Supporting Information for:

Characterization of the planar differential mobility analyzer (DMA P5): resolving power, transmission efficiency and its application to atmospheric cluster measurements

Zhengning Xu¹, Jian Gao¹, Zhuanghao Xu¹, Michel Attoui³, Xiangyu Pei¹, Mario Amo-González⁴, Kewei Zhang¹, Zhibin Wang^{1,2,5*}

¹College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Organic

Pollution Process and Control, Zhejiang University, Hangzhou 310058, China

²ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China

³University Paris-Est Creteil, University Paris-Diderot, LISA, UMR CNRS 7583, France

⁴MION S.L., Avda. Francisco Valles 8, Boecillo, Valladolid, 47151, Spain

⁵Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education,

Zhejiang University, Hangzhou, 310058, China

Correspondence to: Zhibin Wang (wangzhibin@zju.edu.cn)

Figure S1 operation principle of planar DMA

 V_{DMA} : Voltage between the two electrodes;

h: Distance between the two electrodes;

The electric field between the two electrodes: $E = \frac{V_{DMA}}{h}$.

During the scanning period of planar DMA, the electric field is applied on the zdirection, a laminar particle-free sheath flow is circulating thorough the capacitor along the x-direction at the flow rate of Q_{sh} , and the aerosol flow is fed into the capacitor thorough input slit located at the top electrode at the flow rate of Q_a . The direction of aerosol flow is parallel to the electric field and perpendicular to the sheath flow.

The particle velocity in x-direction is given as: $u_x(z) = \frac{d_x}{d_x}$

The equation can be transformed as $d_x = u_x(z) \cdot d_t$ (1) The particle velocity in z-direction is given as:

$$u_z = \frac{dz}{dt} = \frac{Q_a}{S_{slit}} + E \cdot Z_p = \frac{Q_a}{S_{slit}} + \frac{V_{DMA} \cdot Z_p}{h}$$

where Zp represent the electric mobility of the particle and S_{slit} represent the crosssection area of inlet slit.

Since $\frac{Q_a}{S_{slit}}$ is much smaller than $\frac{V_{DMA} \cdot Z_p}{h}$, this equation can be written as: $u_z = \frac{dz}{dt} = \frac{V_{DMA} \cdot Z_p}{h}$;

The equation can be transformed as $d_t = \frac{h}{V_{DMA} \cdot Z_p} \cdot d_z$ (2)

Combined equation (1) and (2), we can get the relation that

$$d_x = \frac{u_x(z) \cdot h}{V_{DMA} \cdot Z_p} \cdot d_z \qquad (3)$$

Integrating equation (3), we can get the equation that $\int_0^L d_x = \frac{h}{V_{DMA} \cdot Z_p} \int_0^h u_x(z) d_z$ where L represent the distance between the inlet slit and the monodispersed particle exit.

Assuming that $\bar{u}_x(z) = \frac{Q_{sh}}{w \cdot h}$, where w represents the width of the capacitor and w h represent the cross-section area of the capacitor, the integral equation can be transformed as $\int_0^L d_x = L = \frac{Q_{sh}}{w \cdot h} \cdot \frac{h}{V_{DMA} \cdot Z_p} \int_0^h d_z = \frac{Q_{sh} \cdot h}{w \cdot V_{DMA} \cdot Z_p}$ (4)

Equation (4) can be written as $Z_p = \frac{Q_{sh\cdot h}}{w \cdot U \cdot L}$, and combined with the assumption that $Q_{sh} = \bar{u}_x(z) \cdot w$ ·h, we can get the expression of $Z_p = \frac{\bar{u}_x(z) \cdot h^2}{V_{DMA} \cdot L}$ (5)

In equation (5) $\bar{u}_x(z)$ represent the average speed of sheath flow along zdirection; L and h represent the horizontal distance of inlet the exit and between the two electrodes, respectively; V_{DMA} represent the voltage applied between the two electrodes.

Account for the planar DMA P5, the sheath flow speed is uniform along zdirection ($\bar{u}_x(z) = u_x$), the physical dimension of L and h are 40mm and 10mm, respectively. The relation of the electric mobility (Z_p) and the voltage applied by planar DMA P5 (V_{DMA}) can be expressed as:

$$Z_p = \frac{u_x \cdot h^2}{V_{DMA} \cdot L} \qquad (6)$$

Section 2: Mobility diameter calculation

Calculation of diameter from mobility (Tammet, 1995; Wiedensohler et al., 2012)

$$Z = \frac{neC_{c}(D_{p})}{3\pi\mu D_{p}}$$

$$C_{c} = 1 + \frac{2\lambda}{D_{p}} \left(1.165 + 0.483 exp\left(-0.997 \frac{D_{p}}{2\lambda}\right) \right)$$

$$\lambda = \lambda_{0} \left(\frac{T}{T_{0}}\right)^{2} \left(\frac{P_{0}}{P}\right) \left(\frac{T_{0} + 110.4 K}{T + 110.4 K}\right)$$

$$\mu = \mu_{0} \left(\frac{T}{T_{0}}\right)^{3/2} \left(\frac{T_{0} + 110.4 K}{T + 110.4 K}\right)$$

n is Number of elementary charges on the particle; e is Elementary charge = 1.60×10^{-19} C; C_c is Cunningham slip correction; D_p is Mobility diameter; μ is Dynamic gas viscosity; λ is Mean free path of gas; T is Temperature, and is set as 298.15 K; P is Pressure, assuming P equals to 1atm; T₀ is Reference temperature (296.15 K); P₀ is the Reference pressure = 1atm = 101325 Pa; λ_0 is Mean free path at 296.15K and 1atm = 67.3×10^{-9} m; μ_0 is the gas viscosity at 296.15K and 1atm, which is equals to 1.83245 $\times 10^{-5}$ kg m⁻¹ s⁻¹

Figure S2 The relation of blower control voltage with sheath flow rate and corresponding DMA P5 sizing range

Figure S3 THA⁺ Signal intensity normalized by monodispersed flow rate

Figure S4 Positive ion mobility spectrum of electrospraied THAB solution obtained from HalfMini + Lynx E12

Figure S5 Schematic diagram of tandem DMA system

Peak ⁺	Table ST Inverse I TMAI		TBAI		THAB		TDAB	
	this work	Ude et al. 2005	this work	Ude et al. 2005	this work	Ude et al. 2005	this work	Ude et al.
								2005
\mathbf{A}^{+}	0.458	0.459	0.723	0.718	1.03	1.03	1.269	1.285
A ⁺ (AB)	0.667	0.677	1.164	1.153	1.533	1.529	1.811	1.846
A ⁺ (AB) ₂	-		1.475	1.450	1.898	1.893	-	

Table S1 Inverse mobilities 1/Z (V s/cm²) for four tetra-alkyl ammonium positive ions

Table S2 Inverse mobilities 1/Z (V s/cm²) for four tetra-alkyl ammonium negative ions

Peak ⁻	TMAI	TBAI	ТНАВ	TDAB	_
B-	0.423	0.422	0.436	0.436	-

References

- Tammet, H.: SIZE AND MOBILITY OF NANOMETER PARTICLES, CLUSTERS AND IONS, J. Aerosol Sci., 6, (3), 459-475, https://doi.org/10.1016/0021-8502(94)00121-E, 1995.
- Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., et al.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, (3), 657-685, 2012.