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Abstract. Multi-angle polarimeters (MAP) are powerful instruments to perform remote sensing of the environment. Joint

retrieval algorithms of aerosols and ocean color have been developed to extract the rich information content of MAPs. These

are optimization algorithms that fit the sensor measurements with forward models, which include radiative transfer simulations

of the coupled atmosphere and ocean systems (CAOS). The forward model consists of sub-models to represent the optics of the

atmosphere, ocean water surface, and ocean body. The representativeness of these models for observed scenes and the number5

of retrieval parameters are important for retrieval success. In this study, we have evaluated the impact of three different ocean

bio-optical models with 1, 3, and 7 optimization parameters on the accuracy of joint retrieval algorithms of MAP. The Multi-

Angular Polarimetric Ocean coLor (MAPOL) joint retrieval algorithm was used to process data from the airborne Research

Scanning Polarimeter (RSP) instrument acquired in different field campaigns. We performed ensemble retrievals along three

RSP legs to evaluate the applicability of bio-optical models in geographically varying waters of clear to turbid conditions.10

The average differences between the MAPOL aerosol optical depth (AOD) and spectral remote sensing reflectance (Rrs(λ))

retrievals and the MODerate resolution Imaging Spectroradiometer (MODIS) products were also reported. We studied the

distribution of retrieval cost function values obtained for the 3 bio-optical models. For the 1-parameter model, the spread of

retrieval cost function values is narrow regardless of the type of water even if it fails to converge over coastal waters. For

the 3 and 7-parameter models, the retrieval cost function distribution is water type dependent, showing the widest distribution15

over clear, open waters. This suggests that caution should be used when using the spread of the cost function distribution to

represent the retrieval uncertainty. We observed that the 3 and 7-parameter models have similar MAP retrieval performances

in all cases, though they are prone to converge at local minima over open ocean waters. It is necessary to develop a screening

algorithm to divide open and coastal waters before performing MAP retrievals. Given the computational efficiency and the

algorithm stability requirements, we recommend the 3-parameter bio-optical model as the coastal water bio-optical model20

for future MAPOL studies. This study provides important practical guides on the joint retrieval algorithm development for

current and future satellite missions such as NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission and ESA’s

Meteorological Operational-Second Generation (MetOp-SG) mission.
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1 Introduction25

The enhanced capabilities in satellite remote sensing of Earth have enabled detailed observation of the atmosphere, ocean, and

land thereby improving the accurate determination of spatial and temporal distributions of the constituents of each. Satellite-

borne spectroradiometers in particular have substantially advanced the way we view our home planet, and their information

content will increase in the future as the technology evolves from multi- to hyperspectral capabilities. Multi-angle polarimeters

(MAPs), such as the POLarization and Directionality of the Earth’s Reflectance (POLDER) (Deschamps et al., 1994), Air-30

borne Multi-angle Spectro-Polarimetric Imager (AirMSPI) (Diner et al., 2013), Spectro-polarimeter for Planetary Exploration

(SPEX) (Smit et al., 2019), Research Scanning Polarimeter (RSP) (Cairns et al., 2003), Multi-viewing Multichannel Multi-

polarization Imager (3MI) (Fougnie et al., 2018) and Multi-Angle Imager for Aerosols (MAIA) (Van Harten et al., 2021) have

even greater information content compared to other existing single viewing angle spectroradiometers, such as the MODerate

resolution Imaging Spectrometer (MODIS), Visible Infrared Imaging Radiometer System (VIIRS), and Ocean and Land Colour35

Instrument (OLCI), owing to their ability to perform measurements at multiple viewing angles and different polarimetric states

(Dubovik et al., 2019).

Atmospheric aerosols play a critical role in the Earth’s climate and air quality (Boucher et al., 2013; Li et al., 2017). Aerosols

affect Earth’s energy balance directly by absorbing and scattering solar radiation and indirectly by interacting with clouds.

Some of the traditional retrieval algorithms such as those for MODIS-like instruments result in larger aerosol and ocean color40

retrieval uncertainties when compared with the accuracy required for climate modeling (Remer et al., 2005; Sayer et al., 2016),

which is due to the limited information content in single-viewing spectrometer measurements (Mishchenko et al., 2004). The

large retrieval uncertainties of aerosols and ocean color also limit the accuracy of aerosol radiative forcing determination,

thereby hindering our understanding of global climate change (Boucher et al., 2013). Improved aerosol characterization and

quantification will support accurate estimation of atmospheric path radiance in the Atmospheric Correction (AC) process of45

ocean color remote sensing (Mobley et al., 2016). The spectral remote sensing reflectance (Rrs(λ) [sr−1]) estimated through

the AC process can be used to infer ocean optical and biogeochemical properties that are important for a broader understanding

of phytoplankton dynamics, primary production, global carbon cycle and ocean’s ecological response to climate change (Frouin

et al., 2019).

AC is the process of removing atmospheric and surface contributions from the total measured signal at the top of the50

atmosphere (TOA) so that ocean color can be assessed. AC algorithms can be divided into two categories of processing strate-

gies: traditional (or heritage) AC algorithms appliable to MODIS-like spectroradiometers (Gordon and Wang, 1994) and joint

aerosol and ocean retrieval algorithms applicable to MAP measurements (Mishchenko and Travis, 1997; Chowdhary et al.,

2001; Hasekamp and Landgraf, 2007; Knobelspiesse et al., 2012; Remer et al., 2019a, b). Traditional or heritage AC algo-

rithms (Gordon and Wang, 1994) estimate the aerosol properties at near-infrared (NIR) wavelengths by assuming the water55

leaving radiance in NIR to be negligible or appropriately modeled (the so-called black pixel assumption) (Bailey et al., 2010).
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The aerosol properties are then extrapolated into visible by using the appropriate aerosol models that fit NIR radiances (Zi-

bordi et al., 2009; Gordon, 2021; Utry et al., 2014). This assumption does not unequivocally work in optically complex water,

which can lead to an overestimate of aerosol path radiance with either nonzero NIR water leaving radiance or when absorbing

aerosols are present (IOCCG, 2000, 2010). The heritage algorithm implemented by NASA’s Ocean Biology Processing Group60

(OBPG; https://oceancolor.gsfc.nasa.gov) works well over open waters but can produce negative Rrs(λ) in blue wavelengths

over turbid waters (Bailey et al., 2010) given the aforementioned reasons. Efforts have been made to overcome negativeRrs(λ)

(Bailey et al., 2010; He et al., 2012; Fan et al., 2021; Ibrahim et al., 2019) though the problem has not been fully resolved yet.

The second category of AC algorithms makes use of the larger information content available from MAPs. These instruments

have a greater information content which can be used to characterize aerosol microphysical properties (Mishchenko and Travis,65

1997; Chowdhary et al., 2001; Hasekamp and Landgraf, 2007; Knobelspiesse et al., 2012; Remer et al., 2019a, b) and thus

offer the potential for improvements in both aerosol and ocean color retrievals. Joint retrieval algorithms provide simultaneous

retrievals of aerosols and ocean color by fitting the sensor measurements with forward model simulations for the coupled

atmosphere and ocean system (CAOS) (Chowdhary et al., 2005; Hasekamp et al., 2011; Xu et al., 2016; Stamnes et al., 2018;

Gao et al., 2018, 2019, 2020, 2021; Fan et al., 2021). The simulations are carried out by vector radiative transfer models70

with parameterizations that define the state of the CAOS. The difference between measurements and the model simulation is

quantified by a cost function, which is minimized by iteratively perturbing the free parameters in the radiative transfer model.

The forward model of ocean color joint retrieval algorithms consists of sub-models to simulate the optics of the CAOS, which

is composed of the atmosphere, ocean surface, and ocean body. The robustness of the joint retrieval algorithms depends on

the representativeness of CAOS models over an observed scene. One important component of CAOS is the ocean bio-optical75

models that represent the spectral behaviors of aquatic inherent optical properties (IOP(λ)s) (e.g., pure seawater, phytoplankton,

colored dissolved organic matter (CDOM), and non-algal particles (NAP)) (IOCCG, 2006).

Ocean waters are loosely classified into two categories, Case I and Case II, based on the constituents present in the water and

those constituent’s relationship with Rrs(λ). In Case 1 waters the IOP(λ)s co-vary with the presence of phytoplankton and its

derived CDOM, which are typically found offshore in the open ocean. The IOP(λ)s of Case I waters are typically parameterized80

using the concentration of the phytoplankton pigment Chlorophyll-a ([Chla] [mgm−3]) and, hence, result in single-parameter

bio-optical models. Unlike Case I waters, Case II waters, which are most commonly found in coastal and turbid environments,

consist of phytoplankton, NAP, and CDOM, none of which are ubiquitously covaried. Consequently, multiple parameters are

required to represent Case II water IOP(λ)s. Many joint retrieval algorithms (Chowdhary et al., 2005; Hasekamp et al., 2011;

Xu et al., 2016; Stamnes et al., 2018) assume single parameter bio-optical models developed for Case I waters, whereas only a85

few algorithms (Chowdhary et al., 2012; Gao et al., 2018, 2019; Fan et al., 2021) adopt multi-parameter (3-7 parameters) bio-

optical models. The choice of the bio-optical model has a great impact on the retrieval performance of joint retrieval algorithms.

Fan et al. (Fan et al., 2021) have studied the impact of different bio-optical models on retrieval accuracy, but their results were

limited to radiometric measurements under a single view angle. Gao et al. (Gao et al., 2019) showed that a 7-parameter bio-

optical model is superior in representing coastal waters than the single-parameter model (Gao et al., 2019), though it is still an90

open question on the optimal bio-optical model for coastal waters for joint retrieval algorithms.
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The goal of this study is to examine the overall impact of bio-optical models with different numbers of free parameters on

the performance and uncertainty of joint retrieval algorithms for Case II waters. Hannadige et al. (2023) showed that multi-

parameter bio-optical models with 3 and 5 parameters show similar retrieval performances for the semi-analytical algorithm

(SAA) based on in-situ multi-band Rrs(λ) measurements. An independent study showed that the number of free parameters95

a retrieval algorithm might meaningfully retrieve is roughly four based on in-situ hyperspectral Rrs(λ) measurements (Cael

et al., 2023). Here, for the first time, we have examined to which extent these conclusions hold for the joint retrieval algorithms

using airborne MAP measurements, which have not been studied before. The quality of the retrievals in this study is evaluated

with respect to the magnitude of the retrieval cost function values, the distribution of retrieval cost function values (Sec. 3) from

the ensemble retrievals, and the sanity check with MODIS retrievals. We studied the uncertainty of the different bio-optical100

models based on the spread of ensemble retrieval cost function values which is important to understand the impact of the

bio-optical models on the convergence behavior of the non-linear least squares fitting algorithms. This has not been examined

in previous studies. Given the inherent problems associated with MODIS retrievals over optically complex scenes, we consider

the MODIS products as merely a reference, rather than a validation dataset.

In this study the Multi-Angular Polarimetric Ocean coLor (MAPOL) joint retrieval algorithm (Gao et al., 2018, 2019, 2020)105

is used to evaluate the performance of the ocean bio-optical models with different numbers of free parameters. MAPOL is an

optimization approach that retrieves aerosol microphysical properties (aerosol optical depth (AOD), single scattering albedo

(SSA), size distribution, and refractive index) and in-water properties (Rrs(λ), [Chla] and component IOP (λ)s) simultane-

ously. Three bio-optical models are used, i.e., the single-parameter model for open ocean waters and two coastal bio-optical

models with 3 and 7 free parameters, respectively. The MAPOL algorithm was used to inverse the Research Scanning Po-110

larimeter (RSP) measurements from two NASA airborne campaigns (Aerosol Characterization from Polarimeter and Lidar

(ACEPOL) (https://www-air.larc.nasa.gov/missions/acepol) (Knobelspiesse et al., 2020) and North Atlantic Aerosols and Ma-

rine Ecosystems Study (NAAMES) (https://www-air.larc.nasa.gov/missions/naames) (Behrenfeld et al., 2019). The RSP mea-

surements were selected such that the underlying waters represent clear to turbid water conditions. The retrieval results were

checked against the AOD product from MODIS and High Spectral Resolution Lidar (HSRL)-2 (Burton et al., 2013) and ocean115

color products (Rrs(λ) and [Chla]) from MODIS. The retrieval uncertainties have been evaluated with respect to the Glory un-

certainty requirement for AOD (Mishchenko et al., 2004) and PACE uncertainty requirements for open ocean Rrs(λ) (Werdell

et al., 2019).

The conclusions from this study can be used to provide recommendations for selecting suitable bio-optical models for joint

retrieval algorithms over coastal waters to improve their accuracy and computational efficiency. The larger parameter space120

required for Case II parameterizations leads to longer forward model simulation times or decreases in the likelihood of accu-

rate retrieval convergence. Thus, the balance between the model fidelity and the parameter space is vital to improve retrievals

and uncertainties. This study also expects to improve the performance of the POLYnomial-based Atmospheric Correction

(POLYAC) algorithm (Hannadige et al., 2021) which is an AC algorithm for hyperspectral single-view radiometers applied

over optically complex scenes, such as over coastal waters. POLYAC relies on collocated MAP retrievals from the MAPOL125

algorithm to estimate the hyperspectral path radiance to calculate hyperspectral Rrs(λ) which is crucial for retrieving phy-
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toplankton functional types (IOCCG, 2014). Though this study was carried out with MAPOL, the conclusions are equally

applicable to other joint retrieval algorithms of aerosols and ocean color, which thus have greater impacts beyond MAPOL.

This paper is organized as follows. Section 2 reviews the data used in the study; Section 3 describes the MAPOL algorithm

and the respective bio-optical models; Section 4 presents the methodology and the retrieval results along with an uncertainty130

assessment under three different scenes; Section 5 discusses the overall results; and, finally Section 6 summarizes the conclu-

sions.

2 Data

2.1 Airborne data

In this study, we used airborne RSP measurements acquired from the ACEPOL 2017 (https://www-air.larc.nasa.gov/missions/135

acepol/index.html) (Knobelspiesse et al., 2020) and NAAMES 2015 (https://www-air.larc.nasa.gov/missions/naames/index.

html) (Behrenfeld et al., 2019) airborne field campaigns. The ACEPOL campaign was held from October 19 to November 9,

2017, covering California, Nevada, Arizona, New Mexico, and the coastal Pacific Ocean. The NAAMES 2015 was the first

deployment of the NAAMES campaign conducted from November 5 to December 2, 2015, over the North Atlantic Ocean.

RSP is an along-track scanner, with 152 viewing angles within ±60◦. It has 9 spectral channels spanning the visible to short-140

wave infrared (SWIR) with central wavelengths of each band located at 410, 470, 550, 670, 865, 960, 1590, 1880, and 2250 nm.

RSP-1 and RSP-2 are two versions of the RSP instrument that differ in measurement uncertainty characterizations. RSP mea-

surements over oceans have been used for aerosol and ocean color retrievals in multiple studies (Chowdhary et al., 2005, 2012;

Stamnes et al., 2018; Gao et al., 2019, 2020) with promising performances. In the ACEPOL campaign, RSP-2 measurements

were acquired with a relative radiometric characterization uncertainty of approximately 0.03 and polarimetric characterization145

uncertainty of about 0.002 in Degree of Linear Polarization (DoLP), whereas in the NAAMES 2015 campaign, RSP-1 mea-

surements were acquired with radiometric (relative) and polarimetric characterization uncertainties of approximately 0.015 and

0.002 respectively. The instrument noise model for RSP is provided in Knobelspiesse 2019 (Knobelspiesse et al., 2019).

We performed MAP retrievals across three RSP flight legs over selected open and coastal water regions. From the ACEPOL

campaign, we selected a coastal leg across Monterey Bay where the waters were mostly clear offshore and turbid when closer150

to the coast. From the NAAMES campaign, we selected a coastal leg across Delaware Bay and an open ocean leg offshore and

outward from Delaware Bay. Each case has been named based on the campaign and the type of water present: ACEPOL-Mix,

NAAMES-Coastal, and NAAMES-Open. Gao et al., (2019) showed a single pixel retrieval from the NAAMES-Coastal case

inside Delaware Bay comparing the retrieval performances of 1 and 7-parameter bio-optical models. The details of the three

cases are summarized in Table 1 and Figure 1. The three cases were selected based on the availability of RSP measurements155

in cloud-free conditions, the water turbidity of the location, and the availability of desired MODIS retrieval products. The

turbidity of the waters was assumed based on MODIS [Chla] retrievals (Hu et al., 2012).

RSP wavelength bands corresponding to water vapor absorption (960, and 1880 nm), as well as those wavelength bands with

high noise (1590, and 2250 nm bands only for DoLP), were excluded from the retrieval. The viewing angles contaminated by
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Table 1. Summary of the datasets used in this study.

RSP Leg ACEPOL-Mix NAAMES-Coastal NAAMES-Open

Date 07 November 2017 4 November 2015 4 November 2015

Number of pixels 62 40 106

UTC time range 20:13 - 20:25 18:21 - 18:26 17:34 - 18:20

Aircraft altitude 20 km 6.7 km 6.8 km

Solar zenith angle 53◦ 59◦ 55◦

Relative azimuth angle 75◦ 110◦ 75◦

Scattering angle range [105◦,132◦] [91◦,132◦] [93◦,133◦]

sun glint and clouds were excluded from the retrieval to reduce retrieval uncertainty. For each location of interest, 5 consecutive160

pixels along the RSP leg were averaged to achieve better measurement accuracy. The RSP legs with averaged pixels are shown

in Figure 1. For the ACEPOL and NAAMES campaigns, the size of each averaged pixel is approximately 1 km and 0.5 km

respectively. The corresponding averaged measurements (reflectance and DoLP) were applied in the retrieval.

(a) ACEPOL-Mix (b) NAAMES-Coastal (c) NAAMES-Open

Figure 1. Geographical locations of the selected RSP legs.

2.2 Validation data

The AOD from the ACEPOL campaign is validated against HSRL-2. Due to the lack of at-sea in situ validation data, we165

performed sanity checks of the retrieval results using MODIS AOD and Rrs(λ) products. MODIS is a single-view angle,

multi-spectral imager on both the NASA Terra and Aqua satellite platforms. The MODIS-OC product (NASA Ocean Color

Web, 2020 [https://oceancolor.gsfc.nasa.gov]) is processed using the standard NASA AC algorithm (Mobley et al., 2016)

developed based on the atmospheric correction algorithm (Gordon and Wang, 1994) as modified by (Ahmad et al., 2010). We
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used level-2 ocean color (OC) products from the MODIS instrument on board the Aqua satellite (version 2022.0). It provides170

a spatial coverage of 1km resolution at nadir. The OC products include Rrs(λ) at 412, 443, 469, 488, 531, 547, 555, 645, 667,

and 678 nm and [Chla] via the OCI algorithm (Hu et al., 2012). We also obtained MODIS AOD at 869 nm and the angstrom

exponent derived from the standard NASA AC algorithm to estimate the spectral AOD at RSP wavelengths. The ACEPOL

2017 campaign flew the HSRL-2 along with RSP, the former instrument also providing accurate data for AOD validation.

3 The MAPOL joint retrieval algorithm175

The MAPOL joint retrieval algorithm simultaneously retrieves aerosol and ocean color properties from MAP measurements.

It has been validated with synthetic RSP data (Gao et al., 2018) and real RSP (Gao et al., 2019; Hannadige et al., 2021) and

SPEX airborne measurements (Gao et al., 2020; Hannadige et al., 2021).

3.1 Retrieval cost function

The algorithm minimizes the difference between the MAP measurements and forward model simulations for CAOS (Zhai180

et al., 2009, 2010). The forward model simulation is iteratively optimized (Levenberg – Marquardt non-linear least squares

optimization) by perturbing the set of free parameters that represent the atmosphere and ocean optical properties. The least

squares cost function (χ2(x)) used to quantify the difference between the measurement and the forward model simulation is

defined as,

χ2(x) =
1

N

∑
i

(
[ρt(i)− ρft (x; i)]2

σ2
t (i)

+
[Pt(i)−P ft (x; i)]2

σ2
P (i)

)
(1)185

where ρt = πr2Lt/µ0F0 is the total measured reflectance and Pt =
√
Q2
t +U2

t /Lt is the total measured DoLP. Lt, Qt,

and Ut are the first three Stokes parameters measured at sensor level; µ0 is the cosine of the solar zenith angle; F0 is the

extraterrestrial solar irradiance corrected for the Sun-Earth; and r is the Sun-Earth distance in astronomical units. ρft and

P ft denote the total reflectance and DoLP simulated from the forward model. x is the state vector of the retrieval; i is the

measurement index corresponding to a particular angle or wavelength; and N is the total number of measurements used in190

the retrieval. σt and σP are the total uncertainties of reflectance and DoLP which include the RSP instrument characterization

(Knobelspiesse et al., 2019), variance due to averaging nearby pixels, and forward model uncertainties. The forward model

uncertainty is estimated as 0.015 and 0.002 for the radiometric and polarimetric uncertainties respectively (Gao et al., 2022).

The uncertainty correlation between angles has been ignored (Knobelspiesse et al., 2012; Gao et al., 2022).

The χ2 value of a converged retrieval indicates the goodness of fit of the retrieval. A χ2 value substantially larger than 1195

suggests the insufficiency of the forward model to accurately represent a given set of MAP measurements. A χ2 close to 1

implies that the difference between the measurement and the corresponding forward model simulation is within the uncertainty

quantified by σt and σP . In this study, we used χ2 values obtained under each retrieval to assess their retrieval quality and

performances.
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3.2 Forward model200

The forward model of the MAPOL algorithm is a vector radiative transfer model based on the successive order of scattering

method (Zhai et al., 2009, 2010). The CAOS system is defined as three layers: a top molecular layer, a middle layer with

mixed aerosols and molecules (2 km height), and an ocean layer bounded by a rough water surface (Cox and Munk, 1954).

The aerosol size distribution is composed of five spherical aerosol sub-modes: three fine modes and two coarse modes, each

with a log-normal distribution. The mean radius and variance are fixed (Gao et al., 2020). The complex refractive index spectra205

of the two aerosol modes are based on PCA of datasets representing spectral refractive indices of water, dust-like, biomass

burning, industrial, soot, sulfate, water-soluble (Shettle and Fenn, 1979), and sea salt (de Almeida et al., 1991). The refractive

indices are approximated as m(λ) =m0+α1p1(λ), where m0 and α1 are fitting parameters, and p1(λ) is the first order of the

principal component.

In the MAPOL forward model, the analytical Fournier-Forand phase function (Fp) (Fournier and Forand, 1994) is used to210

represent the particulate scattering phase function. The Fp is determined by Bp(= bbp/bp) (Mobley et al., 1993). The overall

phase function of water is obtained by mixing Fp with that of a pure water phase function, which is then multiplied by the

normalized Mueller matrix derived from measurements (Voss and Fry, 1984; Kokhanovsky, 2003), to obtain the total Mueller

matrix of water assuming invariant polarization properties (Zhai et al., 2017).

MAPOL retrieves the spectral aerosol refractive indices described by 8 parameters (2 (fine and coarse) modes × 2 PCA ×215

2 parts (real and imaginary), aerosol volume densities (5 parameters, one for each aerosol sub-mode), 1 parameter to represent

the roughness of ocean surface, i.e., wind (characterized by isotropic Cox Munk model (Cox and Munk, 1954)) and either 1, 3

or 7 parameters to represent water IOP(λ)s depending on the choice of bio-optical model in the retrieval.

3.2.1 Bio-optical models

MAPOL includes two ocean bio-optical models in the forward model to represent Case I and Case II waters separately. The220

Case I water bio-optical model ("C1P1") is a single-parameter model based on [Chla], where the number followed by "P"

stands for the number of free parameters in the model. The Case II ("C2P7") model contains seven bio-optical parameters. In

this study, we have included a third Case II water bio-optical model with three parameters (“C2P3”). A detailed description of

the bio-optical models is given below.

C2P7 (Eq. 2-5) is a coastal or Case II bio-optical model with 7 parameters.225

aph(λ) =Aph(λ)[Chla]Eph(λ) (2)

adg(λ) = adg(440)exp[−Sdg(λ− 440)] (3)

bbp(λ) = bbp(660)

(
λ

660

)−Sbp

(4)230
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Bp(λ) =Bp(660)

(
λ

660

)−SBp

(5)

where aph(λ)[m−1] is the absorption coefficient of phytoplankton parameterized in terms of [Chla] using Aph and Eph

spectral coefficients obtained from (Bricaud et al., 1998); adg(λ)[m−1] is the spectral absorption coefficient of CDOM + NAP;

bbp(λ)[m
−1] is the spectral backscattering coefficient of particulate matter; Bp(λ) is the spectral backscattering fraction of235

particulate matter; Sdg[nm−1] is the spectral exponential slope of adg(λ) in nm−1; Sbp is the spectral slope of the power law

function of bbp(λ); and, SBp is the spectral slope of the power law function of Bp(λ). The magnitude of the spectral slopes,

Sdg , Sbp, and SBp depends on the composition and the size of the oceanic particles and therefore represent microphysical

properties such as refractive index, effective radius, and particle size distribution slope (Jonasz, 2007). The 7 free parameters

are [Chla], adg(440), bbp(660),Bp(660),Sdg , Sbp, and SBp where 440 and 660 represent reference wavelengths in nm.240

C2P3 is a 3-parameter model simplified from the C2P7 model (Eq. 2-5). To reduce the number of free parameters, we fixed

the spectral slopes. Sdg typically varies between 0.01 and 0.02 nm−1 in natural waters. Based on the in-situ measurements

over oceans (Roesler et al., 1989) most of the existing bio-optical models such as Default Configuration Generalized IOP

(GIOP-DC) model (Werdell et al., 2013) adopt Sdg=0.018 nm−1. It has been found that the particulate backscattering ratio

from in-situ measurements shows little or no spectral dependence and the mean particulate backscattering ratio is 0.010 (Chami245

et al., 2005; Whitmire et al., 2007). We have fixed SBp at 0 and assumed a spectrally invariant backscattering fraction Bp of

0.01. Sbp typically varies between 0 and 2 from small to large particles (Werdell et al., 2013). Sbp was fixed at 0.3 in this study

which was obtained by a sensitivity analysis carried out by Hannadige et al., (2023). We acknowledge that these fixed values

could deviate under specific water conditions. The remaining free parameters of the model are [Chla], adg (440) and, bbp(660).

C1P1 (Eq. 6-10) is a [Chla] based single parameter Case I water bio-optical model (Zhai et al., 2015, 2017) . The absorption250

coefficient of phytoplankton aph(λ) is the same as Eq. 2. The absorption adg(λ) is given by Eq. 3 as in C2P7 model, though

Sdg is fixed at 0.018 nm−1 and adg(440) is specified by Eq. 6 and 7 in terms of [Chla] (IOCCG, 2006):

adg(440) = p2aph(440) (6)

p2 = 0.3+
5.7× 0.5aph(440)

0.02+ aph(440
(7)255

Similarly, bbp(λ) is also contributed only from phytoplankton and is expressed in terms of [Chla] (Huot et al., 2008).

bbp(λ) =Bp× bp(λ) (8)

where bp(λ)[m−1] is the spectral scattering coefficient of particulate matter.

bp(λ) = bp(660)

(
λ

660

)−Sp

(9)
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260

bp(660) = 0.347[Chla]0.766 (10)

In Eq. 9, Sp is the spectral coefficient of bp. For 0.02< [Chla]< 2mgm−3 , Sp =−0.5(log10[Chla]− 0.3). For [Chla]> 2

mgm−3, Sp = 0. Bp is assumed to be spectrally invariant and is described as Bp = [0.002+0.01(0.50− 0.25log10[Chla]).

The three bio-optical models are summarized in Figure 2.

C2P3 (3 parameters)C2P7 (7 parameters)
a!" λ = A!" λ 𝐂𝐡𝐥𝐚 #!"(%)	

a'( λ = 𝐚𝐝𝐠(𝟒𝟒𝟎) exp −0.018 λ − 440

b+! λ = 𝐛𝐛𝐩(𝟔𝟔𝟎)
λ
660

./.1

B! = 0.01

a!" λ = A!" λ 𝐂𝐡𝐥𝐚 #!"(%)	
a'( λ = 𝐚𝐝𝐠(𝟒𝟒𝟎) exp −𝐒𝐝𝐠 λ − 440

b+! λ = 𝐛𝐛𝐩(𝟔𝟔𝟎)
λ
660

.𝐒𝐛𝐩

B! λ = 𝐁𝐩(𝟔𝟔𝟎)
λ
660

.𝐒𝐁𝐩

C1P1 (1 parameter)
a!" λ = A!" λ 𝐂𝐡𝐥𝐚 #!"(%)	

a'( λ = a'((440, [𝐂𝐡𝐥𝐚]) exp −0.018 λ − 440

b+! 𝜆 = b! 660, 𝐂𝐡𝐥𝐚
λ
660

.3&! 𝑪𝒉𝒍𝒂

	B! = [	0.02 + 0.01(0.5 − 0.25 log8/[𝐂𝐡𝐥𝐚])]	

Figure 2. The summary of MAPOL bio-optical models. The free parameters of each model are indicated in bold.

4 Retrieval results265

We performed retrievals with the MAPOL algorithm (Sec. 3) for the 3 cases (ACEPOL-Mix, NAAMES-Coastal, and NAAMES-

Open) described in Section 2. Separate retrievals were carried out using each bio-optical model (C2P7, C2P3, and C1P1 de-

scribed in Sec 3.2.1) for all the cases, regardless of the type of water they represent.

The final retrieval results are based on the ensemble retrieval technique (Gao et al., 2019, 2020). The technique can reduce

the likelihood of convergence of the algorithm at local minima instead of the global minimum. The ensemble retrieval was270

carried out by performing 100 retrievals for each averaged RSP pixel. For each retrieval, the retrieval parameters are initialized

with randomly generated initial values of each parameter, which are confined within a boundary as specified in Table 2 for

bio-optical model parameters (Gao et al., 2018, 2019; Hannadige et al., 2023) and as in Gao et al., (2018) for atmospheric

parameters.

The retrievals were sorted based on their χ2 distribution, which is attributed to whether the ensemble of retrievals converged275

at the global minimum (narrow χ2 distribution) or different local minima (broad χ2 distribution). For each of the RSP pixels,
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Table 2. The upper and lower boundaries of the bio-optical model parameters

Parameter Model Lower/Upper

boundaries

[Chla](mgm−3) C1P1, C2P3, C2P7 0.001/30.0

adg(440)(m
−1) C2P3, C2P7 0.001/2.5

Sdg(nm
−1) C2P7 0.005/0.02

bbp(660)(m
−1) C2P3, C2P7 0.001/0.1

Sbp C2P7 0.001/2.5

Bp(660) C2P7 0.001/0.05

SBp C2P7 −0.2/0.2

we averaged 30% (i.e. cumulative probability = 30%) of the total retrievals to calculate the final retrieval results. We studied

average retrievals from all three bio-optical models using different cumulative probabilities at a time. About 30% cumulative

probability yielded the lowest χ2 and retrieval variability. The selection of cumulative probability less than 30% did not leave

enough ensemble retrievals to estimate the average retrieval results. (For the C1P1 model this number is about 70%. To make280

it consistent across all three bio-optical models, 30% was selected). It should be noted that all the converged retrievals under

the three case studies yielded χ2 larger than 0.3. The minimum and maximum χ2 values within this 30% are denoted as χ2
min

and χ2
max respectively. For all three cases, the selection of the first 30% lowest χ2 retrievals resulted in χ2

max values which are

about 5 points higher than the χ2
min (that is χ2

max ≈ 5+χ2
min). The choice of the cumulative probability or the χ2

max depends

on the accuracy requirement of the retrieval.285

The resultant uncertainties of the retrieval parameters are determined as the standard deviation of the retrievals within χ2
min

and χ2
max. The uncertainties are associated with different initial values in the optimization. Due to a large number of retrieval

parameters and the nonlinearity of the cost functions, the choice of the initial values often becomes important (Gao et al.,

2020). Based on Gao et al., (2020) and Gao et al., (2022) the uncertainty derived from ensemble retrievals within χ2
min−χ2

max

range may not always be comparable to the uncertainty calculated from the error propagation method (Knobelspiesse et al.,290

2012). The error propagation method directly relates the retrieval uncertainties to measurement uncertainties. The evaluation

of uncertainties calculated from the error propagation method is subjected to a future study.

4.1 ACEPOL-Mix

The minimum retrieval cost function value χ2
min is affected by the type of water present and the bio-optical model employed

in the retrieval. For relatively clear waters, where 1< [Chla]< 3 mgm−3, the χ2
min obtained under all the three bio-optical295

models are similar (2< χ2
min < 3). The average χ2

min value within 30% of the lowest χ2 retrievals (χ2
avg30%

) is comparable

to the χ2
min (Fig. 3). For C2P3 and C2P7 χ2

avg30%
< 1.5×χ2

min. This suggests that the ensemble retrieval χ2 values have a

narrow spread attributed to the fact that most of the retrievals have reached their global minimum.
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With increasing turbidity towards the coast, the χ2
min values from C1P1 retrievals follow an increasing trend with increasing

[Chla]. Both the C2P3 and C2P7 models shows similar χ2
min values along the track, whose χ2

min values (< 5) also tend to300

increase with increasing [Chla] but with less variability than that of C1P1 (χ2
min > 5). Larger χ2

min indicates the inability of

the forward model to accurately fit the MAP measurement. In other words, the C1P1 model is insufficient to fully represent the

turbid water IOP (λ)s compared to the C2P3 and C2P7 bio-optical models.
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Figure 3. ACEPOL-Mix: The top figure shows the MODIS retrieved [Chla]. The gray dashed lines indicate [Chla] = 1,3 and 10mgm−3.

The middle figure shows the χ2
min obtained for the RSP retrievals across the ACEPOL-Mix leg under the three bio-optical models; C1P1,

C2P3 and, C2P7. The bottom figure shows the average χ2
min value for the 30% of the lowest χ2 retrievals. Data is given with respect to the

longitude of the location. The coast of Monterey Bay is to the right-hand side of the plots.

We further validated the retrieval results and evaluated the retrieval uncertainties (Figs. 4 and 6) associated with each bio-

optical model using AOD retrievals from HSRL-2 and MODIS. MODIS and HSRL-2 AOD (Fig. 5) were collocated with RSP305

within a maximum distance of around 1.7 km and 0.5 km. There are no in situ Rrs(λ) measurements available for validation

for this scene. Instead, we compared Rrs(λ) with collocated MODIS Rrs(λ) collected within a maximum distance of 0.5 km.

The time difference between MODIS and RSP measurements is roughly 1 hour. The MODIS 412, 469, 555, and 667 nm ocean

color bands were chosen to compare the corresponding RSP Rrs(λ) at 410, 470, 550, and 670 nm bands. AOD from RSP

was compared with the MODIS AOD based on the AC data product, a choice to ensure the consistency of ocean color and310
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aerosol data products. In this case study, the AOD and Rrs(λ) retrievals obtained by averaging 30% of the lowest χ2 cases

were compared with that obtained for the χ2
min case (The results are not shown here). The comparison of RSP retrieved AOD

at 532 nm with HSRL-2 and MODIS is given in Figure 5. For clear visualization, the density of the pixels has been reduced in

the plots. The vertical bars indicate the 1σ uncertainty.
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Figure 4. ACEPOL-Mix: The comparison of RSP retrieved averaged spectral AOD across the Monterey Bay with MODIS AOD, and retrieval

uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3, and, C2P7 at 410, 470, 550, and 670 nm

for averaged retrievals. The vertical bars indicate the 1σ uncertainty. Data is given with respect to the longitude of the location. The coast of

Monterey Bay is to the right-hand side of the plots.

Regardless of the selected bio-optical model or the turbidity of the water, all three models, C1P1, C2P3, and, C2P7 show315

similar AOD values, suggesting that the bio-optical model does not substantially influence AOD retrievals (Fig. 4). Overall,

the MODIS AOD agrees with the averaged MAPOL AOD within 1-σ of the retrieval of all 3 bio-optical models, except at 410

nm, at which the MODIS AOD is slightly outside of 1σ AOD uncertainty limits.
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Figure 5. ACEPOL-Mix: The comparison of retrieved AOD at 532 nm with HSRL-2 and MODIS AOD at 532 nm. The AOD obtained for

the lowest χ2 case is shown here. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3, and, C2P7. Data is

given with respect to the longitude of the location. The coast of Monterey Bay is to the right-hand side of the plots.

The AOD retrieved by HSRL-2 and MODIS at 532 nm are similar. Based on the AOD retrieval comparison with respect to

HSRL-2 and MODIS at 532 nm (Fig. 5) the C2P3 model shows the overall best agreement among the 3 bio-optical models (Ta-320

ble 3). The differences between the HSRL-2, MODIS, and RSP retrieved AOD may be related to different sampling volumes,

viewing geometries of the instruments, and/or retrieval algorithms.

In the comparison of Rrs(λ) retrievals under the three bio-optical models (Fig. 6), MODIS shows negative Rrs(λ) values

at shorter wavelengths (410, and 470 nm) over the one or two pixels closest to the coast around 121.95◦ W. The AOD values

over these pixels are also much larger compared to MAPOL retrievals. This indicates that the MODIS AC algorithm has325

overestimated the aerosol signal over coastal waters, thereby making Rrs(λ) negative. There are no negative Rrs(λ) found in

the MAPOL retrievals. MODIS estimated Rrs(λ) values are higher than those from MAPOL for relatively clear waters at 410,

470, and 550 nm, but agree well at 670 nm with Rrs(λ) retrieved from C2P3 and C2P7 models. The C1P1 model also agrees

well at 670 nm, but not when closer to the coast. For the MODIS, comparably larger Rrs(λ) values at shorter wavelengths can

be explained by the comparably smaller AOD values at the respective wavelengths. A smaller difference in AOD can lead to a330

larger difference in Rrs(λ). The differences between MODIS products and MAPOL retrievals using the 3 bio-optical models

are given in Table 3.

The corresponding retrieval uncertainties for AOD and Rrs(λ) are calculated as discussed in Section 4. The retrieved AOD

values are similar across the 3 bio-optical models, but their AOD uncertainties differ due to the differences in their retrieval χ2

distribution. C1P1 shows the lowest AOD and Rrs(λ) retrieval uncertainties. Yet, even though C1P1 shows smaller uncertain-335

ties compared to the other two models, the accuracy of theRrs(λ) retrievals is not satisfactory for the two most nearshore pixels

with respect to MODIS. The average uncertainty is less than 0.01 for AOD at all the given RSP wavelengths. This falls within

the AOD uncertainty requirement defined by the Glory mission, namely, a maximum of 0.02 over the ocean (Mishchenko et al.,

2004). Overall, the C2P3 AOD uncertainty is slightly higher than that of C2P7. But it becomes smaller than that of C2P7 over

the coastal waters.340
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Figure 6. ACEPOL-Mix: The comparison of the RSP retrieved averagedRrs(λ) across the Monterey Bay with MODISRrs(λ) product and

retrieval uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3, and, C2P7 at 410, 469, 554, and

670 nm for averaged retrievals. The vertical bars indicate the 1σ uncertainty. Data is given with respect to the longitude of the location. The

coast of Monterey Bay is to the right-hand side of the plots.
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Table 3. ACEPOL-Mix: The average relative differences ( 1
N

∑[
amodel−aMODIS

aMODIS

]
(%), where a is either AOD or Rrs(λ) and N is the

total number of retrieved pixels (sample size); N=62) of AOD and Rrs(λ) between MODIS and the 3 bio-optical models (C1P1, C2P3, and

C2P7) at 410, 470, 550, and 670 nm. Negative Rrs(λ) from MODIS were excluded. The differences are based on 30% averaged retrievals.

The standard deviation of the relative differences is given inside the parentheses.

410 nm 470 nm 550 nm 670 nm

C1P1 16.3 (7.4) 8.9 (6.1) 5.5 (5.4) 9.3 (6.5)

AOD C2P3 19.9 (10.1) 12.1 (7.9) 6.5 (6.1) 6.4 (6.0)

C2P7 15.6 (8.6) 8.5 (6.7) 5.1 (5.7) 10.3 (6.1)

C1P1 60.7 (6.0) 56.8 (4.7) 39.1 (9.3) 34.6 (11.0)

Rrs(λ) C2P3 66.9 (6.9) 61.9 (10.7) 40.1 (15.0) 14.9 (12.8)

C2P7 58.4 (5.6) 53.6 (9.8) 30.2 (13.0) 17.3 (15.7)

The Rrs(λ) uncertainty from C2P3 and C2P7-based retrievals are similar with a maximum of 0.0004, 0.0005, 0.0007, and,

0.0003 sr−1 at 410, 470, 550 and 670 nm respectively. These uncertainties fall within the PACE defined Rrs(λ) uncertainty:

from 400 to 600 nm the absolute uncertainty is 0.0006 sr−1, and from 600 to 710 nm the absolute uncertainty is 0.0002 sr−1

(Werdell et al., 2019). For C1P1 the Rrs(λ) uncertainty is less than 0.0002 sr−1 for all the wavelengths shown in Fig. 6 and

falls within PACE defined Rrs(λ) uncertainty.345

The C1P1 AOD uncertainty is comparable with the other two models but C1P1 Rrs(λ) uncertainty is significantly lower

than the other two models. One reason can be explained as the total number of free parameters in the retrieval. With the C1P1

model, there is a total of 15 parameters to be retrieved. For C2P3 and C2P7 that increases to 17 and 21 respectively. With fewer

parameters, it is easier to converge at the global minimum within the parameter space, or a similar local minimum is always

achieved. Here, for the C1P1 model, the majority of the retrievals are converged to the same point (either a local minimum350

or the global minimum), hence the uncertainty defined by the spread of the cost function values is relatively small. With a

larger number of free parameters in the retrieval, convergence can be achieved at a local minimum more often than at the

global minimum. That makes the χ2 distribution widespread, hence the uncertainty becomes larger. Since C2P3 is a simplified

version of the C2P7 model (that is a subset of the C2P7 model) we can expect C2P3 and C2P7 to have similar performances.

4.2 NAAMES-Coastal355

The NAAMES-Coastal case (2015 November 04) covers RSP retrievals over Delaware Bay (Fig. 1 (b)), which is a coastal

water region with high turbidity. The χ2
min value obtained for each pixel with the three bio-optical models (C1P1, C2P7, and

C2P3) is given at the bottom of Figure 7. The averaged χ2
min for the 30% of the lowest χ2 (χ2

avg30%
) cases is the same as

χ2
min for C1P1 and roughly twice the χ2

min value for both C2P3 and C2P7. We did not see a significant difference between the

retrieval results obtained from the lowest χ2 case and 30% average, hence only the averaged AOD and Rrs(λ) retrievals are360

shown here. The MODIS [Chla] data (Fig. 7) shows values larger than 5 mgm−3 and the peak value exceeds 20 mgm−3. The
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C1P1 model has shown the highest χ2
min values around 100 still with a narrow χ2 distribution, whereas both C2P3 and C2P7

models show χ2
min values around 1.5. The large χ2

min values around 100 with narrow χ2 distributions imply the insufficiency

of the C1P1 model to represent highly turbid coastal waters. This also suggests that caution needs to be taken when using the

cost function spread to study the uncertainty of retrieval parameters. Overall, C2P3 and C2P7 models show the same capability365

to represent turbid coastal waters.
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Figure 7. NAAMES-Coastal: The top figure shows MODIS [Chla]. The gray dashed lines indicate [Chla] = 5, 10 and 20 mgm−3. The

middle figure shows χ2
min obtained for the RSP retrievals under the three bio-optical models: C1P1, C2P3, and, C2P7. The bottom figure

shows the average χ2
min value for the 30% of the lowest χ2 retrievals. Data is given with respect to the longitude of the location. The RSP

leg is located along the eastward coast of Delaware Bay.

The averaged AOD obtained under the C1P1 model is larger than those obtained with C2P3 and C2P7, likely because the

C1P1 model misrepresents the water properly in Delaware Bay (Fig.8). We collocated MODIS AOD and ocean color products

within a maximum distance of 0.8 km. The time difference between MODIS and RSP scanning times is approximately 1 hour.

The MODIS AOD values at 410 nm are within the uncertain limits of C1P1 and fall within the uncertainty limits of C2P3 and370

C2P7 at the rest of the wavelengths. Correspondingly, the C1P1 Rrs(λ) is less than that from C2P3 and C2P7 (Fig. 9). At 410

and 470 nm, the Rrs(λ) retrieved with C2P7 is on average larger than that from C2P3, but similar values are retrieved at 550

and 670 nm. The MODIS Rrs(λ) agrees well with C2P3 and C2P7 at 470, 550 and 670 nm. At 410 nm, MODIS Rrs(λ) is
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mostly similar to that retrieved from C2P3. The average relative differences between MODIS AOD and Rrs(λ) with MAPOL

retrievals under the 3 bio-optical models are given in Table 4.375
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Figure 8. NAAMES-Coastal: The comparison of the RSP retrieved averaged AOD across the Delaware Bay with MODIS AOD and un-

certainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3, and, C2P7 at 410, 470, 550, and 670 nm for

averaged retrievals. The vertical bars indicate the 1σ uncertainty. Data is given with respect to the longitude of the location. The RSP leg is

located along the eastward coast of Delaware Bay.

The AOD and Rrs(λ) retrieval uncertainties (Fig. 8 and 9) are generally similar across the three bio-optical models, with a

few exceptions seen for C1P1 Rrs(λ) uncertainty at longer wavelengths. The average AOD uncertainty is less than 0.02 at all

the given RSP wavelengths and meets the AOD uncertainty requirement for climate models as assessed by Mischenko et al.,

(2004). TheRrs(λ) uncertainty for the C2P7 model is larger at shorter wavelengths (410 and 470 nm), where the corresponding

Rrs(λ) signals are small. Overall, the C2P3 and C2P7 models result in Rrs(λ) uncertainties near the uncertainty defined by380

the PACE mission except at 670 nm. Even though the Rrs(λ) retrieval uncertainties are very small, the significantly larger χ2
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Figure 9. NAAMES-Coastal: The comparison of the RSP retrieved averaged Rrs(λ) across the Delaware Bay with MODIS Rrs(λ) product

and uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3, and, C2P7 at 410, 470, 550, and 670

nm for averaged retrievals. The vertical bars indicate the 1σ uncertainty. Data is given with respect to the longitude of the location. The RSP

leg is located along the eastward coast of Delaware Bay.
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Table 4. NAAMES-Coastal: The average relative differences (%) of AOD andRrs(λ) between MODIS and the 3 bio-optical models (C1P1,

C2P3, and C2P7) at 410, 470, 550 and 670 nm. Sample size, N=40. The differences are based on 30% averaged retrievals. Negative Rrs(λ)

from MODIS were excluded. The standard deviation of the relative differences is given inside the parentheses

410 nm 470 nm 550 nm 670 nm

C1P1 9.7 (4.2) 4.1 (2.9) 11.7 (6.3) 29.5 (9.9)

AOD C2P3 22.0 (3.5) 12.5 (4.4) 4.7 (3.7) 13.8 (7.6)

C2P7 23.6 (3.4) 14.0 (4.5) 5.4 (3.7) 13.0 (7.3)

C1P1 31.4 (21.2) 63.4 (10.2) 75.5 (4.5) 90.5 (1.7)

Rrs(λ) C2P3 17.4 (14.7) 18.4 (6.2) 7.1 (4.3) 7.6 (5.7)

C2P7 60.8 (35.3) 7.9 (4.5) 10.5 (5.9) 7.9 (4.8)

values under the C1P1 model and the inability to match the MODIS retrievals suggest that the C1P1 model is not suitable to

represent the coastal water properties.

4.3 NAAMES-Open

The NAAMES-Open case (2015 November 04) covers RSP retrievals along the open ocean outward from Delaware Bay (Fig.385

1 (c)). The χ2
min values obtained for each pixel, under the three bio-optical models (C1P1, C2P7, and C2P3) are shown in the

middle panel of Fig. 10. The averaged χ2
min for the 30% of the lowest χ2 cases is the same as χ2

min for C1P1, and around 5

times the χ2
min value for both C2P3 and C2P7 showing larger χ2 distributions. This implies that C2P3 and C2P7 models result

in retrievals that converge at different local minima, instead of the global minimum. The MODIS [Chla] values (the top panel

of Fig.10) are less than 0.5 mgm−3 in the open ocean and increase up to 4 mgm−3 closer to the coast/Delaware Bay. The390

χ2
min values are similar across all three bio-optical models with values around 1. There are some pixels from longitude 71.5◦

W to 72.3◦ W which show larger χ2
min values which we found to be attributed to cirrus cloud contamination.

For this case, we collocated MODIS AOD and Rrs(λ) within a maximum distance of 1.4 km and 0.5 km respectively. The

time difference between MODIS and RSP, scanning times is 1 hour. The comparison with MODIS AOD (Fig. 11) shows a

better agreement with averaged AOD retrievals from all three bio-optical models. Some exceptions are seen in the locations395

that were attributed to cloud contamination. Unlike the previous two cases, the C1P1 averagedRrs(λ) show the best agreement

with MODIS Rrs(λ), mostly over open waters (Fig. 12). The C2P3 and C2P7 averaged Rrs(λ) show better agreement only

when closer to the coast (-74.5◦ W), where C1P1 is not expected to provide a complete representation of the water optical

properties.

For C2P3 and C2P7 models, the comparison of Rrs(λ) retrievals obtained for the lowest χ2 retrieval of the ensemble400

retrieval, show better agreement with MODIS Rrs(λ) compared to the averaged retrievals. For AOD, the C2P3 and C2P7

averaged retrievals show a better agreement with MODIS AOD than the lowest χ2 retrievals. However, the agreement of the

lowest χ2 AOD retrievals from C2P3 and C2P7 with MODIS is better than that from C1P1. The relative differences between
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Figure 10. NAAMES-Open: The top figure shows MODIS [Chla]. The gray dashed lines indicate [Chla]=0.5 and 1 mgm−3. The middle

figure shows χ2
min obtained for the RSP retrievals under the three bio-optical models: C1P1, C2P3, and, C2P7. The bottom figure shows the

average χ2
min value for the 30% of the lowest χ2 retrievals. Data is given with respect to the longitude of the location. The coast is to the

left-hand side of the plots.

MODIS and MAPOL retrieved AOD corresponding to χ2
min and χavg30% are given in Table 5 and the same for Rrs(λ) is

given in Table 6. There is a significant difference seen in the relative difference values between χ2
min and χavg30% for Rrs(λ)405

which is not significant for AOD. The distribution of χ2 values in the ensemble retrieval therefore largely affects the accuracy

of Rrs(λ) retrievals.

The AOD uncertainties (Fig. 11) are similar across the three bio-optical models with a maximum of 0.015 at all given

wavelengths. For Rrs(λ) (Fig. 12) C1P1 shows the lowest uncertainties owing to its small parameter space, which leads to

better convergence near the global minimum. The multi-parameter models show comparably larger Rrs(λ) uncertainties that410

are still within the PACE-defined uncertainties except at 410 nm.
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Figure 11. NAAMES-Open: The comparison of the RSP retrieved spectral AOD across the open ocean with MODIS AOD and uncertainty.

Results are shown for the retrievals under the three bio-optical models C1P1, C2P3, and, C2P7 at 410, 469, 554, and 670 nm for averaged

retrievals. The lines (C1P1-solid, C2P3-dashed, C2P7-dotted) indicate the retrievals obtained for the χ2
min case. The markers show the

average retrieval. The uncertainty plots show the 1σ uncertainty for averaged retrievals. Data is given with respect to the longitude of the

location. The coast is to the left-hand side of the plots.
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averaged retrievals. The lines (C1P1-solid, C2P3-dashed, C2P7-dotted) indicate the retrievals obtained for the χ2
min case. The markers show

the average retrieval. The uncertainty plots show the 1σ uncertainty for averaged retrievals. Data is given with respect to the longitude of the

location. The coast is to the left-hand side of the plots.
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Table 5. NAAMES-Open: The average relative differences (%) of AOD between MODIS and the 3 bio-optical models (C1P1, C2P3, and

C2P7) at 470, 550, and 670 nm. Sample size, N=106. The differences are given for the retrievals from χ2
min case and averaged retrievals

χ2
avg30%. The standard deviation of the relative differences is given inside the parentheses

410 nm 470 nm 550 nm 670 nm

C1P1 7.2 (4.7) 9.0 (5.9) 13.7 (9.0) 20.7 (11.9)

χ2
avg30%

C2P3 9.0 (6.0) 8.6 (5.2) 13.5(8.4) 21.6 (11.6)

C2P7 7.4 (5.1) 7.9 (5.0) 13.3 (8.4) 21.6 (13.0)

C1P1 19.7 (12.0) 25.5 (13.3) 31.4 (16.5) 40.5 (23.0)

χ2
min C2P3 31.3 (10.7) 36.7 (11.2) 44.9 (13.2) 53.5 (15.7)

C2P7 29.0 (11.7) 34.3 (12.2) . 45.5 (13.7) 51.1 (16.2)

Table 6. The same as 5 but for Rrs(λ)

410 nm 470 nm 550 nm 670 nm

C1P1 27.0 (16.6) 25.7 (11.4) 21.0 (8.9) 19.2 (6.1)

χ2
avg30%

C2P3 84.0 (7.3) 84.4 (8.4) 69.0 (10.6) 52.5 (10.7)

C2P7 80.0 (10.4) 81.8 (10.6) 67.2 (12.9) 49.7 (13.2)

C1P1 20.6 (16.4) 20.9 (11.4) 21.5 (9.0) 51.0 (6.6)

χ2
min C2P3 27.2 (22.7) 42.8 (15.7) 24.8 (16.6) 36.8 (15.6)

C2P7 22.3 (20.3) 37.7 (15.2) 21.3 (16.4) 33.2 (16.9)

5 Discussion

In this study, we have evaluated the retrieval performances of 3 bio-optical models within CAOSs under different water condi-

tions. For the ACEPOL-Mix case, the waters vary from relatively clear to highly turbid conditions with [Chla] values ranging

from 1− 20 mgm−3. The NAAMES-Coastal case includes RSP measurements over highly turbid waters (5< [Chla]< 20415

mgm−3). For the NAAMES-Open case, the waters are mostly clear and become turbid when closer to the coast (0.1<

[Chla]< 3mgm−3).

We have evaluated the retrieval performances based on the magnitude of the retrieval cost function values, the spread of the

cost function distribution, the validity of retrieved AOD and Rrs(λ) values, and the corresponding retrieval uncertainties. For

the NAAMES-Open case, the C1P1 model shows low χ2
min values indicating good fitting against RSP measurements. The420

C2P3 and C2P7 models also show good fitting with the RSP measurements, but only when the χ2
min cases are considered.

The C1P1 shows the best agreement in AOD and Rrs(λ) retrieval results with independent data sources from the MODIS. The

C1P1 retrieval performance in the ACEPOL-Mix case is satisfactory when the waters are relatively clear ([Chla]<3mgm−3),
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that is, towards the open ocean. The C2P3 and C2P7 models in the NAAMES-Coastal case and nearshore ACEPOL-Mix pixels

show better agreement in averaged AOD and Rrs(λ) retrievals with uncertainties within the Glory uncertainty requirement for425

AOD and the PACE uncertainty requirement for Rrs(λ).

The overall results indicate that the choice of bio-optical model (either a single parameter or multi-parameter) affects the

accuracy of the retrievals, which is especially true for Rrs(λ) retrievals. Hannadige et al., (2023) showed similar retrieval per-

formances for 3 and 5-parameter bio-optical models when Rrs(λ) is inverted using SAA-based algorithms. Here we demon-

strated that the joint retrieval performances of the C2P3 and C2P7 models are mostly similar showing that the same conclusion430

holds for joint retrieval algorithms using the airborne MAP measurements. For coastal waters, it is inappropriate to use the

single-parameter bio-optical model. The C2P3 and C2P7 models show good retrieval performances over turbid waters.

We have also evaluated the distribution of ensemble χ2 values based on χ2
min and χ2

avg30%
values. The study of cost function

distributions helps understand the impact of bio-optical models on the convergence behavior of the non-linear least squares

fitting algorithms. For the C1P1 model, the χ2 distribution from all three cases is narrow, even the resultant χ2 values are large.435

This suggests that the use of cost function distribution alone to study the uncertainty of retrieval parameters is misleading. For

C2P3 and C2P7, over moderately to highly turbid waters (ACEPOL-Mix and NAAMES-Coastal, 1< [Chla]< 20 mgm−3),

the χ2 values are mostly closer to 1 and the distribution is nearly narrow, implying their capability to reach near the global

minimum with multiple parameters over coastal waters. But in the NAAMES-Open case, C2P3 and C2P7 show widespread

χ2 distributions implying their inability to reach the global minimum with multiple parameters over open waters. This can be440

explained by the degrees of freedom in the water leaving signal and the number of optimization parameters in the bio-optical

models.

In the NAAMES-Open case, even though the averaged retrieval results from C2P3 and C2P7 are on average not satisfactory

over clear waters, the retrieval results corresponding to the lowest χ2 show good agreement with MODIS AOD and Rrs(λ).

This implies that the C2P3 and C2P7 models can accurately represent clear water optical properties with proper interpretation445

and conscientious use of the χ2 distributions. However, the averaged retrieval results differ significantly as the retrieval χ2

distributions under C2P3 and C2P7 models are widespread compared to that of C1P1. For the practical use of these bio-optical

models, we suggest performing initial retrievals using the C1P1 bio-optical model and then reperforming the retrievals with

either C2P3 or C2P7 models in case the C1P1 model results in significantly larger χ2 values.

The C2P3 and C2P7 models show similar retrieval performances for all three case studies. The MAPOL retrievals under the450

C2P3 model use 17 retrieval parameters whereas the C2P7 model uses 21 parameters. The C2P7 provides a larger parameter

space that encompasses all the possible parameter value combinations of the C2P3 model, hence their performances are similar.

MAPOL is computationally demanding as it needs to iteratively run the radiative transfer forward model for CAOS. The

algorithm stability and the time taken for a single retrieval is proportional to the size of the retrieval parameters. For the C2P3

model, it takes an average of 3 hours for a single CPU core to process one-pixel retrieval with RSP measurements whereas, for455

the C2P7 model, the time increases up to 8 hours since an increased number of parameters leads to more forward model and

Jacobian evaluations in least squares fitting algorithms. Therefore, the C2P3 model is more efficient for the MAPOL algorithm

to represent Case II waters.
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The operational version of MAPOL, called FastMAPOL, replaces the radiative transfer forward model with neural networks,

which can process several pixels within a second in a single CPU (Gao et al., 2021). We expect to update both MAPOL and460

FastMAPOL algorithms with the C2P3 model in the future. The fixed parameters in the 3-parameter C2P3 model might not

be true for all the water which is subject to fine-tuning. The availability of airborne MAP measurements over the oceans

under cloud-free conditions is limited, and we cannot cover a larger range of atmosphere and water conditions in this study.

The unavailability of accurate in-situ measurements over the selected locations for the validation is yet another limitation. We

expect to further improve our bio-optical models based on the MAP measurements to be acquired from the PACE mission plan465

to launch in early 2024.

The [Chla] alone does not fully represent the turbidity of the water as the sediment/NAP concentration and CDOM avail-

ability are also important factors. There is no clear boundary between Case I and Case II waters (IOCCG, 2000), hence we

cannot provide a clear set of conditions where we need to apply each of the bio-optical models used in this study. There is

no universal bio-optical model to represent water bio-optical properties (Fan et al., 2021). At least two separate bio-optical470

models are required to represent Case I and Case II waters. The three cases in this study do not cover in-land/lake waters. The

applicability of C2P3 and C2P7 to lakes or in-land waters is subject to a future study.

6 Conclusions

In this paper, we have evaluated the performance of the MAPOL joint retrieval algorithm using three bio-optical models.

The RSP measurements from different field campaigns covering different water types are used. The retrieval performance475

evaluation is based on the magnitude of the cost function values (χ2), the spread of the retrieval cost function distribution, the

validity of retrieved AOD, and Rrs(λ) and their respective uncertainty analysis. The three bio-optical models include C1P1,

a single parameter Case I water model, C2P3, and C2P7, multi-parameter Case II bio-optical models. Three cases; ACEPOL-

Mix, NAAMES-Costal, and NAAMES-Open, were selected based on their location and water turbidity observed with respect

to [Chla] derived from the NASA OBPG algorithm with MODIS measurements. The NAAMES-Costal covers highly turbid480

waters, ACEPOL-Mix covers highly turbid and relatively clear waters and NAAMES-Open covers open clear waters. The

retrieved AOD was validated against that from HSRL-2 (ACEPOL-Coastal) and/or MODIS and Rrs(λ) was compared against

that from MODIS. The MODIS Rrs(λ) over highly turbid waters show negative values for shorter wavelengths (410 and 470

nm), hence that cannot be used as a validation dataset. On the other hand, the MODIS data products are used to perform sanity

checks of the RSP-based MAPOL retrievals.485

We evaluated the spread of retrieval cost function distribution from the ensemble retrievals with the three bio-optical models.

The C1P1 model showed narrow χ2 distributions regardless of the type of water present or the magnitude of χ2
min values. This

makes the retrieval uncertainty from the C1P1 model smaller, even though the model can not accurately represent a particular

water type (large cost function values). Therefore convergence has to be ensured before the uncertainty evaluation since the use

of cost function distribution alone to study the retrieval uncertainties can be misleading. The C2P3 and C2P7 models showed490

the widest cost function distributions over open waters with χ2
min comparable to that of C1P1. C2P3 and C2P7 showed narrow
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χ2 distributions over moderately to highly turbid waters with small χ2 values. These observations implied the ability of the

multi-parameter bio-optical model-based retrievals to converge near the global minimum over different waters.

We also observed that the retrieval accuracies of AOD and Rrs(λ) are directly related to the choice of the bio-optical

model (single or multi-parameter) in the retrieval. The Rrs(λ) retrieval is significantly affected. The C1P1 model shows good495

retrieval performances only over relatively clear waters ([Chla]< 3 mgm−3). The results suggested that the multi-parameter

models, C2P3 and C2P7 are better at representing turbid coastal waters. The C2P3 and C2P7 models also have the potential

to accurately represent clear open waters (NAAMES-Open) in joint retrieval algorithms but with a conscientious interpretation

of their χ2 distributions. The C2P3 and C2P7 models tend to converge to local minima and the extensive spread of χ2 values

diminishes the ability of multi-parameter models to retrieve clear waters accurately and make the interpretation of the retrieval500

results difficult. Therefore it is preferred to develop screening algorithms to divide open and coastal waters before performing

MAP retrievals.

Similar to the SAA based Rrs(λ) inversions (Hannadige et al., 2023), multi-parameter models (C2P3 and C2P7) perform

equally well when used with joint retrieval algorithms and airborne MAP measurements. The C2P3 model is more compu-

tationally efficient than the C2P7 model as fewer free parameters lead to significantly less processing time and more stable505

retrieval performances.

Data availability. The data files for RSP, and HSRL-2 used in this study are listed below. The RSP data are available at the NASA GISS

website https://data.giss.nasa.gov/pub/rsp. The HSRL-2 data are available from the ACEPOL website (https://www-air.larc.nasa.gov/cgi-bin/

ArcView/acepol)

– ACEPOL-Mix (07 November 2017):510
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– NAAMES-Coastal (04 November 2015):
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– NAAMES-Open (04 November 2015):515
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