡) the air concentration, and 𝑛(𝑡) the unknown noise, assumed 261 

to be independent of 𝑥(𝑡). The kernel 𝑔(𝑖) contains 𝑠 − 𝑟 + 1 non-zero kernel weight terms (0 < 𝑔(𝑖) < 1).  When all 262 

four terms in Eq. (7a) undergo Fourier transform, Eq. (7a) can be expressed in the frequency domain: 263 

𝑌(𝑓) = 𝐺(𝑓)𝑋(𝑓) + 𝑁(𝑓) ,                 (7b) 264 

In order to characterize the kernel weights  𝑔(𝑖), a second lab experiment was conducted during which the sampler 265 

first sampled zero air for some time, and then sampled the CO2 and CH4 standards for one second, before returning to 266 

sampling zero air again, creating an original concentration pulse signal in the 𝑥(𝑡): 267 

𝑥(𝑡) = {
𝐶, 𝑡 = 𝑗
0, 𝑡 ≠ 𝑗

 ,                   (8) 268 

where 𝑗 = 𝑗𝑡ℎ  second when the sampler collected the standard of a known concentration C. This air sample was then 269 

analyzed with the CRDS as described above. After sampling, storing and analyzing, smoothing of the original 270 

concentration pulse leads to the concentration signal output 𝑌(𝑡) as follows: 271 

𝑦(𝑡) = {
∑ 𝑔(𝑖)𝑥(𝑡 − 𝑖)𝑠

𝑖=𝑟 + 𝑛(𝑡) = 𝑔(𝑡 − 𝑗)𝐶 + 𝑛(𝑡), 𝑡 − 𝑖 = 𝑗 𝑎𝑛𝑑 𝑖 = 𝑟, 𝑟 + 1, ⋯ , 𝑠
  

  𝑛(𝑡),                                                                         𝑡 − 𝑖 ≠ 𝑗
 ,    (9) 272 

where 𝑦(𝑡) is the measured concentrations from the air sampler after sampling the concentration pulse and is non-zero 273 

when 𝑡 − 𝑖 = 𝑗, with the index i taking the values from 𝑟 to 𝑠.  The noise 𝑛(𝑡) term is zero for 𝑡 − 𝑖 ≠ 𝑗  and can be 274 

assumed to have similar behavior for  𝑡 − 𝑖 = 𝑗.  Therefore, 275 

𝑔(𝑖) = 𝑔(𝑡 − 𝑗) =
1

𝐶
𝑦(𝑡) −

1

𝐶
𝑛(𝑡), 𝑡 = 𝑖 + 𝑗 𝑎𝑛𝑑 𝑖 = 𝑟, 𝑟 + 1, ⋯ , 𝑠 ,        (10) 276 
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The second lab experiment showed that 𝑦(𝑡), and therefore the kernel 𝑔(𝑡), consists of 70 non-zero values. To remove 277 

the noise 𝑛(𝑡), 𝑔(𝑡) is further smoothed using a box-car running mean of 5 terms: 278 

�̂�(𝑡) =
1

5
∑ 𝑔(𝑘)𝑘=𝑡+2

𝑘=𝑡−2 ≈
1

𝐶
𝑦(𝑡), 𝑡 = 𝑖 + 𝑗 𝑎𝑛𝑑 𝑖 = 𝑟, 𝑟 + 1, ⋯ , 𝑠 ,         (11) 279 

It could be seen from Fig. 3 that �̂�(𝑡) has an asymmetrical distribution with a right trailing tail and a half-height width of 280 

approximately 20 seconds for CO2 and 21 seconds for CH4, indicating that the smoothing had significantly reduced the 281 

sampling/analysis method time resolution to about 20 second from the 1 second resolution of the original pulse in the air 282 

concentration. The kernel shows that the influence from the neighboring points have on a given point decreases with 283 

increases in the gap between the two points. 284 

  285 

Figure 3. The output of the one-second signal after sampling, storing and analyzing using the air sampler for CO2 and CH4, normalized 286 

by their respective concentrations in the standard. As shown in the text, these curves are the actual kernel weights of �̂�(𝒕). 287 

To test whether the kernel weights �̂�(𝑡) can smooth the online measured concentrations from the first lab experiment 288 

(top line in Fig. 4(a) and (b)), the weights �̂�(𝑡) were used to convolute with the data from the online measurements (i.e., 289 

𝑥(𝑡)), resulting in an estimated �̂�(𝑡) (Fig. 4(a) and (b), third line) that is in excellent agreement with the measurements 290 

from the air sampler, with the correlation coefficients increased to 0.99 and 0.98 for CH4 and CO2 (Fig. 4 (d) and (g)). 291 
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292 

Figure 4. (a) and (b) Mixing ratios of CO2 and CH4 measurements by online measurements with CRDS (the first line) and  the air 293 

sampler(the second line) in laboratory tests. The third line represents the smoothed CRDS data after convolution with the kernel �̂�(𝒕) 294 

and the fourth line represents the deconvoluted series after Wiener deconvolution. The signals of the same color represent the original 295 

signals and the corresponding signals after convolution or deconvolution (c)-(e) Correlation plots of CH4 (f)-(h) Correlation plots of 296 

CO2. 297 

The ultimate goal of determining �̂�(𝑡) in Fig. 3 is to deconvolve 𝑦(𝑡) from the air samplerto obtain the original 298 

concentration series 𝑥(𝑡) using a number of deconvolution techniques.  In the present study, we used the deconvolution 299 

method based on the Wiener theorem (Lin and Jin, 2013). The theorem provides the Wiener convolution filter ℎ(𝑡) so 300 

that 𝑥(𝑡) can be estimated as follows: 301 

�̂�(𝑡) =  ∑ ℎ(𝑖)𝑦(𝑡 − 𝑖)∞
𝑖=−∞ = ℎ(𝑡) ∗ 𝑦(𝑡) ,              (12) 302 

where 𝑦(𝑡) is the measured concentration, and �̂�(𝑡) an estimate of 𝑥(𝑡). In the frequency domain, Eq. (12) may be 303 

rewritten as a product of two scalars: 304 

�̂�(𝑓) = 𝐻(𝑓)𝑌(𝑓) ,                  (13) 305 

where �̂�(𝑓), 𝐻(𝑓), and 𝑌(𝑓) are the Fourier transforms of �̂�(𝑡), ℎ(𝑡), and 𝑦(𝑡), respectively.  The Wiener convolution 306 

filter ℎ(𝑡) is derived from the minimization of the mean square error: 307 

𝜖(𝑓) = 𝐸|𝑋(𝑓) − �̂�(𝑓)|
2
 ,                 (14) 308 

with 𝐸 denoting the expectation. When Eq. (7b) and Eq. (13) are substituted into Eq. (14) and the quadratic is expanded, 309 

the mean square error 𝜖(𝑓) can be differentiated with respect to 𝐻(𝑓) and the derivative  
𝑑𝜖(𝑓)

𝑑𝐻(𝑓)
  is set to zero to achieve 310 

the minimization; under the assumption that the noise 𝑁(𝑓) is independent of 𝑋(𝑓), 𝐻(𝑓) is derived as 311 

𝐻(𝑓) =
𝐺(𝑓)𝑆(𝑓)

|𝐺(𝑓)|2𝑆(𝑓)+𝑁(𝑓)
 ,                  (15) 312 
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where 𝐺(𝑓) is the Fourier transform of �̂�(𝑡) derived from the second lab experiment described above, 𝑆(𝑓) = 𝐸|𝑋(𝑓)|2 313 

and 𝑁(𝑓) = 𝐸|𝑁(𝑓)|2 are the mean power spectral densities of the original concentration series 𝑥(𝑡) and the noise 𝑛(𝑡), 314 

respectively. Equation (15) could be rewritten as: 315 

𝐻(𝑓) =
1

𝐺(𝑓)
[

|𝐺(𝑓)|2

|𝐺(𝑓)|2+𝑁(𝑓)/𝑆(𝑓)
] =

1

𝐺(𝑓)
[

|𝐺(𝑓)|2

|𝐺(𝑓)|2+1/𝑆𝑁𝑅(𝑓)
] ,           (16) 316 

where 𝑆𝑁𝑅(𝑓) = 𝑆(𝑓)/𝑁(𝑓) is the signal-to-noise ratio.   317 

Substituting Eq. (16) into Eq. (13), �̂�(𝑓), the Fourier transforms of �̂�(𝑡), is derived. The deconvolution is completed 318 

with the inverse Fourier transform of �̂�(𝑓) to give �̂�(𝑡), the estimated air concentrations. The deconvolved series of CH4 319 

and CO2 restored with the Wiener convolution filter are shown in Fig. 4(a) and (b), and the correlation coefficient between 320 

the deconvoluted results and the online measurements with the CRDS analyzer are 0.93 and 0.79 for CH4 and CO2 (Fig. 321 

4 (e) and (h)), higher than that between the original air sampler measurement and the CRDS analyzer. These results 322 

indicates the effectiveness of the Wiener theorem to deconvolve a smoothed series to a much higher time resolution while 323 

accounting for noise. The restored series is improved in terms of time resolution, from about 20 seconds mentioned above 324 

to about 3~4 seconds after the deconvolution. The lab test data from the online measurements contain strong high-325 

frequency components, artificially manipulated to provide an extreme case for testing the deconvolution algorithm.  Such 326 

high frequencies lead to some residual noise in the deconvolved results, primarily as a result of choosing the cutoff 327 

frequencies for the mean power spectral densities 𝑆(𝑓) and 𝑁(𝑓). Nevertheless, such a situation will be improved for 328 

sampling in the real atmosphere where sub-second high-frequency variations are not common. 329 

4. Field application 330 

To apply the UAV-based measurement system described above to atmospheric measurements of CO2 and CH4, 331 

flights were made at the Shagang Group located in Jiangsu, China on 28 December 2021. Shagang Group is a major iron 332 

and steel company on the south shore of the Yangtze River (31.9704° N, 120.6443° E). The company produces over 40 333 

million tons of steel each year, making it one of China's top-five steel producers. Onsite coke making for iron production 334 

is located in the western part of the Shagang Steel complex. The coke making process is to dry distill coal in a coking 335 

oven at ~1000 oC temperature to boil off volatile components to form coke (metallic coal). During coke production, 336 

combustion of coking oven gas, blast furnace gas from steel making, and coal tar plus light oil for heating the coking 337 

oven is the main CO2 and CH4 emission source. 338 

Two coking plant stacks were chosen as the target emission source for the field UAV flight. During flight, the UAV 339 

was flown in a rectangle pattern (200m×500m) that encloses the two stacks, with repeated flight tracks at 9 altitude levels 340 
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that, when stacked, created a virtual box and intercepted the emitted CO2 and CH4 plumes on the downwind side of the 341 

box. The UAV ascended from the ground to 135 m a.g.l. and started the box flight at this altitude, ascending 15 m every 342 

level and reaching a maximum altitude of 255 m a.g.l. before landing. The UAV maintained a constant horizontal speed 343 

of 8 m s-1 during flight. The flight lastd for approximately 30 minutes. It’s assumed that the plume remains steady during 344 

the time of measurement. After landing, the air sample collected in the sampler was immediately analyzed with the CRDS 345 

analyzer as per the procedure described above in Fig. 2(b). 346 

5. Result and discussion 347 

5.1 CH4 and CO2 mixing ratio enhancement from the coking plant 348 

Figure 5(a) shows the time series of CH4 and CO2 mixing ratios measured with the air sampler at the coking plant during 349 

the flight (red line). The air sampler sampled for a total of 30 minutes during the flight. After landing, the air sample was 350 

analyzed for 10 minutes, as the analysis flow rate triples the sampling flow rate (54.0 sccm vs. 18.0 sccm). The time scales 351 

of instrument readings were then stretched three times to restore the original time scales. The CH4 and CO2 time series 352 

were then deconvolved using the convolution kernel obtained from laboratory test (Sec. 3.2) to restore the mixing ratio 353 

time series in air (black line). The meteorological parameters during the time of flight were measured by the 3D 354 

anemometer, showing consistent southwesterly winds (Fig. 5(b)). The average windspeed is 4.7±4.9 m/s and the average 355 

winddirection is 216.4±38.4° during the time of flight.  Consistency of wind measurements can be seen from the two 356 

wind rose plots for the northern wall and the southern wall respectively. During the flight, the maximum mixing ratio 357 

measured was 5.6 ppm for CH4 and 1356 ppm for CO2. During the 30-minute flight, a total of 5 CO2 makers were 358 

generated during the 30 minutes of sampling (Fig. 5(a)), and the decreases in the marker concentrations are corrected with 359 

a Gaussian form function.  360 
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 361 

Figure 5. (a) Red line represents CH4 and CO2 mixing ratios measured from the air samples collected with the air sampler during the 362 

flight at the coking plant. Black line represents the deconvolved CH4 and CO2 time series and red dashed line sections represent the 363 

original marker CO2 concentrations every 7 minutes. (b)Wind rose plot for the northern and southern wall based on the onboard 364 

meteorological measurements during the flight.  365 

5.2 Emission estimation 366 

The CO2 and CH4 emission rates for the stacks from coking plant were estimated by applying a version of the computation 367 

algorithm TERRA specifically modified to suit UAV measurements. The deconvolved mixing ratio time series of CO2 368 

and CH4 were used in the TERRA algorithm. The algorithm first maps the mixing ratios to the walls of the virtual box, 369 

then applies a kriging scheme to interpolate the data and produces a 2 m (vertical) by 1 m (horizontal) mesh on the virtual 370 

box walls (200m×500m) (Fig. 6). The semivariogram of the flight points was fitted with a spherical model (range=300, 371 

sill=3, nugget=0). Wind speed and wind direction are first decomposed into northly and easterly components, then further 372 

converted to vectors that are normal to and parallel to the walls of the virtual box before kriging. Background CH4 and 373 

CO2 were determined using upwind measurements. The background between upwind data was linearly interpolated and 374 

box-car smoothed within a 3-4 minute moving window to derive a variable baseline CH4 and CO2 for the entire 30-minute 375 

flight. As shown in Fig. 6, the CH4 and CO2 plumes can be seen at different locations on the downwind side of the box 376 

wall, which indicates that the CH4 plume and the CO2 plume probably came from different sources within the box. Using 377 

the modified version of TERRA, the emission rates for the two stacks in the coking plant were calculated to be 0.12 ± 378 

0.01 t h-1 for CH4 and 110 ± 20 t h-1 for CO2. The uncertainties for the estimates were derived from detailed analyses of 379 

each uncertainty source including measurement error in mixing ratio and wind speed, the near-surface wind extrapolation, 380 

the near-surface mixing ratio extrapolation, box-top mixing ratio, box-top height and deconvolution.  381 
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 382 

Figure 6. Virtual flight box for monitoring CO2 (a) and CH4 (b) during the flight. The CO2 and CH4 plumes were captured on the north 383 

and east wall respectively. The wind came from the southwestern direction. Satellite imagery © Google Earth 2019. 384 

5.3 Uncertainty Analysis 385 

To determine the overall uncertainty in the emission rates, each source of uncertainty contributing to the overall 386 

uncertainty needs to be identified and quantified. For the emission rate quantification from UAV measurement, the 387 

sources of uncertainties include: measurement uncertainties in the mixing ratios and wind speeds (𝛿𝑀), the near-surface 388 

wind extrapolation (𝛿𝑊𝑖𝑛𝑑), the near-surface mixing ratio extrapolation (𝛿𝐸𝑥), box-top mixing ratio (𝛿𝑇𝑜𝑝), box-top height 389 

(𝛿𝐵𝐻) and uncertainties due to data deconvolution as shown in the main text (𝛿𝐷𝑒𝑐𝑜𝑛𝑣). Each uncertainty is treated as an 390 

independent estimate, and all uncertainties are propagated in quadrature to determine the overall uncertainty in the 391 

estimated emission rate: 392 

𝛿2 = 𝛿𝑀
2 + 𝛿𝑊𝑖𝑛𝑑

2 + 𝛿𝐸𝑥
2 + 𝛿𝑇𝑜𝑝

2 + 𝛿𝐵𝐻
2 + 𝛿𝐷𝑒𝑐𝑜𝑛𝑣

2  ,            (17)  393 

The accuracy of the mixing ratio measurements from the Picarro CRDS analyzer is 50 ppb and 1 ppb for CO2 and 394 

CH4, respectively. By adding variations in the measured mixing ratios based on the measurement accuracies and re-395 
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applying TERRA, the derived emission rates varied within 1% for both CO2 and CH4. Thus, the uncertainties in the 396 

emission rates due to mixing ratio measurements (𝛿𝑀) were estimated at 1% for both CH4 and CO2. 397 

The anemometer measures wind speeds with an accuracy of ±0.1 m s-1 at wind speeds < 10 m/s and wind directions 398 

with an accuracy of ± 1°. The uncertainty of the wind measurements (𝛿𝑊𝑖𝑛𝑑) was estimated using error propagation in 399 

the normal wind  𝑈⊥(𝑠, 𝑧), as it is calculated from the northerly and easterly wind components, thus from wind speed and 400 

wind direction: 401 

𝛿𝑈⊥
= √𝛿𝑒𝑎𝑠𝑡𝑒𝑟𝑙𝑦

2 + 𝛿𝑛𝑜𝑟𝑡ℎ𝑙𝑦
2 + 2𝜎𝑒𝑎𝑠𝑡𝑒𝑟𝑙𝑦−𝑛𝑜𝑟𝑡ℎ𝑙𝑦 ,            (18) 402 

𝛿𝑒𝑎𝑠𝑡𝑒𝑟𝑙𝑦 = |𝑊𝑆𝑐𝑜𝑠(𝑊𝐷)𝜎𝑊𝐷| ,                (19) 403 

𝛿𝑛𝑜𝑟𝑡ℎ𝑙𝑦 = |𝑊𝑆𝑠𝑖𝑛(𝑊𝐷)𝜎𝑊𝐷| ,                (20) 404 

Using this calculation, the uncertainty of the normal wind 𝛿𝑈⊥
(𝑠, 𝑧)  was derived at each location. The uncertainty 405 

contributed to the total emission rates to the overall computed emission rate was examined by setting the normal wind to 406 

its upper and lower bounds defined by its uncertainty range, followed by computing the emission rates using TERRA. 407 

The derived CH4 and CO2 emission rates varied by 1.5% and 1.9% respectively. Hence the uncertainties from wind speed 408 

measurements (𝛿𝑊𝑖𝑛𝑑) were conservatively estimated to be 2% for both CH4 and CO2. 409 

Due to a lack of near-surface measurements along the box walls, extrapolation of CH4 and mixing ratios from the 410 

lowest flight path (~ 150 m above ground level) to the ground level has been shown to be a source of potentially large 411 

uncertainty within TERRA. The magnitude of the uncertainty depends on the nature of the emissions; for example, surface 412 

emissions which may not be fully captured by the flight altitude range have higher uncertainties at ≈20%, whereas elevated 413 

stack emissions which are fully captured by flight altitude range lead to much smaller uncertainties of <4% in the emission 414 

estimates (Gordon et al., 2015). In the present study, to estimate uncertainties due to extrapolating mixing ratios from the 415 

lowest flight track to the ground (𝛿𝐸𝑥), results from all extrapolation techniques (i.e., linear to the ground, constant value 416 

to the ground, linear to background value, or some combination of methods) were derived and compared with the result 417 

using a background value below flight altitudes. Therefore, this term of uncertainty was evaluated at 2% and 6% for CH4 418 

and CO2 respectively. 419 

Table1. Emission rates derived using different extrapolation techniques 420 

Extrapolation 

techniques 

All 

background 

below flight 

altitude (this 

study) 

Constant 

value from 

lowest flight 

altitude to 

surface 

Linear 

between 

constant and 

background 

at surface 

linear exponential 
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CH4 

Emissions(kg/hr) 
115.7 113.9 116.9 113.9 113.6 

CO2 

Emissions(kg/hr) 
110100 109970 109400 109970 103960 

Additional components contributing to uncertainties in the computed emission rates specific to the box approach 421 

include box-top mixing ratio (𝛿𝑇𝑜𝑝) and box-top height (𝛿𝐵𝐻). The TERRA box approach assumes a constant mixing ratio 422 

at the box top (X𝐶,𝑇𝑜𝑝) by averaging the measured value at the top level. The term 𝛿𝑇𝑜𝑝 is determined from the 95% 423 

confidence interval (2σ/√n) of the interpolated measurements. The calculated confidence interval of the mixing ratio at 424 

the box top is 0.01 ± 0.13 ppm for CH4 and 70.1 ± 89.1 ppm for CO2. A top average mixing ratio of 0.14 ppm for CH4 425 

and 159.2 ppm for CO2 are set as input parameters to derive resulting uncertainties in the emissions rates. Thus, 106.6 426 

kg/hr for CH4 and 93760 kg/hr for CO2 were derived. Then, this uncertainty term is conservatively taken as 8% and 16% 427 

for CH4 and CO2. 428 

The uncertainty due to the choice of box height, 𝛿𝐵𝐻, within TERRA is estimated by recomputing the emission rate 429 

with a reduced box height (z) of 100 m. The recalculated emission rate after reducing the box height of 100m is 106.4 430 

kg/hr for CH4 and 113500 kg/hr for CO2, thus 𝛿𝐵𝐻 is estimated as 8% for CH4 and 3% for CO2. 431 

For cases that use the air sampling system instead of online measuring instruments, as the CH4 and CO2 time series 432 

measured from the air sampler were deconvoluted to restore the unsmoothed time series before being input into the 433 

TERRA algorithm, it is necessary to account for the uncertainty that comes from such deconvolution as outlined in the 434 

main text. Time series before and after deconvolution were applied to the TERRA algorithm to obtain the total emission 435 

rates. The computations show that emission rates before and after deconvolution vary within 1%, which was taken as the 436 

uncertainty 𝛿𝑑𝑒𝑐𝑜𝑛𝑣 . The assessment of uncertainties for the TERRA-computed emission rates from the coking plant are 437 

listed in Table 2. 438 

Table 2. Assessment of percent uncertainties for CH4 and CO2 emission rate estimations  439 

 CH4 (%) CO2 (%) 

𝛿𝑀 1 1 

𝛿𝑊𝑖𝑛𝑑 2 2 

𝛿𝐸𝑥 2 6 

𝛿𝑇𝑜𝑝 8 16 

𝛿𝐵𝐻 8 3 

𝛿𝐷𝑒𝑐𝑜𝑛𝑣 1 1 

𝛿 12 18 
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5.4 Comparison with Gaussian Inversion Approach 440 

The TERRA computation results can be further evaluated. Of the multiple CH4 plumes that were captured on the north 441 

and east walls of the virtual box, the largest CH4 one resembles a nearly perfect Gaussian plume distribution  and is clearly 442 

associated with the east stack of the two, for which the emission rate may be recalculated using the Gaussian plume model. 443 

The Gaussian plume model makes basic assumptions that the plume is emitted from a point source and that the 444 

atmospheric turbulence is constant in space and time (Visscher, 2014). In this study, the captured plume was completely 445 

elevated and thus not constrained by boundaries. In the absence of boundaries, the equation for pollutant mixing ratios in 446 

Gaussian plumes is as follows: 447 

𝑐 =
𝑄

2𝜋𝑢𝜎𝑦𝜎𝑧
𝑒𝑥𝑝 (−

𝑦2

2𝜎𝑦
2) 𝑒𝑥𝑝 (−

(𝑧−ℎ)2

2𝜎𝑧
2 ) ,              (21) 448 

where 𝑐 is the concentration at a given position 𝑥, 𝑦 and 𝑧 (g m-3), 𝑄 is the emission rate (g s-1), �̅� is the mean wind speed 449 

(m s-1), ℎ is the effective source height (m) and 𝜎𝑦 and 𝜎𝑧 are dispersion parameters in the horizontal (lateral) and vertical 450 

directions respectively (m).  451 

The dispersion parameters 𝜎𝑦 and 𝜎𝑧 were obtained by fitting the spatial distribution of CH4 mixing ratios on the 452 

measurement screen into a Gaussian function. As the wall intercepting the plume is not perpendicular to the wind direction, 453 

the plume was projected to a different virtual wall perpendicular to the wind direction before fitting the Gaussian function. 454 

By calculating the standard deviations of the Gaussian distributions in the y and z directions, σz is estimated to be 6.3 ± 455 

0.3 m and σy is 15.7 ± 0.4 m. The downwind measurement plane is examined to find the point with the highest CH4 456 

mixing ratio of 6.575 ppm and its location (s = 160 m, z = 217 m). For the separate CH4 plume, the Gaussian plume model 457 

gives an emission rate of 40 ± 6.8 kg h-1. The uncertainty is quantified by considering the accuracy of mixing ratio 458 

measurement, the variation of wind speed and the confidence interval for the dispersion parameters given by Gaussian 459 

function fitting. CH4 measurement uncertainties from the instrument is <1%. The uncertainty contributed by the mean 460 

wind speed estimation was examined by varying the average wind speed by the standard deviation of the wind data around 461 

the plume (3.8±0.6 m/s), followed by input into gaussian plume model. This mean wind speed sensitivity analysis resulted 462 

in CH4 emission rates that varied by 16%. The same sensitivity analysis was done with 𝜎𝑦 (15.7 ± 0.4 m) and 𝜎𝑧 (6.3 ± 463 

0.3 m), which resulted in CH4 emission rates that varied by 4% and 3% respectively. Thus, the total uncertainty is added 464 

in quadrature to be 17%. The TERRA algorithm is able to obtain the emission rate for a selected section through a certain 465 

area of the screen. For this isolated CH4 plume, the TERRA algorithm computed an emission rate of 65±8 kg h-1, which 466 

is comparable to the emission rate estimation from the Gaussian plume model.  467 
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5.5 Validation of UAV-based Emissions and Comparison with IPCC-based Emissions 468 

Coking process is one of the highest energy-consuming operations during iron and steel production that tends to emit 469 

large amounts of CO2 and CH4. According to the Chinese national GHG inventory report, CO2 and CH4 emissions from 470 

coke production in iron and steel production processes were calculated using the Tier 1 method in the IPCC Guidelines 471 

(Ministry of Ecology and Environment of of China, 2018). In the Tier 1 method, default emission factors for coke 472 

production are used to estimate the CO2 and CH4 emissions without considering local variations, respectively, 473 

𝐸𝐶𝑂2
= 𝑃𝑐𝑜𝑘𝑒 × 𝐸𝐹𝐶𝑂2

  𝑎𝑛𝑑  𝐸𝐶𝐻4
= 𝑃𝑐𝑜𝑘𝑒 × 𝐸𝐹𝐶𝐻4

 ,            (22) 474 

where 𝐸𝐶𝑂2
 and 𝐸𝐶𝐻4

 represents the CO2 and CH4 emission rates from coke production, 𝑃𝑐𝑜𝑘𝑒  represents coke production, 475 

𝐸𝐹𝐶𝑂2
 and 𝐸𝐹𝐶𝐻4

 are the IPCC default emission factors for CO2 and CH4, which are 0.56 t CO2/t of coke and 0.1 g CH4/t 476 

of coke, respectively. The measured Shagang coking plant consists of two coke oven batteries, each with its own stack. 477 

Each battery produced 127.8 t coke h-1, thus totalling 255.6 t coke h-1 (𝑃𝑐𝑜𝑘𝑒) between the two batteries during the UAV 478 

measurement period with a coke yield of 78.5%. A material balance analysis revealed that CO2 emitted from the stacks 479 

during the full coking process was 103±32 t CO2 h-1 (SI). In comparison, the UAV measurement-based emission rate 480 

obtained in this study is 110±18 t CO2 h-1, which is consistent with the CO2 emissions based on the material balance 481 

analysis. For comparison, multiplying the IPCC default emission factor with the coke production at the Shagang coking 482 

plant yields an emission rate from coking of 143 t CO2 h-1, higher than either the material balance based result by about 483 

39% or the UAV-based result by 30%.  This suggests that the IPCC default emission factor is too high for this particular 484 

coking plant. 485 

On the other hand, the UAV-measurement based emission of 0.12±0.014 t h-1 for CH4 is four orders of magnitude 486 

higher than 1.28×10-5 t h-1 emissions for CH4 estimated using the IPCC Tier 1 emission factor 𝐸𝐹𝐶𝐻4
. The IPCC emission 487 

factor for coke production is derived by averaging plant-specific CH4 emissions data for 11 European coke plants reported 488 

in the IPPC I&S BAT Document (European IPPC Bureau, 2001), but information about the data collection method such 489 

as sampling methods, analysis methods, time intervals, computation methods and reference conditions is not available 490 

according the report. It is important to note that the present UAV measurement represents a one-time measurement where 491 

there was only one flight conducted in this campaign. The result clearly serves the purpose for validating the overall 492 

methodology from air sampling and analysis, computing the emission rates, to estimating the associated errors.  The 493 

fundamental assumption in the mass balance approach is that plumes and emissions remain constant throughout the 494 

measurement period. Given the short duration of the flight and the good comparison between the present emission result 495 

and the material balance emission estimate, such an assumption appears to be valid.  However, a hypothesis of a constant 496 
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emission rate over time remains to be tested. Conducting multiple flights over time, computing emission rates and 497 

assessing their uncertainties will allow for statistical sampling of the probability distribution of the emission rates and 498 

hence deriving the mathematical expectation of the emission rate. Only then the derived emission factors can be used for 499 

inventory preparation and/or comparison with existing ones with statistical confidence.  Given the limited circumstance 500 

of having only one flight in this study, it becomes clear such purpose cannot be achieved.  Consequently, the emission 501 

values of CH4 derived from measurements in this section are only suitable for qualitative comparisons with those used 502 

published emission factors. The comparison results indicate that real-world emission factors may significantly differ from 503 

the default emission factors but more work is needed. The additional CH4 may come from the leakage of the coke oven 504 

gas when it is recycled as fuel in firing the coke oven (SI). Both reasons point to a need for further emission measurements 505 

to determine the local emission factors and a further validation of the CH4 emission factors of coke production.  506 

6 Conclusions 507 

In this paper, we present the development of a UAV measurement system for quantifying GHG emissions at facility levels. 508 

The key element of this system is a newly designed air sampler, consisting of a 150-meter-long thin-walled stainless steel 509 

tube with remote-controlled time stamping. Through laboratory testing, we found that the air sampler generated smoothed 510 

time series data compared to online measurement by the CRDS analyzer. To addressing the smoothing effect, we 511 

developed a deconvolution algorithm to restore the resolution of the time series obtained by the air sampler. For field 512 

validation, the new UAV measurement system was deployed at the Shagang Steel to obtain CO2 and CH4 emissions from 513 

the main coking plant at Shagang Steel. Mixing ratios of CO2 and CH4 together with meteorological parameters were 514 

measured during the test flight. The mass-balance algorithm TERRA was used to estimate the coking plant CO2 and CH4 515 

emission rates based on the UAV-measured data. For further analysis, we compared these emission results with those 516 

derived using Gaussian plume inversion approach and carbon material balance methods, demonstrating good consistency 517 

among different approaches. In addition, when compared the top-down UAV-based measurement results to that derived 518 

from the bottom-up emission inventory method, the present findings indicated that the IPCC emission factors can be 519 

significantly different from the actual emission factors.. 520 
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