Retrieval Algorithm for Aerosol Effective Height from the Geostationary Environment Monitoring Spectrometer (GEMS)

Sang Seo Park¹*, Jhoon Kim², Yeseul Cho², Hanlim Lee³, Junsung Park³, Dong-Won Lee⁴, Won-Jin Lee⁴, Deok-Rae Kim⁴

¹Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
²Department of Atmospheric Sciences, Yonsei University, Seoul, Korea
³Division of Earth and Environmental System Sciences, Pukyong National University, Busan, South Korea
⁴Environment Satellite Center, National Institute of Environmental Research, Incheon, Korea

*Corresponding author. Sang Seo Park (sangseopark@unist.ac.kr)

Submitted to Atmospheric Measurement Techniques

2023. 06.
Abstract

An algorithm for aerosol effective height (AEH) was developed for operational use with observations from the Geostationary Environment Monitoring Spectrometer (GEMS). The retrieval technique uses the slant column density of the oxygen dimer \(\text{O}_2\text{O}_2 \) at 477 nm, which is converted into AEH after retrieval of aerosol and surface optical properties from GEMS operational algorithms. The AEH retrieval results show significant AEH values and continuously monitor aerosol vertical height information in severe dust plumes over East Asia, and the collection of plume height information for anthropogenic aerosol pollutants over India. Compared to the AEH retrieved from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), the retrieval results show insignificant bias with a standard deviation of 1.4 km for the AEH difference over the GEMS observation domain from January to June 2021 due to uncertainty in input parameters for aerosol and surface. The AEH difference depends on aerosol optical properties and surface albedo. Compared to the aerosol layer height obtained from the tropospheric monitoring instrument (TROPOMI), differences of \(0.78 \pm 0.81 \) and \(1.16 \pm 0.92 \) km were obtained for pixels with single scattering albedo (SSA) \(< 0.90 \) and \(0.90 < \) SSA \(< 0.95 \), respectively, with significant dependence on aerosol type.

Keywords: aerosol effective height, aerosol optical depth, environmental satellite, GEMS
1. Introduction

Since the launch of the Total Ozone Mapping Spectrometer (TOMS) on Nimbus-7, ultraviolet (UV)-visible satellite measurements have been used for environmental monitoring of the distribution and reaction processes of pollutants (e.g., anthropogenic aerosols, tropospheric ozone, NO$_2$, and SO$_2$). Measurements from environmental satellites have been used to estimate gaseous species in the atmosphere, resulting in vertical column integrated amounts. However, these column-integrated amounts and associated surface concentrations have uncertainty due to simultaneous changes in optical path length associated with the vertical distribution of target species and amounts of scattering materials (clouds and aerosols) present. For this reason, environmental satellite sensors, in particular those that measure UV-visible wavelength range, have been used to retrieve aerosol and cloud signals to determine aerosol index (e.g., Buchard et al., 2015; Herman et al., 1997; Torres et al., 1998, 2002; Prospero et al., 2000; de Graaf et al., 2005) and scattering radiative index values (Penning de Vries et al., 2009, 2015; Kooreman et al., 2020; Kim et al., 2018). In addition, measurements of scattering material amounts, such as aerosol optical depth (AOD) in UV wavelengths and radiative cloud fraction amounts, have also been retrieved from pixel-based radiance data. Although the algorithms developed for environmental satellite sensors indicate the presence and amount of scattering materials, the accuracy of these retrieval algorithms for trace gases is significantly affected by the relative vertical distributions between trace gases and scattering materials (e.g., Lorente et al., 2017; Hong et al., 2017). For this reason, estimating cloud and aerosol vertical parameters is very important.

For cloud vertical information, cloud height information has been estimated
simultaneously with cloud optical depth and radiative cloud fraction data using the rotational Raman scattering (Joiner and Vasilkov, 2006; Vasilkov et al., 2008; Joiner and Bhartia, 1995) and absorption intensity of the oxygen dimer (O$_2$-O$_2$) (Accarreta et al., 2004; Vasilkov et al., 2018; Choi et al., 2021) combined with normalized radiance. Because cloud optical properties are relatively simple and cloud optical depth is thick, vertical information of cloud can be accurately determined. Similarly, the aerosol vertical distribution can be estimated using the oxygen-related absorption bands, such as the O$_2$-O$_2$ (Park et al., 2016; Chimot et al., 2017; Choi et al., 2019, 2020), O$_2$-A (Dubisson et al., 2009; Geddes and Boesch, 2015; Sanders et al., 2015; Zeng et al., 2020), and O$_2$-B (Chen et al., 2021; Ding et al., 2016) bands, as well as combinations of these bands (Sanghavi et al., 2012). However, the vertical distribution of aerosol is more difficult to assess than that of clouds, as the optical properties of aerosols in the atmosphere differ among aerosol types.

Recently, various aerosol retrieval algorithms have been developed for use with satellite sensors. These algorithms focus on improved trace gas retrieval as well as direct monitoring of aerosol properties. For this reason, AOD and other aerosol optical properties, such as single scattering albedo (SSA), are retrieved from the observed radiance (e.g., Ahn et al., 2014; Kim et al., 2020; Torres et al., 2020). In addition, an algorithm for aerosol vertical information has been developed based on hyperspectral UV-visible radiance from satellite observation. Nanda et al. (2018) demonstrated the possibility of aerosol height retrieval from the O$_2$-A band developed an algorithm using Tropospheric Monitoring Instrument (TROPOMI) (Sanders and de Haan, 2016; Nanda et al., 2020).

The Geostationary Environment Monitoring Spectrometer (GEMS), which was
launched by South Korea in February 2020, retrieves data related to major trace gases and aerosol properties (Kim et al., 2020). Aerosol properties are obtained for the purposes of monitoring surface air quality and aerosol effects for the air mass factor (AMF) calculation. In addition to the aerosol optical property algorithm, the standard product of aerosol is additionally applied to the aerosol vertical information, aerosol effective height (AEH).

For the possibility for development of an AEH retrieval algorithm, Park et al. (2016) conducted theoretical sensitivity testing of AEH retrieval using solely the O$_2$-O$_2$ absorption band along with aerosol and surface properties. Overall, the sensitivity of AEH retrieval was strongly affected by SSA, AOD, and aerosol types including optical and size properties, and the error budget for AEH retrieval using the O$_2$-O$_2$ band was 739 ~ 1276 m. In addition, case studies of AEH during dust transport over East Asia were conducted using radiance data from the Ozone Monitoring Instrument (OMI) and aerosol optical properties from the Moderate Resolution Imaging Spectroradiometer (MODIS).

Based on theoretical considerations and case results of previous studies, we introduce an operational retrieval algorithm for AEH. Section 2 describes the details of the AEH retrieval algorithm for GEMS and provides a list of the detailed input parameters. Section 3 introduces the details of satellite sensors for the comparison and validation in this study. Section 4 reports retrieval results based on case studies of aerosol transport, and section 5 contains validation results based on Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and TROPOMI data. Finally, we show conclusion and summary in section 6.
2. AEH retrieval algorithm

AEH is a layer height parameter that considers the penetration of photons into the aerosol layer. A detailed definition of AEH was introduced by Park et al. (2016). Numerous previous studies have used the aerosol top layer height (Kohkanovsky and Rozanov, 2010) or middle layer height (e.g., Sanders et al., 2015; Nanda et al., 2020) as the aerosol vertical layer parameter, which represents the highest altitudes with existing effective aerosol extinction sensitivity. However, the definition of AEH requires that the altitude region for aerosol extinction be integrated from the surface to $(1-\exp^{-1}) \times \text{AOD}$. Therefore, AEH is similar to the aerosol top layer height but with a slight bias. For AEH retrieval, the vertical distribution assumption is also important. The Gaussian Density Fitting (GDF) distribution, which is a modified Gaussian distribution structure, is assumed for AEH retrieval. The full-width at half-maximum (FWHM) of the aerosol layer is 1 km. Based on the assumptions about the aerosol vertical distribution, the AEH value is greater than the peak height of the Gaussian distribution and lower than the aerosol top layer height.
Figure 1 shows the overall flowchart of the AEH algorithm. Because the spectral coverage is limited to 300-500 nm, the AEH from GEMS is applied to the O$_2$-O$_2$ absorption band. In AEH estimation, other aerosol characteristics, including aerosol amounts and optical properties, affect retrieval accuracy. The main purpose of GEMS is to monitor air quality, and aerosol properties are targets of such monitoring over East Asia. For this reason, the GEMS aerosol algorithm was developed as multiple operational products. The GEMS Level 2 aerosol operational algorithm (L2AERAOD) retrieves the aerosol index (AI) values for UV and visible wavelengths, as well as AOD and SSA with considering the aerosol types (National Institute of Environmental Research, 2020a). Park et al. (2016) noted that the error budget of AEH is significantly affected by uncertainty in AOD and SSA and by the misclassification of aerosol types, which is directly related to the optical property and size information. Therefore, the
L2AERAOD results for AOD and SSA at 550 nm were adopted as input data for aerosol properties. Although L2AERAOD retrieved their own surface reflectance for accurate separation of surface signals from total reflectance at the top of the atmosphere (TOA), the standard product for surface reflectance (L2SFC) (National Institute of Environmental Research, 2020b) was also independently retrieved from long-term GEMS radiance/irradiance data. L2SFC is the reference product for spectral surface reflectance. To consider the various retrieval products, the L2SFC retrieves the surface reflectivity in multiple spectral channels, and retrieves the black surface reflectivity (BSR) and bi-directional reflectance distribution function (BRDF) based on the original pixel resolution. Because observation geometries are limited by the geostationary satellite position, surface properties related to the directional dependency have significant uncertainty. However, L2SFC accurately retrieved surface optical properties with high spatial resolution. For this reason, L2SFC was used as reference data for the surface products for all trace gas retrieval algorithms. Similarly, the AEH retrieval algorithm also uses L2SFC as a reference surface property. Specifically, the BSR value at 477 nm is used as the surface reflectance input for AEH retrieval.

Table 1. Details of fitting parameter for O₂-O₂ SCD estimation via the DOAS method.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absorption cross section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitting window</td>
<td>460 – 486 nm</td>
</tr>
<tr>
<td>Absorption</td>
<td>NO₂ at 220 and 294 K (Vandaele et al., 1998)</td>
</tr>
<tr>
<td>O₃ at 223, 243 and 293K (Bogumil et al., 2001)</td>
<td></td>
</tr>
<tr>
<td>O₂-O₂ at 293 K (Thalman and Volkamer, 2013)</td>
<td></td>
</tr>
<tr>
<td>Ring</td>
<td></td>
</tr>
</tbody>
</table>
For AEH retrieval, the basic method is the identification of changes in optical path length caused by effective aerosol layer height variation. To measure the optical path length change, O$_2$-O$_2$ slant column density (SCD) retrieved by the differential optical absorption spectroscopy (DOAS) method was used. From Nanda et al. (2020), TROPOMI uses the O$_2$-A band for aerosol layer height (ALH) retrieval. In the GEMS product, however, the O$_2$-O$_2$ SCD at 477 nm absorption band is used because this absorption band is strongest absorption band within the GEMS spectral observation range. Detailed DOAS fitting parameter and setting information is provided in Table 1 for the estimation of O$_2$-O$_2$ SCD from both the simulation and observation data. After the estimation of O$_2$-O$_2$ SCD, conversion from O$_2$-O$_2$ SCD to AEH is an essential process. For this conversion, a look-up table (LUT) approach between O$_2$-O$_2$ SCD and AEH was used with consideration of observation geometries, surface conditions, and aerosol optical properties.

Table 2. Ratio between SCD error and the SCD of O$_2$-O$_2$ according to the polynomial order and offset settings used for DOAS fitting.

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>Offset = none</th>
<th>Offset = 0th</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd order</td>
<td>6.06 ± 2.07</td>
<td>6.79 ± 2.31</td>
</tr>
<tr>
<td>3rd order</td>
<td>6.32 ± 2.20</td>
<td>6.79 ± 2.32</td>
</tr>
<tr>
<td>4th order</td>
<td>7.86 ± 2.78</td>
<td>7.34 ± 2.85</td>
</tr>
</tbody>
</table>

Observed radiance fitting is affected by noise signals during radiance observation. To minimize the noise effect and improve fitting quality, the optimal settings for fitting
were also analyzed. Table 2 shows ratios of SCD error to the SCD for various polynomial and bias orders from observed radiance. Although the fitting quality was good overall, the setting with the smallest error was used in this study.

Table 3 shows the dimension of the LUT for the AEH retrieval algorithm. To calculate the LUT, a linearized pseudo-spherical vector discrete ordinate radiative transfer model (VLIDORT) version 2.6 was used (Spurr, 2013). After calculating spectral radiance with 0.1 nm sampling, we performed the slit response function of GEMS and sampling specification prior to the DOAS fitting. For O$_2$-O$_2$ absorption, the absorption cross section used for the radiative transfer model calculation is considered the temperature dependent absorption cross section (e.g., Park et al., 2017). The O$_2$-O$_2$ SCD error is significantly reduced with the use of simulated radiance because the simulated radiance is not considered to contain noise. By contrast, the observed radiance has a signal to noise ratio (SNR) of approximately 1000. Therefore, the observed radiance has greater fitting error than the those from the simulated radiance, although the bias between observation and simulation results is not significant.

O$_2$-O$_2$ SCD decreases with increasing AEH for all aerosol types and AOD (Park et al., 2016). In addition, the O$_2$-O$_2$ SCD sensitivity is enhanced at high AOD and absorbing dominant aerosol cases. Radiation is mostly scattered from the top of the aerosol layer for thick aerosols, and the effective scattering layer penetrates more deeply into the layer when the aerosol layer is thinner. In addition, the contrast of O$_2$-O$_2$ is greater for absorbing dominant aerosols than scattering dominant aerosols because the optical reflection change per unit of layer depth change is large for absorbing aerosols. Based on the changes in sensitivity observed for optical path length, aerosol type (in particular in terms of SSA) and AOD are considered to significantly affect AEH retrieval.
Table 3. The dimension of the LUT for the GEMS AEH retrieval algorithm used to estimate AEH from O$_2$-O$_2$ SCD. (SZA: solar zenith angle, VZA: viewing zenith angle, RAA: relative azimuth angle, SUR: surface reflectance).

<table>
<thead>
<tr>
<th>Variable [unit]</th>
<th>No. of entries</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral range [nm]</td>
<td>-</td>
<td>455–491 nm (0.1 nm interval)</td>
</tr>
<tr>
<td>SZA [°]</td>
<td>8</td>
<td>0.01, 10, 20, 30, 40, 50, 60, 70</td>
</tr>
<tr>
<td>VZA [°]</td>
<td>8</td>
<td>0.01, 10, 20, 30, 40, 50, 60, 70</td>
</tr>
<tr>
<td>RAA [°]</td>
<td>10</td>
<td>0.01, 20, 40, 60, 80, 100, 120, 140, 160, 180</td>
</tr>
<tr>
<td>SUR</td>
<td>7</td>
<td>0.0, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5</td>
</tr>
<tr>
<td>AOD at 440 nm</td>
<td>9</td>
<td>0.04, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0</td>
</tr>
<tr>
<td>Refractive Index (Imaginary) at 440 nm</td>
<td>3×7</td>
<td>Absorbing: 0.0, 0.00206, 0.00453, 0.00738, 0.01233, 0.018, 0.02436, 0.03136 Dust: 0.0, 0.00053, 0.00113, 0.00181, 0.00298, 0.00437, 0.00603, 0.00804 Non-Absorbing: 0.0, 0.00124, 0.00258, 0.00399, 0.00547, 0.0086, 0.01197, 0.01555</td>
</tr>
<tr>
<td>AEH [km]</td>
<td>10</td>
<td>0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0</td>
</tr>
<tr>
<td>Terrain Height [km]</td>
<td>2</td>
<td>0.0, 2.0</td>
</tr>
</tbody>
</table>

3. Data

3.1. TROPOMI

The TROPOMI is spectrometer to observe the radiance from UV to near IR onboard the Sentinel-5 Precursor (Sentinel-5P) satellite. The orbit for Sentinel-5P is a polar orbit with ascending node crossing to equator at 13:30 local time. The aerosol layer height product from TROPOMI (AER_LH) retrieves vertically localized aerosol layers in free
troposphere by using the level 1b earth radiance measurements from 758 to 770 nm (de Graaf et al., 2022). Spectral fit estimation of reflectance around the O₂-A band is based on a neural network for the forward model calculation. After cloud masking to avoid the cloud affected pixels, an optimal estimation method was used to retrieve the aerosol layer height parameters for the inversion method. During the radiance fitting, AOD is also used as the main fitting parameter, but other aerosol parameters, such as SSA and scattering phase function, are assumed to be fixed values (Nanda et al., 2020). The target requirement on the accuracy and precision is 0.5 km or 50 hPa, and the threshold requirement is 1 km or 100 hPa (de Graaf et al., 2022). In this study, we use version 2.0.0 of the TROPOMI offline level 2 AER_LH product with the spatial resolution is 3.5 km × 7 km at nadir viewing geometry.

3.2. CALIOP

The CALIOP is a spaceborne lidar sensor onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) to measure the vertical information of aerosol and cloud with estimating the optical properties. The CALIOP has two different wavelength channels (532 and 1064 nm) by using the Nd:YAG laser to generate the signals (Winker et al., 2009). This sensor is Sun synchronous orbit constellated to the A-train, and also cross to equator at 13:30 local time by ascending node. For the vertical information, the resolution for vertical sampling is 30 m below 8 km altitude, and 60 m from 8 to 20 km altitude, respectively. Although the pixel data can retrieve with extremely high horizontal and vertical resolutions, the spatial coverage is narrow. In this study, the data of Level 2 aerosol profile product (version 3.41) was used. Because the aerosol profile product exists the vertical distribution of aerosol
extinction coefficient, representative layer height parameter is estimated by using the vertical profile of extinction coefficient at 532 nm.

4. Case studies

Figure 2 shows retrieval results for AEH, AOD, and SSA from GEMS on March 29 over East Asia. Because the operational schedule is hourly during the daytime, the GEMS retrieval results are shown at 1-hour intervals from 01:00 to 07:00 Universal Time Coordinated (UTC). Based on the retrieval sensitivity of AEH, only AEH retrieval results with AOD greater than 0.3 are shown. During this case study, a Yellow dust plume was located along the coast of China and South Korea with AOD at 443 nm of 0.8~1.2. Simultaneously, another plume was also present over the northeastern Korean Peninsula with AOD of 1.0~2.0 at 443 nm. SSA at 443 nm was 0.90~0.93 for the plume over South Korea and 0.87~0.90 for the plume over the northeastern Korean Peninsula. Although the AOD and SSA for these plumes are differed significantly, their AEH results were similar. For both plumes, AEH shows around 1.0~2.0 km in this case. In addition, the retrieved AEH values exhibited insignificant diurnal variation in regions with severe dust plumes.
Figure 2. Case study results for AEH, AOD, and SSA based on GEMS observations on March 29, 2021.
As shown in Figure 2, an additional severe aerosol plume was present over northeastern India, with AOD at 443 nm of 1.0–2.0 and SSA at 443 nm of 0.85–0.90. From Rana et al. (2019), metropolitan cities and industrial clusters in India are heavy emitters of black carbon, and high concentrations of black carbon are distributed over the Indo-Gangetic Plain (IGP). Therefore, the aerosol plume with high AOD and low SSA (high absorbing) was significant. Except for the inland parts of India, AEH in severe aerosol plumes ranged from 1.5 to 3.5 km, and AEH was stably estimated across the entire observation period.

![Figure 3. ALH retrieved from TROPOMI on (a) March 28 and (b) March 29, 2021.](https://doi.org/10.5194/amt-2023-136)

For comparison of the retrieval, Figure 3 shows the ALH retrieved from TROPOMI on March 28 and 29, 2021 over East Asia. A dust plume was transported from China to South Korea during this period, then split into two distinct plumes over northeastern China and the coastal area of South Korea. The ALH retrieved from TROPOMI for both plumes were 0.5–1.5 km. The definition of ALH from TROPOMI is the optical centroid layer height of the plume. Otherwise, the AEH product from GEMS is defined as the
height with aerosol extinction integrated from the surface of \((1 - \exp^{-1}) \times \text{AOD}\). Given this difference in definition for the aerosol height parameter, larger aerosol heights were retrieved from GEMS compared to TROPOMI. In an ideal case, the AEH from GEMS was overestimated by around 0.5 km relative to the ALH from TROPOMI, assuming the aerosol vertical distribution was a Gaussian with a width of 1 km. Although AEH had higher values than ALH from TROPOMI, the GEMS AEH retrievals for the dust transport case study were good.

Furthermore, the retrieval area covered by GEMS is larger than by TROPOMI, as demonstrated by a comparison of Figures 2 and 3. In East Asia, AEH from GEMS estimated a continuous dust plume from China to South Korea. In addition, the GEMS retrieval results estimated greater aerosol height information in coastal India compared to TROPOMI. Although high height values were retrieved for clear-sky regions, in particular low latitude ocean regions, the AEH from GEMS was successfully retrieved over the area of interest for the case study.
Figure 4. Intercomparison of (a) AEH between CALIOP and GEMS and (b) ALH from TROPOMI and AEH from GEMS over the period from March 28 to 30, 2021.

Figure 4 shows intercomparison results for aerosol plume height among GEMS, CALIOP, and TROPOMI during the case study of Yellow dust transport in East Asia from March 28 to 30, 2021. For spatial colocation, we selected pixels for which distance between GEMS and CALIOP observations was less than 50 km. In addition, only the closest 10% of pixels were used. Given the different orbital characteristics of CALIOP and GEMS, temporal colocation was also considered. During the period of image scanning from east to west over Asia by GEMS, CALIOP passes through the GEMS observation area from south to north every 98.3 minutes. On average, CALIOP passes three to four orbits through the GEMS scan area during a single day of daytime observation. To consider these different orbital characteristics, temporal colocation was limited to a 1-hour difference between CALIOP and GEMS scans. As GEMS observes hourly, colocated pixels between the two satellites shift from east to west over time.
Ultimately, the number of colocated pixels with AOD at 443 nm > 0.3 was 534 for this case study. For the direct comparison shown in Figure 4a, the difference in AEH between GEMS and CALIOP was -0.11±1.27 km. Nanda et al. (2020) reported that the difference in ALH between TROPOMI and CALIOP was 0.53 km for 4 cases of thick Saharan dust plumes. In addition, 53.8% and 72.9% of the total pixels showed differences less than 1.0 and 1.5 km, respectively. Large AEH uncertainty occurred mostly over the inland area of China. Because AEH from GEMS uses only the O2-O2 absorption band, the accuracy of AEH is sensitive to uncertainty in surface reflectance and AOD. Although GEMS accurately estimated surface reflectance in near real time, this study used the minimum reflectance under the Lambertian assumption to retrieve AOD and AEH. For this reason, the retrieved results were significantly affected by uncertainty in surface properties during the observation period.

Figure 4b shows a comparison of GEMS and TROPOMI for the period of March 28 ~ 30, 2021 in East Asia. To ensure the accuracy of ALH from TROPOMI, only pixels with quality assurance (QA) values greater than 0.5 were used. The difference between GEMS AEH and TROPOMI ALH was 1.66 ± 0.66 km in this case, and 49.9% of all pixels had differences less than 1.5 km. This proportion value was lower than the corresponding result from the comparison of GEMS and CALIOP. However, the ALH from TROPOMI is generally lower than the AEH from GEMS because of the discrepancy in definitions. To correct the inconsistency of definition, the difference between two retrieval results decreased to 0.5 km bias. After correction, 50.0% and 76.3% of pixels are within the expected error ranges of 1.0 and 1.5 km, respectively.
Figure 5. Case study results for AEH, AOD, and SSA based on GEMS observations on April 26, 2021.
Figure 6. ALH retrieved from TROPOMI on April 26, 2021.

Figure 7. Intercomparison of (a) AEH between CALIOP and GEMS, and (b) ALH from TROPOMI and AEH from GEMS on April 26, 2021.
An additional intercomparison case of April 26, 2021 is shown in Figures 5 (GEMS) and 6 (TROPOMI). During the transport of the Yellow dust plume from inland China to the coastal area, AEH changed from 4.0 km at 02:00 UTC to 2.0 km at 06:00 UTC. By contrast, ALH from TROPOMI only observed the 1.5~2.5 km layer height over East Asia around 04:00 UTC. Although the AEH from GEMS had spatio-temporal uncertainty, this case demonstrates the advantage of AEH retrieval from GEMS for continuous monitoring of changes in plume height, in particular during dust transport.

As shown in Figure 7, AEH from GEMS showed differences in height of -0.07 ± 1.09 km (compared to CALIOP) and 0.77 ± 0.82 km (compared to TROPOMI). These comparison results show that the GEMS algorithm accurately retrieved AEH and can be used in several application studies.

5. Long-term validation

For long-term validation, we used the AEH retrieval results from January to June, 2021. Similar to the case studies, intercomparison datasets from CALIOP and TROPOMI were selected containing mean layer height values in the closest 10% of pixels within a 50 km range for spatial colocation. In addition, only observations taken within ±1 hour of the GEMS observation time were selected for temporal colocation. As the CALIOP and TROPOMI satellites passed over the study area around 13:30 local time, which is around 04:30 UTC for East Asia and around 06:30 UTC for India. Most temporal colocation pixels aligned with observation times of 04:00~06:00 UTC, respectively. To check the dependence of several retrieval variables, the AI value for UV (UVAI), AOD, SSA, and dominant aerosol type in each pixel (TYPE) were obtained from the L2AERAOD. Although the GEMS algorithm retrieved AEH in the range of
0~10 km, the sensitivity of O_2-O_2 SCD was weak in cases of high AEH because of the vertical distribution of air molecules. To ensure sufficient quality of retrieved data, therefore, the AEHs from GEMS and CALIOP, and the ALH from TROPOMI were used only in pixels where the AEH from GEMS were lower than 5 km.

Figure 8. Histogram of AEH difference between CALIOP and GEMS with respect to (a) AOD, (b) SSA, and (c) TYPE from GEMS over the period from January 1 to June 30, 2021.

Figure 8 shows histograms of difference in AEH between GEMS and CALIOP according to AOD at 443 nm, SSA at 443 nm, and TYPE from GEMS. From Figure 8a, the dependence on AOD threshold was insignificant; the average estimated AEH difference was -0.03 km, but the variation in AEH difference was around 1.4 km based
on the standard deviation for AOD > 0.4. Because of uncertainty in GEMS operational products, AEH from GEMS exhibits large variability. As reported by Park et al. (2016), error budgets of AEH from O$_2$-O$_2$ SCD were 105–387, 72–352, and 576–1047 m because of uncertainty in AOD, aerosol particle size, and SSA, respectively. Although L2AERAOD accurately retrieved the optical and physical properties of aerosols (AOD, SSA, and TYPE), the retrieved results still remained significant uncertainty. Go et al. (2020) noted that the UV aerosol retrieval algorithm, which is the basic method to the L2AERAOD algorithm, has significant root mean square errors (RMSEs) for both AOD and SSA compared to ground-based data. Combined with the high sensitivity of AEH errors to aerosol optical properties, uncertainty arising from L2AERAOD causes significant variability in AEH.

Additional potential sources of error for AEH from GEMS are uncertainty in surface reflectance and the discrepancy in O$_2$-O$_2$ SCD values between the simulation results and observations. Park et al. (2016) found that O$_2$-O$_2$ SCD significantly alters the surface reflectance and is an error source affecting AEH retrieval. Although the fitting error of O$_2$-O$_2$ SCD from GEMS radiance was minimized, the fitting error is still remained around 6%, as indicated in Table 2. Significant fitting error perturbs the fitting signals and tends to result in the underestimation of SCD. The discrepancy in fitting condition between the simulated and observed radiance biased the SCD estimation, which in turn led to bias and variation in the AEH retrieval.

The variation in AEH difference between observation platforms is shown in Figure 8b as a histogram according to SSA threshold. Across the entire SSA threshold range, the standard deviation of the AEH difference was 1.33–1.51 km. In particular, this standard deviation decreased slightly with decreasing SSA. Aerosol height information is
significantly more sensitive to absorbing-dominant aerosols than scattering-dominant aerosols (e.g., Park et al., 2016; Nanda et al., 2020). Even if the uncertainty due to aerosol properties is fixed, the variability of AEH is affected by the sensitivity of AEH error to aerosol absorptivity.

Figure 8c shows the dependence of AEH difference on TYPE. Changing the Type significantly changed the mean value of AEH difference. The TYPE product included dependence on the aerosol size and optical absorptivity. For this reason, the AEH difference graphs for the “Dust” and “Absorbing” types differ, despite both types being absorbing-dominant aerosols. The AEH difference for the “Absorbing” type showed a negative bias with a large standard deviation, whereas a positive bias with a small standard deviation was obtained for the “Dust” type. The AEH difference for the “Non-Absorbing” aerosol type showed the largest negative bias in this comparison. These results suggest that the aerosol size distribution of fine particles affects the negative bias of AEH. Combined with the AEH difference bias illustrated in Figure 8b, these findings indicate that the bias in AEH difference for “Absorbing” aerosols is weakened by their absorbing-dominant property.

Figure 9 shows means and standard deviations for AEH difference between CALIOP and GEMS according to AOD and AI values from GEMS. For AOD, the mean AEH difference ranged from -0.13 to 0.03 km with a standard deviation of approximately 1.45 km. Similar to Figure 8a, the variation in AEH difference with AOD change was insignificant. For AI, the smallest AEH difference was -0.19 km, obtained for the AI range of 1.5~2.0. The largest AEH difference was 0.24 km for the AI range of 4.0~4.5. Although the AEH difference varied slightly, no consistent tendency in AEH variation with AI was observed Overall, the standard deviation of AEH difference ranged from
1.49 km (0.0 < AI < 0.5) to 1.18 km (4.5 < AI < 5.0), and a consistent tendency of decreasing variance in AEH difference was found with increasing AI.

Figure 9. AEH difference between CALIOP and GEMS with respect to ranges of (a) AOD and (b) AI obtained from GEMS from January 1 to June 30, 2021.

Figure 10 shows histograms of differences between ALH from TROPOMI and AEH from GEMS [(AEH from GEMS) – (ALH from TROPOMI)] according to the SSA and TYPE obtained from GEMS. As TROPOMI retrieved only ALH data with high QA values over pixels containing strong aerosol plumes, the AOD dependence of aerosol height difference is not shown in this comparison. In addition, the number of pixels
corresponding to scattering dominant aerosols (i.e., pixels with SSA > 0.95 or “Non-Absorbing” type) was insufficient. Nanda et al. (2020) showed that the operational algorithm of TROPOMI is limited to retrieving the ALH over scattering-dominant aerosols. In addition, Griffin et al. (2020) reported that the small absorbing AI pixels are identified with small QA values in the offline product of ALH.

Figure 10. Histograms of differences between ALH from TROPOMI and AEH from GEMS [(AEH from GEMS) – (ALH from TROPOMI)] with respect to (a) SSA, and (b) TYPE from GEMS in the period from January 1 to June 30, 2021.
As shown in Figure 10, \((\text{AEH from GEMS}) - (\text{ALH from TROPOMI})\) was significantly dependent on both SSA and TYPE. The mean value of \((\text{AEH from GEMS}) - (\text{ALH from TROPOMI})\) decreased as the aerosol absorptivity increased. This difference was \(0.78 \pm 0.81\) and \(1.16 \pm 0.92\) km for pixels of \(SSA < 0.90\) and \(0.90 < SSA < 0.95\), respectively. Comparing these results to Figure 8b, we find that the standard deviation of the comparison with TROPOMI was approximately 60% of the corresponding value for CALIOP. This smaller variability compared to CALIOP appears to have arisen because both TROPOMI and GEMS are passive sensors that use similar retrieval methods for oxygen-related absorption bands.

In addition, \((\text{AEH from GEMS}) - (\text{ALH from TROPOMI})\) was significantly dependent on TYPE, as shown in Figure 10b. The difference was \(0.73 \pm 0.77\) and \(1.34 \pm 0.94\) km for “Absorbing” and “Dust” type aerosols, respectively. Similar to Figure 8c, the TYPE dependence of aerosol height information was influenced by both absorptivity and size information. In addition, the difference in the definition of ALH from TROPOMI and AEH from GEMS impacted the comparison. “Dust” types of aerosol are mainly transported in the free troposphere, and the associated plume thickness is highly variable. By contrast, “Absorbing” aerosols mainly originate from anthropogenic emissions in East Asia (e.g., Gao et al., 2014; Wang et al., 2012; Peng et al., 2016). In addition, the vertical distribution of aerosols is unstable for “Dust” case. For these reasons, the standard deviation of aerosol height was larger for the “Dust” type.
Figure 11. Histogram of the difference between ALH from TROPOMI and AEH from GEMS [(AEH from GEMS) – (ALH from TROPOMI)] over land and ocean pixels, respectively, from January 1 to June 30, 2021.

The non-Lambertian effect on the land surface impacted surface albedo uncertainty during AEH retrieval, and this effect led to bias and variance in AEH. In this study, the minimum Lambertian equivalent reflectance was used as the reference reflectance value. However, surface reflectivity has geometric dependence due to non-Lambertian effects, which leads to a bias of 0.01-0.02 for surface reflectance over the land surface (e.g., Qin et al., 2019). To identify the sensitivity of surface property, a histogram was constructed of (AEH from GEMS) – (ALH from TROPOMI) after classification into land and ocean surface types, as shown in Figure 11. From the statistical results, the mean differences...
were estimated to be 1.09 and 0.91 km for ocean and land pixels, respectively, indicating insignificant difference in bias between these two surface covers. However, the standard deviation of the two surface types indicated a significant difference. Over the ocean surface, the histogram is very narrow. Although there are 6.5 times more data for land than those for the ocean surface, the land surface has a relatively wide histogram distribution. This discrepancy arises because the non-Lambertian effect causes bias in surface reflectance, while also influencing the variability in surface reflectance related to observation geometry. For this reason, land surface reflectance based on the non-Lambertian surface assumption is not fully representative of actual surface reflectance as a function of observation geometry. Therefore, the standard deviation of the layer height difference is larger over the land surface, and the significant difference between land and ocean pixels is mainly driven by the assumption of surface reflection properties.

Figure 12. Diurnal dependence of AEH difference between CALIOP and GEMS from January 1 to June 30, 2021.
The results of hourly statistical analyses are presented in Figure 1. Because they use a consistent definition of AEH, we show only a comparison of GEMS and CALIOP. The diurnal variation in AEH difference ranged from -0.23 ± 1.45 km (07:00 UTC, Number of Data = 867) to 1.01 ± 1.96 km (03:00 UTC, Number of Data = 23). However, the number of pixels observed at 03:00 UTC was insufficient for the identification of diurnal variation. The AEH difference of 0.66 ± 1.45 km was the next highest value obtained at 04:00 UTC (Number of Data = 395). The inhomogeneous number of data is mainly due to the lack of spatial homogeneity among retrieval pixels. Over India, very high AOD values were consistently observed during the comparison period. Otherwise, the AEH was only retrieved under conditions of severe anthropogenic emissions over East Asia. In addition, the diurnal variation in AEH difference was caused by spatial characteristics of AEH difference. From 03:00 to 05:00 UTC, CALIOP mainly passed over East Asia, which has numerous sources of aerosol emissions, including biomass burning, dust, and industrial activity. In addition, GEMS observed only the eastern part of India, which is dominated by anthropogenic aerosols. The spatial distribution of the dominant aerosol types may impact the diurnal variation in AEH difference.

6. Summary & Conclusions

Based on the possibility of retrieving AEH from environmental satellite sensors, an AEH retrieval algorithm for GEMS was developed that solely uses the O₂-O₂ absorption band with considering aerosol and surface properties. Because the sensitivity of AEH retrieval is strongly affected by optical amounts and properties of aerosols, as well as surface reflectivity, an AEH retrieval algorithm for GEMS was developed after retrieval.
of the GEMS operational algorithms, L2AERAOD and L2SFC. With the newly
developed retrieval algorithm, GEMS can be used to monitor aerosol vertical
information with high temporal and spatial resolution. To ensure significant sensitivity
of AEH retrieval, only AEH retrieval results are with AOD larger than 0.3 were shown.
For dust plumes over East Asia, AEH indicated significant aerosol vertical
information and insignificant diurnal variation in regions with severe dust plumes. After
spatial and temporal colocation, the AEH from GEMS aligned well with the AEH
information obtained from CALIOP. The differences in AEH between GEMS and
CALIOP for dust plume cases were -0.07 ± 1.09 and -0.11 ± 1.27 km, with 53.8% and
72.9% of all pixels showing differences less than 1.0 and 1.5 km, respectively. Large
AEH uncertainty was found mostly over inland China due to uncertainty in surface
reflectance and AOD over the land surface. In addition, AEH from GEMS was
overestimated compared to the TROPOMI ALH results due to different definitions of
ALH from TROPOMI and AEH from GEMS.
In long-term intercomparison with CALIOP, the average AEH difference was
estimated to be -0.03 km, with variation of around 1.4 km based on the standard
deviation for AOD > 0.4. In terms of sensitivity to surface albedo, the mean differences
were estimated to be 1.09 and 0.91 km over the ocean and land, respectively, which is
an insignificant difference of the biases between these two surface types. The large
variation in AEH difference between GEMS and CALIOP was caused by uncertainty in
the input parameters estimated from L2AERAOD and L2SFC. In the long-term
intercomparison with TROPOMI, this difference was significantly dependent on both
SSA and TYPE. The difference was 0.78 ± 0.81 km and 1.16 ± 0.92 km for pixels with
SSA < 0.90 and 0.90 < SSA < 0.95, respectively. In addition, differences of 0.73 ± 0.77
and 1.34 ± 0.94 km were obtained for the “Absorbing” and the “Dust” types of aerosol, respectively. The AEH difference ranged from -0.23 ± 1.45 km (07:00 UTC, Number of Data = 867) to 1.01 ± 1.96 km (03:00 UTC, Number of Data = 23), showing diurnal dependence. The spatial difference in dominant aerosol type may impact the diurnal variation in AEH difference.

The case studies and results of the long-term validation show that AEH retrieved from GEMS can provide information on aerosol vertical distribution, with applications in diverse research fields. In particular, AEH information can be applied to AMF calculation for trace gases to consider the change in scattering weight change due to the presence of an aerosol layer. In addition, AEH considerably affects the surface particulate matter (PM) concentration obtained from satellite-based AOD because PM estimation is significantly affected by the mixing layer height of aerosols. Although several fields of study may apply the AEH retrieval results, uncertainty in AEH remains, driving large deviations in some pixels. Moreover, AEH provides representative layer height information as only one variable because of its sole reliance on O₂-O₂ SCD for direct estimation of aerosol height information. This method is limited to the consideration of aerosol vertical structures (i.e., Gaussian or exponential vertical distribution structures). Rather than using the GEMS sensor alone, using another absorption band for oxygen-based materials would provide additional scattering information about aerosols.
Acknowledgements

This work was supported by the National Institute of Environment Research of the Republic of Korea under Grant NIER-2023-04-02-050.
References

L2-0006-RP-TROPOMI_ATBD_Aerosol_Height-v1p0p0-20160129.pdf (last access: 8 June 2020), 2016.

