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S2.1 Gaussian plume dispersion model

A Gaussian plume model formulates a gas concentration C(X,Y,Z) at the coordinates (X,Y,Z) (for positive X and Z),
corresponding to the plume from a point source whose effective release is located at (0, 0, z. ) with release rate g as:

CXY.Z) = —P e <—Y2> {exp <—(Z_fo)2) +exp <—(Z+fo)2ﬂ (S2.1)

2noyozUeyy 20)2/ 20% 20%

where z. ¢ is the effective source height above the ground surface, U, is the effective mean wind speed at z. ¢y and oy and
oz are dispersion coefficients in Y and Z directions, respectively.

In the campaigns whenever the high-frequency measurements from a 3D Sonic anemometer were available, oy and oz
are derived from the standard deviations of the corresponding velocity fluctuations in the lateral (o, ) and the vertical (o)
directions as follows (Gryning et al., 1987):

-1
[t
oy = O'Ut (1 + QT‘y) (SZZa)
n -1
= 1 — 2.2
o w:( +,/2TZ) (52.26)

where t(= X /U.sy) is the travel time from origin to X, and Ty and Tz are the Lagrangian time scales in Y and Z directions,
respectively. We take Ty = 200 s (Draxler, 1976) for near-surface release and 7, = 300 s for unstable conditions (L < 0)
(Gryning et al., 1987), where L is the Obukhov length. When the high frequency measurements from 3D Sonic anemometer
were not available in four campaigns, the Briggs dispersion formulas for flat terrain (Briggs, 1973) based on Pasquill-Gifford-
Turner (PGT) stability classes were used to parameterize oy and oz in the Gaussian model. The PGT stability classes were
approximately defined based on the magnitude of the wind speed and cloud cover information from the Melun met station.
In these four campaigns, the mean wind direction is approximately taken as a direction from the center of the landfill to the
location of the maximum averaged CH4 mole fraction.

S2.1.1 Adaptation of Gaussian model to area sources

Note that the formulation of the Gaussian plume model in Eqgs. (S2.1)-(S2.2) is suitable for dispersion of plumes from a point
source. To model plumes from the area sources with significant extents compared to the distance to the measurement locations,
we adapted two simple formulations of the Gaussian model.

(a) Method-1: based on a modified oy

In this very simple formulation of the Gaussian model for an area source, we modified the total plume spread in the lateral
direction oy using the size of an area source. This concept is same as the one has been used when simulating plume dispersion
from stacks with significant diameters (Korsakissok and Mallet, 2009). Following this concept, oy (Eq. (S2.2a)) is modified
to the total plume "width" as a sum of the plume spread due to turbulence (parameterized following Eq. (S2.2a)) and of the
additional initial spread due to the source size which is approximated by the diameter (d,) of a circular disk centered on the
area source and with an area equivalent to the area of that source. Accordingly, oy in Eq. (§2.2a) can be modified as:
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(b) Method-2: based on multiple point sources Gaussian simulations

As the above simple implementation of a Gaussian model for an area source dispersion in Method-1 is based on only the area
of a source, it does not explicitly consider the geometry of an area source. In order to consider shape of an area source and also
to test the above simple area source adaptation (Eq. (S2.3)) of the Gaussian model, we used another approach to model plume
from an area source by decomposing the whole source area into multiple point sources. We discretizing a source region with
a 2D grid with 5 m horizontal resolution. We considered each grid cell of the descretized area source as a point source with
unitary emission rate and the plumes from these point sources were modelled using the Gaussian model (Egs. (S2.1)-(52.2)).
These plumes from multiple point sources were superimposed to compute the averaged modelled plume from the area source
at the measurement locations.

S2.2 Inversion procedure
S2.2.1 Characterization of the observation vector

As Gaussian plume models characterize a time averaged view of a plume, they cannot represent the observed instantaneous
plume structure from the individual mobile plume cross-sections. Consequently, the emission estimates using the observed
instantaneous CH, mole fractions can have a large uncertainty due to the different averaged and instantaneous nature of
the respective modeled and observed CH4 plumes. In order to limit the lack of simulation of the turbulent patterns using
a Gaussian model, the integrals of the mole fractions above the background within cross-sections have been considered in
different inversion approaches (Alberston et al., 2016; Ars et al., 2017, Kumar et al., 2021&2022). However, it is expected that
a Gaussian plume model should appropriately represent an averaged observed plume computed using different plume cross-
sections repeatedly conducted on the transects (described in section 2.3). Therefore, we defined an observation vector composed
from the averaged CH4 mole fractions computed from the different plume cross-sections at the locations with average distance
between measurements. Since we have to estimate several sources of methane within the landfill site, following Ars et al.
(2017), we divided the averaged CH, plume into several slices over space and a different observation vector is defined using
the integrated CH, plumes in each slice. This approach reduces the tendency of the inversion to over-fit turbulent patterns
within the plume.

Let o = (pu1, 2, - fim)” € R™ (superscript 7 defines the transpose of a vector/matrix) be the general notation for an obser-
vation vector containing m averages or slice-integrated values of the averaged CH4 mole fractions, ., denotes an observation
vector based on the averaged CH, mole fractions at the measurement locations and gy denotes an observation vector based
on the integrated CH, plumes in slices. We divide the plumes into different number of slices on ABC and EF roads with 50 m
and 100 m distance intervals, respectively.

S2.2.2 The minimization process

The inversion process aims to minimize the root sum squared misfits between the averaged observed and modelled mole
fraction enhancements in the plumes from the multiple potential sources. The inversions rely on a priori information about the
potential emission sources (e.g., number, type, location, size and/or shape), p° as the measured observation vector, and the
response functions h;; simulated with the Gaussian plume model for the i'" measurement associated with the j** potential
emission source. For a multi-source inverse problem to estimate emission rates q = (g1, g2, ...qp)T of the p sources, simulations
of the total modelled mole fractions above the background ¢ at the i*" location from all the sources using Gaussian model is
the sum of all the modelled mole fractions due to each of the p sources and can be computed by using h;; as: u;’wd = Z;’:lqihij,

or in matrix form:

©™d = Hgq (S2.4)

where p™od = (yod mod, med)T s the modelled observation vector and H is the observation operator describing the

atmospheric transport between the potential sources and the modeled mole fractions.



120 In order to estimate q using p® and ™4, the inversion minimizes of the following cost function .J:

J(@) = |p® — ™t

= argmin||u° — Hq)? (S2.5)
q=0
Here ||.|| denotes the Euclidean norm. Eq. (S2.5) can be solve for q using basic least-squares approach. However, the least-
squares solution can lead to the negative emission estimates for some sources. In order to ensure q > 0, we used non-negative
least-squares (nnls) approach (Lawson and Hanson, 1995) for an approximate numerical solution of Eq. (S2.5) to estimate q.
125 A similar approach has been used to estimate methane emissions from a landfill in Figueroa et al. (2012)

S2.3 Inversion results from the selected campaigns
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Figure S2.1. Summary of total estimated CH4 emissions using 9 main hotspots from sniffing as point sources and 6 area sources (method-1:
area source representation by modifying oy from Eq. (1), method-2: area source representation by decomposing a source region into points)
with observation vector f1,; obtained from the measurements along the ABC road.
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Figure S2.2. Five potential area sources (rectangular boxes, A-i, i=1,..,5) on the Butte-Bellot landfill defined by Albergel et al. (2017).
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Figure S2.3. Modelling the individual plumes and emissions from the inversion tests using five potential area sources (Figure S2.2) with
two observation vectors (a) p,,(first row) and (b) pg;(second row) obtained from the EF measurements from the campaign on January 10,
2019. From left to right in each row, first to third columns plots respectively show the average CH4 mole fraction enhancements above the
background measured (black dashed line, right Y-axis) and modelled response functions (solid coloured lines, left Y-axis), the fit between the
observed (black dashed line) and modelled (blue sold line) CH4 mole fraction enhancements along the measurement path, and the estimates
of the methane emissions for each source. Vertical black dotted lines in second row’s first column figure show the point of division of the
road into sub-segment over which the mole fractions are integrated to define ptg;.
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Figure S2.5. Same as Figure S2.4, but for the measurements obtained along the EF road on October 06, 2017.
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Figure S2.11. Same as Figure S2.4, but for the measurements obtained along the EF road on September 13, 2019.
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Figure S2.12. Same as Figure S2.4, but for the measurements obtained along the EF road on February 05, 2020.
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Figure S2.13. Same as Figure S2.4, but for the measurements obtained along the EF road on December 01, 2020.
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Figure S2.14. Same as Figure S2.4, but for the measurements obtained along the EF road on December 08, 2020.
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Figure S2.15. Estimated CH4 emissions using EF measurements as a function of (a) atmospheric pressure and (b) atmospheric temperature.
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Figure S2.16. Summary of the estimated CH4 emissions in each source region using six area sources (method-1) with observation vector
¢ Obtained from the measurements along the ABC road.
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Figure S2.17. Summary of the estimated CH4 emissions in each source region using six area sources (method-1) with observation vector

1, obtained from the measurements along the EF road.
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