
Replies to Reviewer Comment by Fahy and Sullivan (RC3).  

I thank the authors of this review for their detailed explanations and 
appreciate this opportunity for further discussion about the issues raised 
in V23. While this exchange is about real differences, there is agreement 
in that the goal is to further the strength of interpretation of 
experiments in terms of nucleus spectra for representing the activity of 
INPs. 

The essence of the discussion is the difference in perspectives given in 
Section 3 of V23, but with the clearer reasoning that emerged from the 
reviews and responses. The deeper argument behind the apparently simple 
difference in data processing methods is whether one wants k(T) to 
concisely represent observed data, or to reveal an “underlying probability 
of freezing” incorporating additional assumptions about the spread of 
possible freezing temperatures for each nucleating site (Psite in the 
following). V23 focused on the former, RC3 on the latter perspective. Both 
are valid goals, and the choice will vary from case to case. 

RC3 is copied below, with my responses inserted in offset paragraphs and 
using a different font. 

 

In Vali (2023; V23), two comments are made on Fahy et al. (2022; F22) regarding calculation and 
interpretation of ice nucleation spectra.   

Continuous vs. discrete ice nucleation spectra  
We will address the comment on the continuous interpretation of ice nucleation spectra first, as the 

theory underlying the continuous/discontinuous nature of an ice nucleation spectrum is relevant to the 
choice of temperature interval.  

Agree that this is relevant but separable from the main point of V23. 

 There is no doubt that everything about practical experimental droplet freezing measurements is discrete, 
from the individual droplet temperature measurements to calculated freezing spectra from droplet freezing 
experiments. It is never argued in F22 that this kind of measured spectrum is inherently continuous. Instead, 
it is argued that the measurements made are sampling from an underlying continuous distribution on the 
basis of several variables that control ice nucleation in reality. One of the key variables to that continuous 
nature is the ice active site nucleation rate described in Vali (2008) as a steeply rising continuous function 
centered around a characteristic temperature. When a droplet freezing experiment is performed, 
fundamentally we are sampling from the probability distribution function (pdf) derived from that nucleation 
rate function. This pdf is modelled as a continuous gaussian probability density function as shown in Figure 
9 of Vali (2008), although the width of the gaussian is very thin.   
 



The phrase in F22 which was criticized in V23 is that the spectra are 
inherently continuous. While the variability due to stochastic variability 
for given sites is mentioned in the top paragraph of page 6820 in F22, the 
rest of the paper does not make explicit mention of this (no reference is 
given to Vali 2008, V08). The variable bin width approach appeared to have 
been implemented to assure continuity. The reasoning explained in RC3 is 
welcomed; it helped to clarify the issues.  

The site nucleation rate defined in in V08 (Fig. 9 right-hand panel) is a 
steeply rising function. The expected pdf of freezing temperatures (left-

hand panel in that figure) was assumed to be a Gaussian of 0.2 or 0.42°C 
width for two different samples. There was no a priori reason given in V08 
for the Gaussian distribution to be correct. It was used to interpret the 
re-freezing experiments of V08. It was also argued that the observed pdf 
results from two contributions, the molecular dynamics of embryo formation 
(unquestionable) and possible changes in site configurations (unproven). 
It was also shown that Psite may be different for different substrates. 
These details are relevant to underscore that Psite is a yet poorly defined 
function. Conceptually it is well founded and there is some empirical 
evidence for its characteristics. Still, it is not out of the question 
that Psite will be shown in the future to be a box function with sharp 
temperature limits in temperature, and it will almost certainly have 
rather different magnitudes for mineral and biological INPs. In any case, 
from what is now known, the range of expected freezing temperatures on a 
site of given characteristic temperature can be expected to be something 

of the order of 1°C, although other sources indicated that this range may 
be larger. It is rather difficult to obtain empirical results for Psite and 
theoretical estimates are unreliable.  

For the argument in F22, the precise form of Psite is not of importance, 
but its width is relevant in cases with wide separations of freezing 
events. The main point here is that knowledge about Psite is scant and this 
uncertainty is carried, even if only to a minor degree, into the methods 
presented in F22.   

 

In F22 it is argued that because this underlying continuous gaussian pdf describes the probability 
of freezing of a single ice active site, that ice active site has a theoretical probability of freezing at any 
temperature. That does not mean that in a typical experimental timeframe this ice nucleation site will ever 
initiate a freezing event – the probability of that occurring may be so arbitrarily low that practically it is 
zero. However, the underlying probability density function is still continuous, and so there is a differential 
ice nucleation spectrum k(T) – which represents that underlying probability of freezing as a function of 
temperature – that is also fundamentally continuous.  

This is the crux of the matter. Is the width of Psite large enough to 
justify a general assumption of continuity despite possibly large gaps in 
k(T)?  Does one want k(T) to concisely show the results of an experiment, 
or present those results combined with an assumption about Psite? Whether 



the advantages that arise assuming continuity (as detailed in F22) are 
considered important or a pure representation of data is the goal will be 
a decision up to specific cases. For dense data, the difference will be 
negligible; the point of the discussion here is to clarify the principles 
involved. 

When many such continuous probability density functions are summed, a differential freezing spectrum 
such as we observe in experiments is produced.  In experiments, we measure discrete variables (frozen 
fraction versus temperature) to represent this continuous function, and in F22 it is argued that therefore a 
continuous parametric representation of k(T) is a valid interpretation of the data. It is not argued that 
differential spectra must be monotonically increasing – continuous functions can be nonmonotonic 
(although cumulative ice nucleation spectra, K(T), do have to be monotonic). It is also not argued that gaps 
with ‘measured’ zeros (i.e. no droplets freeze) are not meaningful – as stated, zeros indicate an arbitrarily 
low probability of freezing in a temperature region. Such a gap can be clearly observed in mixtures, such 
as in Figure 5 in Beydoun et al. (2017), where the flat portions of the frozen fraction plots would correspond 
to a value of k(T) approaching zero. Similarly, in Figure 8 in Vali (2019), the binned points between –10.5 
and –12.5 degrees Celsius have confidence intervals overlapping zero and can also be interpreted as a value 
of k(T) approaching zero.   

The presence of zeros in k(T) is clearly a possible outcome in any 
experiment. This was part of the reasoning in V23 for avoiding the use of 
variable bin width. 

  

Choice of temperature bin width: Fixed or variable?  
To address the comment on the choices of temperature intervals, first we would like to clarify that 

the variable temperature bin sizes proposed in F22 are only used in the ‘splinederiv’ and ‘binning’ methods 
of calculating ice nucleation spectra. It is not used in the method we recommended, the ‘smoothedPCHIP 
approach’, as in that case k(T) is calculated based on the derivative of K(T), the cumulative ice nucleation 
spectrum.  

Differentiating K(T) is certainly valid in principle, but in practice 
there are issues about what smoothing was used, or what algebraic form is 
fitted to obtain (K(T). Strictly speaking, K(T) can be given in stepwise 
form, summing k(T) at each interval. Then, the choice of data grouping in 
bins dictates dT, and the issue raised in V23 about the choice of bin 
widths remains valid. This is only circumvented by smoothing of K(T) or 
using an algebraic equation. How this is implemented in the 
‘smoothedPCHIP’ approach is beyond what was addressed in V23. For dense 
data, the problem is likely to be imperceptible. 

 

Second, it is correct that the variable temperature bin sizes create values for k(T) that are dependent on 
neighboring events.  

This was the main point in V23.  



While this may not have been the original intention of k(T) as developed in Vali (1971), in F22 it is argued 
that this dependence is desirable to better represent the underlying probability distribution that k(T) is meant 
to measure (and which it is derived from experimentally).   

A matter of judgement, as said before, whether k(T) is intended to 
represent the underlying probability distribution,  or the observed data which then can 
always have some smoothing applied or be fitted with algebraic expressions 
post hoc. 

 Consider the example data from V23. In the original dataset, k(T) is relatively constant with respect to 
temperature, except in the beginning of the temperature window considered where it is slightly higher. 
Based on the model of ice nucleation discussed above, this dataset represents a summation of many 
probability density functions describing many possible sites with differing characteristic temperatures. We 
have abstracted this as given as the thick grey line overlaid on Figure 1 from V23 below (thin grey lines 
show individual gaussians with a width of 1 ºC). When the section in the middle is removed, this removes 
a subset of these sites, shown as the dashed black line, represented by removing the gaussians between –13 
and –15 ºC.1 While this visual is abstracted, it shows that the large decrease observed from a variable 
temperature interval may represent the underlying meaning of the removal of points from the spectrum 
better than the spectrum using fixed temperature bins. Why, then, is it assumed that the points calculated at 
the edge of the gap using the fixed temperature interval are more correct than those calculated using the 
variable temperature interval? V23 claims without providing proof or reasoning that because the variable 
temperature bin point disagrees with the fixed temperature bin point, it is an undesirable artifact. However, 
we claim it could be the inverse: The variable temperature bin method actually better represents the physical  

 
1 This interpretation of what removing points in the middle of an ice nucleation spectrum means is different from 
that implied by V23 and relies on the assumption discussed in the first section that ice nucleation spectra have an 
underlying continuous probability density function derived from the ice nucleation rate function of ice nucleation 
sites. With this interpretation of ice nucleation, it would be unrealistic to have an infinitely sharp cutoff of ice 
nucleation activity at -13 and -15 ºC to form this gap, as this would make the nucleation rate function of sites on the 
edge of this gap differ from those of other sites (by having a sudden cutoff in nucleation rate or sudden jump from 
zero) and would therefore deviate from the model of ice nucleation being used.   



 
meaning of removing a series of points than the fixed temperature interval method which does not change 
even though the underlying data has been fundamentally altered.   

The smooth functions may be judged reliable representations, but in this 
case, when it is likely that the two regions of the spectrum correspond to 
two different materials it is less clear how realistic is the dashed curve 
in the figure. 

The reasons behind this difference are threefold. The first is exactly as described in V23: With 
variable temperature bins, points are not assumed to be independent of their neighbors – rather, the distance 
between neighboring points is assumed to contain information about the probability of freezing in that 
region of the temperature spectrum. This makes sense; if a lot of freezing events are observed in a region 
of a spectrum, it has a high value of k(T), and if few freezing events are observed, it has a low value of k(T). 
The variable temperature interval reflects this relationship by directly calculating the value of k(T) based 
on the distance between points and has the additional benefit of maintaining data density (i.e. sampling rate) 
in regions where many freezing events are observed. This additional data density is useful to increase 
statistical confidence in these regions of the spectrum. Why, then, are alterations in k(T) due to changes in 
neighboring freezing effects an undesirable artefact?  

Not an artefact per se, but representing a processing of the data which may 
or may not be wanted. 

We argue that this alteration is actually desirable, for the second reason behind the difference in 
interpretations: The modified spectrum shown above represents a fundamentally different sample from the 
original. By artificially removing points in a targeted (i.e., nonrandom) way from a random sample of the 
probability density function of freezing, the underlying probability density function being sampled from is 
being changed (i.e.. set to zero between –15 and –13 ºC). With a non-probabilistic measurement, this would 

  

Figure 1.  An overlay of Figure 1 from V23 showing how removing a set of droplets (or more  
specifically,  freezing events in a region  of the spectrum) would be reflected in a theoretical underlying  
freezing probability distribution .   



not be a problem and the interpretation of the decrease in k(T) in the gap in ice nucleation events presented 
in V23 would be valid. However, with a probabilistic measurement this becomes a problem. The differential 
spectrum k(T) relies on equating an empirically observed probability of a droplet freezing at temperature T 
to an expected value for an unobserved variable – the probability of containing a nucleus that is active at a 
temperature T (actually the infinitesimal interval from T to T–dT), as shown in Vali (1971) equation 5. 
Removing the droplets in a given range for the modified spectrum is changing one side of the equation 
without changing the interpretation of the expected value.   

The notion of “probabilistic measurement” is debatable, or, at a minimum, 
an unfortunate expression. Every measurement is a fact (with attached 
errors). What the measurement means is a matter of interpretation. To me, 
keeping the two apart is a good thing. 

In plain terms, only those droplets that froze between –13 and –15 ºC were removed, ignoring the 
fact that droplets that froze before –13 ºC could have contained nuclei that would freeze from –13 and –15 
ºC, that the droplets that froze between –13 and –15 ºC could have been late (or early) freezers from the 
nuclei that are active on the edges of either of the remaining ice modes of ice nucleation activity, or that the 
droplets that remain just before –13 ºC and just after –15 ºC could have been early (or late) freezers from 
the region of nuclei that was removed. This does not influence the droplets far from the  temperature region 
that was removed, because it was very unlikely they would freeze in the removed region. However, close 
to the edges of the removed region, the probability that only those droplets that froze in the region of interest 
and none of the droplets outside of the region were removed is unlikely. The variable temperature interval 
partially corrects for this, as the sudden increase in distance between points results in a drop in calculated 
ice nucleation probability represented by k(T). The fixed temperature interval method as shown does not 
correct for this.  

The width of Psite is the relevant measure here. The example described above 
is made in the abstract, without realistic consideration of the likely shape 
of the Psite function.  

Third, there is also a nuance hidden in the fixed temperature interval example given in V23: 
Consider an ice nucleation spectrum similar to the original shown in Figure 1 with a 10x larger population 
of droplets using the same fixed temperature intervals used above. Again, let the points between –13 and – 
15 ºC be removed and the spectra recalculated. Instead of 1 or 2 droplets per bin, now there are 10 or 20. 
Now, instead of the gap in ice nucleation being exactly on the edge of the fixed temperature bins, shift the 
temperature bins by half their width in either direction. Now, half of the droplets in each of the edge bins 
have been removed. What is the resulting change to the spectrum? Exactly the same as that observed using 
the variable temperature bins. The bins on either edge of the gap will be reduced by approximately 50%, 
simply because the frame of reference from which the bin locations have been calculated has shifted. If the 
reduction in k(T) using the variable temperature bins is an undesirable artifact, surely this would be too? 
However, we argue it is the inverse: The unchanged edge points when the fixed temperature bins are used 
is the undesirable artifact, and the variable temperature bin or ‘shifted’ fixed temperature bins are the more 
accurate response.   

The choices of the originating value and of the width of temperature 
intervals for the fixed-interval data presentation are arbitrary and are 
made with consideration of various experimental factors. Different choices 
indeed will result in different k(T) data points and this governs the 
choices of placement and interval width. There are no perfect choices, but 



there are adequate ones. Narrowing the gap in the spectrum by shifting the 
interval placement, as in the exercise given above, leads to further 
points being added in the gap if the variable interval method is used. 
That leads back to all the points already discussed. 

 

Final thoughts and caveats  
 None of the arguments above should be interpreted to mean that representing an ice nucleation spectrum 
discretely or using fixed temperature bins for calculating k(T) is invalid. Whether continuous or discrete, 
fixed or variable temperature intervals, each calculation method makes its own assumptions that must be 
carefully considered. In F22, it is argued that the continuous interpolations have increased statistical power 
than discrete binning methods of interpolation, not that the discrete binning methods are inherently 
incorrect. The reason continuous interpolations are adopted is to facilitate comparisons between ice 
nucleation spectra and to avoid loss of information about the shape of the ice nucleation spectrum, which 
coarse binning approaches might obfuscate. This benefit is likely minimal in traditional pipetted dropleton-
substrate approaches, but we posit it will be increasingly useful with microfluidic or similar approaches that 
analyze large ensembles of droplets. Similarly, it is argued that variable temperature intervals allow for 
better use of the collected data and avoids loss of information by treating each point separately, not that 
fixed temperature intervals are incorrect. When experimental uncertainty is considered, the two calculation 
methods may be statistically insignificantly different as discussed by Markus Petters in his review of V23. 
If the assumptions made using variable temperature intervals or continuous spectra are incorrect or 
misaligned with the meaning of ice nucleation spectra, this argument must be clearly presented; it was not 
in V23.   

Agree with most of the above, except the last sentence. For data 
representation, the use of variable bins introduces data errors, as argued 
in V23. The question of what meaning is intended for k(T) in a specific 
case is another issue.  

 There is one major caveat that must be considered when variable temperature intervals are used that V23 
does not discuss, but Markus Petters does in his review: When there is a lack of freezing events for a long 
period, it is never explicitly calculated or expressed in that region of the ice nucleation spectrum that the 
value of k(T) is zero. As such, when variable temperature intervals are used to calculate k(T), the resulting 
points should be interpreted as measurements of k(T) at a given point of T, not over the entire ‘bin’ 
represented by the temperature interval. Indeed, since more than one point is never in a temperature interval 
at a time, this method is not really a binning approach. Instead, it treats the value ΔT as a variable, not a bin 
width. A lack of measurements in a region should then be interpreted literally: there were no freezing events 
there, so k(T) is essentially zero. A question should then be raised about how wide of a gap truly represents 
a value of zero, and we propose that this should be related to two factors: (1) the uncertainty in temperature 
measurements, and (2) the width of the probability density function for a given type of ice nucleation site 
measured in an experiment. The second variable could be measured using an ice nucleating material such 
as Snomax®, which is known to have distinctly observable types of ice nucleants (Beydoun et al., 2017).   
 A minor additional caveat as discussed by Markus Petters in his review of V23 is the increased noise 
resulting from using variable temperature intervals. This is a side effect of minimizing the loss of 
information from binning: the noise is essentially information about the random variability within the 
experiment. As was discussed in F22, noise can be minimized with the use of a smoothing algorithm, which 
has its own assumptions and can result in the loss of data and in many cases may not be superior to the 



smoothing provided by the fixed temperature interval binning approach. Noise is not useful, but this does 
show how variable temperature intervals could be used to avoid information loss in experiments with less 
uncertainty and higher density information. If there is nonrandom variability within a small temperature 
range, a fixed binning approach may miss it while the variable temperature approach will show it clearly. 
Of course, this usefulness is limited by the uncertainty of a given experimental setup.  

We do acknowledge that in the footnote on line 15 of V23, Gabor Vali is correct that there is an 
error in F22’s description of the k(T) equation. It was originally meant to be expressed as N0 – N(T), not 
N(T) alone. This error is not present in the actual data or code presented in F22, only in the descriptive text. 
We will contact the journal to make a correction to F22.  
 Finally, regardless of whether continuous spectra or variable temperature intervals are used, the methods 
for determining confidence limits presented in F22 are unchanged. Continuous (but in the case of k(T), not 
necessarily monotonic) spectra are used for ease of developing statistical tests to compare ice nucleation 
spectra and to increase statistical power, and variable temperature bins for calculating k(T) are not actually 
used in the methods recommended, as in that case k(T) is calculated from the derivative of K(T).   
 

These discussions in the reviews and responses add to both F22 and V23. As 
stated in the beginning of this reply, the discussion is not about errors 
but about two different emphases about what the differential spectra 
should be. The statistical methods developed in F22 will no doubt help in 
increasing the value of scientific results that can be represented by the 
differential nucleus spectra. The purpose in V23, in this reply, and in 
the final version of V23 is to call attention to a principle difference 
between the way the spectra are considered in my publications and the way 
they are in F22, and to alert scientists to the choices they have in 
constructing and in making use of the spectra.  

  


