Supporting Information for:

Characterization of the planar differential mobility analyzer (DMA P5): resolving power, transmission efficiency and its application to atmospheric cluster measurements

Zhengning Xu ${ }^{\mathbf{1}}$, Jian $\mathbf{G a o}^{1}$, Zhuanghao $\mathbf{X u}^{\mathbf{1}}$, Michel Attoui ${ }^{\mathbf{3}}$, Xiangyu Pei ${ }^{1}$, Mario AmoGonzález ${ }^{4}$, Kewei Zhang ${ }^{\mathbf{1}}$, Zhibin Wang ${ }^{1,2,5^{*}}$
${ }^{1}$ College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
${ }^{2}$ ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
${ }^{3}$ University Paris-Est Creteil, University Paris-Diderot, LISA, UMR CNRS 7583, France
${ }^{4}$ MION S.L., Avda. Francisco Valles 8, Boecillo, Valladolid, 47151, Spain
${ }^{5}$ Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, China

Correspondence to: Zhibin Wang (wangzhibin@zju.edu.cn)

Section 1: Theoretical derivation of the operation principle of planar DMA

Figure S1 operation principle of planar DMA
$V_{D M A}$: Voltage between the two electrodes;
h : Distance between the two electrodes;
The electric field between the two electrodes: $E=\frac{V_{D M A}}{h}$.
During the scanning period of planar DMA, the electric field is applied on the zdirection, a laminar particle-free sheath flow is circulating thorough the capacitor along the x-direction at the flow rate of $Q_{s h}$, and the aerosol flow is fed into the capacitor thorough input slit located at the top electrode at the flow rate of Q_{a}. The direction of aerosol flow is parallel to the electric field and perpendicular to the sheath flow.

The particle velocity in x-direction is given as: $u_{x}(z)=\frac{d_{x}}{d_{t}}$
The equation can be transformed as $d_{x}=u_{x}(\mathrm{z}) \cdot d_{t}$
The particle velocity in z-direction is given as:

$$
u_{z}=\frac{d z}{d t}=\frac{Q_{a}}{S_{\text {slit }}}+E \cdot Z_{p}=\frac{Q_{a}}{S_{\text {slit }}}+\frac{V_{D M A} \cdot Z_{p}}{h}
$$

where $Z p$ represent the electric mobility of the particle and $S_{\text {slit }}$ represent the crosssection area of inlet slit.

Since $\frac{Q_{a}}{S_{\text {slit }}}$ is much smaller than $\frac{V_{D M A} \cdot z_{p}}{h}$, this equation can be written as: $u_{z}=\frac{d z}{d t}=$ $\frac{V_{D M A} \cdot z_{p}}{h} ;$

The equation can be transformed as $d_{t}=\frac{h}{V_{D M A} \cdot Z_{p}} \cdot d_{z}$
Combined equation (1) and (2), we can get the relation that

$$
\begin{equation*}
d_{x}=\frac{u_{x}(z) \cdot h}{V_{D M A} \cdot z_{p}} \cdot d_{z} \tag{3}
\end{equation*}
$$

Integrating equation (3), we can get the equation that $\int_{0}^{L} d_{x}=\frac{h}{V_{D M A} \cdot Z_{p}} \int_{0}^{h} u_{x}(z) d_{z}$ where L represent the distance between the inlet slit and the monodispersed particle exit.

Assuming that $\bar{u}_{x}(z)=\frac{Q_{s h}}{w \cdot h}$, where w represents the width of the capacitor and $\mathrm{w} \cdot \mathrm{h}$ represent the cross-section area of the capacitor, the integral equation can be transformed as $\int_{0}^{L} d_{x}=L=\frac{Q_{s h}}{w \cdot h} \cdot \frac{h}{V_{D M A} \cdot Z_{p}} \int_{0}^{h} d_{z}=\frac{Q_{s h \cdot h}}{w \cdot V_{D M A} \cdot Z_{p}}$

Equation (4) can be written as $Z_{p}=\frac{Q_{s h \cdot h}}{w \cdot U \cdot h}$, and combined with the assumption that $Q_{s h}=\bar{u}_{x}(z) \cdot w \cdot \mathrm{~h}$, we can get the expression of $Z_{p}=\frac{\bar{u}_{x}(z) \cdot h^{2}}{V_{D M A} \cdot L}$

In equation (5) $\bar{u}_{x}(z)$ represent the average speed of sheath flow along z direction; L and h represent the horizontal distance of inlet the exit and between the two electrodes, respectively; $V_{D M A}$ represent the voltage applied between the two electrodes.

Account for the planar DMA P5, the sheath flow speed is uniform along zdirection $\left(\bar{u}_{x}(z)=u_{x}\right)$, the physical dimension of L and h are 40 mm and 10 mm , respectively. The relation of the electric mobility $\left(Z_{p}\right)$ and the voltage applied by planar DMA P5 ($\mathrm{V}_{\mathrm{DMA}}$) can be expressed as:

$$
\begin{equation*}
Z_{p}=\frac{u_{x} \cdot h^{2}}{V_{D M A} \cdot L} \tag{6}
\end{equation*}
$$

Section 2: Mobility diameter calculation

Calculation of diameter from mobility (Tammet, 1995; Wiedensohler et al., 2012)

$$
\begin{gathered}
Z=\frac{n e C_{c}\left(D_{p}\right)}{3 \pi \mu D_{p}} \\
C_{c}=1+\frac{2 \lambda}{D_{p}}\left(1.165+0.483 \exp \left(-0.997 \frac{D_{p}}{2 \lambda}\right)\right) \\
\lambda=\lambda_{0}\left(\frac{T}{T_{0}}\right)^{2}\left(\frac{P_{0}}{P}\right)\left(\frac{T_{0}+110.4 K}{T+110.4 K}\right) \\
\mu=\mu_{0}\left(\frac{T}{T_{0}}\right)^{3 / 2}\left(\frac{T_{0}+110.4 K}{T+110.4 K}\right)
\end{gathered}
$$

n is Number of elementary charges on the particle; e is Elementary charge $=$ $1.60 \times 10^{-19} \mathrm{C} ; \mathrm{C}_{\mathrm{c}}$ is Cunningham slip correction; D_{p} is Mobility diameter; μ is Dynamic gas viscosity; λ is Mean free path of gas; T is Temperature, and is set as 298.15 K ; P is Pressure, assuming P equals to $1 \mathrm{~atm} ; \mathrm{T}_{0}$ is Reference temperature (296.15 K); P_{0} is the Reference pressure $=1 \mathrm{~atm}=101325 \mathrm{~Pa} ; \lambda_{0}$ is Mean free path at 296.15 K and $1 \mathrm{~atm}=$ $67.3 \times 10^{-9} \mathrm{~m} ; \mu_{0}$ is the gas viscosity at 296.15 K and 1 atm , which is equals to 1.83245 $\times 10^{-5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$

Section 3: Supplementary figures and tables

Figure S2 The relation of blower control voltage with sheath flow rate and corresponding DMA P5 sizing range

Figure S3 THA ${ }^{+}$Signal intensity normalized by monodispersed flow rate

Figure S4 Positive ion mobility spectrum of electrospraied THAB solution obtained from HalfMini + Lynx E12

Figure S5 Schematic diagram of tandem DMA system

Table S1 Inverse mobilities $1 / Z\left(\mathrm{~V} \mathrm{~s} / \mathrm{cm}^{2}\right)$ for four tetra-alkyl ammonium positive ions

Peak ${ }^{+}$	TMAI		TBAI		THAB		TDAB	
	this work	Ude et al. 2005	this work	Ude et al. 2005	this work	Ude et al. 2005	this work	Ude et al. 2005
\mathbf{A}^{+}	0.458	0.459	0.723	0.718	1.03	1.03	1.269	1.285
$\mathbf{A}^{+}(\mathbf{A B})$	0.667	0.677	1.164	1.153	1.533	1.529	1.811	1.846
$\mathbf{A}^{+}(\mathbf{A B})_{\mathbf{2}}$	-		1.475	1.450	1.898	1.893	-	

Table S2 Inverse mobilities $1 / Z\left(\mathrm{Z} \mathrm{s} / \mathrm{cm}^{2}\right)$ for four tetra-alkyl ammonium negative ions

Peak $^{-}$	TMAI	TBAI	THAB	TDAB
B $^{-}$	0.423	0.422	0.436	0.436

References

Tammet, H.: SIZE AND MOBILITY OF NANOMETER PARTICLES, CLUSTERS AND IONS, J. Aerosol Sci., 6, (3), 459-475, https://doi.org/10.1016/0021-8502(94)00121-E, 1995.

Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., et al.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, (3), 657-685, 2012.

