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Abstract 

The ability of regional air quality models to skilfully represent pollutant distributions throughout the 

atmospheric column is important to enabling their skilful prediction at the surface. This provides a requirement 10 

for model evaluation at elevated altitudes, though observation datasets available for this purpose are limited. 

This is particularly true of those offering sampling over extended time periods. To address this requirement and 

support evaluation of regional air quality models such as the UK Met Offices Air Quality in the Unified Model 

(AQUM), a long-term, quality assured, dataset of the three-dimensional distribution of key pollutants has been 

collected over the southern United Kingdom from July 2019 to April 2022. Measurements were collected using 15 

the Met Office Atmospheric Survey Aircraft (MOASA), a Cessna-421 instrumented for this project to measure 

gaseous nitrogen dioxide, ozone, sulphur dioxide and fine mode (PM2.5) aerosol. This paper introduces the 

MOASA measurement platform, flight strategies and instrumentation and is not intended to be an in-depth 

diagnostic analysis, but rather a comprehensive technical reference for future users of these data. The MOASA 

air quality dataset includes 63 flight sorties (totalling over 150 hours of sampling), the data from which are 20 

openly available for use. To illustrate potential uses of these upper air observations for regional-scale model 

evaluation, example case studies are presented, which include analysis of the spatial scales of measured 

pollutant variability, a comparison of airborne to ground-based observations over Greater London and initial 

work to evaluate performance of the AQUM regional air quality model. These case studies show that for 

observations of relative humidity, nitrogen dioxide and particle counts, natural pollutant variability is well 25 

observed by the aircraft, whereas SO2 variability is limited by instrument precision. Good agreement is seen 

between observations aloft and those on the ground, particularly for PM2.5.  Analysis of odd oxygen suggests 

titration of ozone is a dominant chemical process throughout the column for the data analysed, although a slight 

enhancement of ozone aloft is seen. Finally, a preliminary evaluation of AQUM performance for two case-

studies suggests a large positive model bias for ozone aloft, coincident with a negative model bias for NO2 aloft. 30 

In one case, there is evidence that an under prediction in the modelled boundary layer height contributes to the 

observed biases at elevated altitudes. 
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1 Introduction 

The World Health Organisation identifies atmospheric air pollution as the single largest environmental risk to 35 

human health globally (World Health Organization, 2017). Long-term exposure to anthropogenic air pollution is 

linked with increased morbidity rates and premature mortality from chronic diseases (Air Quality Expert Group, 

2020, Manisalidis et al., 2020), which in the UK alone is estimated to have an annual impact on shortening 

lifespans equivalent to 28 – 36 thousand deaths (DEFRA, 2019). The impacts of air pollution on human health 

can be most acute in urban areas, particularly megacities, where high pollutant concentrations coincide with 40 

high population densities (Molina and Molina, 2004). In addition to impacting human health, air pollution has 

been shown to have wider detrimental impacts on ecosystems, including animal welfare, crop yields, waterways, 

biodiversity and visibility (DEFRA, 2019). 

From an atmospheric sciences perspective, air pollution is a complex, transboundary problem. Gaseous and 

particulate pollutants originate from many sources, are subject to transport and mixing over a range of scales 45 

and undergo complex physical and chemical processing prior to deposition. In order to develop effective 

strategies for mitigating the impacts of air pollution, for example through emission control and limiting 

population exposure, these processes must be understood and leveraged to provide predictive capability 

extending spatially and temporally beyond the ground-truth provided by observations. Atmospheric chemical 

transport models represent a key tool in this domain.  50 

Air quality models vary widely in spatial scale and complexity and have evolved rapidly in sophistication in 

recent years. The reader is directed to El-Harbawi (2013) for a comprehensive review of air quality modelling 

systems, that span scales from street canyon to global and incorporate a wide range of schemes representing 

pollutant emissions, turbulent mixing, advection, gas-phase chemistry and aerosol processes. Many of these 

models run online, meaning meteorological and pollutant fields evolve prognostically within the modelling 55 

system allowing feedbacks between the two to be represented (such as direct and indirect aerosol effects) 

(Savage et al., 2013). 

In the Met Office, the primary air quality modelling system is the Air Quality in the Unified Model, AQUM, a 

12 km limited area forecast configuration of the Met Office Unified Model (MetUM). AQUM provides daily 

UK national air quality forecasts of the Daily Air Quality Index (DAQI) up to five days ahead (see https://uk-60 

air.defra.gov.uk/forecasting/), generated from the forecast of nitrogen dioxide (NO2), sulphur dioxide (SO2), 

ozone (O3) and particulate matter (diameters (Dp) <2.5 µm: PM2.5 and Dp <10 µm: PM10) concentrations. 

AQUM has 8 vertical levels up to a model top height of 39 km and mixing is parameterised throughout the full 

depth of the troposphere using a non-local, first order closure, multi-regime scheme (Lock et al., 2000).  Given 

the resolution of AQUM, it is best suited to modelling background and regional air quality away from strong, 65 

very localised sources of pollution (Neal et al., 2017, Williams et al., 2018). A comprehensive description of the 

AQUM is available in Savage et al. (2013). 

Air quality models, including AQUM, require high quality observations for development and evaluation. Given 

that air quality regulatory limits are imposed at ground level only, air quality model evaluation studies typically 

focus on assessment of performance using surface measurements. In the UK, these observations are commonly 70 
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provided by the Automatic Urban and Rural Network (AURN), an automatic ground monitoring network 

operated on behalf of the UK Department of Environment, Food and Rural Affairs (Yardley et al., 2012). 

 

Comparisons of AQUM to AURN observations (Savage et al. (2013), Neal et al., (2017)), found that AQUM 

generally performed well, in particular for large air quality events, but had a number of systematic biases. For 75 

example, a positive bias in ozone at urban sites, a positive/negative nitrogen oxide (NO2) bias at rural/urban sites 

and small negative biases in PM2.5. These findings are generally comparable to similar air quality model 

evaluations that employ AURN observations, such as Williams et al., 2018 (10 km CMAQ-Urban model) and  

Neal et al., 2017 (HadGEM3-RA 50 km regional composition-climate model), although the latter showed a 

small positive bias in modelled PM2.5.  For AQUM, ground based observations are used to bias-correct the 80 

model data and minimise some of these systematic biases at the surface (Neal et al., 2014). Models that require 

bias correcting through assimilation with observations have the potential to introduce bias into future 

predictions, as assumptions that the same factors apply both now and in the future can be incorrectly made 

(Williams et al., 2018). We note that these biases may not solely be due to model performance and could also be 

partially attributable to difficulties in evaluating a 12 km resolution model with point observations that have 85 

limited spatial coverage, both in the horizontal (raising questions of representivity) and in the vertical (limiting 

model evaluation away from the surface-atmosphere boundary). These limitations in observational data 

currently available for model evaluation provide motivation for the current work, with a particular focus on the 

need for observations away from the surface. Given that vertical mixing serves to transport pollutants both 

away-from and towards the surface, and pollutant chemical, physical and removal processes occur throughout 90 

the atmospheric column, model skill in this domain is critical to achieving successful prediction at the surface 

(Solazzo et al., 2013). 

 

Observations of pollutants throughout the atmospheric column are increasingly available from satellite 

instruments (e.g. Tropomi on ESAs Sentinel-5P (Veefkind et al., 2012,  Air Quality Expert Group, 2020, Wyche 95 

et al., 2021)  and GOME on ESAs ERS-2 (Liu et al., 2005). While these observations can provide global 

coverage extending over timescales of years, they generally contain limited information on the vertical 

distribution of pollutants within the column (Fleming, 1996, Peers et al., 2019). Instrumented aircraft provide 

one way of addressing this gap. Over several decades, there have been a number of related large-scale initiatives 

to instrument in-service commercial aircraft to provide such measurements, for example Measurements of 100 

OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC, Solazzo et 

al., 2013) and In-service Aircraft for a Global Observing System (IAGOS, (Petzold et al., 2015)). Over forty-

four thousand flights have been conducted under IAGOS since 1994 and though temporally and spatially 

restricted by commercial flight patterns and timings, these projects serve as a prime example of the use of 

instrumented aircraft to provide long term observations for atmospheric model evaluation. An alternative 105 

approach is the use of atmospheric research aircraft, ARA, which are instrumented and deployed specifically for 

the pursuit of atmospheric science and monitoring. ARA deployments tend to focus on specific locations or 

events and instrument payloads can vary greatly dependent on the phenomenon under study. As such, while 

ARA are particularly well suited to the detailed study of chemical and physical processes (a key requirement for 

model development), the often-sporadic nature of their deployment limits the generation of consistent, long-term 110 
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datasets. It is this gap that this work seeks to fill with a specific focus on air quality observations over the UK to 

allow for the evaluation of regional models such as AQUM. 

 

The UK Clean Air: Analysis and Solutions research programme is led by the Met Office and Natural 

Environment Research Council and has invested in modelling, data and analytical tools to assess current and 115 

future air quality and the impact of policies designed to improve it (DEFRA, 2019). Under this umbrella, a long-

term, quality assured dataset of the three-dimensional distribution of key pollutants (NO2, O3, SO2 and PM2.5) 

has been collected using the instrumented Met Office Atmospheric Survey Aircraft (MOASA). Observations 

have primarily covered the southern UK, including Greater London, with 63 flights throughout the period 2019-

2022. This sampling period encompasses  the global COVID-19 pandemic lockdown when emission of primary 120 

pollutants significantly reduced as a result of limits on mobility throughout the United Kingdom. As such the 

dataset may serve an additional application providing a unique resource with which to explore changes in 

atmospheric composition associated with reduced emissions during this period. This paper introduces the 

strategy and quality assurance basis for these observations and is not intended to be an in-depth diagnostic 

analysis, rather  a comprehensive technical reference for all future users of these data, including illustrations of 125 

the potential uses of these upper air observations for regional-scale model evaluation. In particular it includes 

descriptions of i) the measurement platform and instrumentation, ii) flight strategies, iii) analysis of the spatial 

scales of measured pollutant variability, iv) a comparison of  ground-based observations to  airborne 

observations from repeated flight patterns over Greater London and v) initial use of these data to evaluate 

performance of the AQUM regional air quality model.   130 

2 Measurement capability 

The MOASA, shown in figure 1, is a Cessna-421 aircraft based at Bournemouth airport, operated by Alto 

Aerospace Ltd for the Met Office . The MOASA is instrumented to allow airborne measurement of key air 

quality-relevant aerosol and gas phase pollutants; namely gaseous nitrogen dioxide (NO2), ozone (O3), sulphur 

dioxide (SO2), and fine mode aerosol (PM2.5, determined indirectly from measurements of the aerosol size 135 

distribution). The fine mode aerosol is also characterised in terms of optical absorption and scattering properties. 

This section provides a detailed description of the MOASA instruments (which are summarised in table 1), and 

related quality assurance protocols. 

2.1 Instrument overview 

Instruments, examples of which can be seen in figure 2, are situated in the cabin, the front hold of the aircraft 140 

and under the wings. Wing-mounted probes include an Aircraft-Integrated Meteorological Measurement System 

(AIMMS, Aventech) instrument that provides real-time ambient meteorological data including temperature, 

humidity, pressure, three-dimensional winds (speed, direction, vertical) as well as latitude, longitude and (GPS) 

altitude. The aircraft also includes a wing-mounted Cloud, Aerosol and Precipitation Spectrometer with Particle-

By-Particle (Droplet Measurement Technology) though it does not form part of the air quality measurement 145 

suite and therefore is not discussed further here. Nitrogen dioxide, ozone and sulphur dioxide instruments are 

rack mounted in the cabin and sample at 0.85, 1.8 and 0.5 litres per minute, respectively. All instruments have a 

1 Hz sampling resolution, except for the O3 monitor which samples at 0.5 Hz. Ambient gaseous samples are 

drawn from a stainless-steel air sample pipe that takes air from outside of the fuselage boundary layer through 
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an on-rack PTFE headed sample pump (KNF N834.3FTE). Also within the cabin is a backscatter aerosol lidar 150 

(Leosphere) which is used operationally though does not form part of the core air quality measurement suite. 

The starboard side nose bay compartment contains a custom-built ‘Air Quality Box’ (AQ Box) and a 

nephelometer (Ecotech, Aurora 3000) (Fig 2). The sample to each of the instruments in the front hold is 

controlled with actuated valves and volume flow controllers inside the AQ Box (see appendix A: AQ Box flow 

schematic). 155 

The AQ Box contains a Portable Optical Particle Spectrometer (POPS, Handix) and a Tricolour Absorption 

Photometer (TAP, Brechtel, model 2901) and has the capability to sub-select only PM2.5 sample aerosol for 

analysis. The sample into the AQ Box is from a Brechtel Iso-Kinetic inlet which samples at 6.35 litres per 

minute and has >95% sampling efficiency for particle diameters from 0.1 to 6 µm (Brechtel Manufacturing Inc, 

2011). The PM2.5 sample flow is dried via two Perma Pure MD-700 driers, connected in series via a 180-degree 160 

bend. The sample then passes through an impactor with an aerodynamic cut point size of 2.5 µm, before being 

split between the POPS (0.5 LPM (sample + sheath)), TAP (1 LPM) and the nephelometer (5 LPM) which is 

situated alongside the AQ Box. Measurements at the nephelometer and TAP inlet indicate the PM2.5 sample 

relative humidity is typically below 20% and therefore the sample is a good representation of the dry PM2.5 size 

distribution. Within the AQ Box the sample line temperature and pressure are also recorded. 165 

Particle losses through the PM2.5 sampling lines have been estimated using open access particle loss calculation 

software (Von Der Weiden et al., 2009) based on the tubing dimensions, flow characteristics and a 

representative particle density of 1.64 g cm-3. This analysis has suggested losses downstream of the inlet of 

<17% for particle diameters in the range 0.1 - 3µm. 

In addition to particle losses due to flow deposition, we have considered the extent to which loss of particle 170 

mass may occur due to evaporation of ammonium nitrate, NH4NO3, a semi-volatile aerosol component that 

readily repartitions between condensed and gas phases upon changes in temperature and humidity (Nowak et al., 

2010, Langridge et al., 2012, Morgan et al 2010). To determine the fractional loss of NH4NO3 during MOASA 

sampling, a kinetic model of the NH4NO3 evaporation process (based on the approach of Fuchs and Stutugin 

(1971), as implemented by Dassios and Pandis, 1999) was used to calculate the rate of change in diameter of 175 

polydisperse NH4NO3 particles through the MOASA flow system. The model unsurprisingly showed that the 

loss of particulate nitrate had a strong temperature dependence and varied dynamically as a function of time. 

Total mass losses during the MOASA sampling residence time of 2 seconds and at a representative sampling 

temperature of 30oC were approximately 7%. The NH4NO3 losses showed a weak dependence on pressure and 

relative humidity, with absolute losses increasing by only 2% at 500mb compared to 100mb and by 180 

approximately 2% over the relative humidity (RH) range 10-50% (where in-flight PM2.5 sample RH was 

typically below 20%). Although evaporative loss of NH4NO3 during MOASA sampling will vary on a case-by-

case basis, for representative conditions this work confirms that the loss is small and likely less than 7%. 

The AQ box also allows for measurement of the aerosol population without particle size selection or drying, 

however this mode of operation has not been utilised in this work and is therefore not described further.  185 
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2.2 Nitrogen dioxide 

A Cavity Attenuated Phase Shift Spectrometer Nitrogen Dioxide detector (Aerodyne Research Inc, referred to 

here as NO2CAPS ) was repackaged in-house, from a 5U, 12 kg to a 3U, 9.7 kg 19” rack-mounted unit to 

optimize volume and weight for airborne use. The analyser monitors ambient atmospheric NO2 concentrations ,, 

with a lower detection limit of < 1 parts per billion (PPB), using a 450 nm LED based absorption spectrometer 190 

utilizing cavity attenuated phase shift spectroscopy (Kebabian et al., 2005,  Aerodyne Research, n.d.). A 

comprehensive review of the theory of operation is detailed in Kebabian et al., 2005. The NO2CAPS analyser 

has been shown to be insensitive to other nitro-containing species and variability in ambient aerosol, humidity 

and other trace atmospheric species (Kebabian et al., 2005, Aerodyne Research, n.d.).  

While some cavity-based absorption techniques are often referred to as calibration free (Langridge et al., 2008), 195 

this feature relies on knowledge of the variation in absorption cross-section across the spectral range of the light 

source being used. Given the broadband nature of the NO2CAPS light source, which is difficult to characterise 

accurately and may be subject to change over time, we chose to undertake routine direct calibration of the 

instrument. As such, full multi-point calibrations are carried out annually at the National Centre for Atmospheric 

Science (NCAS) Atmospheric Measurement and Observation Facility (AMOF) COZI-lab at the University of 200 

York. Here, a multi-gas calibrator is used to dilute a high concentration NO standard into zero air (grade Pure 

Air Generator  001) at varying levels. Ozone is added in excess to ensure full conversion of NO to NO2. Seven 

concentration levels are used, and zero checks are also carried out. Calibration coefficients are determined from 

linear fits and applied to the NO2CAPS during data post-processing.  

2.2.1 NO2 analyser baseline pressure dependency correction 205 

During normal operation, the NO2CAPS analyser periodically establishes a baseline to account for the optical 

losses associated with light transmission by the cavity mirrors (which depend both on mirror cleanliness and 

alignment) and Rayleigh scattering of light by air (Kebabian et al., 2005). This is achieved by passing NO2 free 

air through the analyser every 15 minutes (automated). The standard NO2CAPS software then applies a constant 

baseline correction based on these periodic measurements for the sampling segment that follows. For variable-210 

pressure aircraft operation, this approach is not adequate as changes in Rayleigh scattering that accompany 

pressure changes lead to shifts in the instrument baseline between filter periods.  

To account for these changes, a new correction scheme has been developed. During post processing, the 

pressure dependence of the baseline is determined by applying a linear fit to the pressure variation in Rayleigh-

corrected filtered-air measurements recorded across the full flight. This dependence is used to calculate a new 215 

time-varying baseline based on sample pressure measurements alone. This baseline is then used to recalculate 

the NO2 concentration across the flight. Spikes due to valve switches are also removed from the data series at 

this stage.  

Figure 3 shows raw (red) and processed (blue) NO2 concentration during flight M304 in November 2021, where 

the NO2CAPS sample inlet was fitted with a zero-air filter such that measurements were sensitive only to 220 

baseline changes. Following take-off at 11:52:00 the aircraft climbed to an altitude of 5.5 km resulting in an 

ambient pressure change of 509 mb and a NO2CAPS measurement-cell pressure change of 250 mb. The profile 

shows corrected data is markedly more stable in comparison to the raw data and suggests a mean error in NO2 
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concentration due to pressure-dependent baseline corrections of ± 0.09 ppbv (data averaged over 10s intervals). 

The sensitivity of the NO2CAPS was empirically derived to be 0.17 ± 0.14σ ppbv (during a separate ground-225 

based zero test, where data is also  averaged over 10s intervals). As such, following correction, NO2CAPS 

pressure sensitivity is not considered a significant source of uncertainty for aircraft NO2CAPS observations. 

2.3 Ozone 

A dual beam ozone monitor (2B Tech, model 205) enables measurements of atmospheric ozone up to 100 ppmv 

(parts per million by volume). Measurements are based on the absorption of ultraviolet (UV) light at 254 nm in 230 

two absorption cells, one with ozone-scrubbed (zero) air and one with un-scrubbed (sample) air from which the 

Beer Lambert law can be used to determine ozone concentration. The instrument sensitivity, empirically derived 

by sampling filtered air at 0.5 Hz during a test flight, is 2.9 ± 0.4 σ ppb. The monitor is calibrated annually at the 

NCAS AMOF COZI-lab where the instrument is compared with a NIST-traceable standard ozone spectrometer 

over a wide range of ozone mixing ratios. These results are used to calibrate the ozone monitor with respect to 235 

gain and sensitivity which are applied to the instrument directly. 

A known but not widely recognized issue with UV absorption ozone monitors is that rapid changes in humidity 

(as may occur during airborne ascents and descents) can cause a large zero shift. This is due to modulation of 

humidity of the sample stream by the ozone scrubber which can cause the humidity in the sampling and zero 

cells to go out of equilibrium. To equilibrate the humidity, Nafion tubes known as DewLines are used in the 2B 240 

Tech monitor (Dewline, n.d., Wilson and Birks, 2006). Biases may become apparent should the DewLines stop 

working effectively and thus, following some initial issues with negative calculated ozone values during 

MOASA measurements (impacting the first 7 flights which do not have valid ozone data), the Dewlines were 

regularly replaced. 

2.4 Sulphur dioxide 245 

A pulsed florescence SO2 analyser (Thermo Scientific, 43i Trace Level-Enhanced) detects sulphur dioxide up to 

1000 ppbv. It operates on the principle that SO2 molecules fluoresce following absorption of ultraviolet  light, 

with the fluorescence intensity proportional to the number of SO2 molecules in the air sample (Beecken et al., 

2014). The instrument sensitivity was empirically determined using zero-air checks to be 0.90 ± 0.26 σ ppb 

(averaged over 10s intervals). The SO2 instrument is calibrated (zero and span) monthly in the field using an 863 250 

ppb BOC Alpha Standard. 

2.5 Aerosol scattering 

A multi-wavelength integrating nephelometer (Ecotech, Aurora 3000) measures the light scattering coefficient 

of the aerosol population in both forward and back-scatter directions. It uses three high powered LED sources 

operating at wavelengths of 450, 525 and 635 nm. 255 

Instrument sensitivity, determined from baseline statistics when sampling filtered air over 30 minutes at 

wavelengths 450, 525, and 635 nm was 0.05± 0.51σ, 0.10±0.55 σ and 0.01±0.69 σ Mm−1 for total scattering, and 

0.21± 0.95 σ, 0.07± 0.49 σ and 0.14±0.55 σ Mm−1 for backscattering, respectively (data averaged over 10 s 

intervals). This falls within the manufacturer specified sensitivity of <0.3 Mm-1. A monthly CO2 calibration and 

annual in-house service are completed for the nephelometer as per manufacturer procedures (Ecotech, 2009). 260 
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Uncertainties in scattering measurements using the nephelometer are dependent on sample flow (empirically 

derived over all flights as < 0.05%), the uncertainty of calibration, inhomogeneities in Lambertian angular 

illumination, and truncation of light due to cell geometry. Corrections for angular truncation and non-

Lambertian light source effects are applied according to the recommendations of Müller et al., 2011.   

Müller et al., 2011 empirically calculated an uncertainty of 4% (450 nm), 2% (525 nm) and 5% (635 nm) for 265 

total scattering, and 7% (450 nm), 3% (525 nm) and 11% (635 nm) for total backscatter, which are adopted here. 

The signal to noise ratio for backscattering is worse compared to total scattering, since the backscattering signal 

is about one order of magnitude smaller than the total scattering signal for ambient air (Müller et al., 2011).  

2.6 Aerosol absorption  

Aerosol absorption is measured using a Tricolor Absorption Photometer (TAP, Brechtel, model 2901). The TAP 270 

is a 3-wavelength (467, 528, 652 nm) filter based absorption photometer which derives real-time aerosol light 

absorption from the difference in light transmission measured between two 47 mm diameter Pallflex (E70-

2075W) glass-fibre filter spots, one of which receives particle laden air and the second of which receives 

aerosol-filtered air (Davies et al., 2019, Bond et al., 1999, Perim De Faria et al., 2021 and Ogren et al., 2017). 

The TAP employs empirical corrections to account for scattering effects that complicate the derivation of 275 

aerosol absorption from filter transmission measurements. The theory of operation and characterisation of the 

TAP is given in Ogren et al., 2017, Davies et al., 2019 (where it is previously known as a `CLAP’). 

Mean 1σ detection limits of the MOASA TAP, empirically derived by sampling filtered air and averaging over 

60 seconds, are 0.22, 0.18 and 0.26 Mm−1 at wavelengths of 652, 528 and 467 nm, respectively. These values are 

in line with the manufacturer provided noise level characterisation of 0.20 Mm-1 over the same integration time.  280 

The errors in absorption measurements from filter based photometry are dominated by uncertainties in the 

empirical scattering corrections, but also have contributions from uncertainties in the spectral response of the 

light source (±1-2 nm (Ogren et al., 2017)), sample flow rate (<1% (Ogren et al., 2017)), filter spot size and the 

penetration depth of particles within the filter matrix (Bond et al., 1999, Davies et al., 2019, Müller et al., 2014, 

Virkkula, 2010, Ogren et al., 2017). Internal particle losses within the instrument flow system due to diffusion, 285 

impaction and sedimentation are estimated to be < 1% for particles with diameters in the range 0.03–2.5 µm 

(Davies et al., 2019, Ogren et al., 2017). To minimise the effects of instrument noise observed in-flight, a low-

pass filter is applied to raw data with a cut-off frequency of 0.08 Hz although this had minimal impact on optical 

properties derived from these data. 

We apply scattering corrections to the low-pass-corrected TAP data using the Virkkula, 2010 correction scheme 290 

which relies on simultaneous measurements of the light scattering coefficient, which in this case are provided by 

the nephelometer. The correction scheme is implemented as described by Davies et al., 2019. Ogren et al., 2017 

provided an estimate of the accuracy of TAP absorption measurements of 30% and this value is adopted here. 

However, as summarised by Davies et al., 2019, given the empirical nature of filter-based correction schemes 

and strong source and wavelength dependencies, these correction schemes are unlikely to fully bound 295 

uncertainties associated with filter-based absorption measurements. 
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2.7 Aerosol size distributions 

A portable optical particle counter (POPS, Handix) measures the size of dried particles predominantly in the 

accumulation mode (approximately 0.1 um < d < 1 um)(Haywood, 2008)using a light scattering technique. The 

POPS uses a spherical mirror to collect a fraction of light scattered sideways (38 – 142 degrees) by individual 300 

particles traversing a 405 nm laser beam. The scattered light is directed to a photomultiplier tube, the signal 

from which is digitised and placed into one of 32 bins that are spaced logarithmically in scattering amplitude 

space. For a given laser power, the measured scattering amplitude is determined by the particle size, shape, and 

index of refraction (IOR), thus allowing the bin boundaries to be converted to effective particle size subject to 

assumptions about shape and optical properties. In addition to particle size, given the POPS is a single particle 305 

instrument, it also provides a measure of the total particle number within its detection size range. A 

comprehensive review of POPS theory of operation is provided by Gao et al. (2016). 

2.7.1 Calibration 

Particle sizing by the POPS is calibrated by measuring the scattering amplitude of atomised NIST traceable 

polystyrene latex (PSL) spheres of known size, spherical shape and IOR (Rosenberg et al., 2012, Peers et al., 310 

2019, Gao et al., 2016). Calibrations use 10 discrete sizes of PSL between 0.15 and 3 µm. The PSL are atomised 

and dried prior to entering the POPS sample inlet. PSL sizes between 0.15 and 0.70 µm are, where possible, also 

passed through a differential mobility analyser (TSI 3082 Electrostatic Classifier) in order to help minimise the 

impacts of contaminants from the PSL generation process.  

For each PSL diameter, Mie theory is used to calculate the particle scattering cross section (Fig 4), using a PSL 315 

IOR at 405nm of 1.615+0.001j (Gao et al., 2016). Linear regression is then used to fit the relationship between 

the POPS-measured scattering amplitude and the theoretical PSL scattering amplitude) (Rosenberg et al., 2012). 

The error in response is determined from the standard error in the mean for each 15 second period of sampling, 

averaged over the duration of the PSL run. The error in PSL diameter is the NIST-certified range of the PSL 

diameter. The linear regression function is used to assign calibrated scattering amplitudes to the designated 320 

POPS bin boundaries. At this point, the POPS measurements are calibrated.  

To size ambient particles, it is necessary to convert the bin boundaries to equivalent diameters for particles with 

different optical properties. The impact of particle index of refraction on the POPS response is shown in figure 4 

which shows the relationship between particle diameter and theoretical POPS response for both PSL’s and 

particles representative of urban sampling. To account for the significant differences seen, we again apply Mie 325 

theory. The calibrated POPS bin boundaries in scattering cross section space are converted to diameter space 

based on Mie calculations. These calculations integrate scattering over the angular range of collection angles of 

the POPS and use an estimate of the ambient particle IOR (further details below) (Rosenberg et al., 2012, Gao et 

al., 2016). To overcome inherent Mie resonance oscillations in calculated scattering signals (where Dp > 600 

nm in Fig 4), which result in non-monotonic behaviour with increasing particle diameter (van de Hulst 1981, 330 

Gao et al., 2016, Rosenberg et al., 2012), each Mie response curve is smoothed using spline interpolation 

(Hagan and Kroll, 2020). As particle morphology and inter- and intra- particle homogeneity of the ambient 

sample are unknown, an assumption of spherical, homogeneous particles is implicit to the application of this 

Mie theory-based approach.  
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2.7.2 Index of Refraction 335 

The IOR of the aerosol sample used for determination of POPS bins boundaries for ambient sampling is 

estimated using the method described in Liu and Daum, 2000 and Peers et al., 2019. This is an iterative 

approach whereby the single scattering albedo (the wavelength dependent ratio of aerosol scattering to total 

extinction, ω0) is calculated from the dry POPS particle size distribution (ω0psd, λ = 405 nm) using an initial 

guess IOR and then compared to the measured single scattering albedo at 405 nm derived from independent 340 

observations from the MOASA nephelometer and TAP (ω0nt). The IOR is then adjusted iteratively until 

acceptable closure is reached between calculated and measured ω0, noting that the POPS bin boundaries are 

adjusted upon each iteration. This process is summarised in figure 5 and more detail, including a case study, is 

in appendix B: Index of refraction corrections. 

A strength of the MOASA data set is that the POPS, TAP and nephelometer all share a common sample inlet, 345 

which reduces the potential source of sampling bias that may impact this analysis. Further, to minimise 

differences in sampling volumes and response times, all ω0 calculations are performed using 30 second 

averaged data and only data from straight and level runs (SLR, flight transects at approximate constant altitude 

and velocity) of at least 3 minutes duration are included. The iterative IOR analysis step is performed on the 

flight-mean of these SLR data. While this approach does not allow in-flight variability to be accounted for, it 350 

minimises potential for erroneous impacts on the POPS size distribution arising from noise and uncertainty in 

the ω0 measurements, which can be large at low aerosol loading levels. The flight-average approach adopted 

here has been shown to lead to modest errors in particle diameter of <10% compared to analysis at finer 

temporal scales (see case study in appendix B). We also note while the IOR derived here provides closure 

between MOASA optical instruments, it is subject to potential uncertainties, such as assumptions of aerosol 355 

homogeneity and sphericity, that caution against its use as an accurate measure of the true ambient particle IOR 

(Frie and Bahreini, 2021).. 

2.7.3 Size distribution uncertainties 

A review of uncertainties for the POPS instrument is given in Gao et al. (2016). For particle number 

measurements, the main source of uncertainty for particles within the instrument’s size detection range is the 360 

sample flow rate. Gao et al. (2016) report a nominal sample flow rate of 3 cm3 s-1 with an upper limit of 6.67 

cm3 s-1 and associated error of <10 % (personal communication, Handix, October 2020). For the MOASA POPS 

the sample flow over all flights ranged from 2.7 to 5.9 cm3 s-1 (data averaged over 10s intervals). The higher 

values arose due to flow system cross-interference issues that generated flow noise impacting the first 11 

MOASA flights, following which the source of noise was removed and a more representative range of normal 365 

operation is 2.9 cm3 s-1 ± 3.2%. 

Coincidence errors, whereby two or more particles traverse the laser beam at the same time leading to sizing 

errors, are a common feature of all optical particle counters when used in high aerosol loading environments. 

The impact of coincidence errors on the MOASA POPS observations are addressed during data processing by 

flagging all data where particle concentrations exceed 7000 cm3 s  (McMeeking, 2020, personal 370 

communication).  
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Particle sizing uncertainties arise from a number of sources, including scattering amplitude measurement 

uncertainty (leading to an estimated 3% 1σ sizing error for 500 nm particles) and laser intensity instability (±3 

% diameter sizing error for temperatures from 43 to 46 oC). In addition, for reasons already discussed above, 

uncertainty in the IOR of particles being measured also impact uncertainty in particle sizing. Gao et al. (2016) 375 

used a theoretical ambient aerosol population to investigate the potential magnitude of this error. They assessed 

the accuracy in the location and width of lognormal fits to both a theoretical population fine mode (10% and 

10% respectively) and coarse mode (1.4% and 19% respectively). These uncertainties were propagated to derive 

an estimated uncertainty in the total particle volume of 19%. Though based on a single theoretical ambient size 

distribution, this analysis provides an indication of the magnitude of error arising from IOR variation. For 380 

MOASA POPS-derived size distributions, it is likely to provide an upper indication of the error, given that 

efforts to correct the POPS bin boundaries based on the iterative IOR method described above should serve to 

improve sizing accuracy. 

Based on the information above, an upper estimate for the error in total particle volume from POPS 

measurements (required for subsequent calculation of particle mass) is derived by combining in quadrature 385 

contributions from IOR/scattering (19%), sample flow (3.2%) and laser amplitude (6%) to yield an uncertainty 

of 20%.  

2.8 Determination of mass concentration (PM2.5) 

To calculate particulate mass, we convert the calibrated, IOR-corrected POPS particle size distributions to 

volume distributions, and subsequently mass distributions by assuming a fixed particle density. The total mass is 390 

then calculated by integrating across the distribution within the PM2.5 size range. Calculations are performed on 

10 second averaged data and work on the basis of fitting lognormal functions to the measured distributions to 

represent a fine and coarse mode (the dashed line in figure 6 show the combined lognormal modes from a 

straight and level run during flight M270 on 15th September 2020). This approach serves to reduce the impact of 

residual structure from Mie resonances in the POPS distribution on mass derivations.  395 

The selection of an appropriate particle density for converting volume to mass is an important part of the above 

analysis. The composition and therefore density of ambient aerosol varies dynamically in the atmosphere (Wang 

et al., 2009, Crilley et al., 2020). In the absence of co-located aerosol composition observations on MOASA, we 

apply a fixed density to all data of 1.64 ± 0.07 (1σ) g cm-3. This value is derived by weight-averaging the 

densities of PM2.5 aerosol components measured during a range of UK field experiments, as detailed in appendix 400 

C.  

The total uncertainty in the determined PM2.5 mass concentration, estimated by combining uncertainties in the 

measured particle volume (20%) and the assumed particle density (4.2%), is 20.4% and thus dominated by the 

volume error.  

3  Observation and data strategy 405 

The MOASA air quality flight strategy was based on flying a series of repeated sorties, each designed to provide 

data suitable for various aspects of model evaluation work. On a week-to-week basis, sorties were selected 

based on the prevailing weather conditions and any required modifications to flight plans were made at that 
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time. This section describes the rationale behind each of the sortie types, together with a summary of flight 

activities. 410 

Given the MOASA home base is at Bournemouth on the south coast of the UK, operations have predominantly 

focused on sampling over the south of the UK. This includes work over the English Channel (e.g., sampling 

transboundary pollution), over varied land-use types (urban and rural) including pollution hotspots such as 

London, and over isolated source regions such as docks and industrial sites. In addition to regular sorties, in 

June/July 2021 (summer) and January/March 2022 (winter), the MOASA also participated in Intensive 415 

Observation Periods (IOP’s) in conjunction with ground based Integrated Research Observation System for 

Clean Air (OSCA) air quality super-sites, located in London, Birmingham and Manchester (UKRI, 2021, 

OSCA, 2020). All flights are performed within operational airspace regulations which limit minimum and 

maximum flight levels. Observations are mostly in the boundary layer and, as shown in Fig 7, bottom panel, 

typically near or below 1 km GPS altitude. The lowest altitudes (0.15 km minimum) are permitted in offshore 420 

and rural areas, whereas minimum altitudes in urban areas (or in regions with significant topography or 

obstacles like masts or chimneys) are limited to > 0.3 km. Where possible profile measurements extending into 

the free troposphere are also collected, which allow the boundary layer height to be determined in addition to 

sampling of aged and/or transported pollutants.  

63 flight sorties were flown between July 2019 to April 2022, comprising over 150 hours of atmospheric 425 

sampling. Flight details are summarised in table 2 and figure 7 shows horizontal and vertical spatial coverage of 

flights over the Clean Air campaign. 

In terms of meteorology, conditions representative of both the general background environment and elevated 

pollution events have been targeted. As the southern UK has a maritime climate, with the frequent passage of 

mobile low-pressure systems from the North Atlantic, conditions in the operating area are not always conducive 430 

to the build-up of pollution. For the targeting of elevated pollution conditions, synoptic high-pressure conditions 

with light winds and little cloud/precipitation are favoured. Strong sunshine and elevated temperatures are also 

conducive to the production and build-up of pollutants such as ozone and as such, high pollution events tend to 

be more frequent and severe in the summer (Savage et al., 2013). 

3.1 Ground Network Survey 435 

Ground Network Survey sorties describe two flight patterns that sample both rural and urban background 

regional pollution at various altitudes. One flight pattern is focused on the southwestern UK (Fig 8, panel A1) 

and the other on the eastern UK (Fig 8.A2). A particular feature of these sorties is that they overfly a number of 

AURN ground sites allowing pollutant concentrations at the surface to be compared to those aloft. 

Characterisation of pollution at regional scales is important for air quality model evaluation, particularly for 440 

models operating at coarse resolutions such as AQUM, which encompass point-source emissions data but 

cannot accurately represent them in terms of location and concentration. 

3.2 High-Density Plume Mapping 

High Density Plume Mapping flights (Fig 8.B) use intensive model grid-box scale sampling to allow for 

assessment of the (often sub-grid in models) scale of pollutant variability in a high pollution region. Repeated 445 
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runs upwind, downwind and within the plume are performed at a range of altitudes. This sortie has primarily 

been flown over Port Talbot in South Wales, a heavily industrialised area and AQUM pollution hotspot, but has 

also been flown once north of Cambridge (east UK). In that case, horizontal transects sampling the plume at 

multiple altitudes downwind of the city were conducted. 

3.3 South Coast Survey 450 

South Coast Surveys were flown onshore and offshore along the south coast of the UK, typically from Dartmoor 

National Park in the western UK to Eastbourne in the east (Fig 8.C). These surveys have been flown under 

background and polluted southerly flows to characterise transboundary and long-range transport of pollutants 

from continental Europe. In late 2019, a persistent emissions hot spot (primarily PM2.5 and SO2) was seen in the 

AQUM forecasts, potentially originating from ships in Southampton Docks. Therefore, from late 2019 onwards, 455 

overflights of the Solent and Southampton Waters were added to the stock sortie.  

3.4 Coastal Transition Survey 

The coastal transition sortie (Fig 8.D) also operates along the south coast of the UK. The primary distinction 

from the south coast survey was a zigzag manoeuvre whereby observations across the land-to-sea transition are 

repeatedly sampled. The objective for this sortie is to obtain data for benchmarking model performance across 460 

the land-sea interface where strong gradients in humidity and temperature can impact forecast pollution fields. 

In later flights, these surveys have also been extended eastwards to encompass the Dover Straights to allow 

sampling of pollutants transported from industrial activities around the Dunkirk region of northern France, 

which is another emissions hotspot that can lead to strong pollutant transport over the UK when meteorological 

conditions permit. 465 

3.5 London City Survey 

Circumnavigational flights of London (Fig 8.E) were performed during high and low pollutant loadings to 

characterise city scale emission and dispersion of pollutants from the heavily populated, commercial, and 

industrial Greater London area. Busy air space and air traffic control due to the close proximity to major airports 

(Gatwick, London City, Heathrow) restrict the operational area of the MOASA. Broadly, following a short 470 

transit to Reading, the sortie takes the MOASA clockwise following the M25 London orbital motorway, which 

encircles Greater London. Missed approaches are frequently performed at Elstree airfield to the north and 

Biggin Hill airfield to the southeast. 

A substantial decrease in air traffic during the COVID-19 pandemic provided a unique opportunity to fly at low 

level (approx. 1000 ft) over central London. This central city sampling was added to the stock sortie in 475 

November 2020 and became the primary sortie for flights during the COVID-19 pandemic. The central London 

overpass follows the Thames River to approximately 0.087oW where it deviates south-westerly to comply with 

air traffic control restrictions. During later flights, north-south and/or east-west transects were also completed to 

observe the urban heat island effect on boundary layer height. During the summer and winter IOP’s MOASA 

observations were also made close to the surface air-quality IOP supersite (stars, Fig 8.E). 480 
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3.6 Birmingham and Manchester IOP 

During the summer and winter IOP’s MOASA observations were also made over Birmingham (Fig 8.F) 
and Manchester (Fig 8.G). These city scale sorties were tailored to best suit meteorological conditions on 
the flight day, and typically involved circumnavigational orbits, or box patterns over the cities at altitudes 
ranging from approximately 0.3 to 0.9 km and/or runs north to south, up wind and downwind of the city 485 
and supersite. Passes directly overhead of the Birmingham and Manchester ground supersites (stars, Fig 
8f and 8g) were made at each altitude, when possible. During the IOP, MOASA operated both in the 
morning and late afternoon, allowing observation of the build-up of regional scale pollutants over the 
day. Further MOASA flights in these regions are anticipated during a second ground based IOP planned 
for winter 2021/22.3.7 The measurement database 490 

Datasets obtained during the MOASA Clean Air project are openly available from the Centre for Environmental 

Data Archive (CEDA) “Collection of airborne atmospheric measurements for the MOASA Clean Air project” 

repository (DOI: 10.5285/0aa1ec0cf18e4065bdae8ae39260fe7d). 

Data files are NetCDF format and contain observations from the NO2CAPS (NO2, ppbv, 1Hz), Ozone monitor 

(O3, 0.5 Hz, ppbv), SO2 analyser (SO2, ppbv, 1Hz), nephelometer (light scattering, Mm-1, 1 Hz), TAP (light 495 

absorption, Mm-1, 1Hz), POPS (particle counts, and calibrated, IOR corrected particle concentration, total mass 

(µg m−3 / bin) and PM2.5 (µg m−3), 1 Hz), as well as meteorological parameters observed by the AIMMS-20 

(ambient temperature (oC), relative humidity (%), pressure (hPa) and wind speed (m/s) and wind direction 

(degree), 1 Hz). Each instrument parameter is presented as a time synchronised, three-dimensionally geo-located 

time-series, with calibrations and corrections applied (where applicable). Each instrument parameter has a 500 

standard name, long name, unit and measurement frequency (compliant with Climate and Forecast (CF) naming 

conventions where possible). Some, but not all, also have a comment, minimum and maximum limits and/or a 

positive attribute. Each variable has the coordinates of time, latitude, longitude and altitude. Measurements from 

all instruments are reported at ambient pressure and temperature. 

To ensure optimal traceability and transparency of data, comprehensive metadata is included in the NetCDF 505 

which details any calibration constants and/or corrections applied to data alongside general information about 

the data, such as contacts, acronyms and references. Where possible, data is range checked to ensure 

observations fall inside the recommended operational limits of the instrument and outliers to these limits are 

flagged. The standard flag name is the parameter name, post fixed with ‘_flag’. The three flag values are: 0 = 

good_data, 1 = outside_valid_ranges, and 2 = sensor_nonfunctional. Where a flag is available, , the valid ranges 510 

are given in the variable metadata. Each flag parameter has standard name, frequency, flag value and flag 

meaning attributes. Housekeeping variable flags are carried forward to the primary variables, primary variable 

flags are carried forward to secondary variables. The configuration file used to process each flight data is 

available alongside the NetCDF as a text file and provides the range check limits and the source of these limits. 

Records of all work done on the instruments (calibrations, cleaning, and maintenance) are digitally recorded and 515 

available on request by contacting the author.  

4 Example case studies 

This section provides a limited number of case studies applying the MOASA dataset to different scientific 

applications. These examples are intended to showcase different uses of the database and are not intended as 

comprehensive analyses in their own right. We present: i) a statistical analysis of the scales of pollutant 520 
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variability observed across the MOASA air quality dataset, ii) an introduction to the vertical structure of 

pollutants by comparing ground-based observations to airborne observations from repeated flight patterns over 

Greater London and iii) example use of the dataset for evaluation of a regional air quality modelling system 

(AQUM). 

4.1 The spatial scales of pollutant variability 525 

The evaluation of limited-resolution regional air quality models (such as AQUM with a 12km grid length) using 

high resolution in-situ surface or airborne data, is complicated by the differences in spatial scale between the 

two (Qian et al., 2010). While instrumentation may be capable of measurements at high precision and accuracy, 

these uncertainty metrics often don’t determine the degree to which models and observations should be expected 

to agree. In many cases the magnitude of natural pollutant variability at scales that are sub-grid for models 530 

provides an important additional consideration. Quantifying sub-grid scale pollutant variability is also important 

for wider applications beyond model evaluation, such as pollutant exposure studies (e.g. Denby et al., 2011)  

and in understanding satellite-derived data (e.g. Tang et al., 2021). With this in mind, in this section we use the 

MOASA Clean Air database to assess how observed pollutant variability changes, on average, as a function of 

length scale, and how this variability compares to fundamental instrument measurement precision. As with each 535 

analysis presented in this section, the intention is to provide insight into potential application areas for the 

MOASA dataset, rather than provide a comprehensive study.  

High temporal resolution datasets corresponding to each straight and level run formed the basis for the analysis. 

An example straight and level run is shown in figure 9, which, notably, shows that SO2 data was generally 

below the sensitivity of the instrument except during exceedance events. Measured values in each dataset were 540 

split into groups of equal size, with sizes corresponding to equivalent ground distances (dint) ranging from 0.42 

km to 17 km, in 0.085 km (1 second) intervals (where a true airspeed of 85 m/s is assumed to be equivalent to 

0.085 km per second straight-line distance at ground level). The variability observed at each of these length 

scales was calculated by first calculating the standard deviation (σ) of points within each group of data, before 

calculating the mean deviation across all groups in the transect.  545 

The variability observed in a given transect depends on a range of factors and will clearly change on a case-by-

case basis. Despite this, it is also useful to examine how, an average, sub grid variability changes as a  function 

of length scale (e.g. Tang et al., 2021 and references therein). This has been investigated here by using 

averaging data from all MOASA SLRs, over 63 flights between July 2019  to April 2022 (322 SLRs 

representing 1,952  minutes of sampling).  The number of SLRs per flight varies depending on the type of sortie 550 

flown, with a minimum of 2 and a maximum of 11 (see table 2). The minimum permissible SLR length was 

capped at 3 minutes to ensure adequate counting statistics. We focus here on measurements of relative humidity, 

NO2, SO2 and total particle number concentration. The results are presented in figure 10 as probability density 

functions that indicate the range of variability observed at dint of 0.42, 0.85, 2.55, 5.10, 12.07, and 15.04 km.  

Of particular note, it is clear that measured variability in SO2 was generally close to or below the noise limit of 555 

the MOASA instrumentation, thus instrument performance dominates not only SO2 background data (as seen in 

Fig 9) but also observed SO2 variability in the MOASA database. For RH, NO2 and particle counts, natural 

variability is generally well sampled by the MOASA instrumentation. It is interesting to note how the peak 
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position and width of the distributions changes upon moving to progressively longer sampling scales. Changes 

are particularly marked for relative humidity and somewhat less so for NO2 and particulate counts. Focusing on 560 

the 12km AQUM grid length as an example, >99 % of NO2 variability observed over the campaign is above 

instrument noise. This indicates that a significant amount of the variability in the NO2 dataset can be interpreted 

as natural/real pollutant variability that could be used to help bound model parameterisations of sub-grid 

variability, evaluate the accuracy of exposure estimates in air quality models, as discussed in Denby et al., 

2011  and facilitate estimations of sampling uncertainties for satellite product validation, which has historically 565 

been limited by availability of such in-situ measurements (Tang et al., 2021) . 

4.2 Ground-based and airborne observation comparison using long term observations over London  

To enable meaningful comparison of airborne and ground-based observations during model verification, the 

relationship between observation methods must first be understood. To achieve this understanding, in this 

section, a comparison of airborne and ground-based observational data is presented.  570 

The ground-based observations consist of OSCA mast and AURN data. AURN consists of around 70 sites in 

rural, remote, urban background and suburban settings, providing hourly measurements of NOx, SO2, O3, carbon 

monoxide (CO), PM2.5 and coarse particulate matter (PM10) (Yardley et al., 2012), although not all species are 

measured at all sites. For this paper, we only consider background AURN sites applicable to regional air quality 

models such as AQUM (Neal et al., 2014). 575 

For the comparison, first, the vertical structure of NO2, PM2.5, SO2 and O3 were plotted as altitude profiles of 

airborne data alongside all available ground data within Greater London (longitudes from -0.60 to 0.40, latitudes 

from 51.23 to 51.80). The agreement (ratio) between airborne and ground-based observations was moderately 

low for all species for most flights, likely due to large variation between ground sites, in terms of site proximity 

to the airborne data and variation in concentration due to proximity to emission sources. An example of the 580 

vertical and horizonal spatial variation of airborne and ground-based observations for NO2 during flight M325 

over Greater London is shown in figure 11. Here, the 84 µg m-3 NO2 observed at the HIL AURN site (fig 11 

left: grey square and right: red triangle) is significantly higher than both other ground-sites in the region and the 

airborne data (boxplot whiskers in fig 11 left, and track colour in fig 11, right). This skews the airborne:ground 

ratio to 0.32 (the ratio discounting this site is 0.48). This suggests region-wide observational comparison is 585 

insufficient in determining if the airborne data can be meaningfully compared to the ground data and is an 

inefficient metric when using these observations for model evaluation, where models can have significantly 

higher resolution. As shown in sec. 4.1, MOASA instrument precision did not limit the ability to sample the 

natural pollutant variability at spatial scales of 0.42 km, important for representing the magnitude of natural 

pollutant variability at scales that are sub-grid for models. 590 

 

To minimise the effects of the horizontal spatial variation of concentrations and utilise the high spatial 

resolution of the airborne data, the average airborne observation within a 12 km radius (the AQUM grid length) 

of each ground site was calculated. For each species, these airborne averages were plotted against the local 

ground-based average observation, for each ground site, for each IOP flight. Linear regression was then 595 
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modelled for each species and site. The result of this approach is shown in figure 12 for the Greater London 

area. 

4.2.1 PM2.5  

Linear regression of airborne vs ground-based observations of PM2.5 inside the London area suggests very good 

agreement between the two datasets, with r2 of 0.90. The agreement between observations suggests a well-mixed 600 

atmosphere, with little gradient in PM2.5 throughout the column. The majority of observations are obtained using 

the same measurement technique  (optical particle counter with conversion to mass concentration) with just one 

AURN site (London Westminster) using a beta-ray attenuation (BRA) technique. As discussed in section 2.8, 

airborne PM2.5 is derived from size distributions that are refractive index corrected on a per-flight basis, and a 

density of 1.64 g cm-3. For the majority of AURN ground sites, both refractive index and density are derived 605 

internally to the instrument, using 24 hr average gravimetric data. This comparison suggests these correction 

methods yield agreeable results. The parity of the BRA observations with the majority equivalent method 

provides further reassurance that, for this study, all observations of PM2.5 are comparable, regardless of 

observation technique employed. 

4.2.2 SO2 610 

Due to limited AURN sites that observe SO2, and low concentrations of SO2 which generally do not exceed the 

uncertainty thresholds of the airborne instrumentation, there are insufficient observations to explore agreement 

between the observational platforms, which both employ a UV fluorescence technique. However, at the low 

concentrations shown and the site data available, the observations show reasonable agreement. That both 

airborne and ground-based observations are made using the same measurement technique provides further 615 

confidence that the observations are comparable. 

4.2.3 NO2 and O3 

A weak positive agreement is shown for NO2 where r2 = 0.40, suggesting a more variable relationship between 

airborne and ground-based observations. The model shows systematically lower NO2 observations aloft at most 

sites, which diverge further away from unity with an increase in concentration. A moderate, positive agreement 620 

is seen for O3, where r2 = 0.63. Contrary to the NO2 model, the agreement between observations aloft and at the 

ground moves towards unity at higher concentrations, and systemically higher observations are seen aloft at all 

sites. Flight dates for observations at lower O3 concentration were in winter, whereas flight dates for 

observations of the highest concentrations – where agreement is strongest - are in the summer/spring months.  

All observations of O3 use ultraviolet photometry, whereas for NO2, observations aloft and at the OSCA mast 625 

sites use cavity attenuated phase shift spectroscopy, and the AURN sites employ a chemiluminescence. There 

are numerous possible explanations as to why we might not expect observations at the ground and aloft to agree 

well for these reactive chemical species, including instrument bias (particularly for  NO2 which employs 

different observation techniques), complex chemistry and mixing throughout the column.  

Assuming the simplest mechanism linking chemistry at the ground to that aloft, whereby NO emitted at the 630 

surface reacts with O3 via titration to form NO2 (NO + O3 => NO2 + O2 ), odd oxygen (Ox, in this case defined 

as the sum of O3 plus NO2  (Bates and Jacob, 2019)) is expected to be conserved throughout the atmospheric 
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profile. Figure 13 shows a comparison of Ox observed at the surface versus aloft for the London sites which 

yields a regression model gradient of near 1. These results – noting that this simple model neglects mixing, O3 

production, deposition, and other loss mechanisms - are broadly consistent with chemistry via O3 titration being 635 

dominant for the cases observed here and indicate that the airborne air masses were coupled to the surface, 

conducive to the findings of the PM2.5 analysis. An r2 of 0.87 also provides confidence that the observations are 

comparable, regardless of observation technique employed.  

 

4.3 Preliminary model evaluation 640 

In this section we show examples from two flights illustrating how the MOASA Clean Air database can be used 

for model evaluation purposes. These flights are: M270 high density plume mapping on 15th September 2020, 

selected to measure the vertical distribution of pollutants in the lower atmosphere north of Cambridge (52.2053° 

N, 0.1218° E) and M296, a Birmingham city survey as part of the IOP on 1st July 2021. Meteorological 

conditions for the flights are summarised in figure 14. For M270, there were largely clear skies with light winds 645 

(<10 m/s) in the south east UK where sampling was undertaken, and high temperatures (The National 

Meteorological Library, 2020), conducive to the accumulation of pollutants in the boundary layer. M296 was 

influenced by high pressure, light winds and thin broken cloud. 

Case studies of the flight days have been run using the AQUM UK domain model. This is the same model 

configuration used for the operational air quality forecasting, but for these case studies, no routine statistical 650 

post-processing (SPP, which uses surface level observations to apply corrections to the surface model level 

only) has been applied to the data. Given this study focuses on those data above the surface level, the omission 

of the SSP has no impact on the evaluation. Each simulation has been run with a 7 day spin up period. No 

adjustments have been made to the emissions used by the model to account for changes in activities during the 

COVID-19 restrictions. Model data points have been linearly interpolated using the time, latitude, longitude and 655 

altitude coordinates of the aircraft at 1 second frequency. The model and aircraft data along the flight tracks 

have then been averaged into 10 second, non-overlapping intervals. 

 

4.3.1 Flight M270 

In consonance with Savage et al. (2013), a large ozone bias is  seen for flight M270 (Fig 15.a). The model data 660 

show large overprediction when compared against the aircraft data at corresponding locations (mean model bias 

of 18.49 ppb). The bias is lowest near to the surface and increases with altitude up to approximately 700 - 800 

m, above which the bias decreases. The variability observed is poorly represented by the coarse resolution 

model. Variation in the AQUM model data is largely caused by changing from one grid box to the other and 

ozone shows a typically smooth gradient between model grid boxes. We note that in this case the stacked flight 665 

transects only cross a very small number of model cells (3 or 4) in the horizontal, which may be accountable for 

the low model variability seen here. Figure 16 shows the comparison between the model and aircraft NO2 data 

for vertically stacked transects for the same time period. The agreement is generally good (within ± 2 ppbv) 

below 650 m altitude, but the model shows large under-prediction above this altitude. Temperature and relative 

humidity profiles measured by the aircraft (not shown) suggests a boundary layer height of approximately 1100 670 

m on this day, which corresponds with a decrease in observed NO2 concentration above this height. However, 
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the average boundary layer height in the model for the observed area is approximately 620 m. This indicates a 

potential under-prediction in boundary layer height that may be responsible for the poor predication of NO2 at 

elevated altitudes and elucidates the altitude dependence on the ozone model bias discussed above. 

4.3.2 Flight M296 675 

A large positive model ozone bias is also seen for flight M296 (Fig 15.b) when compared against the aircraft 

data at corresponding locations (mean model bias of 48.93 ppb). Unlike flight M270, the bias appears relatively 

constant with altitude, likely due to the flight being solely inside the boundary layer. Also unlike flight M270, 

the observations and model show similar variability. This is likely due to the flight track crossing a larger 

number of model cells which encompass more model predictions and may also be due to the model capturing 680 

more variability for this case.  

Figure 17 shows model and observed NO2 concentration throughout the first and fourth stacked box patterns 

performed around Birmingham during M296. Strong variation is observed in NO2 concentration aloft of the city, 

including enhanced NO2 at all altitudes (maximum 55.70, 49.44, 56.31 and 54.06 µg  m-3 NO2 for circuits 1-4, 

respectively. See appendix D for circuits 2 and 3). The enhanced NO2 plume is seen above the western quadrant 685 

of the city during the lowest altitude circuit (circuit 1, 423 m, 11:23 to 11:43 UTC) and moves southeast with 

increasing altitude, until the plume is observed primarily over the southeast quadrant of the city during the 

highest altitude circuit (circuit 4, 657 m, 12:33 to 12:52).  In contrast, observed O3 aloft (not shown) is inverse 

to the NO2 observations and shows a reduction of approx. 20-30 µg m-3 at the plume locations at all altitudes. 

Comparison of NO2 aloft with average surface-level observations over the transect time (triangles, 1 hour data 690 

frequency) show similar concentrations. In consonance with AQUM, light north-westerly winds (0 < 5 knots) 

associated with the high-pressure system are observed in all circuits. These slack winds (equivalent to a 

maximum velocity south-eastward at 9.26 km per hour) likely pushed the plume (which is seen in the ground 

data to be present east of the flight track) south-eastward, accounting for the shift in the observed plume with 

altitude and time (approximately 1 hour between the first and final circuits). The proximity of the plume to 695 

Birmingham airport is also of note in run 4. The AQUM model shows little variation and low NO2 concentration 

in comparison to both airborne and ground-based observations in all circuits above the city (maximum 14.44, 

13.91, 11.43 and 10.33 ug m-3 NO2 for circuits 1-4, respectively, which decrease imperceptibly with altitude). A 

negative NO2 model bias is evident at the observed plume locations, with maximum differences of -44.26, -

44.30, -49.22 and -49.79 ug m-3 NO2 for circuits 1-4, respectively. This model bias is expected to have been 700 

larger if the AQUM data was produced using emissions modified for the COVID-19 pandemic (Grange et al., 

2021).  

Given the flight track is mostly within just four model grid boxes, variation in NO2 concentration from point 

source emissions is not expected to be represented in fine detail in the model. As the observed peak in NO2 is 

located downwind of important sources (motorways and a heavily urbanised area), and , given the dependence 705 

of surface concentrations of this primary pollutant on local emissions (Neal et al., 2017) the lack of enhanced 

NO2 at all levels of the model could be attributed to emissions being too low at the observed plume location. 
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5 Summary and conclusions  

A long-term, quality assured, dataset on the three-dimensional distribution of NO2, O3, SO2, and fine mode PM-

2.5 aerosol, including optical absorption and scattering properties, has been collected over the UK using the 710 

instrumented Met Office Atmospheric Survey Aircraft from July 2019 to April 2022. Observations allow for the 

evaluation of regional air quality models such as AQUM. A description of the MOASA measurement platform 

and instrumentation is presented, along with details of flight plans, designed to allow repeatable, comparable 

observations of pollutants. 

63 flight sorties, totalling over 150 hours of sampling, were flown during the campaign. These flights include 715 

observations of city scale pollution over Birmingham and Manchester during two periods of intensive 

observations in June-July 2021 and January-February 2022, as well as long-term (2019 to 2022) observations 

over London, including central London overpasses (from October 2020). 

Analysis of relative humidity, total particle counts and NO2 over the campaign shows that instrument precision 

did not limit the ability to sample the natural pollutant variability, at length scales down to 0.42 km. In contrast, 720 

SO2 variability is shown to be limited by instrument precision at all length scales. Comparison of airborne to 

ground-based observations generally show good agreement between the observation platforms, regardless of 

observation technique. The overall strong correlation between airborne and ground based PM2.5 (r2 of 0.9) 

implies the observations are likely comparable when made within a well-mixed boundary layer. The low 

sample, low concentration SO2 observations analysed here also suggest the observations are comparable. For 725 

NO2 and O3, chemical processing in the atmospheric column yields an intricate, poorly correlating relationship 

between airborne and ground-based observations. In contrast,  odd oxygen (Ox = NO2 + O3) at the ground and 

aloft strongly agree (r2 = 0.87, gradient =  1), suggesting that, for the cases analysed here, ozone titration played 

a dominant role in the  chemistry of these species throughout the atmospheric column. A slight offset in the 

regression model indicates O3 is higher aloft, suggesting processes unrepresented by this simple model 730 

(recalling the limitations noted in section 4.2.3) may also be present.  

Preliminary comparison of aircraft, ground and mast-based observations with AQUM data highlight the use of 

the database for air quality model evaluation work, to substantially augment sparse ground observations. Large 

ozone biases are seen for both flight M270 and M296, where the model data show large overpredictions when 

compared against the aircraft data at corresponding locations. The bias appears to be relatively consistent across 735 

the latitude and longitude ranges of the flights and does not show any particular correlation with location, 

although appears to decrease with altitude in flight M270. Potential under-prediction of model boundary layer 

height in flight M270 may be responsible for this altitude dependent ozone model bias, as well as the poor 

predication of NO2 seen at elevated altitudes in the model. It is of note that the model biases seen are expected 

to have been larger if the AQUM data was produced using emissions modified for the COVID-19 pandemic 740 

(Grange et al., 2021). Variability in modelled ozone appears to be dependent on the number grid boxes 

encompassed by the flight track. It is expected that ozone concentration in higher resolution models (>12km) 

will better match variation in the airborne observational data, as model resolution moves towards natural scale 

variability. During M296, contrary to the model, enhanced concentration of NO2 is observed downwind of 

important sources. Observations aloft are in reasonable agreement with the available ground-based observations, 745 
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suggesting the airmass aloft is coupled with the ground. Meteorological conditions are broadly consistent 

between the model and observations, which implies low emission estimates may be responsible for the negative 

NO2 model bias in this case. These example case studies provide handles for further investigation associated 

with biases in modelled O3 and NO2 concentrations,  boundary layer height and representation of emissions in 

coarse resolution models. We anticipate that the airborne dataset may also be useful for derivation of bias-750 

correction factors that can be applied to model data during post processing. 

This paper serves as a reference for all future database users. The MOASA Clean Air database is comprised of 

quality assured observations, presented in NetCDF format  with robust metadata to ensure traceability and 

transparency of data. Data is openly available from CEDA “Collection of airborne atmospheric measurements 

for the MOASA Clean Air project” repository (DOI: 10.5285/0aa1ec0cf18e4065bdae8ae39260fe7d) 755 

Appendices 
 

Appendix A: AQ Box schematic   
 

The Air Quality box, as introduced in section 2.1 and shown schematically in figure A1, houses the POPS and 760 

TAP instruments, as well as actuated valves and flow controllers which control the sample flow to instruments. 

Appendix B: Index of refraction  

ω0nt is determined by calculating the average single scattering albedo over the same flight transect as ω0psd. 

First, the Virkkula-corrected TAP (absorption) data is smoothed to a 10 second triangular window to match the 

Muller-corrected nephelometer (scattering) data. The scattering and absorption ÅngstrÖm exponents (SAE and 765 

AAE, respectively), calculated as per equation B1, were used to adjust the multi-wavelength nephelometer (λ = 

635, 525 and 450 nm) and TAP ( λ = 652, 528 and 467 nm) instruments to the POPS wavelength ( λ = 405 nm) 

using equation B2 (Perim De Faria et al., 2021).  Uncertainties in derivation of AAE (from potential 

asynchronous sampling response times and flow rates) were reduced by applying maximum and minimum 

bounds estimated by considering the extremes of expected ambient AE values. Here, the AAE upper and lower 770 

bounds are 3 and 0.7, respectively, AAE is removed when raw red absorption < 1 Mm-1 and the AAE is set to 

1.5 if the difference between absorption channels is < 1 Mm-1. For the SAE, upper and lower bounds are 2.5 and 

0.5, respectively, SAE is removed when raw red absorption < 10 Mm-1 and the AAE is set to 0.5 if the 

difference between scattering channels is < 1 Mm-1. The data is then further averaged over 30 seconds to 

minimise variability from instrument noise/precision and any mismatch of data. To minimise uncertainties in 775 

wavelength correction using the ÅngstrÖm exponents, ω0nt is derived from the blue wavelengths only, using 

equation B3.   

𝐴𝐸 =  
− log

AOC𝑡
AOC

log(
λ1
λ2

) 
 

Equation B1: where AE is the ÅngstrÖm exponent, AOC = Aerosol Optical coefficient (scattering or 

absorption) and λ1 and λ2 are wavelengths pairs. 780 
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AOC =  AOC  
λ

λ
  

Equation B2: where λ  is the POPS wavelength (nm), λ  is the wavelength of the given scattering or 

absorption coefficient and AE is the ÅngstrÖm exponent. 

 

ω0 =
𝑠𝑐𝑎𝑡_𝑏𝑙𝑢𝑒

𝑠𝑐𝑎𝑡_𝑏𝑙𝑢𝑒 + 𝑎𝑏𝑠_𝑏𝑙𝑢𝑒
 785 

EquationB3: where the bar indicates the 30 second rolling average, for scattering (scat) and absorption (abs) for 

the blue wavelength nephelometer and TAP channels, converted to POPS wavelength (λ ). 

Determining ω0 using separate instruments with different uncertainties and principles can lead to potentially 

significant errors and biases (Perim De Faria et al., 2021). The uncertainty in the ω0nt calculations is related to 

the corresponding uncertainties in the scattering and absorption coefficients (Peers et al., 2019) measured by the 790 

nephelometer (4% at 450 nm, 2% at 525 nm and 5% at 635 nm, Müller et al., 2011) and TAP (30%, Ogren et 

al., 2017). These total measurement uncertainties are propagated according to appendix A of Perim De Faria et 

al., 2021 to give an uncertainty for ω0nt (equation B4). 

∆𝜔 =  
𝜎

   (𝜎 +  𝜎 )

 .  ∆𝜎   +   
𝜎

   (𝜎 +  𝜎 )

 .  ∆𝜎     

Equation B4: Error propagation for ω0nt, where σsc is independent scattering and σa is independent absorption 795 

coefficients.  

ω0 is not very sensitive to the real part of the index of refraction, and as such the real part of the estimated index 

of refraction is not very well constrained (Peers et al., 2019). Figure B1 shows ω0psd derived using 

IOR=1.615+0.012j and IOR=1.59+0.012j which both yield a mean ω0psd of 0.917. As such, we use a real aspect 

of 1.59 as derived by McMeeking et al., 2012 during their airborne measurement campaign over London, UK in 800 

2009. Where insufficient data is available to enable calculation of the ω0 and thus IOR, an IOR of 1.59+0.0j is 

adopted. The uncertainties associated with applying a flight-mean IOR is investigated in more depth in the 

following case study. 

Section 2.7 describes the processing applied to particle sizing measurements to account for sizing errors caused 

by differences in the IOR between the calibrant and ambient particles. The method applies corrections based on 805 

the assumption of a single ambient IOR per flight, which was derived via an iterative process based on 

achieving closure with independent observations of particles single scattering albedo. In this section we 

undertake a sensitivity study to evaluate the magnitude of error arising from the assumption of a flight-mean 

IOR, based on variability observed during an example flight: M270, a high-Density Plume Mapping sortie north 

of Cambridge, where a sequence of straight and level runs at altitudes from 0.30 to 1.32 km were performed 810 

(Fig B2 and table B1). The wide range of altitudes over a single flight allows examination of the impact of a 
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potentially changing airmass with altitude on derivation of a flight mean IOR. Refer to Sect 4.3 for a description 

of meteorological conditions for this flight. 

The range of measured single scattering albedos, ω0nt during flight M270 varied throughout the boundary layer 

(0.886 to 0.944, Fig B1 red crosses) and yielded a flight mean ω0nt=0.921 ± 0.019σ (Fig B1, red line). These 815 

values fall within the range of single scattering albedo’s observed by McMeeking et al., 2011 during airborne 

observations over London (typically from 0.85 in urban plumes to 0.95 in regional pollution and background 

aerosol). 

A flight mean ω0psd=0.917±0.10 σ (Fig B1, blue line) was calculated using a particle size distribution (PSD) 

corrected with an optimally derived IOR=1.59+0.12j (herein referred to as IORDER). To examine sensitivity in 820 

particle sizing due to variability in observed ω0 throughout the column, we also undertook PSD corrections 

based on achieving closure between ω0psd and the maximum observed ω0nt (IORMAX, 1.59+0.008j), minimum 

ω0nt (IORMIN, 1.59+0.016j) and an uncorrected PSD (retains the calibrant (PSL) IOR; IORPSL, 1.615+0.001j), 

shown as the grey dotted, dashed and dash-dot lines, respectively, on Fig B1. 

Regression analysis (Fig B3, left column) of normalised PSD’s corrected to IORMIN (top) IORMAX (middle) and 825 

IORPSL (bottom) against IORDER show good agreement, with r2 of 0.9998, 0.9980 and 0.9983, respectively. 

Mean differences between IORMIN:IORDER , IORMAX:IORDER  and IORPSL:IORDER (Fig B3, right column) are 

9%, 10% and 23%, respectively. The comparatively large uncertainty between corrected and uncorrected size 

distributions underlines the importance of accounting for IOR corrections when making ambient aerosol 

measurements. Mean differences in all comparisons are largest where Dp ≈> 0.4 µm (PSD bin 15). Particle sizes 830 

in this region are comparable to the wavelength of light of the POPS (405 nm), which are the most efficient at 

scattering shortwave radiation and sizes larger than this can be influenced by Mie resonances (Liu and Daum, 

2000). 

Flight M270 was chosen based on it showing significant variability compared to other Clean Air flights; 

uncertainty in using a flight-mean IOR for less varying flights is expected to be less. For example, flight M302, 835 

a typical London survey on 22nd July 2021, performed numerous runs at altitudes≈0.5km and yields a difference 

of <2% between distributions corrected by IORMIN and IORMAX.  

In summary, we conclude that use of a flight-mean IOR approach in correcting size distribution data introduces 

modest uncertainty of <10% compared to applying a variable IOR approach.  

Appendix C: PM2.5 composition and density 840 

As discussed in section 2.8, mass concentration (PM2.5) is derived from particle volume using the mean of a 

range of UK field experiments, which are detailed in table C1. 

Appendix D: M296 runs 2 and 3 

Figure D1 shows model and observed NO2 concentration throughout the second and third stacked box patterns 

performed around Birmingham during M296. Here, we see the intermediate stages of the plume as it begins to 845 

transition from the western quadrant of the city to the southeast with increasing altitude and time. As with runs 1 
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and 4, comparison of NO2 aloft with average surface-level observations show similar concentrations and the 

plume is not captured by the model. 
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Main text Figures 

 1070 

Figure 1: The Met Office Atmospheric Survey Aircraft with instrumentation. Image courtesy Debbie 

O’Sullivan, Met Office, 2021. 
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Figure 2: Clockwise starting top left: the AQ box (foreground) and nephelometer (background) in the MOASA 1075 

nose bay; the aft instrumented rack housing the O3, NO2 and aerosol LIDAR control system; inside the AQ box; 

inside the cabin looking forward; the Brechtel isokinetic air sample inlet and nose bay of the MOASA. 

 

Figure 3: Top: timeseries of raw (uncorrected) and processed (corrected) NO2 concentration. Oscillations seen 

in the raw and processed data during the filter test in  are an artefact of the filter, which impacted performance 1080 

of the instrument pump. These oscillations have been minimised by arbitrarily smoothing (60 second rolling) the 

data, for visualisation purposes only. Bottom: baseline against cell pressure, coloured by altitude, with a linear 

fit shown as a red line. All data from 11:55:00 to 12:50:00 during flight M304 on 4th November 2021, averaged 

over 10 second intervals.  

 1085 
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Figure 4: Theoretical MOASA POPS Mie responses for PSL calibrant (1.615+0.001j) and ambient aerosol over 

London: 1.59-0.022j (McMeeking et al., 2012). Crosses are PSL responses from calibration on 16th September 

2021.  

 1090 

Figure 5: Process to estimate the IOR of the ambient sample by iteratively adjusting the index of refraction of 

the POPS size distribution measurements until the POPS single scattering albedo matches the single scattering 

albedo from the nephelometer and TAP. 

 

Figure 6: An example of raw, calibrated and calibrated with IOR-correction (IOR=1.59+0.12j) particle size 1095 

distributions, where the Y axis is normalised to 1. Overlaid are lognormal accumulation and coarse modes 

(dotted) plus the combination of these lognormal modes (dashed) fitted to the calibrated with IOR correction 

(blue solid line) size distribution. 
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 1100 

Figure 7: Horizontal (top) and vertical (bottom) spatial coverage of 63 MOASA Clean Air flights from 

27/07/2019 (flight M247) to 11/04/2022 (flight M326). AURN sites are shown as triangles, airports as squares, 

stars are ground based supersites in Birmingham, Manchester and London. The annotations relate to the sortie 

type detailed in Fig.7 where A1 and A2 are Ground Network Surveys, B are High Density Plume Mapping 

flights, C are South Coast Surveys, D are Coastal Transition Surveys, E are London City Surveys and F and G 1105 

are the Birmingham and Manchester, respectively, IOP flights. Map by Stamen Design, under CC BY 3.0. Data 

by OpenStreetMap, under ODbL. 
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Figure 8: Aircraft flight tracks for a typical (A) ground network survey over the south west (A1) and east (A2), 1110 

during M288 and M262 on 19th May 2021 and 10th January 2020, respectively, (B) high density vertical 

mapping over Port Talbot, South Wales, during M284 on 24th March 2021, (C) south coast survey flight, during 

M301 on 27th July 2021, with focus on overpasses of the Solent and Southampton water, (D) coastal transition 

flight, during M285 on 30th March 2021, (E) London city survey flight IOP, M297 on 2nd July 2021. (F) 

Birmingham IOP flight (left), during M296 on 1st July 2021, (G) a typical Manchester IOP flight, during M300 1115 

on 20th July 2021. AURN sites are shown as triangles, airports as squares, stars are ground based supersites in 

Birmingham, Manchester and London. The geographical location of each sortie is shown in figure 7. Map tiles 

by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. 
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  1120 

Figure 9: SO2 timeseries from 13:22:30 – 13:26:50 during high density mapping flight M284. The solid blue 

line is SO2 concentration in PPB, with the mean shown as the horizontal dotted line, with one and two standard 

deviations as the shaded grey areas. The mean SO2 zero (0.9 ppb) is the dashed red line, with red shading 

showing one standard deviation of the mean. 

 1125 



35 
 

 

Figure 10: Density distributions of RH, particle counts, NO2 and SO2 variability, for dint=  0.42, 0.85, 2.55, 

5.10, 12.07, and 15.04 km, for 322 straight and level runs over 63 flights of the MOASA Clean Air campaign. 

Vertical dashed lines show the instrument sensitivity ± 1 standard deviation. 
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Figure 11: Flight M325 on 24/03/2022 from 12:09:25 to 13:46:01. Left: Altitude profile, where airborne 

observations of NO2 within Greater London are shown in grey and the boxplot represents the inter-quartile 

range, the data range (whiskers), the median (vertical dashed black line) and mean (vertical red solid line) of 1135 

these data. The London IOP supersite is shown as a black star, and AURN ground-sites within the region are 

shown as various markers (see key). Ratios of airborne:mast (0.44) and airborne:aurn (0.32) are calculated as the 

ratio of mean airborne observations to the mast, and to the mean of all individual ground-based sites, 

respectively. Right: track of aircraft coloured by NO2 concentration (representative of the range of the airborne 

data in the profile plot), with mast-based (star) and ground-based (triangles) NO2 observations. 1140 
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Figure 12: Average airborne observations within a 12 km radius of ground site, against local ground site 

average, for PM2.5 (top left), NO2 (top right), SO2 (bottom left) and O3 (bottom right), for all available London 

IOP flights. Comparisons against OSCA mast data are shown in red and against AURN ground-sites in black. 1145 

For PM2.5, blue markers identify those AURN sites that employ Beta Ray Attenuation technique (black employs 

an optical particle counter with conversion to mass technique) . Linear regression between airborne and ground 

and mast-based data is shown in black. Error bars (grey) show the range of data and the 1-2-1 line, 

representative of a perfect linear relationship,  is shown as a grey dotted line. 
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 1155 

Figure 13: Odd oxygen , calculated from average airborne observations of O3 + NO2  (in ppb) within a 

12 km radius of ground site, against local ground site average O3 + NO2 (in ppb), for all available London 

flights. Comparisons against OSCA mast data are shown in red, comparison against AURN ground-sites 

are shown in black. Linear regression between airborne and ground and mast-based data is shown as a 

black line.  Error bars (grey) show the range of O3 + NO2 data and the 1-2-1 line, representative of a 

perfect linear relationship, is shown as a grey dotted line. 
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Figure 14: Met Office synoptic chart and combined infra-red and rain-radar images for 12:00 UTC 15th 

September 2020 (top) and 1st July 2021 (bottom) (The National Meteorological Library, 2020). 

 

 1160 

Figure 15: Correlation of model and aircraft O3 concentrations. Data averaged over 10 second intervals. 

Markers coloured by altitude. Dashed grey line represents agreement between the two datasets. Data shown for 

(a) Flight M270 on 15th September 2020, from 12:13:00 to 13:38:00 (the duration of the stacked level runs north 

of Cambridge) and (b) Flight M296 on 1st July 2021 from 11:23:00 to 12:52:00 (the duration of the Birmingham 

city circuits). 1165 
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Figure 16: Longitude-altitude plot of NO2 concentration for vertically stacked transects during flight M270 on 

15th September 2020. The left-hand figure shows the aircraft data, the middle figure shows the model data, and 

the right-hand figure shows the difference between the model and aircraft, where opacity and thickness increase 

as the difference diverges away from zero. Data averaged over 10 second intervals. 1170 
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Figure 17:  Aircraft flight tracks coloured by NO2 concentration (µg m-3) for the first (left, 11:23 to 11:43) and 

fourth (right, 12:33 to 12:52) circuit, at altitudes of 423 and 657 metres, respectively, around Birmingham 

during flight M296 on 1st July 2021. Top row shows the aircraft data, middle row shows the model data and 

bottom row shows the difference between the model and observations. Observation data is from straight and 1175 

wings level transects and all data is averaged over 10 second intervals. Wind barbs are only shown where the 

observed wind components exceed the measurement uncertainty. Data in triangles is the hourly surface level 

AURN NO2 concentration for the circuit. Stars/squares show the location of the Birmingham supersite/airport, 

respectively Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. 
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Appendix figures 1180 

 

Figure A1: Air Quality box flow schematic. 

 

Figure B1: Empirically derived nephelometer and TAP single scattering albedo (ω0nt, red, crosses) and 

theoretically derived particle size distribution single scattering albedo (ω0psd, blue, triangles) for 7 straight and 1185 

level runs for flight M270 on 15th September 2021 north of Cambridge. Flight mean ω0nt and ω0psd with 1 σ 

variance (solid lines and shaded areas in red and blue, respectively) are shown. Also shown are the mean ω0psd 

derived using particle size distributions (PSD) corrected with the IOR which yielded ω0psd that closely matches 
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the minimum ω0nt (run 0, grey dashed line) and maximum ω0nt (run 4, grey dotted line), where PSD IOR = 

1.59+0.016j and 1.59+0.008j, respectively. The mean ω0psd derived using uncorrected (PSL-calibrant 1190 

IOR=1.615+0.001j) PSD’s is also shown (grey dot-dash line). The mean ω0psd derived using a real component 

of 1.615 and imaginary component of the retrieved IOR (0.12) is detailed in the legend (line not shown).  

 

Figure B2: MOASA flight track for M270 north of Cambridge on 15th September 2020 in the vertical (left) and 

horizontal (right). Triangles are AURN sites, the square is Cambridge airport. Map tile by Stamen Design, under 1195 

CC BY 3.0. Data by OpenStreetMap, under ODbL. 

 

Figure B3: Regression analysis (left) of flight M270 run 0 normalised particle size distribution (PSD) derived 

using IOR=1.59+0.016j (IORMIN) against PSD derived from IOR=1.59+0.008j (IORMAX, top) and 1.615+0.001j 

(IORPSL) against 1.59+0.012j (IORDER, bottom). Corresponding ratios of the same PSD’s are to the right. 1200 
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Figure D1:  Aircraft flight tracks coloured by NO2 concentration (µg m-3) for the second (left, 11:43:00 to 

12:10:00 and third (right, 12:10:00 to 12:33) circuit, at altitudes of 511 and 573 metres, respectively, around 1205 

Birmingham during flight M296 on 1st July 2021. Top row shows the aircraft data, middle row shows the model 

data and bottom row shows the difference between the model and observations. Observation data is from 

straight and wings level transects and all data is averaged over 10 second intervals. Wind barbs are only shown 

where the observed wind components exceed the measurement uncertainty. Data in triangles is the hourly 

surface level AURN NO2 concentration for the circuit. Stars/squares show the location of the Birmingham 1210 

supersite/airport, respectively. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under 

ODbL 
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Tables 
 

Species Observation technique 
(manufacturer) 

Wavelength Range Sensitivity  

Nitrogen 
dioxide 

Cavity Attenuated 
Phase Shift 
Spectroscopy 
(Aerodyne CAPS 
NO2) 

450 nm LED 0 - 3000 ppbv  
(Kebabian et al., 
2005, Aerodyne 
Research Inc., 
n.d.) 

0.17 ± 0.14 σ ppb 
 

Ozone Ultraviolet 
photometry (2B-Tech-
205 dual-beam) 

254 nm up to 100 ppmv 2.9 ± 0.4 σ ppb 

Sulphur 
dioxide 

UV fluorescence 
(Thermo 43i) 

Ultraviolet 0-0.05 to 100 ppm 
(Thermo 
Scientific, n.d.) 

0.90 ± 0.26 σ ppb 

Aerosol 
scattering 

Multi-wavelength 
integrating 
nephelometer 
(Ecotech, Aurora 
3000) 

450nm, 525nm, 
635nm 

<0.25 to 2000 
Mm-1 

Total scattering (Mm−1): 
0.05± 0.51 σ 
0.10±0.55 σ 
0.01±0.69 σ  
Total backscattering 
(Mm-1): 
0.21± 0.95 σ 
0.07± 0.49 σ 
0.14±0.55 σ 

Aerosol 
absorption 

Tricolor Absorption 
Photometer (TAP, 
Brechtel, model 
2901). 

467, 528, 652 
nm 

 0.22, 0.18 and 0.26 
Mm−1 at wavelengths of 
652, 528 and 467 nm 

PM2.5 Optical particle 
counter + conversion 
to mass concentration 
using iterative method 
(Handix POPS, (Peers 
et al., 2019)) 

405 nm Approx. 0.1 um < 
d < 1 um 

approximately 0.1 um < 
d < 1 um 

Table 1: MOASA Clean Air instrument summary 1215 

 

Sortie Type Number 

flown 

Flight numbers (number of designated runs in flight) 

Southwest Ground 

Network Survey 

7 M247 (4), M256 (3), M263 (5), M266 (3), M267 (5), M286 (7), 

M288 (4) 

Northeast Ground 

Network Survey 

2 M253 (4), M262 (3) 

South Coast Survey 5 M250, M258 (5), M265 (4), M269 (4), M301 (6) 

Coastal Transition 6 M272 (3), M280 (9), M283** (N/A), M285 (11), M289 (9), 

M322 (N/A) 

High Density Spatial 

Mapping 

5 M257 (2), M270, Cambridge (7), M274, Dover straights (4), 

M281, Port Talbot (10), M284, Port Talbot (4) 
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London 23 M251NO2 (5), M252 (3), M264 (3), M273 (4), M275* (3), 

M276* (4), M277* (5), M278* (4), M279* (3), M282* (6), 

M287* (4), M294*iop (5), M297*iop (9), M302* (6), 

M305**NO2O3 (N/A), M311*iop (4), M314*iop  (5), M315*iop (5), 

M319*iop (6), M323* (5), M324* (5), M325* (4), M326* (4) 

Birmingham IOP 8 M290 (8), M291 (9), M295 (10), M296 (9), M310 (7), M312 

(12), M313 (12), M316 (N/A),  

Manchester IOP 7 M292 (7), M293 (7), M298 (5), M299 (6), M300 (6), M317 (5), 

M320 (6) 

Total flights 63  

Table 2: MOASA Clean Air flights by sortie. The numbers in brackets indicate the number of straight and level 

transects used to derive the index of refraction for PM2.5 (where applicable) and (from flights M247 to M302) 

the analysis in Sect 4.1. “N/A” indicates that no runs were used in forward analysis. London flights which 

include a central overpass are postfixed with an asterisk. Flights with limited data are postfixed with a double 1220 

asterisk. London flights during the summer and winter IOP’s are also postfixed with superscript ‘iop’. London 

flight with no NO2 data or O3 data are post fixed ‘NO2’ or ‘O3’ (applicable to Sect 4.4). 

 

Table B1: Mean altitude and single scattering albedo derived using the nephelometer and TAP (ω0nt) and  

particle size distributions (ω0psd) for seven runs during flight M270 on 15th September 2020. 1225 

Run Times Mean altitude (m) ω0nt ω0psd  

(IOR = 1.59 + 0.012j 

0 12:16:20 – 12:20:20 304 0.886 ± 0.03 0.912 

1 12:37:50 – 12:42:20 378 0.904 ± 0.03 0.915 

2 12:52:30 – 12:57:50 686 0.929 ± 0.03 0.923 

3 13:00:00 – 13:04:50 851 0.937 ± 0.04 0.925 

4 13:08:40 – 13:13:10 1002 0.943 ± 0.04 0.927 

5 13:16:20 – 13:21:10 1162 0.928 ± 0.03 0.921 

6 13:23:50 – 13:29:20 1320 0.911 ± 0.03 0.897 

 Flight averages 814.71 0.920 ± 0.019 σ 0.917 ± 0.010 σ 

 Weighte

d 

average 

density 

(g cm-3) 

Total 

mass 

Black 

carbon 

Organi

c 

carbon 

NH4NO3 

& 

NaNO3 

(NH4)2S

O4 

NaCl CaSO4 

anhydr

ous 

Fe-rich 

dust 

Othe

r 

(incl. 

boun

d 

water 

Index of 

refraction 

- - 1.95-

0.79j 

1.63-

0.021j 

NH4NO

3: 1.550, 

1.53+ 0j 

[1] 

1.54 

+ 0j 

1.57 [8] 2.80-

3.34j 

1.33+

0.0j 
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Table C1: Average chemical composition and density (Pp, g cm-3) of UK PM2.5. Where H2004_ub and 

H2004_ubhp are Harrison et al., 2004 urban background and urban background high pollution, respectively. 

High pollution percentages represent findings by  Harrison et al., 2004, who reported an approximate doubling 

of concentrations of elemental carbon, organic compounds, sodium nitrate, ammonium sulphate, calcium 

sulphate and iron-rich dusts on high pollution days, and an increase of more than five-fold in the ammonium 1230 

nitrate concentration. AG2012_ub: Air Quality Expert Group, 2012 urban background, H2008_ab is Haywood, 

2008, airborne measurements derived from the Facility for Airborne Atmospheric Measurements Bae146 over 3 

flights (shown as reference ranges only). H2008_abmed, H2008_abmo and H2008_abmi: median, maximum 

organics and maximum inorganics, respectively for H2008_ab percentage ranges. Index of Refraction and 

Density: The numbers in square brackets refer to the reference for the associated value, which are as follows: [1] 1235 

Morgan et al., 2010, [2] Haywood, 2008, [3] Hinds, 1999, [4] Lafon et al., 2006. [5] Bond and Bergstrom, 2006, 

[6] Hoon Jung et al., 2016, [7] CAMEO chemicals, NOAA, n.d. [8] PubChem, n.d. An assumed density of 1 g 

cm-3 is used for `Other including bound water’.  

[5] [1] 0j [6] [3] (Iron) 

[3] 

Density (g  

cm-3) 

- - 1.8 [1] 1.35 [2] 1.72 [2] 1.77 [3] 

 

2.17 

[3] 

2.96  

[7] 

2.5 [4] 1 

Study   % % % % % % % % 

H2004_ub 1.69 100 14.4 25.1 14.6 21.3 2.1 1.9 10.2 10.4 

H2004_ubhp 1.69 100 9.144 15.94 36.5 13.53 1.33 1.21 6.477 6.604 

AG2012_ub 1.71 100 11.81 20.59 29.94 17.47 1.72 1.56 8.37 8.53 

H2008_ab 1.55 100 - 24-59 20 -39 21-37 - - - - 

H2008_abm

ed 

1.58 100 - 41.5 29.5 29 - - - - 

H2008_abm

o 

1.51 100 - 59 20 21 - - - - 

H2008_abmi 1.65 100 - 24 39 37 - - - - 

Mean Pp 1.64 ± 0.07 (1σ) 


