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Abstract. Multi-angle polarimeters (MAP) are powerful instruments to perform remote sensing of the environment. Joint re-

trieval algorithms of aerosols and ocean color have been developed to extract the rich information content of MAPs. These are

optimization algorithms that fit the sensor measurements with forward models, which include radiative transfer simulations of

the coupled atmosphere and ocean systems (CAOS)based on adjustable atmosphere and ocean properties. The forward model

consists of sub-models to represent the optics of the atmosphere, ocean water surface, and ocean body. The representativeness5

of these models for observed scenes is
:::
and

:::
the

::::::
number

:::
of

:::::::
retrieval

:::::::::
parameters

:::
are important for retrieval success. In this study,

we have evaluated the impact on MAP retrieval accuracy of three different ocean bio-optical models with 1, 3, and 7 optimiza-

tion parameters that represent the spectral variation of inherent optical properties (IOP(λ)s) of the water body
::
on

:::
the

::::::::
accuracy

::
of

::::
joint

:::::::
retrieval

:::::::::
algorithms

:::
of

:::::
MAP. The Multi-Angular Polarimetric Ocean coLor (MAPOL) joint retrieval algorithm was

used to process data from the airborne Research Scanning Polarimeter (RSP) instrument acquired in different field campaigns.10

We performed ensemble retrievals along three RSP legs to evaluate the applicability of bio-optical models along
:
in

:
geograph-

ically varying waters
::
of

::::
clear

::
to
::::::
turbid

:::::::::
conditions. The average differences between the MAPOL aerosol optical depth (AOD)

and spectral remote sensing reflectance (Rrs(λ)) retrievals and the MODerate resolution Imaging Spectroradiometer (MODIS)

products are
::::
were also reported. We studied the distribution of retrieval cost function values obtained for the ensemble retrievals

using the 3 bio-optical modelsunder clear to highly turbid waters. For the 1-parameter model,
::
the

::::::
spread

::
of

:
retrieval cost func-15

tion values show narrow distributions over any
::
is

::::::
narrow

::::::::
regardless

:::
of

::
the

:
type of water , regardless of the cost function values,

whereas for the
::::
even

::
if

:
it
::::
fails

:::
to

:::::::
converge

::::
over

:::::::
coastal

::::::
waters.

:::
For

:::
the

:
3 and 7-parameter models, the retrieval cost function

distribution is water type dependent, showing the widest distribution over clear, open waters.
::::
This

:::::::
suggests

::::
that

::::::
caution

::::::
should

::
be

::::
used

:::::
when

:::::
using

::
the

::::::
spread

::
of

:::
the

::::
cost

:::::::
function

:::::::::
distribution

::
to
::::::::
represent

:::
the

:::::::
retrieval

::::::::::
uncertainty. We observed that the 3 and

7-parameter models have similar MAP retrieval performances relative to the 1-parameter model. We also demonstrated that the20

3
::
in

:::
all

:::::
cases,

::::::
though

::::
they

:::
are

:::::
prone

::
to

:::::::
converge

::
at

:::::
local

::::::
minima

::::
over

::::
open

::::::
ocean

::::::
waters.

:
It
::
is
::::::::
necessary

:::
to

::::::
develop

::
a

::::::::
screening

::::::::
algorithm

::
to

:::::
divide

:::::
open and 7-parameter bio-optical models can be used to accurately represent both clear, open , and turbid,

coastal waters , whereas the 1-parameter model is most successful over extremely clear waters
:::::
coastal

::::::
waters

:::::
before

::::::::::
performing

1



::::
MAP

::::::::
retrievals. Given the computational efficiency

:::
and

:::
the

::::::::
algorithm

:::::::
stability

:
requirements, we recommend the 3-parameter

bio-optical model as the coastal water bio-optical model for future MAPOL studies. This study guides MAP
:::::::
provides

::::::::
important25

:::::::
practical

::::::
guides

::
on

:::
the

::::
joint

:::::::
retrieval algorithm development for current and future satellite missions such as NASA’s Plankton,

Aerosol, Cloud, ocean Ecosystem (PACE) mission and ESA’s Meteorological Operational-Second Generation (MetOp-SG)

mission.

Copyright statement. TEXT

1 Introduction30

The enhanced capabilities in satellite remote sensing of Earth have enabled detailed observation of the atmosphere, ocean, and

land thereby improving the accurate determination of spatial and temporal distributions of the constituents of each. Satellite-

borne spectroradiometers in particular have substantially advanced the way we view our home planet, and their information

content will increase in the future as the technology evolves from multi- to hyperspectral capabilities. Multi-angle polarimeters

(MAPs), such as the POLarization and Directionality of the Earth’s Reflectance (POLDER) (Deschamps et al., 1994), Air-35

borne Multi-angle Spectro-Polarimetric Imager (AirMSPI) (Diner et al., 2013), Spectro-polarimeter for Planetary Exploration

(SPEX) (Smit et al., 2019), Research Scanning Polarimeter (RSP) (Cairns et al., 2003), Multi-viewing Multichannel Multi-

polarization Imager (3MI) (Fougnie et al., 2018) and Multi-Angle Imager for Aerosols (MAIA) (Van Harten et al., 2021) have

even greater information content compared to other existing single viewing angle spectroradiometers, such as the MODerate

resolution Imaging Spectrometer (MODIS), Visible Infrared Imaging Radiometer System (VIIRS), and Ocean and Land Colour40

Instrument (OLCI), owing to their ability to perform measurements at multiple viewing angles and different polarimetric states

(Dubovik et al., 2019).

Atmospheric aerosols play a critical role in Earth’
:::
the

:::::
Earth’s climate and air quality (Boucher et al., 2013; Li et al., 2017).

Aerosols affect Earth’s energy balance directly by absorbing and scattering solar radiation and indirectly by interacting with

clouds. Some of the traditional retrieval algorithms such as those for MODIS-like instruments result in larger aerosol and45

ocean color retrieval uncertainties (Remer et al., 2005; Sayer et al., 2016) when compared with the accuracy required for cli-

mate modeling
:::::::::::::::::::::::::::::::
(Remer et al., 2005; Sayer et al., 2016)

:
,
::::::

which
::
is
::::
due

::
to

:::
the

:::::::
limited

::::::::::
information

:::::::
content

::
in

:::::::::::::
single-viewing

::::::::::
spectrometer

::::::::::::
measurements

:
(Mishchenko et al., 2004). The resultant uncertainties

::::
large

:::::::
retrieval

:::::::::::
uncertainties

::
of

:::::::
aerosols

::::
and

:::::
ocean

::::
color

::::
also

:
limit the accuracy of aerosol radiative forcing determination, thereby hindering our understanding of global

climate change (Boucher et al., 2013).50

Improved aerosol characterization and quantification will support accurate estimation of atmospheric path radiance in the

atmospheric correction
::::::::::
Atmospheric

:::::::::
Correction

:
(AC) process (Mobley et al., 2016) of ocean color remote sensing . AC is the

process of removing atmospheric and surface contributions from the total measured signal at the top of the atmosphere (TOA),

so that ocean color can be assessed.
:::::::::::::::::
(Mobley et al., 2016)

:
. The spectral remote sensing reflectance (Rrs(λ) [sr−1]) estimated
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through the AC process can be used to infer ocean optical and biogeochemical properties that are important for a broader55

understanding of phytoplankton dynamics, primary production, global carbon cycle and ocean’s ecological response to climate

change (Frouin et al., 2019). Accurate estimation of aerosols is thus important for both aerosol and ocean color retrievals.

:::
AC

::
is

:::
the

:::::::
process

::
of

:::::::::
removing

::::::::::
atmospheric

::::
and

:::::::
surface

:::::::::::
contributions

:::::
from

:::
the

::::
total

:::::::::
measured

:::::
signal

::
at
::::

the
:::
top

::
of
::::

the

:::::::::
atmosphere

::::::
(TOA)

:::
so

::::
that

:::::
ocean

:::::
color

::::
can

::
be

::::::::
assessed.

:
AC algorithms can be divided into two categories of processing

strategies. Heritage AC algorithms (Gordon and Wang, 1994) applied :
:::::::::
traditional

:::
(or

::::::::
heritage)

:::
AC

:::::::::
algorithms

::::::::
appliable

:
to60

MODIS-like spectroradiometers assume the atmosphere and ocean as decoupled entities with a single scattering approximation

(Zibordi et al., 2009; Gordon, 2021) . The water leaving radiance in the
::::::::::::::::::::::
(Gordon and Wang, 1994)

:::
and

::::
joint

::::::
aerosol

::::
and

:::::
ocean

:::::::
retrieval

::::::::
algorithms

:::::::::
applicable

::
to

:::::
MAP

::::::::::::
measurements

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mishchenko and Travis, 1997; Chowdhary et al., 2001; Hasekamp and Landgraf, 2007; Knobelspiesse et al., 2012; Remer et al., 2019a, b)

:
.
:::::::::
Traditional

::
or

::::::::
heritage

:::
AC

:::::::::
algorithms

::::::::::::::::::::::
(Gordon and Wang, 1994)

::::::::
estimate

:::
the

::::::
aerosol

:::::::::
properties

::
at

:
near-infrared (NIR) is

assumed
::::::::::
wavelengths

:::
by

::::::::
assuming

:::
the

:::::
water

::::::
leaving

::::::::
radiance

::
in

::::
NIR to be negligible or appropriately modeled (the so-called65

black pixel assumption) (Bailey et al., 2010)to estimate the aerosol path radiance at visible wavelengths by extrapolating

from the NIR
:
.
:::
The

:::::::
aerosol

::::::::
properties

:::
are

::::
then

:::::::::::
extrapolated

::::
into

::::::
visible

::
by

:::::
using

:::
the

::::::::::
appropriate

::::::
aerosol

:::::::
models

:::
that

:::
fit

::::
NIR

::::::::
radiances

:::::::::::::::::::::::::::::::::::::::::::
(Zibordi et al., 2009; Gordon, 2021; Utry et al., 2014)

:
. This assumption does not unequivocally work in optically

complex water. Furthermore, this
:
,
:::::
which

:
can lead to an overestimate of aerosol path radiance with either nonzero NIR water

leaving radiance or when absorbing aerosols are present (IOCCG, 2000) . These approximations and assumptions make the70

heritage algorithm most applicable over clear open waters and clean aerosol conditions (IOCCG, 2000, 2010). The heritage

algorithm implemented by NASA’s Ocean Biology Processing Group (OBPG; https://oceancolor.gsfc.nasa.gov) works well

over the open waters but can produce negative Rrs(λ) in blue wavelengths over turbid waters (Bailey et al., 2010)
:::::
given

:::
the

:::::::::::::
aforementioned

::::::
reasons. Efforts have been made to overcome negative Rrs(λ) (Bailey et al., 2010; He et al., 2012; Fan et al.,

2021; Ibrahim et al., 2019) . None of the improvements have fully resolved the problem
::::::
though

:::
the

:::::::
problem

:::
has

:::
not

::::
been

:::::
fully75

:::::::
resolved

:::
yet.

The second category of AC algorithms makes use of the larger information content available from MAPs. These instruments

have a greater capability
:::::::::
information

:::::::
content

:::::
which

:::
can

:::
be

::::
used to characterize aerosol microphysical properties (Mishchenko

and Travis, 1997; Chowdhary et al., 2001; Hasekamp and Landgraf, 2007; Knobelspiesse et al., 2012; Remer et al., 2019a, b)

and as such,
:::
thus

:
offer the potential for improvements in both aerosol and ocean color retrievals. Joint retrieval algorithms80

for MAPs have been developed, which provide simultaneous retrievals of aerosols and ocean color over both open and coastal

waters (Chowdhary et al., 2005; Hasekamp et al., 2011; Xu et al., 2016; Stamnes et al., 2018; Gao et al., 2018, 2019, 2020, 2021; Fan et al., 2021)

.

Joint retrieval algorithms fit
::
by

:::::
fitting the sensor measurements with forward model simulations for the coupled atmosphere

and ocean system (CAOS)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chowdhary et al., 2005; Hasekamp et al., 2011; Xu et al., 2016; Stamnes et al., 2018; Gao et al., 2018, 2019, 2020, 2021; Fan et al., 2021)85

. The simulations are carried out by vector radiative transfer models with parameterizations that define the state of the CAOS.

The difference between measurements and the model simulation is quantified by a cost function, which is minimized by itera-

tively perturbing the free parameters in the radiative transfer model. The forward model of ocean color joint retrieval algorithms

consists of sub-models to simulate the optics of the CAOS, which is composed of the atmosphere, ocean surface, and ocean

3
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body. Like heritage approaches, the
:::
The

:
robustness of the aerosol and ocean retrievals from joint retrieval algorithms depends90

on the representativeness of CAOS models over an observed scene. One important component of the forward model of ocean

color joint retrieval algorithms is the suite of
:::::
CAOS

::
is
:::

the
:

ocean bio-optical models that represent the spectral behaviors of

aquatic inherent optical properties (IOP(λ)s) (e.g., pure seawater, phytoplankton, colored dissolved organic matter (CDOM),

and non-algal particles (NAP)) (IOCCG, 2006).

Ocean waters are loosely classified into two categories
:
,
::::
Case

::
I
:::
and

:::::
Case

::
II,

:
based on the constituents present in the water95

and those constituents’
::::::::::
constituent’s

:
relationship with Rrs(λ). Waters, where

::
In

::::
Case

::
1
::::::
waters the IOP(λ)s co-vary with the

presence of phytoplankton and its derived CDOM, are generally referred to as Case I waters and are
:::::
which

:::
are

:
typically found

offshore in the open ocean. The IOP(λ)s of Case I waters are typically singularly parameterized using the concentration of the

phytoplankton pigment Chlorophyll-a ([Chla] [mgm−3]) and, hence, result in single parameter
:::::::::::::
single-parameter

:
bio-optical

models. Unlike Case I waters, Case II waters, which are most commonly found in coastal and turbid environments, consist of100

phytoplankton, NAP, and CDOM, none of which are ubiquitously covaried. Following
:::::::::::
Consequently, multiple parameters are

required to represent Case II water IOP(λ)s. Many joint retrieval algorithms (Chowdhary et al., 2005; Hasekamp et al., 2011;

Xu et al., 2016; Stamnes et al., 2018) assume single parameter bio-optical models developed for Case I waters, whereas only

a few algorithms (Chowdhary et al., 2012; Gao et al., 2018, 2019; Fan et al., 2021) adopt multi-parameter (3-7 parameters)

bio-optical models. There is no universal
:::
The

::::::
choice

::
of

:::
the

:
bio-optical model for either Case I or Case II waters.105

While Case I
:::
has

:
a
:::::
great

::::::
impact

::
on

:::
the

:::::::
retrieval

:::::::::::
performance

::
of

::::
joint

:::::::
retrieval

::::::::::
algorithms.

:::
Fan

::
et
:::
al.

::::::::::::::
(Fan et al., 2021)

:::::
have

::::::
studied

:::
the

::::::
impact

::
of
::::::::

different
:
bio-optical models are frequently inadequate to represent Case II water IOP(λ)s, the larger

parameter space required for Case II parameterizations leads to longer forward model simulation times or decreases in the

likelihood of accurate retrieval convergence. Thus, the balance between the model fidelity and the parameter space is vital to

improve retrievals and uncertainties. Based on Principal Component Analysis (PCA) of
::
on

:::::::
retrieval

::::::::
accuracy,

:::
but

::::
their

::::::
results110

::::
were

::::::
limited

::
to

::::::::::
radiometric

::::::::::::
measurements

:::::
under

:
a
::::::
single

::::
view

::::::
angle.

:::
Gao

::
et
:::
al.

:::::::::::::::
(Gao et al., 2019)

:::::::
showed

:::
that

::
a

::::::::::
7-parameter

:::::::::
bio-optical

:::::
model

::
is
:::::::
superior

:::
in

::::::::::
representing

::::::
coastal

::::::
waters

::::
than

:::
the

::::::::::::::
single-parameter

::::::
model

:::::::::::::::
(Gao et al., 2019)

:
,
::::::
though

::
it

::
is

:::
still

::
an

:::::
open

:::::::
question

:::
on

::
the

:::::::
optimal

:::::::::
bio-optical

::::::
model

:::
for

::::::
coastal

:::::
waters

:::
for

::::
joint

:::::::
retrieval

::::::::::
algorithms.

:::
The

::::
goal

:::
of

:::
this

:::::
study

::
is
:::
to

:::::::
examine

:::
the

::::::
overall

::::::
impact

:::
of

:::::::::
bio-optical

:::::::
models

::::
with

:::::::
different

::::::::
numbers

::
of

::::
free

::::::::::
parameters

::
on

:::
the

:::::::::::
performance

::::
and

::::::::::
uncertainty

::
of

:::::
joint

:::::::
retrieval

:::::::::
algorithms

::::
for

::::
Case

::
II
:::::::

waters.
::::::::::::::::::::
Hannadige et al. (2023)

:::::::
showed

::::
that115

:::::::::::::
multi-parameter

:::::::::
bio-optical

:::::::
models

::::
with

::
3
::::

and
::
5
::::::::::
parameters

:::::
show

::::::
similar

:::::::
retrieval

::::::::::::
performances

:::
for

::::
the

:::::::::::::
semi-analytical

::::::::
algorithm

::::::
(SAA)

:::::
based

:::
on

::::::
in-situ

::::::::::
multi-band

:
Rrs(λ) data from selected open and coastal waters(no inland waters were

considered) , it has been suggested
::::::::::::
measurements.

:::
An

::::::::::
independent

:::::
study

:::::::
showed that the number of independent free parame-

ters a retrieval algorithm might meaningfully retrieve is roughly four in the absence of additional information or in the presence

of overly restrictive measurement uncertainties (Cael et al., 2023; Hannadige et al., 2023) .
::::
based

:::
on

::::::
in-situ

::::::::::::
hyperspectral120

::::::
Rrs(λ)

::::::::::::
measurements

:::::::::::::::
(Cael et al., 2023)

:
.
:::::
Here,

:::
for

:::
the

::::
first

::::
time,

:::
we

::::
have

:::::::::
examined

::
to

:::::
which

::::::
extent

:::::
these

::::::::::
conclusions

::::
hold

::
for

:::
the

:::::
joint

:::::::
retrieval

:::::::::
algorithms

:::::
using

:::::::
airborne

:::::
MAP

:::::::::::::
measurements,

:::::
which

::::
have

::::
not

::::
been

::::::
studied

:::::::
before.

:::
The

::::::
quality

:::
of

:::
the

:::::::
retrievals

:::
in

:::
this

:::::
study

:::
is

::::::::
evaluated

::::
with

:::::::
respect

::
to

:::
the

:::::::::
magnitude

:::
of

:::
the

:::::::
retrieval

::::
cost

::::::::
function

::::::
values,

:::
the

::::::::::
distribution

:::
of

:::::::
retrieval

:::
cost

::::::::
function

:::::
values

:::::
(Sec.

::
3)

:::::
from

:::
the

::::::::
ensemble

::::::::
retrievals,

::::
and

:::
the

:::::
sanity

::::::
check

::::
with

:::::::
MODIS

::::::::
retrievals.

:::
We

:::::::
studied

4



::
the

::::::::::
uncertainty

:::
of

:::
the

:::::::
different

::::::::::
bio-optical

::::::
models

:::::
based

:::
on

:::
the

::::::
spread

::
of
:::::::::

ensemble
:::::::
retrieval

::::
cost

:::::::
function

::::::
values

::::::
which

::
is125

::::::::
important

::
to

:::::::::
understand

:::
the

::::::
impact

::
of

:::
the

:::::::::
bio-optical

::::::
models

:::
on

::
the

:::::::::::
convergence

:::::::
behavior

::
of

:::
the

:::::::::
non-linear

::::
least

::::::
squares

::::::
fitting

:::::::::
algorithms.

::::
This

::::
has

:::
not

::::
been

:::::::::
examined

::
in

:::::::
previous

:::::::
studies.

:::::
Given

:::
the

::::::::
inherent

::::::::
problems

::::::::
associated

:::::
with

:::::::
MODIS

::::::::
retrievals

:::
over

::::::::
optically

:::::::
complex

:::::::
scenes,

::
we

::::::::
consider

:::
the

:::::::
MODIS

:::::::
products

::
as

::::::
merely

::
a

::::::::
reference,

:::::
rather

::::
than

:
a
:::::::::
validation

:::::::
dataset.

The
::
In

:::
this

:::::
study

:::
the Multi-Angular Polarimetric Ocean coLor (MAPOL) joint retrieval algorithm (Gao et al., 2018, 2019, 2020)

is
::::
used

::
to

::::::::
evaluate

:::
the

:::::::::::
performance

::
of

:::
the

::::::
ocean

:::::::::
bio-optical

:::::::
models

::::
with

::::::::
different

:::::::
numbers

:::
of

::::
free

::::::::::
parameters.

::::::::
MAPOL130

:
is
:

an optimization approach that retrieves aerosol microphysical properties (aerosol optical depth (AOD), single scattering

albedo (SSA), size distribution, and refractive index) and in-water properties (Rrs(λ), [Chla] and component IOP (λ)s) si-

multaneously. MAPOL is implemented with a 7-parameter
:::::
Three bio-optical model for Case II waters and with a

::::::
models

:::
are

::::
used,

::::
i.e.,

:::
the single-parameter model for Case I waters.Gao et al.(2019) showed that the retrieval uncertainties are partially

dependent on the size of the parameter space, including that of
:::::
model

::::
for

::::
open

::::::
ocean

::::::
waters

:::
and

::::
two

::::::
coastal

:
bio-optical135

models, by comparing retrieval results under the two bio-optical models . In this study, we carried out MAP retrievals with

::::
with

:
3
::::
and

:
7
::::

free
::::::::::
parameters,

:::::::::::
respectively.

::::
The

:::::::
MAPOL

:::::::::
algorithm

::::
was

::::
used

::
to

::::::
inverse

:
the Research Scanning Polarimeter

(RSP) measurements from two NASA airborne campaigns (Aerosol Characterization from Polarimeter and Lidar (ACEPOL)

(https://www-air.larc.nasa.gov/missions/acepol) (Knobelspiesse et al., 2020) and North Atlantic Aerosols and Marine Ecosys-

tems Study (NAAMES) (https://www-air.larc.nasa.gov/missions/naames) (Behrenfeld et al., 2019). The RSP measurements140

were selected such that the underlying waters represent clear to turbid water conditions. The retrieval results were checked

against the AOD product from MODIS and High Spectral Resolution Lidar (HSRL)-2 (Burton et al., 2013) and ocean color

products (Rrs(λ) and [Chla]) from MODIS. The retrieval uncertainties have been evaluated with respect to the Glory uncer-

tainty requirement for AOD (Mishchenko et al., 2004) and PACE uncertainty requirements for open ocean Rrs(λ) (Werdell

et al., 2019).145

The goal of this study is to analyze the impact of different multi-parameter
:::::::::
conclusions

:::::
from

:::
this

:::::
study

:::
can

::
be

::::
used

::
to

:::::::
provide

::::::::::::::
recommendations

:::
for

::::::::
selecting

::::::
suitable

:
bio-optical models on joint retrieval performance and their resultant uncertainties and

to reduce retrieval uncertainties in the MAPOL algorithm
::
for

::::
joint

::::::::
retrieval

:::::::::
algorithms

::::
over

::::::
coastal

::::::
waters

::
to

:::::::
improve

:::::
their

:::::::
accuracy

::::
and

::::::::::::
computational

::::::::
efficiency.

::::
The

:::::
larger

:::::::::
parameter

:::::
space

:::::::
required

:
for Case II waters. Fan et al. (2021) has studied

the impact of bio-optical models on retrieval accuracy, but their results were limited to radiometric measurements under a150

single view angle. Based on single-pixel MAPOL retrievals, Gao et al. (2019) showed that the 7-parameter bio-optical model

is more applicable over coastal waters where the single-parameter model is less robust, compared to open waters. In our

study, we used 3 bio-optical models with different numbers of parameters and we evaluated the distribution of their retrieval

cost function values (Sec. 3) from the ensemble retrievals. We show that the retrieval cost function distribution under 3 and

7-parameter bio-optical models are impacted by the type of water present, whereas it always results in a narrow distribution155

for the 1-parameter bio-optical model . Hannadige et al. (2023) showed that multi-parameter bio-optical models with 3 and

5 parameters show similar retrieval performances for semi-analytical algorithm (SAA) based Rrs(λ) inversions. Here, we

have shown that the retrieval performances of 3 and 7-parameter bio-optical models with the MAP joint retrieval algorithm,
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MAPOL are similar to each other. Our findings suggest that the 3 and 7-parameter models are suitable to apply over both open

and coastal waters whereas the 1-parameter model is less robust over coastal waters.160

::::::::::::::
parameterizations

:::::
leads

::
to

:::::
longer

:::::::
forward

:::::
model

:::::::::
simulation

:::::
times

::
or

::::::::
decreases

::
in

:::
the

::::::::
likelihood

::
of

:::::::
accurate

:::::::
retrieval

:::::::::::
convergence.

:::::
Thus,

::
the

:::::::
balance

:::::::
between

:::
the

:::::
model

::::::
fidelity

::::
and

:::
the

::::::::
parameter

:::::
space

::
is

::::
vital

::
to

:::::::
improve

:::::::
retrievals

::::
and

:::::::::::
uncertainties. This study

also expects to improve the performance in
::
of the POLYnomial-based Atmospheric Correction (POLYAC) algorithm (Han-

nadige et al., 2021) which is an AC algorithm for hyperspectral single-view radiometers that
::::::
applied

::::
over

:::::::
optically

::::::::
complex

::::::
scenes,

::::
such

::
as

::::
over

::::::
coastal

::::::
waters.

::::::::
POLYAC

:
relies on collocated MAPOL retrievals from MAPs. We believe this work would165

make significant impacts on the Earth science community by developing more efficient and robust retrieval algorithms for
:::::
MAP

:::::::
retrievals

:::::
from

:::
the

:::::::
MAPOL

:::::::::
algorithm

::
to

:::::::
estimate

:::
the

:::::::::::
hyperspectral

::::
path

::::::::
radiance

::
to

::::::::
calculate

:::::::::::
hyperspectral

::::::
Rrs(λ)

::::::
which

::
is

:::::
crucial

:::
for

:::::::::
retrieving

::::::::::::
phytoplankton

:::::::::
functional

:::::
types

:::::::::::::
(IOCCG, 2014)

:
.
:::::::
Though

:::
this

:::::
study

::::
was

::::::
carried

:::
out

:::::
with

::::::::
MAPOL,

:::
the

:::::::::
conclusions

:::
are

:::::::
equally

:::::::::
applicable

::
to

::::
other

:::::
joint

:::::::
retrieval

:::::::::
algorithms

::
of

:
aerosols and ocean color. The bio-optical models can

also be easily applied to other retrieval algorithms as well.
:
,
:::::
which

::::
thus

::::
have

::::::
greater

:::::::
impacts

::::::
beyond

::::::::
MAPOL.

:
170

This paper is organized as follows. Section 2 reviews the data used in the study; Section 3 describes the MAPOL algorithm

and the respective bio-optical models; Section 4 presents the methodology and the retrieval results along with an uncertainty

assessment under three different scenes; Section 5 discusses the overall results; and, finally Section 6 summarizes the conclu-

sions.

2 Data175

2.1 Airborne data

In this study, we used airborne RSP measurements acquired from the ACEPOL 2017 (https://www-air.larc.nasa.gov/missions/

acepol/index.html) (Knobelspiesse et al., 2020) and NAAMES 2015 (https://www-air.larc.nasa.gov/missions/naames/index.

html) (Behrenfeld et al., 2019) airborne field campaigns. The ACEPOL campaign was held from October 19 to November 9,

2017, covering California, Nevada, Arizona, New Mexico, and the coastal Pacific Ocean. The NAAMES 2015 was the first180

deployment of the NAAMES campaign conducted from November 5 to December 2, 2015, over the North Atlantic Ocean.

RSP is an along-track scanner, with 152 viewing angles within ±60◦. It has 9 spectral channels spanning the visible to short-

wave infrared (SWIR) with central wavelengths of each band located at 410, 470, 550, 670, 865, 960, 1590, 1880, and 2250 nm.

RSP-1 and RSP-2 are two versions of the RSP instrument that differ in measurement uncertainty characterizations. RSP mea-

surements over oceans have been used for aerosol and ocean color retrievals in multiple studies (Chowdhary et al., 2005, 2012;185

Stamnes et al., 2018; Gao et al., 2019, 2020) with promising performances. In the ACEPOL campaign, RSP-2 measurements

were acquired with a relative radiometric characterization uncertainty of approximately 0.03 and polarimetric characterization

uncertainty of about 0.002 in Degree of Linear Polarization (DoLP), whereas in
:::
the NAAMES 2015 campaign,

:
RSP-1 mea-

surements were acquired with radiometric (relative) and polarimetric characterization uncertainties of approximately 0.015 and

0.002 respectively. The instrument noise model for RSP is provided in Knobelspiesse 2019 (Knobelspiesse et al., 2019).190
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We performed MAP retrievals across three RSP flight legs over selected open and coastal water regions. From the ACEPOL

campaign, we selected a coastal leg across Monterey Bay where the waters were mostly clear offshore and turbid when closer

to the coast. From the NAAMES campaign, we selected a coastal leg across Delaware Bay and an open ocean leg offshore and

outward from Delaware Bay. Each case has been named based on the campaign and the type of water present: ACEPOL-Mix,

NAAMES-Coastal, and NAAMES-Open. Gao et al.,
:

(2019) showed a single pixel retrieval from the NAAMES-Coastal case195

inside Delaware Bay comparing the retrieval performances of 1 and 7-parameter bio-optical models. The details of the three

cases are summarized in Table 1 and Figure 1. The three cases were selected based on the availability of RSP measurements

in cloud-free conditions, the water turbidity of the location, and the availability of desired MODIS retrieval products. The

turbidity of the waters was assumed based on MODIS [Chla] retrievals (Hu et al., 2012).

RSP wavelength bands corresponding to water vapor absorption (960, and 1880 nm), as well as those wavelength bands with200

high noise (1590, and 2250 nm bands only for DoLP), were excluded in
::::
from the retrieval. The viewing angles contaminated

by sun glint and clouds are
::::
were excluded from the retrieval to reduce retrieval uncertainty. For each location of interest, 5

consecutive pixels along the RSP leg were averaged to achieve better measurement accuracy. The RSP legs with averaged

pixels are shown in Figure 1. For the ACEPOL and NAAMES campaigns, the size of each averaged pixel is approximately 1

km and 0.5 km respectively. The corresponding averaged measurements (reflectance and DoLP) were applied in the retrieval.205

(a) ACEPOL-Mix (b) NAAMES-Coastal (c) NAAMES-Open

Figure 1. Geographical locations of the selected RSP legs.

2.2 Validation data

The AOD from the ACEPOL campaign is validated against HSRL-2. Due to the lack of at-sea in situ validation data, we

performed sanity checks of the retrieval results using MODIS AOD and Rrs(λ) products. MODIS is a single-view angle,

multi-spectral imager on both the NASA Terra and Aqua satellite platforms. The MODIS-OC product (NASA Ocean Color

Web, 2020 [https://oceancolor.gsfc.nasa.gov]) is processed using the standard NASA atmospheric correction
::
AC

:
algorithm210

(Mobley et al., 2016) developed based on the atmospheric correction algorithm (Gordon and Wang, 1994) as modified by

(Ahmad et al., 2010). We used level-2 ocean color (OC) products from the MODIS instrument on board the Aqua satellite

7
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Table 1. Summary of the datasets used in this study.

RSP Leg ACEPOL-Mix NAAMES-Coastal NAAMES-Open

Date 07 November 2017 4 November 2015 4 November 2015

Number of pixels 62 40 106

UTC time range 20:13 - 20:25 18:21 - 18:26 17:34 - 18:20

Aircraft altitude 20 km 6.7 km 6.8 km

Solar zenith angle 53◦ 59◦ 55◦

Relative azimuth angle 75◦ 110◦ 75◦

Scattering angle range [105◦,132◦] [91◦,132◦] [93◦,133◦]

:::::::
(version

::::::
2022.0). It provides a spatial coverage of 1km resolution at nadir. The OC products include Rrs(λ) at 412, 443, 469,

488, 531, 547, 555, 645, 667, and 678 nm and [Chla] via the OCI algorithm (Hu et al., 2012). The level-2 MODIS aerosol

product () over the ocean and vegetated land surfaces are provided by the dark target (DT) algorithm (Levy et al., 2013) . The215

spatial coverage has a 3 km resolution at the nadir. It provides AOD over the ocean at 7 spectral bands (470, 550, 660, 860,1240,

1630, and 2130 nm)
:::
We

::::
also

:::::::
obtained

:::::::
MODIS

:::::
AOD

::
at

::::
869

:::
nm

:::
and

:::
the

::::::::
angstrom

::::::::
exponent

:::::::
derived

::::
from

:::
the

::::::::
standard

::::::
NASA

:::
AC

::::::::
algorithm

::
to

:::::::
estimate

:::
the

:::::::
spectral

:::::
AOD

::
at

::::
RSP

:::::::::::
wavelengths. The ACEPOL 2017 campaign flew the HSRL-2 along with

RSP, the former instrument also providing accurate data for AOD validation.

3 The MAPOL framework
::::
joint

::::::::
retrieval

:::::::::
algorithm220

The MAPOL joint retrieval algorithm simultaneously retrieves aerosol and ocean color properties from MAP measurements.

It has been validated with synthetic RSP data (Gao et al., 2018) and real RSP (Gao et al., 2019; Hannadige et al., 2021) and

SPEX airborne measurements (Gao et al., 2020; Hannadige et al., 2021).

3.1 Retrieval cost function

The algorithm minimizes the difference between the MAP measurements and forward model simulations for CAOS (Zhai225

et al., 2009, 2010). The forward model simulation is iteratively optimized (Levenberg – Marquardt non-linear least squares

optimization) by perturbing the set of free parameters that represent the atmosphere and ocean optical properties. The least

squares cost function (χ2(x)) used to quantify the difference between the measurement and the forward model simulation is

defined as,

χ2(x) =
1

N
Σ(λi)

∑
i

::

(
[ρt(i)− ρft (x; i)]2

σ2
t (i)

+
[Pt(i)−P ft (x; i)]2

σ2
P (i)

)
(1)230
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where ρt = πr2Lt/µ0F0 is the total measured reflectance and Pt = π
√
Q2
t +U2

t /Lt ::::::::::::::::
Pt =

√
Q2
t +U2

t /Lt:is the total mea-

sured DoLP. Lt, Qt, and Ut are the first three Stokes parameters measured at sensor level; µ0 is the cosine of the solar zenith

angle; F0 is the extraterrestrial solar irradiance corrected for the Sun-Earth; and r is the Sun-Earth distance in astronomical

units. ρft and P ft denote the total reflectance and DoLP simulated from the forward model. x is the state vector of the retrieval;

i is the measurement index corresponding to a particular angle or wavelength; and N is the total number of measurements used235

in the retrieval. σt and σP are the total uncertainties of reflectance and DoLP used in the algorithm; that includes instrument

measurement uncertainties
:::::
which

:::::::
include

:::
the

::::
RSP

:::::::::
instrument

::::::::::::::
characterization (Knobelspiesse et al., 2019), variance due to

averaging nearby pixels, and forward model uncertainties
:
.
:::
The

:::::::
forward

::::::
model

:::::::::
uncertainty

::
is

:
estimated as 0.015 and 0.002 for

the radiometric and polarimetric uncertainties respectively (Gao et al., 2019)
::::::::::::::
(Gao et al., 2022) . The uncertainty correlation

between angles has been ignored (Knobelspiesse et al., 2012; Gao et al., 2022).240

The χ2 value of a converged retrieval indicates the goodness of fit of the retrieval. A χ2 value substantially larger than 1

suggests the insufficiency of the forward model to accurately represent a given set of MAP measurements. A χ2 close to 1

implies that the difference between the measurement and the corresponding forward model simulation is within the uncertainty

quantified by σt and σP . In this study, we used χ2 values obtained under each retrieval to assess their retrieval quality and

performances.245

3.2 Forward model

The forward model of the MAPOL algorithm is a vector radiative transfer model based on the successive order of scattering

method (Zhai et al., 2009, 2010). The CAOS system is defined as three layers: a top molecular layer, a middle layer with

mixed aerosols and molecules (2 km height), and an ocean layer bounded by a rough water surface (Cox and Munk, 1954).

The aerosol size distribution is composed of five spherical aerosol sub-modes: three fine modes and two coarse modes, each250

with a log-normal distribution. The mean radius and variance are fixed (Gao et al., 2020). The complex refractive index spectra

of the two aerosol modes are based on PCA of datasets representing spectral refractive indices of water, dust-like, biomass

burning, industrial, soot, sulfate, water-soluble (Shettle and Fenn, 1979), and sea salt (de Almeida et al., 1991). The refractive

indices are approximated as m(λ) =m0 +α1p1(λ), where m0 and α1 are fitting parameters, and p1(λ) is the first order of the

principal component.255

In the MAPOL forward model, the analytical Fournier-Forand phase function (Fp) (Fournier and Forand, 1994) is used to

represent the particulate scattering phase function. The Fp is determined by Bp(= bbp/bp) (Mobley et al., 1993). The overall

phase function of water is obtained by mixing Fp with that of a pure water phase function, which is then multiplied by the

normalized Mueller matrix derived from measurements (Voss and Fry, 1984; Kokhanovsky, 2003), to obtain the total Mueller

matrix of water assuming invariant polarization properties (Zhai et al., 2017).260

MAPOL retrieves the spectral aerosol refractive indices described by 8 parameters (2 (fine and coarse) modes ×
::
× 2 PCA

×
:
×
:

2 parts (real and imaginary), aerosol volume densities (5 parameters, one for each aerosol sub-mode), 1 parameter to

represent the roughness of ocean surface, i.e., wind (characterized by isotropic Cox Munk model (Cox and Munk, 1954)) and

either 1, 3 or 7 parameters to represent water IOP(λ)s depending on the choice of bio-optical model in the retrieval.
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3.2.1 Bio-optical models265

MAPOL includes two ocean bio-optical models in the forward model to represent Case I and Case II waters separately. The

Case I water bio-optical model ("C1P1") is a single-parameter model based on [Chla], where the number followed by "P"

stands for the number of free parameters in the model. The Case II ("C2P7") model contains seven bio-optical parameters. In

this study, we have included a third Case II water bio-optical model with three parameters (“C2P3”). A detailed description of

the bio-optical models is given below.270

C2P7 (Eq. 2-5) is a coastal or Case II bio-optical model with 7 parameters.

aph(λ) =Aph(λ)[Chla]Eph(λ) (2)

adg(λ) = adg(440)exp[−Sdg(λ− 440)] (3)

275

bbp(λ) = bbp(660)

(
λ

660

)−Sbp

(4)

Bp(λ) =Bp(660)

(
λ

660

)−SBp

(5)

where aph(λ)[m−1] is the absorption coefficient of phytoplankton parameterized in terms of [Chla] using Aph and Eph

spectral coefficients obtained from (Bricaud et al., 1998); adg(λ)[m−1] is the spectral absorption coefficient of CDOM + NAP;280

bbp(λ)[m−1] is the spectral backscattering coefficient of particulate matter; Bp(λ) is the spectral backscattering fraction of

particulate matter; Sdg[nm−1] is the spectral exponential slope of adg(λ) in nm−1; Sbp is the spectral slope of the power law

function of bbp(λ); and, SBp is the spectral slope of the power law function of Bp(λ). The
:::::::::
magnitude

::
of

:::
the

:::::::
spectral

::::::
slopes,

:::
Sdg ,

:::::
Sbp,

:::
and

::::
SBp:::::::

depends
:::

on
:::
the

:::::::::::
composition

:::
and

::::
the

:::
size

:::
of

:::
the

:::::::
oceanic

:::::::
particles

::::
and

::::::::
therefore

::::::::
represent

::::::::::::
microphysical

::::::::
properties

::::
such

::
as

:::::::::
refractive

:::::
index,

:::::::
effective

::::::
radius,

::::
and

::::::
particle

::::
size

::::::::::
distribution

::::
slope

:::::::::::::
(Jonasz, 2007)

:
.
:::
The

:
7 free parameters285

are [Chla], adg(440), bbp(660),Bp(660),Sdg , Sbp, and SBp where 440 and 660 represent reference wavelengths in nm.

C2P3 is a 3-parameter model simplified from the C2P7 model (Eq. 2-5). To reduce the number of free parameters, we fixed

the spectral slopes.
:
Sdg at

:::::::
typically

:::::
varies

::::::::
between

::::
0.01

:::
and

::::
0.02

::::::
nm−1

::
in

::::::
natural

::::::
waters.

::::::
Based

::
on

:::
the

::::::
in-situ

::::::::::::
measurements

:::
over

:::::::
oceans

::::::::::::::::::
(Roesler et al., 1989)

::::
most

:::
of

:::
the

:::::::
existing

:::::::::
bio-optical

:::::::
models

::::
such

:::
as

::::::
Default

::::::::::::
Configuration

:::::::::::
Generalized

::::
IOP

:::::::::
(GIOP-DC)

::::::
model

::::::::::::::::::
(Werdell et al., 2013)

::::::
adopt

:::::
Sdg=0.018 nm−1, Sbp at 0.3, and .

::
It
::::
has

::::
been

::::::
found

:::
that

::::
the

:::::::::
particulate290

::::::::::::
backscattering

::::
ratio

::::
from

::::::
in-situ

::::::::::::
measurements

:::::
shows

::::
little

::
or

:::
no

:::::::
spectral

::::::::::
dependence

:::
and

:::
the

:::::
mean

:::::::::
particulate

::::::::::::
backscattering

::::
ratio

:
is
:::::
0.010

:::::::::::::::::::::::::::::::::::
(Chami et al., 2005; Whitmire et al., 2007)

:
.
:::
We

::::
have

::::
fixed

:
SBp at 0 , and assumed a spectrally invariant backscat-

tering fraction Bp of 0.01(Whitmire et al., 2007) . The fixed value of
:
. Sbp was obtained from

:::::::
typically

:::::
varies

::::::::
between

:
0
::::
and

:
2
:::::
from

::::
small

:::
to

::::
large

::::::::
particles

:::::::::::::::::
(Werdell et al., 2013)

:
.
::::
Sbp::::

was
::::
fixed

::
at
:::
0.3

:::
in

:::
this

:::::
study

::::::
which

:::
was

::::::::
obtained

::
by

:
a sensitivity

10



analysis carried out by Hannadige et al.
:
, (2023).

:::
We

:::::::::::
acknowledge

:::
that

:::::
these

:::::
fixed

:::::
values

:::::
could

:::::::
deviate

:::::
under

:::::::
specific

:::::
water295

:::::::::
conditions. The remaining free parameters of the model are [Chla], adg(440) and, bbp(660)

:::
adg:::::

(440)
::::
and,

:::::::
bbp(660).

C1P1 (Eq. 6-10) is a [Chla] based single parameter Case I water bio-optical model (Zhai et al., 2015, 2017) . The absorption

coefficient of phytoplankton aph(λ) is the same as Eq. 2. The absorption adg(λ) is given by Eq. 3 as in C2P7 model, though

Sdg is fixed at 0.018 nm−1 and adg(440) is specified by Eq. 6 and 7 in terms of [Chla] (IOCCG, 2006):

adg(440) = p2aph(440) (6)300

p2 = 0.3 +
5.7× 0.5aph(440)

0.02 + aph(440
(7)

Similarly, bbp(λ) is also contributed only from phytoplankton and is expressed in terms of [Chla] (Huot et al., 2008).

bbp(λ) =Bp× bp(λ) (8)

where bp(λ)[m−1] is the spectral scattering coefficient of particulate matter.305

bp(λ) = bp(660)

(
λ

660

)−Sp

(9)

bp(660) = 0.347[Chla]0.766 (10)

In Eq. 9, Sp is the spectral coefficient of bp. For 0.02< [Chla]< 2 mgm−3 , Sp = −0.5(log10[Chla]− 0.3). For [Chla]> 2

mgm−3, Sp = 0. Bp is assumed to be spectrally invariant and is described as Bp = [0.002 + 0.01(0.50− 0.25log10[Chla]).310

The three bio-optical models are summarized in Figure 2.

4 Retrieval results

We performed retrievals with the MAPOL algorithm (Sec. 3) for the 3 cases (ACEPOL-Mix, NAAMES-Coastal, and NAAMES-

Open) described in Section 2. Separate retrievals were carried out using each bio-optical model (C2P7, C2P3, and C1P1 de-

scribed in Sec 3.2.1) for all the cases, regardless of the type of water they represent.315

The final retrieval results are based on the ensemble retrieval technique (Gao et al., 2019, 2020). The technique can reduce

the likelihood of convergence of the algorithm at local minima instead of the global minimum. The ensemble retrieval was

carried out by performing 100 retrievals for each averaged RSP pixel. For each retrieval, the retrieval parameters are initialized

with randomly generated initial values of each parameter, which are confined within a boundary as specified in Table 2 for

11



C2P3 (3 parameters)C2P7 (7 parameters)
a!" λ = A!" λ 𝐂𝐡𝐥𝐚 #!"(%)	

a'( λ = 𝐚𝐝𝐠(𝟒𝟒𝟎) exp −0.018 λ − 440

b+! λ = 𝐛𝐛𝐩(𝟔𝟔𝟎)
λ
660

./.1

B! = 0.01

a!" λ = A!" λ 𝐂𝐡𝐥𝐚 #!"(%)	
a'( λ = 𝐚𝐝𝐠(𝟒𝟒𝟎) exp −𝐒𝐝𝐠 λ − 440

b+! λ = 𝐛𝐛𝐩(𝟔𝟔𝟎)
λ
660

.𝐒𝐛𝐩

B! λ = 𝐁𝐩(𝟔𝟔𝟎)
λ
660

.𝐒𝐁𝐩

C1P1 (1 parameter)
a!" λ = A!" λ 𝐂𝐡𝐥𝐚 #!"(%)	

a'( λ = a'((440, [𝐂𝐡𝐥𝐚]) exp −0.018 λ − 440

b+! 𝜆 = b! 660, 𝐂𝐡𝐥𝐚
λ
660

.3&! 𝑪𝒉𝒍𝒂

	B! = [	0.02 + 0.01(0.5 − 0.25 log8/[𝐂𝐡𝐥𝐚])]	

Figure 2. The summary of MAPOL bio-optical models. The free parameters of each model are indicated in bold.

Table 2. The upper and lower boundaries of the bio-optical model parameters

Parameter Model Lower/Upper

boundaries

[Chla](mgm−3) C1P1, C2P3, C2P7 0.001/30.0

adg(440)(m
−1) C2P3, C2P7 0.001/2.5

Sdg(nm
−1) C2P7 0.005/0.02

bbp(660)(m
−1) C2P3, C2P7 0.001/0.1

Sbp C2P7 0.001/2.5

Bp(660) C2P7 0.001/0.05

SBp C2P7 −0.2/0.2

bio-optical model parameters (Gao et al., 2018, 2019; Hannadige et al., 2023) and as in Gao et al.,
:
(2018) for atmospheric320

parameters.

The retrievals were sorted based on their χ2 distribution, which is attributed to whether the ensemble of retrievals converged

at the global minimum (narrow χ2 distribution) or different local minima (broad χ2 distribution). For each of the RSP pixels,

we averaged 30% (i.e. cumulative probability = 30%) of the total retrievals to calculate the final retrieval results. We studied

average retrievals from all three bio-optical models using different cumulative probabilities at a time. About 30% cumulative325

probability yielded the lowest χ2 and retrieval variability. The selection of cumulative probability less than 30% did not leave

enough ensemble retrievals to estimate the average retrieval results. (For the C1P1 model this number is about 70%. To make
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it consistent across all three bio-optical models, 30% was selected). It should be noted that all the converged retrievals under

the three case studies yielded χ2 larger than 0.3. The minimum and maximum χ2 values within this 30% are denoted as χ2
min

and χ2
max respectively. For all three cases, the selection of the first 30% lowest χ2 retrievals resulted in χ2

max values which are330

about 5 points higher than the χ2
min (that is χ2

max ≈ 5 +χ2
min). The choice of the cumulative probability or the χ2

max depends

on the accuracy requirement of the retrieval.

The resultant uncertainties of the retrieval parameters are determined as the standard deviation of the retrievals within

χ2
min and χ2

max. The uncertainties are associated with different initial values in the optimization. Due to a large number of

retrieval parameters and the nonlinearity of the cost functions, the choice of the initial values often becomes important (Gao335

et al., 2020).
:::::
Based

:::
on Gao et al.,

:
(2020) demonstrated that

:::
and

::::
Gao

::
et

:::
al.,

::::::
(2022)

:
the uncertainty derived from ensemble

retrievals within χ2
min−χ2

max range is
::::
may

:::
not

::::::
always

::
be

:
comparable to the uncertainty calculated from the error propagation

method (Knobelspiesse et al., 2012). The error propagation method directly relates the retrieval uncertainties to measurement

uncertainties. The evaluation of uncertainties calculated from the error propagation method is subjected to a future study.

4.1 ACEPOL-Mix340

The minimum retrieval cost function value χ2
min is affected by the type of water present and the bio-optical model employed

in the retrieval. For relatively clear waters, where 1< [Chla]< 3 mgm−3, the χ2
min obtained under all the three bio-optical

models are similar (2< χ2
min < 3). The average χ2

min value within 30% of the lowest χ2 retrievals (χ2
avg30%

) is comparable

to the χ2
min (Fig. 3). For C2P3 and C2P7 χ2

avg30%
< 1.5×χ2

min. This suggests that the ensemble retrieval χ2 values have a

narrow spread attributed to the fact that most of the retrievals have reached their global minimum.345

With increasing turbidity towards the coast, the χ2
min values from C1P1 retrievals follow an increasing trend with increasing

[Chla]. Both the C2P3 and C2P7 models shows similar χ2
min values along the track, whose χ2

min values (< 5) also tend to

increase with increasing [Chla] but with less variability than that of C1P1 (χ2
min > 5). Larger χ2

min indicates the inability of

the forward model to accurately fit the MAP measurement. In other words, the C1P1 model is insufficient to fully represent the

turbid water IOP (λ)s compared to the C2P3 and C2P7 bio-optical models.350

We further validated the retrieval results and evaluated the retrieval uncertainties (Figs. 4 and 6) associated with each bio-

optical model using AOD retrievals from HSRL-2 and MODIS. MODIS and HSRL-2 AOD (Fig. 5) were collocated with RSP

within a maximum distance of around 1.7 km and 0.5 km. There are no in situ Rrs(λ) measurements available for validation

for this scene. Instead, we compared Rrs(λ) with collocated MODIS Rrs(λ) collected within a maximum distance of 0.5 km.

The time difference between MODIS and RSP measurements is roughly 1 hour. The MODIS 412, 469, 555, and 667 nm ocean355

color bands were chosen to compare the corresponding RSP Rrs(λ) at 410, 470, 550, and 670 nm bandsand MODIS 470, 550,

and 660 nm AOD bands were chosen to compare corresponding RSP AOD at 470, 550 and 670 nm bands.
:::::
AOD

:::::
from

::::
RSP

:::
was

:::::::::
compared

::::
with

:::
the

:::::::
MODIS

:::::
AOD

:::::
based

:::
on

:::
the

:::
AC

::::
data

:::::::
product,

::
a
::::::
choice

::
to

::::::
ensure

:::
the

::::::::::
consistency

::
of

:::::
ocean

:::::
color

::::
and

::::::
aerosol

::::
data

:::::::
products. In this case study, the AOD and Rrs(λ) retrievals obtained by averaging 30% of the lowest χ2 cases

were compared with that obtained for the χ2
min case (The results are not shown here). The comparison of

:::
RSP

:
retrieved AOD360
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Figure 3. ACEPOL-Mix: The top figure shows the MODIS retrieved [Chla]. The gray dashed lines indicate [Chla] = 1,3 and 10mgm−3.

The middle figure shows the χ2
min obtained for the RSP retrievals across the ACEPOL-Mix leg under the three bio-optical models; C1P1,

C2P3 and, C2P7. The bottom figure shows the average χ2
min value for the 30% of the lowest χ2 retrievals. Data is given with respect to the

longitude of the location. The coast
:
of
::::::::
Monterey

:::
Bay

:
is to the right-hand side of the plots

:
.

at 532 nm with HSRL-2
:::
and

:::::::
MODIS is given in Figure 5. For clear visualization, the density of the pixels has been reduced in

the plots. The vertical bars indicate the 1σ uncertainty.

Regardless of the selected bio-optical model or the turbidity of the water, all three models, C1P1, C2P3, and, C2P7 show sim-

ilar AOD values, suggesting that the bio-optical model does not substantially influence AOD retrievals (Fig. 4). The comparison

of AOD retrievals shows good agreement with MODIS within 1σ uncertainty limits except at 470 nm. Overall, the MODIS365

estimated AOD is larger than that from the MAPOL algorithm under
::::
AOD

::::::
agrees

::::
with

::::
the

:::::::
averaged

::::::::
MAPOL

:::::
AOD

::::::
within

:::
1-σ

::
of

:::
the

:::::::
retrieval

:::
of all 3 bio-optical models.

:
,
::::::
except

::
at

:::
410

::::
nm,

::
at

:::::
which

:::
the

:::::::
MODIS

:::::
AOD

::
is

:::::::
slightly

::::::
outside

::
of

:::
1σ

:::::
AOD

:::::::::
uncertainty

::::::
limits.

:::
The

:::::
AOD

::::::::
retrieved

::
by

::::::::
HSRL-2

:::
and

:::::::
MODIS

::
at
::::

532
:::
nm

:::
are

:::::::
similar.

:
Based on the AOD retrieval comparison with respect

to HSRL-2
::
and

:::::::
MODIS

::
at
::::

532
:::
nm

:
(Fig. 5) the C2P3 model shows the

:::::
overall

:
best agreement among the 3 bio-optical mod-370

els (Table 3). The differences between the HSRL-2,
::::::::

MODIS,
:
and RSP retrieved AOD may be related to different sampling

volumesand
:
, viewing geometries of the instruments,

::::::
and/or

:::::::
retrieval

:::::::::
algorithms.
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Figure 4. ACEPOL-Mix: The comparison of RSP retrieved averaged spectral AOD across the Monterey Bay with MODIS AODproduct
:
,

and retrieval uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3, and, C2P7 at 410, 470, 550,

and 670 nm for averaged retrievals. The vertical bars indicate the 1σ uncertainty. Data is given with respect to the longitude of the location.

The coast
::
of

:::::::
Monterey

::::
Bay is to the right-hand side of the plots.
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Figure 5. ACEPOL-Mix: The comparison of retrieved AOD at 532 nm with HSRL-2
:::
and

::::::
MODIS

:
AOD at 532 nm. The AOD obtained for

the lowest χ2 case is shown here. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3,
:

and, C2P7. Data is

given with respect to the longitude of the location. The coast
::
of

:::::::
Monterey

:::
Bay

:
is to the right-hand side of the plots

:
.

In the comparison of Rrs(λ) retrievals under the three bio-optical models (Fig. 6), MODIS shows negative Rrs(λ) values

at shorter wavelengths (410, and 470 nm) over the one or two pixels closest to the coast around 121.95◦ W.
:::
The

:::::
AOD

::::::
values

:::
over

:::::
these

:::::
pixels

:::
are

::::
also

:::::
much

:::::
larger

:::::::::
compared

::
to

:::::::
MAPOL

:::::::::
retrievals. This indicates that the MODIS atmospheric correction375

:::
AC algorithm has overestimated the aerosol signal over coastal waters,

:::::::
thereby

::::::
making

::::::
Rrs(λ)

::::::::
negative. There are no negative

Rrs(λ)
:::::
found

:
in the MAPOL retrievals. MODIS estimated Rrs(λ) values are higher than those from MAPOL for relatively

clear waters at 410, 470, and 550 nm, but agree well at 670 nm with Rrs(λ) retrieved from C2P3 and C2P7 models. The C1P1

model also agrees well at 670 nm, but not when closer to the coast.
:::
For

:::
the

:::::::
MODIS,

::::::::::
comparably

:::::
larger

::::::
Rrs(λ)

::::::
values

::
at

::::::
shorter

::::::::::
wavelengths

:::
can

:::
be

::::::::
explained

:::
by

:::
the

::::::::::
comparably

::::::
smaller

:::::
AOD

::::::
values

::
at

:::
the

::::::::
respective

:::::::::::
wavelengths.

::
A
:::::::

smaller
:::::::::
difference

::
in380

::::
AOD

::::
can

:::
lead

:::
to

:
a
:::::
larger

:::::::::
difference

::
in

:::::::
Rrs(λ). The differences between MODIS products and MAPOL retrievals using the 3

bio-optical models are given in Table 3.

The corresponding retrieval uncertainties for AOD and Rrs(λ) are calculated as discussed in Section 4. The retrieved AOD

values are similar across the 3 bio-optical models, but their AOD uncertainties differ due to the differences in their retrieval χ2

distribution. C1P1 shows the lowest AOD and Rrs(λ) retrieval uncertainties. Yet, even though C1P1 shows smaller uncertain-385

ties compared to the other two models, the accuracy of theRrs(λ) retrievals is not satisfactory for the two most nearshore pixels

with respect to MODIS. The average uncertainty is less than 0.01 for AOD at all the given RSP wavelengths. This falls within

the AOD uncertainty requirement defined by the Glory mission, namely, a maximum of 0.02 over the ocean (Mishchenko et al.,

2004). Overall, the C2P3 AOD uncertainty is slightly higher than that of C2P7. But it becomes smaller than that of C2P7 over

the coastal waters.390

The Rrs(λ) uncertainty from C2P3 and C2P7-based retrievals are similar with a maximum of 0.0004, 0.0005, 0.0007, and,

0.0003 sr−1 at 410, 470, 550 and 670 nm respectively. These uncertainties fall within the PACE defined Rrs(λ) uncertainty:

from 400 to 600 nm the absolute uncertainty is 0.0006 sr−1, and from 600 to 710 nm the absolute uncertainty is 0.0002 sr−1
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Figure 6.
:::::::::::
ACEPOL-Mix: The same as Figure 4 but for

:::::::::
comparison

::
of

::
the

::::
RSP

:::::::
retrieved

:::::::
averaged

:
Rrs(λ) ::::

across
:::
the

:::::::
Monterey

::::
Bay

::::
with

::::::
MODIS

::::::
Rrs(λ)::::::

product
:::
and

::::::
retrieval

:::::::::
uncertainty.

::::::
Results

:::
are

:::::
shown

::
for

:::
the

:::::::
retrievals

:::::
under

::
the

::::
three

:::::::::
bio-optical

:::::
models

:::::
C1P1,

:::::
C2P3,

::::
and,

::::
C2P7

::
at

::::
410,

:::
469,

::::
554,

:::
and

:::
670

:::
nm

:::
for

:::::::
averaged

:::::::
retrievals.

::::
The

::::::
vertical

:::
bars

::::::
indicate

:::
the

:::
1σ

:::::::::
uncertainty.

:::
Data

::
is
:::::
given

:::
with

::::::
respect

::
to

:::
the

:::::::
longitude

::
of

::
the

:::::::
location.

:::
The

::::
coast

::
of
::::::::
Monterey

:::
Bay

::
is

::
to

::
the

::::::::
right-hand

::::
side

::
of

::
the

:::::
plots.
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Table 3. ACEPOL-Mix: The average relative differences ( 1
N

∑[
amodel−aMODIS

aMODIS

]
(%), where a is either AOD orRrs(λ) andN is the

:::
total

number of total retrieved pixels
::::::
(sample

:::
size);

:::::
N=62)

:
of AOD and Rrs(λ) between MODIS and the 3 bio-optical models (C1P1, C2P3, and

C2P7) at 410, 470, 550, and 670 nm. Negative Rrs(λ) from MODIS were excluded. The differences are based on 30% averaged retrievals.

The standard deviation of the relative differences is given inside the parentheses.

410 nm 470 nm 550 nm 670 nm

C1P1 -
:::
16.3

::::
(7.4) 22.2 (4.5

::
8.9

:::
(6.1) 12.8 (5.6

:::
5.5

:::
(5.4) 12.5 (6.1

::
9.3

::::
(6.5)

AOD C2P3 - 19.9 (4.8
:::
10.1) 9.8 (5.9

:::
12.1

:::
(7.9) 10.0 (6.3)

::
6.5

::::
(6.1)

::
6.4

::::
(6.0)

C2P7 -
:::
15.6

::::
(8.6) 23.3 (4.5

::
8.5

:::
(6.7) 14.0 (5.3

:::
5.1

:::
(5.7) 13.8 (6.2

:::
10.3

:::
(6.1)

C1P1 60.7 (6.0) 56.8 (4.7) 39.1 (9.3) 34.6 (11.0)

Rrs(λ) C2P3 66.9 (6.9) 61.9 (10.7) 40.1 (15.0) 14.9 (12.8)

C2P7 58.4 (5.6) 53.6 (9.8) 30.2 (13.0) 17.3 (15.7)

(Werdell et al., 2019). For C1P1 the Rrs(λ) uncertainty is less than 0.0002 sr−1 for all the wavelengths shown in Fig. 6 and

falls within PACE defined Rrs(λ) uncertainty.395

The C1P1 AOD uncertainty is comparable with the other two models but C1P1 Rrs(λ) uncertainty is significantly lower

than the other two models. One reason can be explained as the total number of free parameters in the retrieval. With the C1P1

model, there is a total of 15 parameters to be retrieved. For C2P3 and C2P7 that increases to 17 and 21 respectively. With fewer

parameters, it is easier to converge at the global minimum within the parameter space, or a similar local minimum is always

achieved. Here, for the C1P1 model, the majority of the retrievals are converged to the same point (either a local minimum400

or the global minimum), hence the uncertainty
::::::
defined

::
by

::::
the

:::::
spread

:::
of

:::
the

::::
cost

:::::::
function

::::::
values

:
is relatively small. With a

larger number of free parameters in the retrieval, convergence can be achieved at a local minimum more often than at the

global minimum. That makes the χ2 distribution widespread, hence the uncertainty becomes larger.
::::
Since

:::::
C2P3

::
is

:
a
:::::::::
simplified

::::::
version

::
of

:::
the

:::::
C2P7

:::::
model

:::::
(that

:
is
::
a
:::::
subset

::
of
:::
the

:::::
C2P7

:::::::
model)

::
we

::::
can

:::::
expect

:::::
C2P3

::::
and

:::::
C2P7

::
to

::::
have

::::::
similar

::::::::::::
performances.

4.2 NAAMES-Coastal405

The NAAMES-Coastal case (2015 November 04) covers RSP retrievals over Delaware Bay (Fig. 1 (b)), which is a coastal

water region with high turbidity. The χ2
min value obtained for each pixel with the three bio-optical models (C1P1, C2P7, and

C2P3) is given at the bottom of Figure 7. The averaged χ2
min for the 30% of the lowest χ2 (χ2

avg30%
) cases is the same as

χ2
min for C1P1 and roughly twice the χ2

min value for both C2P3 and C2P7. We did not see a significant difference between the

retrieval results obtained from the lowest χ2 case and 30% average, hence only the averaged AOD and Rrs(λ) retrievals are410

shown here. The MODIS [Chla] data (Fig. 7) shows values larger than 5 mgm−3 and the peak value exceeds 20 mgm−3. The

C1P1 model has shown the highest χ2
min values around 100 still with a narrow χ2 distribution, whereas both C2P3 and C2P7

models show χ2
min values around 1.5. The large χ2

min values around 100 with narrow χ2 distributions imply the insufficiency
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of the C1P1 model to represent highly turbid coastal waters.
::::
This

:::
also

::::::::
suggests

:::
that

:::::::
caution

:::::
needs

::
to

::
be

:::::
taken

:::::
when

:::::
using

:::
the

:::
cost

:::::::
function

::::::
spread

::
to

:::::
study

:::
the

:::::::::
uncertainty

::
of

:::::::
retrieval

::::::::::
parameters. Overall, C2P3 and C2P7 models show the same capability415

to represent turbid coastal waters.
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Figure 7.
::::::::::::::
NAAMES-Coastal:

:::
The

:::
top

:::::
figure

:::::
shows

::::::
MODIS

::::::
[Chla].

:::
The

::::
gray

::::::
dashed

::::
lines

::::::
indicate

::::::
[Chla]

:
=
::
5,
:::
10

:::
and

::
20

:::::::
mgm−3.

::::
The

:::::
middle

:::::
figure

:::::
shows

::::
χ2
min:::::::

obtained
:::
for

::
the

::::
RSP

:::::::
retrievals

:::::
under

:::
the

::::
three

::::::::
bio-optical

::::::
models:

:::::
C1P1,

:::::
C2P3,

::::
and,

:::::
C2P7.

:::
The

::::::
bottom

:::::
figure

::::
shows

:::
the

::::::
average

:::::
χ2
min ::::

value
:::
for

::
the

::::
30%

::
of

:::
the

:::::
lowest

::
χ2

::::::::
retrievals.

::::
Data

::
is

::::
given

::::
with

:::::
respect

::
to
:::
the

:::::::
longitude

::
of

:::
the

:::::::
location.

:::
The

::::
RSP

::
leg

::
is

:::::
located

:::::
along

:::
the

::::::
eastward

:::::
coast

:
of
::::::::

Delaware
:::
Bay.

:::
The

::::::::
averaged

:::::
AOD

:::::::
obtained

:::::
under

:::
the

:::::
C1P1

::::::
model

::
is

:::::
larger

::::
than

:::::
those

:::::::
obtained

:::::
with

:::::
C2P3

:::
and

::::::
C2P7,

:::::
likely

:::::::
because

:::
the

::::
C1P1

::::::
model

:::::::::::
misrepresents

:::
the

:::::
water

:::::::
properly

:::
in

::::::::
Delaware

:::
Bay

:::::::
(Fig.8). We collocated MODIS AOD and ocean color products

within a maximum distance of 0.8 km. The time difference between MODIS and RSP scanning times is approximately 1 hour.

The MODIS 412, 469, 555, and 671 nm ocean color bands are chosen to compare Rrs(λ)
::::
AOD

::::::
values at 410 , 470, 550, and420

670 nm , and the MODIS 470, 550, and 660 nm AOD bands are chosen to compare AOD at 470, 550, and 670 nm.

NAAMES-Coastal: The top figure shows MODIS [Chla]. The gray dashed lines indicate [Chla] = 5, 10 and 20 mgm−3.

The middle figure shows χ2
min obtained for the RSP retrievals under the three bio-optical models: C1P1, C2P3 and, C2P7. The

bottom figure shows the average χ2
min value for the 30% of the lowest χ2 retrievals. Data is given with respect to the longitude

of the location425
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The averaged AOD obtained under the
::
nm

:::
are

::::::
within

:::
the

::::::::
uncertain

:::::
limits

::
of C1P1 model is larger than those obtained with

:::
and

:::
fall

::::::
within

:::
the

::::::::::
uncertainty

:::::
limits

::
of

:
C2P3 and C2P7 , likely because the C1P1 model misrepresents the water properly

in Delaware Bay (Fig. 8).
::
at

:::
the

:::
rest

:::
of

:::
the

:::::::::::
wavelengths. Correspondingly, the C1P1 Rrs(λ) is less than that from C2P3 and

C2P7 (Fig. 9). At 410 and 470 nm, the Rrs(λ) retrieved with C2P7 is on average larger than that from C2P3, but similar values

are retrieved at 550 and 670 nm. The MODIS Rrs(λ) agrees well with C2P3 and C2P7 at
::::
470, 550 and 670 nm.

::
At

:::
410

::::
nm,430

::::::
MODIS

:::::::
Rrs(λ)

::
is

::::::
mostly

::::::
similar

::
to

::::
that

:::::::
retrieved

:::::
from

:::::
C2P3.

:
The average relative differences between MODIS Rrs(λ) and

MAPOL retrievals using
::::
AOD

::::
and

::::::
Rrs(λ)

::::
with

::::::::
MAPOL

:::::::
retrievals

:::::
under

:
the 3 bio-optical models are given in Table 4. Due to

the limited MODIS AOD values, average relative differences are not shown for the AOD retrievals.
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Figure 8. NAAMES-Coastal: The comparison of the RSP retrieved averaged AOD across the Delaware Bay with MODIS AOD product and

uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3, and, C2P7 at 410, 470, 550, and 670 nm for

averaged retrievals. The vertical bars indicate the 1σ uncertainty. Data is given with respect to the longitude of the location.
::::
The

:::
RSP

:::
leg

::
is

:::::
located

:::::
along

::
the

:::::::
eastward

::::
coast

::
of

::::::::
Delaware

:::
Bay.
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Figure 9.
::::::::::::::
NAAMES-Coastal:

:
The same as Figure 8 but for

::::::::
comparison

::
of

:::
the

:::
RSP

:::::::
retrieved

:::::::
averaged Rrs(λ):::::

across
::
the

::::::::
Delaware

:::
Bay

::::
with

::::::
MODIS

::::::
Rrs(λ)::::::

product
:::
and

:::::::::
uncertainty.

::::::
Results

::
are

:::::
shown

:::
for

:::
the

:::::::
retrievals

::::
under

:::
the

::::
three

::::::::
bio-optical

::::::
models

:::::
C1P1,

:::::
C2P3,

:::
and,

:::::
C2P7

::
at

:::
410,

::::
470,

:::
550,

::::
and

:::
670

:::
nm

::
for

:::::::
averaged

::::::::
retrievals.

:::
The

::::::
vertical

:::
bars

::::::
indicate

:::
the

:::
1σ

:::::::::
uncertainty.

:::
Data

::
is
:::::
given

:::
with

::::::
respect

::
to

::
the

::::::::
longitude

:
of
:::

the
:::::::
location.

:::
The

::::
RSP

::
leg

::
is
::::::
located

::::
along

:::
the

:::::::
eastward

::::
coast

::
of

:::::::
Delaware

::::
Bay.
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Table 4. NAAMES-Coastal: The average relative differences (%) of
::::
AOD

:::
andRrs(λ) between MODIS and the 3 bio-optical models (C1P1,

C2P3, and C2P7) at 410, 470, 550 and 670 nm.
:::::

Sample
::::
size,

:::::
N=40. The differences are based on 30% averaged retrievals. Negative Rrs(λ)

from MODIS were excluded. The standard deviation of the relative differences is given inside the parentheses

410 nm 470 nm 550 nm 670 nm

C1P1
::
9.7

::::
(4.2)

::
4.1

::::
(2.9)

:::
11.7

::::
(6.3)

: :::
29.5

::::
(9.9)

::::
AOD

::::
C2P3

::::
22.0

:::
(3.5)

: ::::
12.5

:::
(4.4)

: ::
4.7

::::
(3.7)

:::
13.8

::::
(7.6)

::::
C2P7

::::
23.6

:::
(3.4)

: ::::
14.0

:::
(4.5)

: ::
5.4

::::
(3.7)

:::
13.0

::::
(7.3)

::::
C1P1 31.4 (21.2) 63.4 (10.2) 75.5 (4.5) 90.5 (1.7)

::::::
Rrs(λ) C2P3 17.4 (14.7) 18.4 (6.2) 7.1 (4.3) 7.6 (5.7)

C2P7 60.8 (35.3) 7.9 (4.5) 10.5 (5.9) 7.9 (4.8)

The AOD and Rrs(λ) retrieval uncertainties (Fig. 8 and 9) are generally similar across the three bio-optical models, with

a few exceptions seen for C1P1 Rrs(λ) uncertainty at longer wavelengths. The average AOD uncertainty is less than 0.02435

at all the given RSP wavelengths and meets the AOD uncertainty requirement for climate models as assessed by Mischenko

et al.
:
, (2004). The Rrs(λ) uncertainty for the C2P7 model is larger for

::
at shorter wavelengths (410 and 470 nm), where the

correspondingRrs(λ) signals are small. Overall, the C2P3 and C2P7 models result inRrs(λ) uncertainties near the uncertainty

defined by the PACE mission except at 670 nm. Even though the Rrs(λ) retrieval uncertainties are very small, the significantly

larger χ2 values under the C1P1 model
::
and

::::
the

:::::::
inability

::
to

::::::
match

:::
the

:::::::
MODIS

::::::::
retrievals suggest that the C1P1 model is not440

suitable to represent the coastal water properties.

4.3 NAAMES-Open

The NAAMES-Open case (2015 November 04) covers RSP retrievals along the open ocean outward from Delaware Bay (Fig.

1 (c)). The χ2
min values obtained for each pixel, under the three bio-optical models (C1P1, C2P7, and C2P3) are shown in the

middle panel of Fig. 10. The averaged χ2
min for the 30% of the lowest χ2 cases is the same as χ2

min for C1P1, and around 5445

times the χ2
min value for both C2P3 and C2P7 showing larger χ2 distributions. This implies that C2P3 and C2P7 models result

in retrievals that converge at different local minima, instead of the global minimum. The MODIS [Chla] values (the top panel

of Fig.10) are less than 0.5 mgm−3 in the open ocean and increase up to 4 mgm−3 closer to the coast/Delaware Bay. The

χ2
min values are similar across all three bio-optical models with values around 1. There are some pixels from longitude 71.5◦

W to 72.3◦ W which shows
::::
show larger χ2

min values which we found to be attributed to cirrus cloud contamination.450

We
:::
For

:::
this

:::::
case,

:::
we collocated MODIS AOD and Rrs(λ) within a maximum distance of 1.4 km and 0.5 km respectively.

The time difference between MODIS and RSP, scanning times is 1 hour. The MODIS 412, 469, 555, and 671 nm ocean color

bands are used to compare the corresponding RSP Rrs(λ) at 410, 470, 550, and 670 nm and MODIS 470, 550, and 660 nm

AOD bands are used to compare corresponding RSP AOD at 470, 550, and 670 nm.
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Figure 10. NAAMES-Open: The top figure shows MODIS [Chla]. The gray dashed lines indicate [Chla]=0.5 and 1 mgm−3. The middle

figure shows χ2
min obtained for the RSP retrievals under the three bio-optical models: C1P1, C2P3,

:
and, C2P7. The bottom figure shows the

average χ2
min value for the 30% of the lowest χ2 retrievals. Data is given with respect to the longitude of the location

:
.
:::
The

::::
coast

::
is
::
to

:::
the

::::::
left-hand

::::
side

::
of

::
the

:::::
plots.

The comparison with MODIS AOD (Fig. 11) shows a better agreement with averaged C1P1 AOD
::::
AOD

::::::::
retrievals

::::
from

:::
all455

::::
three

:::::::::
bio-optical

:::::::
models. Some exceptions are seen in the locations that were attributed to cloud contamination. Unlike the

previous two cases, the C1P1 averaged Rrs(λ) show the best agreement with MODIS Rrs(λ), mostly over open waters (Fig.

12). The C2P3 and C2P7 averaged Rrs(λ) show better agreement only when closer to the coast
::::::
(-74.5◦

:::
W), where C1P1 is not

expected to provide a complete representation of the water optical properties.

For C2P3 and C2P7 models, the comparison of AOD and Rrs(λ) retrievals obtained for the lowest χ2 retrieval of the460

ensemble retrieval, show better agreement with MODIS AOD and MODIS Rrs(λ) compared to the averaged retrievals.
:::
For

:::::
AOD,

:::
the

:::::
C2P3

::::
and

:::::
C2P7

::::::::
averaged

::::::::
retrievals

:::::
show

::
a
:::::
better

:::::::::
agreement

:::::
with

:::::::
MODIS

:::::
AOD

::::
than

:::
the

::::::
lowest

:::
χ2

:::::::::
retrievals.

::::::::
However,

:::
the

:::::::::
agreement

::
of

:::
the

::::::
lowest

:::
χ2

::::
AOD

::::::::
retrievals

:::::
from

:::::
C2P3

:::
and

::::::
C2P7

::::
with

:::::::
MODIS

::
is

:::::
better

::::
than

::::
that

::::
from

::::::
C1P1.

The relative differences between MODIS and MAPOL retrieved AOD corresponding to χ2
min and χavg30% are given in Table

5 and the same for Rrs(λ) is given in Table 6. There is a significant difference seen in the relative difference values between465
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χ2
min and χavg30% for Rrs(λ) which is not evident

::::::::
significant

:
for AOD. The distribution of χ2 values in the ensemble retrieval

therefore largely affects
::
the

::::::::
accuracy

::
of Rrs(λ) retrievals.

The AOD uncertainties (Fig. 11) are similar across the three bio-optical models with a maximum of 0.015 at all given

wavelengths. For Rrs(λ) (Fig. 12) C1P1 shows the lowest uncertainties owing to its better representation in the open ocean

and small parameter space, which leads to better convergence near the global minimum. The multi-parameter models show470

comparably larger Rrs(λ) uncertainties that are still within the PACE-defined uncertainties except at 410 nm.
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Figure 11. NAAMES-Open: The comparison of the RSP retrieved spectral AOD across the open ocean with MODIS AOD product and

uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3, and, C2P7 at 410, 469, 554, and 670 nm for

averaged retrievals. The lines (C1P1-solid, C2P3-dashed, C2P7-dotted) indicate the retrievals obtained for the χ2
min case. The markers show

the average retrieval. The uncertainty plots show the 1σ uncertainty for averaged retrievals. Data is given with respect to the longitude of the

location. The coast is to the left-hand side of the plots.
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Figure 12.
::::::::::::
NAAMES-Open

:
:
:

The same as Figure 11 but for
::::::::
comparison

::
of

:::
the

:::
RSP

:::::::
retrieved

::::::
spectral

:
Rrs(λ) ::::

across
:::

the
::::
open

:::::
ocean

::::
with

::::::
MODIS

::::::
Rrs(λ)::::::

product
:::
and

:::::::::
uncertainty.

::::::
Results

::
are

:::::
shown

:::
for

:::
the

:::::::
retrievals

::::
under

:::
the

::::
three

::::::::
bio-optical

::::::
models

:::::
C1P1,

:::::
C2P3,

:::
and,

:::::
C2P7

::
at

:::
410,

::::
469,

:::
554,

:::
and

:::
670

:::
nm

:::
for

:::::::
averaged

:::::::
retrievals.

:::
The

::::
lines

::::::::::
(C1P1-solid,

::::::::::
C2P3-dashed,

::::::::::
C2P7-dotted)

::::::
indicate

:::
the

:::::::
retrievals

:::::::
obtained

::
for

:::
the

::::
χ2
min::::

case.
:::
The

::::::
markers

:::::
show

::
the

::::::
average

:::::::
retrieval.

:::
The

:::::::::
uncertainty

::::
plots

::::
show

::
the

:::
1σ

::::::::
uncertainty

:::
for

:::::::
averaged

:::::::
retrievals.

::::
Data

::
is

::::
given

::::
with

:::::
respect

::
to

:::
the

:::::::
longitude

::
of

::
the

:::::::
location.

:::
The

:::::
coast

:
is
::
to

:::
the

:::::::
left-hand

:::
side

::
of

:::
the

::::
plots.
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Table 5. NAAMES-Open: The average relative differences (%) of AOD between MODIS and the 3 bio-optical models (C1P1, C2P3, and

C2P7) at 470, 550, and 670 nm.
::::::
Sample

:::
size,

::::::
N=106.

:
The differences are given for the retrievals from χ2

min case and averaged retrievals

χ2
avg30%. The standard deviation of the relative differences is given inside the parentheses

:::
410

::
nm

:
470 nm 550 nm 670 nm

C1P1 11.5 (10.5
:::
7.2

:::
(4.7) 13.2 (8.9

:::
9.0

:::
(5.9) 12.2 (7.8)

:::
13.7

::::
(9.0)

:::
20.7

:::::
(11.9)

χ2
avg30%

C2P3 16.2 (9.9
::
9.0

::::
(6.0) 21.9 (13.0

::
8.6

:::
(5.2) 16.5 (10.9)

:::::::
13.5(8.4)

:::
21.6

:::::
(11.6)

C2P7 13.2 (8.8
::
7.4

::::
(5.1) 18.0 (11.0

::
7.9

:::
(5.0) 13.5 (8.5)

:::
13.3

::::
(8.4)

:::
21.6

:::::
(13.0)

C1P1 20.3 (16.5
:::

19.7
::::
(12.0) 26.1 (24.0

:::
25.5

::::
(13.3) 32.4 (31.2)

:::
31.4

:::::
(16.5)

:::
40.5

:::::
(23.0)

χ2
min C2P3 17.6 (14.2

:::
31.3

::::
(10.7) 17.3 (14.4

:::
36.7

::::
(11.2) 23.3 (14.0)

:::
44.9

:::::
(13.2)

:::
53.5

:::::
(15.7)

C2P7 17.7 (12.3
:::

29.0
::::
(11.7) . 17.4 (13.0

::::
34.3

::::
(12.2) .

::::
45.5

:::::
(13.7) 22.0 (14.3

:::
51.1

::::
(16.2)

Table 6. The same as 5 but for Rrs(λ)

410 nm 470 nm 550 nm 670 nm

C1P1 27.0 (16.6) 25.7 (11.4) 21.0 (8.9) 19.2 (6.1)

χ2
avg30%

C2P3 84.0 (7.3) 84.4 (8.4) 69.0 (10.6) 52.5 (10.7)

C2P7 80.0 (10.4) 81.8 (10.6) 67.2 (12.9) 49.7 (13.2)

C1P1 20.6 (16.4) 20.9 (11.4) 21.5 (9.0) 51.0 (6.6)

χ2
min C2P3 27.2 (22.7) 42.8 (15.7) 24.8 (16.6) 36.8 (15.6)

C2P7 22.3 (20.3) 37.7 (15.2) 21.3 (16.4) 33.2 (16.9)

5 Discussion

In this study, we have evaluated the retrieval performances of 3 bio-optical models within CAOSs under different water con-

ditions. For the ACEPOL-Mix case, the waters are moderately turbid
::::
vary

:::::
from

::::::::
relatively

::::
clear

::
to
::::::

highly
::::::
turbid

:::::::::
conditions

with [Chla] values ranging from 3− 20
:::::
1− 20

:
mgm−3. The NAAMES-Coastal case includes RSP measurements over highly475

turbid waters (5< [Chla]< 20 mgm−3). For the NAAMES-Open case, the waters are mostly clear and become turbid when

closer to the coast (0.1< [Chla]< 3 mgm−3).

We have evaluated the retrieval performances based on the
::::::::
magnitude

:::
of

:::
the retrieval cost function values, ensemble

:::
the

:::::
spread

::
of
::::

the cost function distribution, the retrieved of
::::::
validity

:::
of

:::::::
retrieved

:
AOD and Rrs(λ) values, and

:::
the corresponding

retrieval uncertainties. For the NAAMES-Open case, the C1P1 model shows low χ2
min values indicating good fitting against480

RSP measurements. The C2P3 and C2P7 models also show good fitting with the RSP measurements, but only when the χ2
min

cases are considered. The C1P1 shows the best agreement in AOD and Rrs(λ) retrieval results with independent data sources

from the MODIS. The C1P1 retrieval performance in the ACEPOL-Mix case is satisfactory when the waters are
::::::::
relatively
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clear ([Chla] 1.5
::
<3

:
mgm−3), that is, towards the open ocean. The C2P3 and C2P7 models in the NAAMES-Coastal case and

nearshore ACEPOL-Mix pixels show better agreement in
:::::::
averaged

:
AOD and Rrs(λ) retrievals with uncertainties within the485

Glory uncertainty requirement for AOD and the PACE uncertainty requirement for Rrs(λ).

The overall results indicate that the choice of bio-optical model (either a single parameter or multi-parameter) affects the

accuracy of the retrievals, which is especially true for Rrs(λ) retrievals. The retrieval performances
:::::::::
Hannadige

::
et

:::
al.,

::::::
(2023)

::::::
showed

::::::
similar

:::::::
retrieval

::::::::::::
performances

:::
for

::
3

:::
and

:::::::::::
5-parameter

:::::::::
bio-optical

::::::
models

:::::
when

:::::::
Rrs(λ)

::
is

:::::::
inverted

:::::
using

::::::::::
SAA-based

:::::::::
algorithms.

:::::
Here

:::
we

:::::::::::
demonstrated

::::
that

:::
the

:::::
joint

:::::::
retrieval

::::::::::::
performances of the C2P3 and C2P7 models are mostly similar490

:::::::
showing

:::
that

:::
the

:::::
same

:::::::::
conclusion

:::::
holds

:::
for

::::
joint

:::::::
retrieval

:::::::::
algorithms

:::::
using

:::
the

:::::::
airborne

:::::
MAP

::::::::::::
measurements. For coastal wa-

ters, it is more challenging to retrieve Rrs(λ) accurately due to the complex water properties that require multi-parameter

:::::::::::
inappropriate

::
to

:::
use

:::
the

::::::::::::::
single-parameter

:
bio-optical models

:::::
model. The C2P3 and C2P7 models show good retrieval perfor-

mances over turbid waters.

We have also evaluated the distribution of ensemble χ2 values based on χ2
min and χ2

avg30%
values. For

::::
The

:::::
study

::
of

::::
cost495

:::::::
function

::::::::::
distributions

:::::
helps

:::::::::
understand

::::
the

::::::
impact

::
of

:::::::::
bio-optical

::::::
models

:::
on

:::
the

:::::::::::
convergence

:::::::
behavior

:::
of

:::
the

::::::::
non-linear

:::::
least

::::::
squares

:::::
fitting

::::::::::
algorithms.

:::
For

:::
the C1P1 model

:
, the χ2 distribution from all three cases is narrow, even with larger

::
the

::::::::
resultant

χ2 values
:::
are

::::
large.

::::
This

::::::::
suggests

:::
that

:::
the

:::
use

::
of

::::
cost

:::::::
function

::::::::::
distribution

::::
alone

::
to

:::::
study

:::
the

:::::::::
uncertainty

:::
of

:::::::
retrieval

:::::::::
parameters

:
is
::::::::::
misleading. This implies its ability to achieve similar convergence even if the global minimum is not reached. For C2P3

and C2P7, over moderately to highly turbid waters (ACEPOL-Mix and NAAMES-Coastal
:
,
::::::::::::::
1< [Chla]< 20

:::::::
mgm−3), the500

χ2 values are mostly closer to 1 and the distribution is nearly narrow, implying their capability to reach near the global

minimum with multiple parameters over coastal waters. But in the NAAMES-Open case, C2P3 and C2P7 show widespread

χ2 distributions implying their inability to reach the global minimum with multiple parameters over open waters. This can be

explained by the degrees of freedom in the water leaving signal and the number of optimization parameters in the bio-optical

models.505

In the NAAMES-Open case, even though the averaged retrieval results from C2P3 and C2P7 are not satisfactory on average

::
on

:::::::
average

:::
not

::::::::::
satisfactory over clear waters, the retrieval results corresponding to the lowest χ2 show good agreement with

MODIS AOD and Rrs(λ). This implies that the C2P3 and C2P7 models still can accurately represent clear water optical

properties with proper interpretation and conscientious use of the χ2 distributions. However, the averaged retrieval results

differ significantly as the retrieval χ2 distributions under C2P3 and C2P7 models are widespread compared to that of C1P1.510

For the practical use of these bio-optical models, we suggest performing initial retrievals using the C1P1 bio-optical model

and then reperforming the retrievals with either C2P3 or C2P7 models in case the C1P1 model results in significantly larger χ2

values.

The C2P3 and C2P7 models show similar retrieval performances for all three case studies. The MAPOL retrievals with

:::::
under the C2P3 model use 17 retrieval parameters whereas the C2P7 model uses 21 parameters.

::::
The

:::::
C2P7

:::::::
provides

::
a

:::::
larger515

::::::::
parameter

:::::
space

:::
that

:::::::::::
encompasses

:::
all

:::
the

:::::::
possible

::::::::
parameter

:::::
value

:::::::::::
combinations

::
of

:::
the

:::::
C2P3

::::::
model,

:::::
hence

::::
their

::::::::::::
performances

::
are

:::::::
similar. MAPOL is computationally demanding as it needs to iteratively run the radiative transfer forward model for CAOS.

The
:::::::
algorithm

:::::::
stability

::::
and

:::
the

:
time taken for a single retrieval is proportional to the size of the retrieval parameters. For the
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C2P3 model, it takes an average of 3 hours for a single CPU core to process one-pixel retrieval with RSP measurements

whereas,
:
for the C2P7 model, the time increases up to 8 hours

::::
since

:::
an

::::::::
increased

::::::
number

::
of

::::::::::
parameters

::::
leads

::
to

:::::
more

:::::::
forward520

:::::
model

:::
and

::::::::
Jacobian

:::::::::
evaluations

::
in

::::
least

:::::::
squares

:::::
fitting

:::::::::
algorithms. Therefore, the C2P3 model is more efficient for the MAPOL

algorithm to represent Case II waters.

The operational version of MAPOL, called FastMAPOL, replaces the radiative transfer forward model with neural networks,

which can process several pixels within a second in a single CPU (Gao et al., 2021). We expect to update both MAPOL and

FastMAPOL algorithms with the C2P3 model in the future. The fixed parameters in the 3-parameter C2P3 model might not525

be true for all the water which is subject to fine-tuning. The availability of airborne MAP measurements over the oceans under

cloud-free conditions is limitedthat
:
,
:::
and

:
we cannot cover a larger range of atmosphere and water conditions in this study.

The unavailability of accurate in-situ measurements over the selected locations for the validation is yet another limitation. We

expect to further improve our bio-optical models based on the MAP measurements to be acquired from the PACE mission plan

to launch in early 2024.530

The [Chla] alone does not fully represent the turbidity of the water as the sediment/NAP concentration and CDOM avail-

ability are also important factors. There is no clear boundary between Case I and Case II waters (IOCCG, 2000), hence we

cannot provide a clear set of conditions where we need to apply each of the bio-optical models used in this study. There is

no universal bio-optical model to represent water bio-optical properties (Fan et al., 2021). At least two separate bio-optical

models are required to represent Case I and Case II waters. The three cases in this study do not cover in-land/lake waters. The535

applicability of C2P3 and C2P7 to lakes or in-land waters is subject to a future study.

6 Conclusions

In this paper, we have evaluated the performance of the MAPOL joint retrieval algorithm under
::::
using

:
three bio-optical models.

The RSP measurements from different field campaigns covering different water types are used. The retrieval performance

evaluation is based on the cost function value
::::::::
magnitude

::
of

:::
the

::::
cost

::::::::
function

:::::
values

:
(χ2)and the ,

:::
the

::::::
spread

::
of
::::

the
:::::::
retrieval540

cost function distributionof the retrievals,
:
,
:::
the

::::::
validity

::
of

:
retrieved AOD, and Rrs(λ) and their

::::::::
respective uncertainty analysis.

The three bio-optical models include C1P1, a single parameter Case I water model, C2P3, and C2P7, multi-parameter Case II

bio-optical models. Three cases; ACEPOL-Mix, NAAMES-Costal, and NAAMES-Open, were selected based on their location

and water turbidity observed with respect to [Chla] derived from MODIS single-view radiometer
:::
the

::::::
NASA

:::::
OBPG

:::::::::
algorithm

::::
with

:::::::
MODIS

::::::::::::
measurements. The NAAMES-Costal covers highly turbid waters, ACEPOL-Mix covers moderately turbid and545

:::::
highly

::::::
turbid

:::
and

::::::::
relatively

:
clear waters and NAAMES-Open covers open clear waters. The retrieved AOD was validated

against that from HSRL-2 (ACEPOL-Coastal) and/or MODIS and Rrs(λ) was compared against that from MODIS. The

MODIS Rrs(λ) over
::::::
highly turbid waters show negative values for shorter wavelengths (410 and 470 nm), hence that cannot

be used as a validation dataset. On the other hand, the MODIS data products are used as a sanity check of the RSP
::
to

:::::::
perform

:::::
sanity

::::::
checks

::
of

:::
the

:::::::::
RSP-based

::::::::
MAPOL retrievals.550
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We evaluated the
::::::
spread

::
of retrieval cost function distribution of

:::
from

:
the ensemble retrievals of

::::
with the three bio-optical

models. The C1P1 model showed narrow χ2 distribution
::::::::::
distributions regardless of the type of water present or the

:::::::::
magnitude

::
of χ2

min values.
::::
This

:::::
makes

:::
the

:::::::
retrieval

::::::::::
uncertainty

::::
from

:::
the

:::::
C1P1

::::::
model

:::::::
smaller,

::::
even

::::::
though

:::
the

::::::
model

:::
can

:::
not

:::::::::
accurately

:::::::
represent

::
a
::::::::
particular

:::::
water

::::
type

:::::
(large

::::
cost

:::::::
function

:::::::
values).

::::::::
Therefore

:::::::::::
convergence

:::
has

::
to

:::
be

::::::
ensured

::::::
before

:::
the

::::::::::
uncertainty

::::::::
evaluation

:::::
since

:::
the

:::
use

::
of

::::
cost

:::::::
function

:::::::::
distribution

:::::
alone

::
to

:::::
study

:::
the

:::::::
retrieval

:::::::::::
uncertainties

:::
can

::
be

::::::::::
misleading. The C2P3 and555

C2P7 models showed the widest
:::
cost

::::::::
function distributions over open waters with χ2

min comparable to that of C1P1. C2P3 and

C2P7 showed narrow χ2 distributions over moderately to highly turbid waters with small χ2 values. These observations implied

the ability of the multi-parameter bio-optical model-based retrievals to converge near the global minimum over different waters.

We also observed that the retrieval accuracies of AOD and Rrs(λ) are directly related to the choice of the bio-optical model

(single or multi-parameter) in the retrieval. TheRrs(λ) retrieval is significantly affected. The C1P1 model shows good retrieval560

performances only over very
:::::::
relatively

:
clear waters ([Chla]< 1 mgm−3

:::::::::
[Chla]< 3

:::::::
mgm−3). The results suggested that the

multi-parameter models, C2P3 and C2P7 are better at representing turbid coastal waters. Regardless of the retrieval technique,

the
:::
The

:
C2P3 and C2P7 models

:::
also

:
have the potential to accurately represent clear open waters (NAAMES-Open)

:
in
:::::

joint

:::::::
retrieval

:::::::::
algorithms

:::
but with a conscientious interpretation of their χ2 distributions. The larger

:::::
C2P3

:::
and

:::::
C2P7

:::::::
models

::::
tend

::
to

:::::::
converge

::
to
:::::

local
:::::::
minima

:::
and

:::
the

::::::::
extensive

:
spread of χ2 values in the ensemble retrievals diminishes the ability of multi-565

parameter models to accurately retrieve clear waters .
::::::::
accurately

::::
and

:::::
make

:::
the

:::::::::::
interpretation

::
of

:::
the

::::::::
retrieval

:::::
results

::::::::
difficult.

::::::::
Therefore

:
it
::
is
::::::::
preferred

::
to

:::::::
develop

::::::::
screening

:::::::::
algorithms

::
to

::::::
divide

::::
open

:::
and

::::::
coastal

::::::
waters

::::::
before

:::::::::
performing

:::::
MAP

::::::::
retrievals.

:

Similar to the SAA based Rrs(λ) inversions (Hannadige et al., 2023), multi-parameter models (C2P3 and C2P7) also show

similar retrieval performances
::::::
perform

::::::
equally

::::
well

:
when used with MAP joint retrieval algorithms . Based on the number of

parameters present in the bio-optical model, the
:::
and

:::::::
airborne

:::::
MAP

::::::::::::
measurements.

::::
The

:
C2P3 model is more computationally570

efficient than the C2P7 model
::
as

:::::
fewer

::::
free

::::::::::
parameters

::::
lead

::
to

::::::::::
significantly

::::
less

:::::::::
processing

:::::
time

:::
and

:::::
more

:::::
stable

::::::::
retrieval

:::::::::::
performances.

Data availability. The data files for RSP, and HSRL-2 used in this study are listed below. The RSP data are available at the NASA GISS

website https://data.giss.nasa.gov/pub/rsp. The HSRL-2 data are available from the ACEPOL website (https://www-air.larc.nasa.gov/cgi-bin/

ArcView/acepol)575

– ACEPOL-Mix (07 November 2017):

RSP : RSP2-ER2_L1C-RSPCOL-CollocatedRadiances_20171107T201415Z_V003-20210305T085047Z.h5

HSRL-2 : ACEPOL-HSRL2_ER2_20171107_R3.h5

– NAAMES-Coastal (04 November 2015):

RSP: RSP1-C130_L1C-RSPCOL-CollocatedRadiances_20151104T182046Z_V003-20210728T201227Z.h5580

– NAAMES-Open (04 November 2015):

RSP: RSP1-C130_L1C-RSPCOL-CollocatedRadiances_20151104T173447Z_V003-20210728T201253Z.h5

29

https://data.giss.nasa.gov/pub/rsp
https://www-air.larc.nasa.gov/cgi-bin/ ArcView/acepol
https://www-air.larc.nasa.gov/cgi-bin/ ArcView/acepol
https://www-air.larc.nasa.gov/cgi-bin/ ArcView/acepol


Author contributions. NH formulated methodology and software used in this paper, performed formal analysis, investigation, data curation,

and visualization given in this paper, and wrote the original manuscript. P-WZ formulated the original concept for this study. MG and P-WZ

developed the MAPOL retrieval algorithm. YH contributed to the development of the radiative transfer forward model and advised in the585

retrieval algorithm design. PJW advised and contributed to bio-optical models and ocean water properties. BC provided RSP measurements.

KK advised on the retrieval uncertainty evaluation. All authors provided advice on the methodology and participated in writing, reviewing,

and editing this paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors would like to thank the ACEPOL and NAAMES teams for conducting the field campaigns and providing590

the data.

The hardware used in the computational studies is part of the UMBC High-Performance Computing Facility (HPCF). The facility is supported

by the U.S. National Science Foundation through the MRI program and the SCREMS program, with additional substantial support from the

University of Maryland, Baltimore County (UMBC). See hpcf.umbc.edu for more information on HPCF and the projects using its resources.

Financial support. This project was supported by National Aeronautics and Space Administration grant 80NSSC20M0227 and Goddard595

Earth Sciences Technology and Research (GESTAR) II Graduate Fellowship

30



References

Ahmad, Z., Franz, B. A., McClain, C. R., Kwiatkowska, E. J., Werdell, J., Shettle, E. P., and Holben, B. N.: New aerosol models for the

retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions

and open oceans, Applied optics, 49, 5545–5560, 2010.600

Bailey, S. W., Franz, B. A., and Werdell, P. J.: Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,

Opt. Express, 18, 7521–7527, https://doi.org/10.1364/OE.18.007521, 2010.

Behrenfeld, M. J., Moore, R. H., Hostetler, C. A., Graff, J., Gaube, P., Russell, L. M., Chen, G., Doney, S. C., Giovannoni, S., Liu, H.,

Proctor, C., Bolaños, L. M., Baetge, N., Davie-Martin, C., Westberry, T. K., Bates, T. S., Bell, T. G., Bidle, K. D., Boss, E. S., Brooks,

S. D., Cairns, B., Carlson, C., Halsey, K., Harvey, E. L., Hu, C., Karp-Boss, L., Kleb, M., Menden-Deuer, S., Morison, F., Quinn, P. K.,605

Scarino, A. J., Anderson, B., Chowdhary, J., Crosbie, E., Ferrare, R., Hair, J. W., Hu, Y., Janz, S., Redemann, J., Saltzman, E., Shook,

M., Siegel, D. A., Wisthaler, A., Martin, M. Y., and Ziemba, L.: The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES):

Science Motive and Mission Overview, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00122, 2019.

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., et al.:

Clouds and aerosols, in: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report610

of the Intergovernmental Panel on Climate Change, pp. 571–657, Cambridge University Press, 2013.

Bricaud, A., Morel, A., Babin, M., Allali, K., and Claustre, H.: Variations of light absorption by suspended particles with chlorophyll a

concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models, Journal of Geophysical Research: Oceans,

103, 31 033–31 044, https://doi.org/https://doi.org/10.1029/98JC02712, 1998.

Burton, S., Ferrare, R., Vaughan, M., Omar, A., Rogers, R., Hostetler, C., and Hair, J.: Aerosol classification from airborne HSRL and615

comparisons with the CALIPSO vertical feature mask, Atmospheric Measurement Techniques, 6, 1397–1412, 2013.

Cael, B., Bisson, K., Boss, E., and Erickson, Z. K.: How many independent quantities can be extracted from ocean color?, Limnology and

Oceanography Letters, 2023.

Cairns, B., Russell, E. E., LaVeigne, J. D., and Tennant, P. M. W.: Research scanning polarimeter and airborne usage for remote sensing of

aerosols, in: Polarization Science and Remote Sensing, edited by Shaw, J. A. and Tyo, J. S., vol. 5158, pp. 33 – 44, International Society620

for Optics and Photonics, SPIE, https://doi.org/10.1117/12.518320, 2003.

Chami, M., Shybanov, E., Churilova, T., Khomenko, G., Lee, M.-G., Martynov, O., Berseneva, G., and Korotaev, G.: Optical properties of

the particles in the Crimea coastal waters (Black Sea), Journal of Geophysical Research: Oceans, 110, 2005.

Chowdhary, J., Cairns, B., Mishchenko, M., and Travis, L.: Retrieval of aerosol properties over the ocean using multispectral and multiangle

photopolarimetric measurements from the Research Scanning Polarimeter, Geophysical research letters, 28, 243–246, 2001.625

Chowdhary, J., Cairns, B., Mishchenko, M. I., Hobbs, P. V., Cota, G. F., Redemann, J., Rutledge, K., Holben, B. N., and Russell, E.: Retrieval

of aerosol scattering and absorption properties from photopolarimetric observations over the ocean during the CLAMS experiment, Journal

of the Atmospheric Sciences, 62, 1093–1117, 2005.

Chowdhary, J., Cairns, B., Waquet, F., Knobelspiesse, K., Ottaviani, M., Redemann, J., Travis, L., and Mishchenko, M.: Sensitivity of

multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: Analyses of RSP data acquired during630

the MILAGRO campaign, Remote Sensing of environment, 118, 284–308, 2012.

Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter, J. Opt. Soc. Am., 44,

838–850, https://doi.org/10.1364/JOSA.44.000838, 1954.

31

https://doi.org/10.1364/OE.18.007521
https://doi.org/10.3389/fmars.2019.00122
https://doi.org/https://doi.org/10.1029/98JC02712
https://doi.org/10.1117/12.518320
https://doi.org/10.1364/JOSA.44.000838


de Almeida, D. C., Koepke, P., and Shettle, E. P.: Atmospheric Aerosols Global Clima-tology and Radiative Characteristics, 1991.

Deschamps, P.-Y., Bréon, F.-M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J.-C., and Seze, G.: The POLDER mission: Instrument charac-635

teristics and scientific objectives, IEEE Transactions on geoscience and remote sensing, 32, 598–615, 1994.

Diner, D. J., Xu, F., Garay, M. J., Martonchik, J. V., Rheingans, B. E., Geier, S., Davis, A., Hancock, B. R., Jovanovic, V. M., Bull, M. A.,

Capraro, K., Chipman, R. A., and McClain, S. C.: The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol

and cloud remote sensing, Atmospheric Measurement Techniques, 6, 2007–2025, https://doi.org/10.5194/amt-6-2007-2013, 2013.

Dubovik, O., Li, Z., Mishchenko, M. I., Tanre, D., Karol, Y., Bojkov, B., Cairns, B., Diner, D. J., Espinosa, W. R., Goloub, P., Gu, X.,640

Hasekamp, O., Hong, J., Hou, W., Knobelspiesse, K. D., Landgraf, J., Li, L., Litvinov, P., Liu, Y., Lopatin, A., Marbach, T., Mar-

ing, H., Martins, V., Meijer, Y., Milinevsky, G., Mukai, S., Parol, F., Qiao, Y., Remer, L., Rietjens, J., Sano, I., Stammes, P., Stamnes,

S., Sun, X., Tabary, P., Travis, L. D., Waquet, F., Xu, F., Yan, C., and Yin, D.: Polarimetric remote sensing of atmospheric aerosols:

Instruments, methodologies, results, and perspectives, Journal of Quantitative Spectroscopy and Radiative Transfer, 224, 474 – 511,

https://doi.org/https://doi.org/10.1016/j.jqsrt.2018.11.024, 2019.645

Fan, Y., Li, W., Chen, N., Ahn, J.-H., Park, Y.-J., Kratzer, S., Schroeder, T., Ishizaka, J., Chang, R., and Stamnes, K.: OC-SMART: A machine

learning based data analysis platform for satellite ocean color sensors, Remote Sensing of Environment, 253, 112 236, 2021.

Fougnie, B., Marbach, T., Lacan, A., Lang, R., Schlüssel, P., Poli, G., Munro, R., and Couto, A. B.: The multi-viewing multi-channel

multi-polarisation imager – Overview of the 3MI polarimetric mission for aerosol and cloud characterization, Journal of Quantitative

Spectroscopy and Radiative Transfer, 219, 23–32, https://doi.org/https://doi.org/10.1016/j.jqsrt.2018.07.008, 2018.650

Fournier, G. R. and Forand, J. L.: Analytic phase function for ocean water, Proceedings of the SPIE, 2258, 194–201,

https://doi.org/10.1117/12.190063, 1994.

Frouin, R. J., Franz, B. A., Ibrahim, A., Knobelspiesse, K., Ahmad, Z., Cairns, B., Chowdhary, J., Dierssen, H. M., Tan, J., Dubovik, O.,

Huang, X., Davis, A. B., Kalashnikova, O., Thompson, D. R., Remer, L. A., Boss, E., Coddington, O., Deschamps, P.-Y., Gao, B.-C.,

Gross, L., Hasekamp, O., Omar, A., Pelletier, B., Ramon, D., Steinmetz, F., and Zhai, P.-W.: Atmospheric Correction of Satellite Ocean-655

Color Imagery During the PACE Era, Frontiers in Earth Science, 7, https://doi.org/10.3389/feart.2019.00145, 2019.

Gao, M., Zhai, P.-W., Franz, B., Hu, Y., Knobelspiesse, K., Werdell, P. J., Ibrahim, A., Xu, F., and Cairns, B.: Retrieval of aerosol properties

and water-leaving reflectance from multi-angular polarimetric measurements over coastal waters, Optics express, 26, 8968–8989, 2018.

Gao, M., Zhai, P.-W., Franz, B. A., Hu, Y., Knobelspiesse, K., Werdell, P. J., Ibrahim, A., Cairns, B., and Chase, A.: Inversion of multian-

gular polarimetric measurements over open and coastal ocean waters: a joint retrieval algorithm for aerosol and water-leaving radiance660

properties, Atmospheric Measurement Techniques, 12, 3921–3941, 2019.

Gao, M., Zhai, P.-W., Franz, B. A., Knobelspiesse, K., Ibrahim, A., Cairns, B., Craig, S. E., Fu, G., Hasekamp, O., Hu, Y., et al.: Inversion

of multiangular polarimetric measurements from the ACEPOL campaign: an application of improving aerosol property and hyperspectral

ocean color retrievals, Atmospheric Measurement Techniques, 13, 3939–3956, 2020.

Gao, M., Franz, B. A., Knobelspiesse, K., Zhai, P.-W., Martins, V., Burton, S., Cairns, B., Ferrare, R., Gales, J., Hasekamp, O., et al.:665

Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model, Atmospheric

Measurement Techniques, 14, 4083–4110, 2021.

Gao, M., Knobelspiesse, K., Franz, B. A., Zhai, P.-W., Cairns, B., Xu, X., and Martins, J. V.: The impact and estimation of uncertainty correla-

tion for multi-angle polarimetric remote sensing of aerosols and ocean color, EGUsphere, 2022, 1–34, https://doi.org/10.5194/egusphere-

2022-1413, 2022.670

32

https://doi.org/10.5194/amt-6-2007-2013
https://doi.org/https://doi.org/10.1016/j.jqsrt.2018.11.024
https://doi.org/https://doi.org/10.1016/j.jqsrt.2018.07.008
https://doi.org/10.1117/12.190063
https://doi.org/10.3389/feart.2019.00145
https://doi.org/10.5194/egusphere-2022-1413
https://doi.org/10.5194/egusphere-2022-1413
https://doi.org/10.5194/egusphere-2022-1413


Gordon, H. R.: Evolution of Ocean Color Atmospheric Correction: 1970-2005, Remote Sensing, 13, https://doi.org/10.3390/rs13245051,

2021.

Gordon, H. R. and Wang, M.: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary

algorithm, Appl. Opt., 33, 443–452, https://doi.org/10.1364/AO.33.000443, 1994.

Hannadige, N. K., Zhai, P.-W., Gao, M., Franz, B. A., Hu, Y., Knobelspiesse, K., Werdell, P. J., Ibrahim, A., Cairns, B., and Hasekamp,675

O. P.: Atmospheric correction over the ocean for hyperspectral radiometers using multi-angle polarimetric retrievals, Optics Express, 29,

4504–4522, 2021.

Hannadige, N. K., Zhai, P.-W., Werdell, P. J., Gao, M., Franz, B. A., Knobelspiesse, K., and Ibrahim, A.: Optimizing retrieval spaces of

bio-optical models for remote sensing of ocean color, Applied Optics, 62, 3299–3309, 2023.

Hasekamp, O. P. and Landgraf, J.: Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and680

polarization measurements, Applied optics, 46, 3332–3344, 2007.

Hasekamp, O. P., Litvinov, P., and Butz, A.: Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements,

Journal of Geophysical Research: Atmospheres, 116, 2011.

He, X., Bai, Y., Pan, D., Tang, J., and Wang, D.: Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for

highly turbid waters, Opt. Express, 20, 20 754–20 770, https://doi.org/10.1364/OE.20.020754, 2012.685

Hu, C., Lee, Z., and Franz, B.: Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,

Journal of Geophysical Research: Oceans, 117, https://doi.org/https://doi.org/10.1029/2011JC007395, 2012.

Huot, Y., Morel, A., Twardowski, M. S., Stramski, D., and Reynolds, R. A.: Particle optical backscattering along a chlorophyll gradient in

the upper layer of the eastern South Pacific Ocean, Biogeosciences, 5, 495–507, https://doi.org/10.5194/bg-5-495-2008, 2008.

Ibrahim, A., Franz, B. A., Ahmad, Z., and Bailey, S. W.: Multiband Atmospheric Correction Algorithm for Ocean Color Retrievals, Frontiers690

in Earth Science, 7, https://doi.org/10.3389/feart.2019.00116, 2019.

IOCCG: Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters, vol. No. 3 of Reports of the International

Ocean Colour Coordinating Group, IOCCG, Dartmouth, Canada, https://doi.org/10.25607/OBP-95, 2000.

IOCCG: Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Application, vol. No. 5 of Reports of the

International Ocean Colour Coordinating Group, IOCCG, Dartmouth, Canada, https://doi.org/10.25607/OBP-96, 2006.695

IOCCG: Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, vol. No. 10 of Reports of the International Ocean Colour

Coordinating Group, IOCCG, Dartmouth, Canada, https://doi.org/10.25607/OBP-101, 2010.

IOCCG: Phytoplankton Functional Types from Space, vol. No. 15 of Reports of the International Ocean Colour Coordinating Group,

IOCCG, Dartmouth, Canada, https://doi.org/10.25607/OBP-106, 2014.

Jonasz, M.: Light scattering by particles in water theoretical and experimental foundations, Academic Press, London, UK, 2007.700

Knobelspiesse, K., Cairns, B., Mishchenko, M., Chowdhary, J., Tsigaridis, K., van Diedenhoven, B., Martin, W., Ottaviani, M., and Alexan-

drov, M.: Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs, Optics express, 20,

21 457–21 484, 2012.

Knobelspiesse, K., Tan, Q., Bruegge, C., Cairns, B., Chowdhary, J., van Diedenhoven, B., Diner, D., Ferrare, R., van Harten, G., Jovanovic,

V., Ottaviani, M., Redemann, J., Seidel, F., and Sinclair, K.: Intercomparison of airborne multi-angle polarimeter observations from the705

Polarimeter Definition Experiment, Appl. Opt., 58, 650–669, https://doi.org/10.1364/AO.58.000650, 2019.

33

https://doi.org/10.3390/rs13245051
https://doi.org/10.1364/AO.33.000443
https://doi.org/10.1364/OE.20.020754
https://doi.org/https://doi.org/10.1029/2011JC007395
https://doi.org/10.5194/bg-5-495-2008
https://doi.org/10.3389/feart.2019.00116
https://doi.org/10.25607/OBP-95
https://doi.org/10.25607/OBP-96
https://doi.org/10.25607/OBP-101
https://doi.org/10.25607/OBP-106
https://doi.org/10.1364/AO.58.000650


Knobelspiesse, K., Barbosa, H. M., Bradley, C., Bruegge, C., Cairns, B., Chen, G., Chowdhary, J., Cook, A., Di Noia, A., van Diedenhoven,

B., et al.: The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign, Earth system science data, 12,

2183–2208, 2020.

Kokhanovsky, A. A.: Parameterization of the Mueller matrix of oceanic waters, Journal of Geophysical Research: Oceans, 108,710

https://doi.org/https://doi.org/10.1029/2001JC001222, 2003.

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products

over land and ocean, Atmospheric Measurement Techniques, 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.

Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and

impact on air quality, National Science Review, 4, 810–833, https://doi.org/10.1093/nsr/nwx117, 2017.715

Mishchenko, M. I. and Travis, L. D.: Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected

sunlight, Journal of Geophysical Research: Atmospheres, 102, 16 989–17 013, 1997.

Mishchenko, M. I., Cairns, B., Hansen, J. E., Travis, L. D., Burg, R., Kaufman, Y. J., Martins, J. V., and Shettle, E. P.: Monitoring of aerosol

forcing of climate from space: analysis of measurement requirements, Journal of Quantitative Spectroscopy and Radiative Transfer, 88,

149–161, 2004.720

Mobley, C., Werdell, J., Franz, B., Ahmad, Z., and Bailey, S.: Atmospheric Correction for Satellite Ocean Color Radiometry, Tech. rep.,

National Aeronautics and Space Administration, https://doi.org/10.13140/RG.2.2.23016.78081, 2016.

Mobley, C. D., Gentili, B., Gordon, H. R., Jin, Z., Kattawar, G. W., Morel, A., Reinersman, P., Stamnes, K., and Stavn, R. H.: Comparison

of numerical models for computing underwater light fields, Appl. Opt., 32, 7484–7504, https://doi.org/10.1364/AO.32.007484, 1993.

Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck,725

T. F., Vermote, E., and Holben, B. N.: The MODIS Aerosol Algorithm, Products, and Validation, Journal of the Atmospheric Sciences,

62, 947 – 973, https://doi.org/https://doi.org/10.1175/JAS3385.1, 2005.

Remer, L. A., Davis, A. B., Mattoo, S., Levy, R. C., Kalashnikova, O. V., Coddington, O., Chowdhary, J., Knobelspiesse, K., Xu, X., Ahmad,

Z., et al.: Retrieving aerosol characteristics from the PACE mission, Part 1: Ocean Color Instrument, Frontiers in Earth Science, 7, 152,

2019a.730

Remer, L. A., Knobelspiesse, K., Zhai, P.-W., Xu, F., Kalashnikova, O. V., Chowdhary, J., Hasekamp, O., Dubovik, O., Wu, L., Ahmad, Z.,

et al.: Retrieving aerosol characteristics from the PACE mission, Part 2: multi-angle and polarimetry, Frontiers in Environmental Science,

7, 94, 2019b.

Roesler, C. S., Perry, M. J., and Carder, K. L.: Modeling in situ phytoplankton absorption from total absorption spectra in productive inland

marine waters, Limnology and Oceanography, 34, 1510–1523, 1989.735

Sayer, A. M., Hsu, N., Bettenhausen, C., Lee, J., Redemann, J., Schmid, B., and Shinozuka, Y.: Extending “Deep Blue” aerosol retrieval

coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies, Journal of Geophysical Research: Atmo-

spheres, 121, 4830–4854, 2016.

Shettle, E. and Fenn, R.: Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties,

Environ. Res., p. 94, 1979.740

Smit, J. M., Rietjens, J. H., di Noia, A., Hasekamp, O. P., Laauwen, W., Cairns, B., van Diedenhoven, B., and Wasilewski, A.: In-flight

validation of SPEX airborne spectro-polarimeter onboard NASA’s research aircraft ER-2, in: International Conference on Space Optics—

ICSO 2018, vol. 11180, p. 111800N, International Society for Optics and Photonics, 2019.

34

https://doi.org/https://doi.org/10.1029/2001JC001222
https://doi.org/10.5194/amt-6-2989-2013
https://doi.org/10.1093/nsr/nwx117
https://doi.org/10.13140/RG.2.2.23016.78081
https://doi.org/10.1364/AO.32.007484
https://doi.org/https://doi.org/10.1175/JAS3385.1


Stamnes, S., Hostetler, C., Ferrare, R., Burton, S., Liu, X., Hair, J., Hu, Y., Wasilewski, A., Martin, W., Van Diedenhoven, B., et al.: Si-

multaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the “MAPP” algorithm with comparison to745

high-spectral-resolution lidar aerosol and ocean products, Applied optics, 57, 2394–2413, 2018.

Utry, N., Ajtai, T., Pintér, M., Bozóki, Z., and Szabó, G.: Wavelength-dependent optical absorption properties of artificial and atmospheric

aerosol measured by a multi-wavelength photoacoustic spectrometer, International Journal of Thermophysics, 35, 2246–2258, 2014.

Van Harten, G., Davis, A., Diner, D. J., Bailey, T., Brageot, E., Bruegge, C., Hancock, B., Hutchinson, L., Manatt, K., Patel, S., et al.:

Polarimetric calibration of the multi-angle imager for aerosols (MAIA), in: Sensors, Systems, and Next-Generation Satellites XXV, vol.750

11858, pp. 79–97, SPIE, 2021.

Voss, K. J. and Fry, E. S.: Measurement of the Mueller matrix for ocean water, Appl. Opt., 23, 4427–4439,

https://doi.org/10.1364/AO.23.004427, 1984.

Werdell, P. J., Franz, B. A., Bailey, S. W., Feldman, G. C., Boss, E., Brando, V. E., Dowell, M., Hirata, T., Lavender, S. J., Lee, Z., et al.:

Generalized ocean color inversion model for retrieving marine inherent optical properties, Applied optics, 52, 2019–2037, 2013.755

Werdell, P. J., Behrenfeld, M. J., Bontempi, P. S., Boss, E., Cairns, B., Davis, G. T., Franz, B. A., Gliese, U. B., Gorman, E. T.,

Hasekamp, O., Knobelspiesse, K. D., Mannino, A., Martins, J. V., McClain, C. R., Meister, G., and Remer, L. A.: The Plankton,

Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances, Bulletin of the American Meteorological Society, 100, 1775 –

1794, https://doi.org/10.1175/BAMS-D-18-0056.1, 2019.

Whitmire, A. L., Boss, E., Cowles, T. J., and Pegau, W. S.: Spectral variability of the particulate backscattering ratio, Optics express, 15,760

7019–7031, 2007.

Xu, F., Dubovik, O., Zhai, P.-W., Diner, D. J., Kalashnikova, O. V., Seidel, F. C., Litvinov, P., Bovchaliuk, A., Garay, M. J., van Harten, G.,

et al.: Joint retrieval of aerosol and water-leaving radiance from multispectral, multiangular and polarimetric measurements over ocean,

Atmospheric Measurement Techniques, 9, 2877–2907, 2016.

Zhai, P.-W., Hu, Y., Trepte, C. R., and Lucker, P. L.: A vector radiative transfer model for coupled atmosphere and ocean systems based on765

successive order of scattering method, Opt. Express, 17, 2057–2079, https://doi.org/10.1364/OE.17.002057, 2009.

Zhai, P.-W., Hu, Y., Chowdhary, J., Trepte, C. R., Lucker, P. L., and Josset, D. B.: A vector radiative transfer model for coupled at-

mosphere and ocean systems with a rough interface, Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 1025–1040,

https://doi.org/https://doi.org/10.1016/j.jqsrt.2009.12.005, 2010.

Zhai, P.-W., Hu, Y., Winker, D. M., Franz, B. A., and Boss, E.: Contribution of Raman scattering to polarized radiation field in ocean waters,770

Opt. Express, 23, 23 582–23 596, https://doi.org/10.1364/OE.23.023582, 2015.

Zhai, P.-W., Knobelspiesse, K., Ibrahim, A., Franz, B. A., Hu, Y., Gao, M., and Frouin, R.: Water-leaving contribution to polarized radiation

field over ocean, Opt. Express, 25, A689–A708, https://doi.org/10.1364/OE.25.00A689, 2017.

Zibordi, G., Mélin, F., Berthon, J.-F., Holben, B., Slutsker, I., Giles, D., D’Alimonte, D., Vandemark, D., Feng, H., Schuster, G., Fabbri, B. E.,

Kaitala, S., and Seppälä, J.: AERONET-OC: A Network for the Validation of Ocean Color Primary Products, Journal of Atmospheric and775

Oceanic Technology, 26, 1634–1651, https://doi.org/10.1175/2009JTECHO654.1, 2009.

35

https://doi.org/10.1364/AO.23.004427
https://doi.org/10.1175/BAMS-D-18-0056.1
https://doi.org/10.1364/OE.17.002057
https://doi.org/https://doi.org/10.1016/j.jqsrt.2009.12.005
https://doi.org/10.1364/OE.23.023582
https://doi.org/10.1364/OE.25.00A689
https://doi.org/10.1175/2009JTECHO654.1

