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Abstract 

The ability of regional air quality models to skilfully represent pollutant distributions throughout the 10 

atmospheric column is important to enabling their skilful prediction at the surface. This provides a requirement 

for model evaluation at elevated altitudes, though observation datasets available for this purpose are limited. 

This is particularly true of those offering sampling over extended time periods. To address this requirement and 

support evaluation of regional air quality models such as the UK Met Offices Air Quality in the Unified Model 

(AQUM), a long-term, quality assured, dataset of the three-dimensional distribution of key pollutants has been 15 

collected over the southern United Kingdom from June 2019 to April 2022. This sampling period encompasses 

operations during the global COVID-19 pandemic, and as such the dataset serves an additional application in 

providing a unique resource with which to explore changes in atmospheric composition associated with reduced 

emissions during this period. Measurements were collected using the Met Office Atmospheric Survey Aircraft 

(MOASA), a Cessna-421 instrumented for this project to measure gaseous nitrogen dioxide, ozone, sulphur 20 

dioxide and fine mode (PM2.5) aerosol. This paper provides a technical introduction to the MOASA 

measurement platform, flight strategies and instrumentation. The MOASA air quality dataset includes 63 flight 

sorties (totalling over 150 hours of sampling), the data from which are openly available for use. Example case 

studies using data from these sorties are presented, which include an analysis of the spatial scales of measured 

pollutant variability, initial work to evaluate performance of the AQUM regional air quality model, and an 25 

introduction to the vertical structure of pollutants observed during repeated flight patterns over Greater London, 

including during the COVID-19 impacted period.  

1 Introduction 

The World Health Organisation identifies atmospheric air pollution as the single largest environmental risk to 

human health globally (World Health Organization (WHO), 2017). Long-term exposure to anthropogenic air 30 

pollution is linked with increased morbidity rates and premature mortality from chronic diseases (Air Quality 

Expert Group, 2020, Manisalidis et al., 2020) , which in the UK alone is estimated to have an annual impact on 

shortening lifespans equivalent to 28 – 36 thousand deaths (DEFRA, 2019). The impacts of air pollution on 

human health can be most acute in urban areas, particularly megacities, where high pollutant concentrations 
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coincide with high population densities (Molina and Molina, 2004). In addition to impacting human health, air 35 

pollution has been shown to have wider detrimental impacts on ecosystems, including animal welfare, crop 

yields, waterways, biodiversity and visibility (DEFRA, 2019). 

From an atmospheric sciences perspective, air pollution is a complex, transboundary problem. Gaseous and 

particulate pollutants originate from many sources, are subject to transport and mixing over a range of scales 

and undergo complex physical and chemical processing prior to deposition. In order to develop effective 40 

strategies for mitigating the impacts of air pollution, for example through emission control and limiting 

population exposure, these processes must be understood and leveraged to provide predictive capability 

extending spatially and temporally beyond the ground-truth provided by observations. Atmospheric chemical 

transport models represent a key tool in this domain.  

Air quality models vary widely in spatial scale and complexity and have evolved rapidly in sophistication in 45 

recent years. The reader is directed to El-Harbawi (2013) for a comprehensive review of air quality modelling 

systems, that span scales from street canyon to global and incorporate a wide range of schemes representing 

pollutant emissions, turbulent mixing, advection, gas-phase chemistry and aerosol processes. Many of these 

models run online, meaning meteorological and pollutant fields evolve prognostically within the modelling 

system allowing feedbacks between the two to be represented (such as direct and indirect aerosol effects) 50 

(Savage et al., 2013). 

In the Met Office, the primary air quality modelling system is the Air Quality in the Unified Model, AQUM, a 

limited area forecast configuration of the Met Office Unified Model (MetUM) (Savage et al., 2013,  Walters et 

al., 2019). AQUM provides daily UK national air quality forecasts of the Daily Air Quality Index (DAQI) up to 

five days ahead (see https://uk-air.defra.gov.uk/forecasting/). The DAQI is generated from the forecast of 55 

nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3) and particulate matter (diameters (Dp) <2.5 µm: 

PM2.5 and Dp <10 µm: PM10) concentrations. The AQUM 12 km horizontal resolution grid covers much of 

western Europe (Savage et al., 2013) with 63 vertical levels up to a top height of 39km, where levels are non-

uniform and the vertical resolution becomes coarser away from the surface. AQUM derives its boundary 

conditions from the MetUM global forecast model (meteorological fields) and GEMS/MACC global models 60 

(chemistry and aerosol fields) (Flemming et al., 2009). Within the model domain, emissions over the UK are 

derived from the UK National Atmospheric Emissions Inventory (NAEI, (Thistlethwaite et al., 2013)), which 

has a resolution of 1 km. Atmospheric chemistry is represented by the UK Chemistry and Aerosols (UKCA) 

Regional Air Quality chemistry scheme (OConnor et al., 2014), and aerosol processes by the Coupled 

Largescale Aerosol Simulator for Studies in Climate (CLASSIC) scheme (Bellouin et al., 2011). Given the 65 

resolution of AQUM, it is best suited to modelling background and regional air quality away from strong, very 

localised sources of pollution. A comprehensive description of the AQUM is available in Savage et al. (2013). 

Air quality models, including AQUM, require high quality observations for development and evaluation. Given 

that air quality regulatory limits are imposed at ground level only, air quality model evaluation studies typically 

focus on assessment of performance using surface measurements. In the UK, these observations are commonly 70 

provided by the Automatic Urban and Rural Network (AURN), an automatic ground monitoring network 

operated on behalf of the UK Department of Environment, Food and Rural Affairs (DEFRA) (Yardley et al., 
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2012). AURN consists of around 70 sites in rural, remote, urban background and suburban settings, providing 

hourly measurements of nitrogen oxides (NOx), sulphur dioxide (SO2), ozone (O3), carbon monoxide (CO), fine 

particulate matter (PM2.5) and coarse particulate matter (PM10) (Yardley et al., 2012), although not all species 75 

are measured at all sites. 

 

In a comparison of AQUM to AURN observations, Savage et al. (2013) found that AQUM generally performed 

well, in particular for large air quality events, but had a number of systematic biases. For example, a positive 

bias in ozone at urban sites, a positive NOx bias at rural sites and a negative bias at urban sites and general 80 

negative biases in both PM2.5 and PM10. Ground based observations are used to bias-correct the model data and 

minimise some of these systematic biases at the surface (Neal et al., 2014). We note that these biases may not 

solely be due to model performance and could also be partially attributable to difficulties in evaluating a  12 km 

resolution model with point observations that have limited spatial coverage, both in the horizontal (raising 

questions of representivity) and in the vertical (limiting model evaluation away from the surface-atmosphere 85 

boundary). These limitations in observational data currently available for model evaluation provide motivation 

for the current work, with a particular focus on the need for observations away from the surface. Given that 

vertical mixing serves to transport pollutants both away-from and towards the surface, and pollutant chemical, 

physical and removal processes occur throughout the atmospheric column, model skill in this domain is critical 

to achieving successful prediction at the surface (Solazzo et al., 2013). 90 

 

Observations of pollutants throughout the atmospheric column are increasingly available from satellite 

instruments (e.g. Tropomi on ESAs Sentinel-5P (Veefkind et al., 2012,  Air Quality Expert Group, 2020, Wyche 

et al., 2021)  and GOME on ESAs ERS-2 (Molina and Molina, 2004)). While these observations can provide 

global coverage extending over timescales of years, they generally contain limited information on the vertical 95 

distribution of pollutants within the column (Fleming, 1996, Peers et al., 2019). Instrumented aircraft provide 

one way of addressing this gap. Over several decades, there have been a number of related large-scale initiatives 

to instrument in-service commercial aircraft to provide such measurements, for example Measurements of 

OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC, Solazzo et 

al., 2013) and In-service Aircraft for a Global Observing System (IAGOS, (Petzold et al., 2015)). Over forty-100 

four thousand flights have been conducted under IAGOS since 1994 and though temporally and spatially 

restricted by commercial flight patterns and timings, these projects serve as a prime example of the use of 

instrumented aircraft to provide long term observations for atmospheric model evaluation. An alternative 

approach is the use of atmospheric research aircraft (ARA), which are aircraft instrumented and deployed 

specifically for the pursuit of atmospheric science and monitoring. ARA deployments tend to focus on specific 105 

locations or events and instrument payloads can vary greatly dependent on the phenomenon under study. As 

such, while ARA are particularly well suited to the detailed study of chemical and physical processes (a key 

requirement for model development), the often-sporadic nature of their deployment limits the generation of 

consistent, long-term datasets. It is this gap that this work seeks to fill with a specific focus on air quality 

observations over the UK to allow for the evaluation of regional models such as AQUM. 110 
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The UK Clean Air: Analysis and Solutions research programme is led by the Met Office and Natural 

Environment Research Council (NERC) and has invested in modelling, data and analytical tools to assess 

current and future air quality and the impact of policies designed to improve it (DEFRA, 2019). Under this 

umbrella, a long-term, quality assured dataset of the three-dimensional distribution of key pollutants (NO2, O3, 115 

SO2 and PM2.5) has been collected using the instrumented Met Office Atmospheric Survey Aircraft (MOASA). 

Observations have primarily covered the southern UK, including Greater London, with 63 flights throughout the 

period 2019-2022. This paper introduces the strategy and quality assurance basis for these observations, with the 

intention of serving as a comprehensive technical reference for all future users of these data. In particular it 

includes descriptions of: i) the measurement platform and instrumentation, ii) flight strategies, iii) analysis of the 120 

spatial scales of measured pollutant variability, iv) initial use of these data to evaluate performance of the 

AQUM regional air quality model, and v) an introduction to the vertical structure of pollutants observed during 

repeated flight patterns conducted over Greater London during the COVID-19 impacted period. 

1.1 Impact of COVID-19  

In January 2020, the first case of severe acute respiratory syndrome coronavirus (SARS-CoV-2), referred to as 125 

COVID-19, was identified in the UK (Jephcote et al., 2020). Since 24th March 2020, to curtail person-to-person 

transmission of the virus, the United Kingdom has been subject to various levels of lawful regulation limiting all 

non-essential travel and contact. A consequence of the restrictions has been a reduction in mobility (50-75% 

across major cities during the Spring 2020 lockdown, Air Quality Expert Group, 2020) as businesses switched 

to homeworking, and industry and commercial sectors reduced operations. This resulted in a significant drop in 130 

emissions of primary air pollutants, most markedly from the transport sector (road, rail, and aviation) and in 

urban environments. Similar impacts have been seen across Europe (Lee et al., 2020) and have collectively 

resulted in significant changes to UK air quality compared to the climatological norm (Air Quality Expert 

Group, 2020).  

Flight operations with the MOASA aircraft encompass periods in 2020 and 2021 impacted by these COVID-135 

related changes to air quality over the UK. The implications of this are two-fold. Firstly, users of these data for 

model evaluation should be mindful that emissions throughout the measurement period were not always at 

climatological levels. In addition to bulk concentration changes, pollution properties such as particulate size and 

composition may also have been different during these periods.  While this does not negate the use of these data 

for some aspects of model evaluation, it certainly cautions against their use to assess quantitative performance of 140 

models driven using standard climatological emissions. Secondly, and more positively from a scientific 

perspective, as the database includes observations covering pre-, during and post-lockdown periods, it presents a 

unique and valuable resource with which to further explore changes in atmospheric composition over the UK 

associated with reduced emissions during the COVID-19-impacted period. 

2 MOASA capability 145 

The MOASA is a Cessna-421 aircraft based at Bournemouth airport, operated by Alto Aerospace Ltd for the 

Met Office (Fig 1). The MOASA is instrumented to allow airborne measurement of key air quality-relevant 

aerosol and gas phase pollutants; namely gaseous nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2), 

and fine mode aerosol (PM2.5, determined indirectly from measurements of the aerosol size distribution). The 
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fine mode aerosol is also characterised in terms of optical absorption and scattering properties. This section 150 

provides detailed description of the MOASA instruments and related quality assurance protocols. 

2.1 Instrumentation – general setup 

Instruments are situated in the cabin, the front hold of the aircraft and under the wings. Wing-mounted probes 

include an Aircraft-Integrated Meteorological Measurement System (AIMMS, Aventech) instrument that 

provides real-time ambient meteorological data including temperature, humidity, pressure, three-dimensional 155 

winds (speed, direction, vertical) as well as latitude, longitude and (GPS) altitude. The aircraft also includes a 

wing-mounted Cloud, Aerosol and Precipitation Spectrometer with Particle-By-Particle (CAPS-PBP, Droplet 

Measurement Technology (DMT)) though it does not form part of the air quality measurement suite and 

therefore is not discussed further here. Nitrogen dioxide, ozone and sulphur dioxide instruments are rack 

mounted in the cabin and sample at 0.85, 1.8 and 0.5 litres per minute, respectively. All instruments have a 1 Hz 160 

sampling resolution, except for the O3 monitor which samples at 0.5 Hz. Ambient gaseous samples are drawn 

from a stainless-steel air sample pipe that takes air from outside of the fuselage boundary layer through an on-

rack PTFE headed sample pump (KNF N834.3FTE). Also within the cabin is a backscatter aerosol lidar 

(Leosphere) which is used operationally though does not form part of the core air quality measurement suite. 

The starboard side nose bay compartment contains a custom-built ‘Air Quality Box’ (AQ Box) and a 165 

nephelometer (Ecotech, Aurora 3000) (Fig 2). The sample to each of the instruments in the front hold is 

controlled with actuated valves and volume flow controllers inside the AQ Box (see Appendix A for AQ Box 

flow schematic). 

The AQ Box contains a Portable Optical Particle Spectrometer (POPS, Handix) and a Tricolour Absorption 

Photometer (TAP, Brechtel, model 2901) and has the capability to sub-select only PM2.5 sample aerosol for 170 

analysis. The sample into the AQ Box is from a Brechtel Iso-Kinetic inlet which samples at 6.35 litres per 

minute and has >95% sampling efficiency for particle diameters from 0.1 to 6 µm (Brechtel Manufacturing Inc, 

2011). The PM2.5 sample flow is dried via two Perma Pure MD-700 driers, connected in series via a 180-degree 

bend. The sample then passes through an impactor with an aerodynamic cut point size of 2.5 µm, before being 

split between the POPS (0.5 LPM (sample + sheath)), TAP (1 LPM) and the nephelometer (5 LPM) which is 175 

situated alongside the AQ Box. Measurements at the nephelometer and TAP inlet indicate the PM2.5 sample 

relative humidity is typically below 20% and therefore the sample is a good representation of the dry PM2.5 size 

distribution. Within the AQ Box the sample line temperature and pressure are also recorded. 

Particle losses through the PM2.5 sampling lines have been estimated using open access particle loss calculation 

software (Von Der Weiden et al., 2009) based on the tubing dimensions, flow characteristics and a 180 

representative particle density of 1.64 gcm-3. This analysis has suggested losses downstream of the inlet of 

<17% for particle diameters in the range 0.1 - 3µm. 

In addition to particle losses due to flow deposition, we have considered the extent to which loss of particle 

mass may occur due to evaporation of ammonium nitrate, NH4NO3, a semi-volatile aerosol component that 

readily repartitions between condensed and gas phases upon changes in temperature and humidity (Nowak et al., 185 

2010, Langridge et al., 2012, Morgan et al 2010). To determine the fractional loss of NH4NO3 during MOASA 

sampling, a kinetic model of the NH4NO3 evaporation process (based on the approach of Fuchs and Stutugin 
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(1971), as implemented by Dassios and Pandis, 1999) was used to calculate the rate of change in diameter of 

polydisperse NH4NO3 particles through the MOASA flow system. The model unsurprisingly showed that the 

loss of particulate nitrate had a strong temperature dependence and varied dynamically as a function of time. 190 

Total mass losses during the MOASA sampling residence time of 2 seconds and at a representative sampling 

temperature of 30oC were approximately 7%. The NH4NO3 losses showed a weak dependence on pressure and 

relative humidity, with absolute losses increasing by only 2% at 500mb compared to 100mb and by 

approximately 2% over the relative humidity (RH) range 10-50% (where in-flight PM2.5 sample RH was 

typically below 20%). Although evaporative loss of NH4NO3 during MOASA sampling will vary on a case-by-195 

case basis, for representative conditions this work confirms that the loss is small and likely less than 7%. 

The AQ box also allows for measurement of the aerosol population without particle size selection or drying, 

however this mode of operation has not been utilised in this work and is therefore not described further.  

2.2 Nitrogen dioxide 

A Cavity Attenuated Phase Shift Spectrometer Nitrogen Dioxide detector (Aerodyne Research Inc, referred to 200 

here as NO2CAPS to avoid confusion with the Cloud and Aerosol Precipitation Spectrometer, CAPS) was 

repackaged in-house, from a 5U, 12 kg to a 3U, 9.7 kg 19” rack-mounted unit to optimize volume and weight 

for airborne use. The analyser monitors ambient atmospheric NO2 concentrations up to 3000 ppbv (parts per 

billion by volume) using a 450 nm LED based absorption spectrometer utilizing cavity attenuated phase shift 

spectroscopy (Kebabian et al., 2005). A comprehensive review of the theory of operation is detailed in Kebabian 205 

et al., 2005. The NO2CAPS analyser has been shown to be insensitive to other nitro-containing species and 

variability in ambient aerosol, humidity and other trace atmospheric species (Kebabian et al., 2005, Aerodyne 

Research, n.d.).  

While some cavity-based absorption techniques are often referred to as calibration free (Langridge et al., 2008), 

this feature relies on knowledge of the variation in absorption cross-section across the spectral range of the light 210 

source being used. Given the broadband nature of the NO2CAPS light source, which is difficult to characterise 

accurately and may be subject to change over time, we chose to undertake routine direct calibration of the 

instrument. As such, full multi-point calibrations are carried out annually at the National Centre for Atmospheric 

Science (NCAS) Atmospheric Measurement and Observation Facility (AMOF) COZI-lab at the University of 

York. Here, a multi-gas calibrator is used to dilute a high concentration NO standard into zero air (grade Pure 215 

Air Generator (PAG) 001) at varying levels. Ozone is added in excess to ensure full conversion of NO to NO2. 

Seven concentration levels are used, and zero checks are also carried out. Calibration coefficients are 

determined from linear fits and applied to the NO2CAPS during data post-processing.  

2.2.1 NO2 analyser baseline pressure dependency correction 

During normal operation, the NO2CAPS analyser periodically establishes a baseline to account for the optical 220 

losses associated with light transmission by the cavity mirrors (which depend both on mirror cleanliness and 

alignment) and Rayleigh scattering of light by air (Kebabian et al., 2005). This is achieved by passing NO2 free 

air through the analyser every 15 minutes (automated). The standard NO2CAPS software then applies a constant 

baseline correction based on these periodic measurements for the sampling segment that follows. For variable-
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pressure aircraft operation, this approach is not adequate as changes in Rayleigh scattering that accompany 225 

pressure changes lead to shifts in the instrument baseline between filter periods.  

To account for these changes, a new correction scheme has been developed. During post processing, the 

pressure dependence of the baseline is determined by applying a linear fit to the pressure variation in Rayleigh-

corrected filtered-air measurements recorded across the full flight. This dependence is used to calculate a new 

time-varying baseline based on sample pressure measurements alone. This baseline is then used to recalculate 230 

the NO2 concentration across the flight.  Spikes due to valve switches are also removed from the data series at 

this stage.  

 

Figure 3 shows raw (red) and processed (blue) NO2 concentration during flight M304 in November 2021, where 

the NO2CAPS sample inlet was fitted with a zero-air filter such that measurements were sensitive only to 235 

baseline changes. Following take-off at 11:52:00 the aircraft climbed to an altitude of 5.5 km resulting in an 

ambient pressure change of 509 mb and a NO2CAPS measurement-cell pressure change of 250 mb. The profile 

shows corrected data is markedly more stable in comparison to the raw data and suggests a mean error in NO2 

concentration due to pressure-dependent baseline corrections of ± 0.09 ppbv (data averaged over 10s intervals). 

The oscillations seen in the data during the filter test are an artefact of the filter, which impacted performance of 240 

the instrument pump. During a separate zero-air test experiment, the sensitivity of the NO2CAPS was derived to 

be 0.17 ± 0.14σ ppbv (data also averaged over 10s intervals). As such, following correction, NO2CAPS pressure 

sensitivity is not considered a significant source of uncertainty for aircraft NO2CAPS observations. 

2.3 Ozone 

A dual beam ozone monitor (2B Tech, model 205) enables measurements of atmospheric ozone up to 100 ppmv 245 

(parts per million by volume). Measurements are based on the absorption of ultraviolet (UV) light at 254 nm in 

two absorption cells, one with ozone-scrubbed (zero) air and one with un-scrubbed (sample) air from which the 

Beer Lambert law can be used to determine ozone concentration. Instrument sensitivity, empirically derived by 

sampling filtered air at 0.5 Hz during a test flight, is 2.9 ± 0.4 σ. The monitor is calibrated annually at the NCAS 

AMOF COZI-lab where the instrument is compared with a NIST-traceable standard ozone spectrometer over a 250 

wide range of ozone mixing ratios. These results are used to calibrate the ozone monitor with respect to gain and 

sensitivity which are applied to the instrument directly. 

A known but not widely recognized issue with UV absorption ozone monitors is that rapid changes in humidity 

(as may occur during airborne ascents and descents) can cause a large zero shift. This is due to modulation of 

humidity of the sample stream by the ozone scrubber which can cause the humidity in the sampling and zero 255 

cells to go out of equilibrium. To equilibrate the humidity, Nafion tubes known as DewLines are used in the 2B 

Tech monitor (Dewline, n.d., Wilson and Birks, 2006). Biases may become apparent should the DewLines stop 

working effectively and thus, following some initial issues with negative calculated ozone values during 

MOASA measurements (impacting the first 7 flights), the Dewlines were regularly replaced. 

2.4 Sulphur dioxide 260 

A pulsed florescence SO2 analyser (Thermo Scientific, 43i Trace Level-Enhanced) detects sulphur dioxide up to 

1000 ppbv. It operates on the principle that SO2 molecules fluoresce following absorption of ultraviolet (UV) 
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light, with the fluorescence intensity proportional to the number of SO2 molecules in the air sample (Beecken et 

al., 2014). Instrument sensitivity was empirically determined using zero-air checks to be 0.90 ± 0.26 σ ppb 

(averaged over 10s intervals). The SO2 instrument is calibrated (zero and span) monthly in the field using an 863 265 

ppb BOC Alpha Standard. 

2.5 Aerosol scattering 

A multi-wavelength integrating nephelometer (Ecotech, Aurora 3000) measures the light scattering coefficient 

of the aerosol population in both forward and back-scatter directions. It uses three high powered LED sources 

operating at wavelengths of 450, 525 and 635 nm. 270 

Instrument sensitivity, determined from baseline statistics when sampling filtered air over 30 minutes at 

wavelengths 450, 525, and 635 nm was 0.05± 0.51σ, 0.10±0.55 σ and 0.01±0.69 σ Mm−1 for total scattering, and 

0.21± 0.95 σ, 0.07± 0.49 σ and 0.14±0.55 σ Mm−1 for backscattering, respectively (data averaged over 10 s 

intervals). This falls within the manufacturer specified sensitivity of <0.3 Mm-1. A monthly CO2 calibration and 

annual in-house service are completed for the nephelometer as per manufacturer procedures (Ecotech, 2009). 275 

Uncertainties in scattering measurements using the nephelometer are dependent on sample flow (empirically 

derived over all flights as < 0.05%), the uncertainty of calibration, inhomogeneities in Lambertian angular 

illumination, and truncation of light due to cell geometry. Corrections for angular truncation and non-

Lambertian light source effects are applied according to the recommendations of Müller et al., 2011.   

Müller et al., 2011 empirically calculated an uncertainty of 4% (450 nm), 2% (525 nm) and 5% (635 nm) for 280 

total scattering, and 7% (450 nm), 3% (525 nm) and 11% (635 nm) for total backscatter, which are adopted here. 

The signal to noise ratio for backscattering is worse compared to total scattering, since the backscattering signal 

is about one order of magnitude smaller than the total scattering signal for ambient air (Müller et al., 2011).  

2.6 Aerosol absorption  

Aerosol absorption is measured using a Tricolor Absorption Photometer (TAP, Brechtel, model 2901). The TAP 285 

is a 3-wavelength (467, 528, 652 nm) filter based absorption photometer which derives real-time aerosol light 

absorption from the difference in light transmission measured between two 47 mm diameter Pallflex (E70-

2075W) glass-fibre filter spots, one of which receives particle laden air and the second of which receives 

aerosol-filtered air (Davies et al., 2019, Bond et al., 1999, Perim De Faria et al., 2021 and Ogren et al., 2017). 

The TAP employs empirical corrections to account for scattering effects that complicate the derivation of 290 

aerosol absorption from filter transmission measurements. The theory of operation and characterisation of the 

TAP is given in Ogren et al., 2017, Davies et al., 2019 (where it is previously known as a `CLAP’). 

Mean 1σ detection limits of the MOASA TAP, empirically derived by sampling filtered air and averaging over 

60 seconds, are 0.22, 0.18 and 0.26 Mm−1 at wavelengths of 652, 528 and 467 nm, respectively. These values are 

in line with the manufacturer provided noise level characterisation of 0.20 Mm-1 over the same integration time.  295 

The errors in absorption measurements from filter based photometry are dominated by uncertainties in the 

empirical scattering corrections, but also have contributions from uncertainties in the spectral response of the 

light source (±1-2 nm (Ogren et al., 2017)), sample flow rate (<1% (Ogren et al., 2017)), filter spot size and the 
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penetration depth of particles within the filter matrix (Bond et al., 1999, Davies et al., 2019, Müller et al., 2014, 

Virkkula, 2010, Ogren et al., 2017). Internal particle losses within the instrument flow system due to diffusion, 300 

impaction and sedimentation are estimated to be < 1% for particles with diameters in the range 0.03–2.5 µm 

(Davies et al., 2019, Ogren et al., 2017). To minimise the effects of instrument noise observed in-flight, a low-

pass filter is applied to raw data with a cut-off frequency of 0.08 Hz although this had minimal impact on optical 

properties derived from these data. 

We apply scattering corrections to the low-pass-corrected TAP data using the Virkkula, 2010 correction scheme 305 

which relies on simultaneous measurements of the light scattering coefficient, which in this case are provided by 

the nephelometer. The correction scheme is implemented as described by Davies et al., 2019. Ogren et al., 2017 

provided an estimate of the accuracy of TAP absorption measurements of 30% and this value is adopted here. 

However, as summarised by Davies et al., 2019, given the empirical nature of filter-based correction schemes 

and strong source and wavelength dependencies, these correction schemes are unlikely to fully bound 310 

uncertainties associated with filter-based absorption measurements. 

2.7 Aerosol size distributions 

A portable optical particle counter (POPS, Handix) measures the size of dried particles predominantly in the 

accumulation mode (approximately 0.1 um < d < 1 um)(Haywood, 2008)using a light scattering technique. The 

POPS uses a spherical mirror to collect a fraction of light scattered sideways (38 – 142 degrees) by individual 315 

particles traversing a 405 nm laser beam. The scattered light is directed to a photomultiplier tube, the signal 

from which is digitised and placed into one of 32 bins that are spaced logarithmically in scattering amplitude 

space. For a given laser power, the measured scattering amplitude is determined by the particle size, shape, and 

index of refraction (IOR), thus allowing the bin boundaries to be converted to effective particle size subject to 

assumptions about shape and optical properties. In addition to particle size, given the POPS is a single particle 320 

instrument, it also provides a measure of the total particle number within its detection size range. A 

comprehensive review of POPS theory of operation is provided by Gao et al. (2016). 

2.7.1 Calibration 

Particle sizing by the POPS is calibrated by measuring the scattering amplitude of atomised NIST traceable 

polystyrene latex (PSL) spheres of known size, spherical shape and IOR (Rosenberg et al., 2012, Peers et al., 325 

2019, Gao et al., 2016). Calibrations use 10 discrete sizes of PSL between 0.15 and 3 µm. The PSL are atomised 

and dried prior to entering the POPS sample inlet. PSL sizes between 0.15 and 0.70 µm are, where possible, also 

passed through a differential mobility analyser (DMA, TSI 3082 Electrostatic Classifier) in order to help 

minimise the impacts of contaminants from the PSL generation process.  

For each PSL diameter, Mie theory is used to calculate the particle scattering cross section (Fig 4), using a PSL 330 

IOR at 405nm of 1.615+0.001j (Gao et al., 2016). Linear regression is then used to fit the relationship between 

the POPS-measured scattering amplitude and the theoretical PSL scattering amplitude (see Appendix B) 

(Rosenberg et al., 2012). The error in response is determined from the standard error in the mean for each 15 

second period of sampling, averaged over the duration of the PSL run. The error in PSL diameter is the NIST-

certified range of the PSL diameter. The linear regression function is used to assign calibrated scattering 335 

amplitudes to the designated POPS bin boundaries. At this point, the POPS measurements are calibrated.  
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To size ambient particles, it is necessary to convert the bin boundaries to equivalent diameters for particles with 

different optical properties. The impact of particle index of refraction on the POPS response is shown in Fig 4 

which shows the relationship between particle diameter and theoretical POPS response for both PSL’s and 

particles representative of urban sampling. To account for the significant differences seen, we again apply Mie 340 

theory. The calibrated POPS bin boundaries in scattering cross section space are converted to diameter space 

based on Mie calculations. These calculations integrate scattering over the angular range of collection angles of 

the POPS and use an estimate of the ambient particle IOR (further details below) (Rosenberg et al., 2012, Gao et 

al., 2016). To overcome inherent Mie resonance oscillations in calculated scattering signals (where Dp > 600 

nm in Fig 4), which result in non-monotonic behaviour with increasing particle diameter (van de Hulst 1981, 345 

Gao et al., 2016, Rosenberg et al., 2012), each Mie response curve is smoothed using spline interpolation 

(Hagan and Kroll, 2020). As particle morphology and inter- and intra- particle homogeneity of the ambient 

sample are unknown, an assumption of spherical, homogeneous particles is implicit to the application of this 

Mie theory-based approach.   

2.7.2 Index of Refraction 350 

The IOR of the aerosol sample used for determination of POPS bins boundaries for ambient sampling is 

estimated using the method described in Liu and Daum, 2000 and Peers et al., 2019. This is an iterative 

approach whereby the single scattering albedo (the wavelength dependent ratio of aerosol scattering to total 

extinction, ω0) is calculated from the dry POPS particle size distribution (ω0psd, λ = 405 nm) using an initial 

guess IOR and then compared to the measured single scattering albedo at 405 nm derived from independent 355 

observations from the MOASA nephelometer and TAP (ω0nt). The IOR is then adjusted iteratively until 

acceptable closure is reached between calculated and measured ω0, noting that the POPS bin boundaries are 

adjusted upon each iteration.  

This process is summarised in Fig 5 and more detail, including a case study, is in Appendix 5. 

A strength of the MOASA data set is that the POPS, TAP and nephelometer all share a common sample inlet, 360 

which reduces the potential source of sampling bias that may impact this analysis. Further, to minimise 

differences in sampling volumes and response times, all ω0 calculations are performed using 30 second 

averaged data and only data from straight and level runs (SLR, flight transects at approximate constant altitude 

and velocity) of at least 3 minutes duration are included. The iterative IOR analysis step is performed on the 

flight-mean of these SLR data. While this approach does not allow in-flight variability to be accounted for, it 365 

minimises potential for erroneous impacts on the POPS size distribution arising from noise and uncertainty in 

the ω0 measurements, which can be large at low aerosol loading levels. The flight-average approach adopted 

here has been shown to lead to modest errors in particle diameter of <10% compared to analysis at finer 

temporal scales (see Appendix C, case study). We also note while the IOR derived here provides closure 

between MOASA optical and size distribution instruments, it is subject to potential uncertainties that caution 370 

against its use as an accurate measure of the true ambient particle IOR (Frie and Bahreini, 2021). 

2.7.3 Size distribution uncertainties 

A review of uncertainties for the POPS instrument is given in Gao et al. (2016). For particle number 

measurements, the main source of uncertainty for particles within the instrument’s size detection range is the 
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sample flow rate. Gao et al. (2016) report a nominal sample flow rate of 3 cm3 s-1 with an upper limit of 6.67 375 

cm3 s-1 and associated error of <10 % (personal communication, Handix, October 2020). For the MOASA POPS 

the sample flow over all flights ranged from 2.7 to 5.9 cm3 s-1 (data averaged over 10s intervals). The higher 

values arose due to flow system cross-interference issues that generated flow noise impacting the first 11 

MOASA flights, following which the source of noise was removed and a more representative range of normal 

operation is 2.9 cm3 s-1 ± 3.2%. 380 

Coincidence errors, whereby two or more particles traverse the laser beam at the same time leading to sizing 

errors, are a common feature of all optical particle counters when used in high aerosol loading environments. 

The impact of coincidence errors on the MOASA POPS observations are addressed during data processing by 

flagging all data where particle concentrations exceed 7000 cm3/s  (McMeeking, 2020, personal 

communication).  385 

Particle sizing uncertainties arise from a number of sources, including scattering amplitude measurement 

uncertainty (leading to an estimated 3% 1σ sizing error for 500 nm particles) and laser intensity instability (±3 

% diameter sizing error for temperatures from 43 to 46 oC). In addition, for reasons already discussed above, 

uncertainty in the IOR of particles being measured also impact uncertainty in particle sizing. Gao et al. (2016) 

used a theoretical ambient aerosol population to investigate the potential magnitude of this error. They assessed 390 

the accuracy in the location and width of lognormal fits to both a theoretical population fine mode (10% and 

10% respectively) and coarse mode (1.4% and 19% respectively). These uncertainties were propagated to derive 

an estimated uncertainty in the total particle volume of 19%.  Though based on a single theoretical ambient size 

distribution, this analysis provides an indication of the magnitude of error arising from IOR variation. For 

MOASA POPS-derived size distributions, it is likely to provide an upper indication of the error, given that 395 

efforts to correct the POPS bin boundaries based on the iterative IOR method described above should serve to 

improve sizing accuracy. 

Based on the information above, an upper estimate for the error in total particle volume from POPS 

measurements (required for subsequent calculation of particle mass) is derived by combining in quadrature 

contributions from IOR/scattering (19%), sample flow (3.2%) and laser amplitude (6%) to yield an uncertainty 400 

of 20%.  

2.8 Determination of mass concentration (PM2.5) 

To calculate particulate mass, we convert the calibrated, IOR-corrected POPS particle size distributions to 

volume distributions, and subsequently mass distributions by assuming a fixed particle density. The total mass is 

then calculated by integrating across the distribution within the PM2.5 size range. Calculations are performed on 405 

10 second averaged data and work on the basis of fitting lognormal functions to the measured distributions to 

represent a fine and coarse mode (the dashed line in Fig 6 shows the combined lognormal modes from a straight 

and level run during flight M270 on 15th September 2020). This approach serves to reduce the impact of residual 

structure from Mie resonances in the POPS distribution on mass derivations.  

The selection of an appropriate particle density for converting volume to mass is an important part of the above 410 

analysis. The composition and therefore density of ambient aerosol varies dynamically in the atmosphere (Wang 

et al., 2009, Crilley et al., 2020). In the absence of co-located aerosol composition observations on MOASA, we 
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apply a fixed density to all data of 1.64 ± 0.07 (1σ) gcm3. This value is derived by weight-averaging the 

densities of PM2.5 aerosol components measured during a range of UK field experiments, as detailed in 

Appendix D.  415 

The total uncertainty in the determined PM2.5 mass concentration, estimated by combining uncertainties in the 

measured particle volume (20%) and the assumed particle density (4.2%), is 20.4% and thus dominated by the 

volume error.  

3 Flight Planning 

The MOASA air quality flight strategy was based on flying a series of repeated sorties, each designed to provide 420 

data suitable for different aspects of model evaluation work. On a week-to-week basis, sorties were selected 

based on the prevailing weather conditions and any required modifications to flight plans are made at that time. 

This section describes the rationale behind each of the sortie types, together with a summary of flight activities. 

Given the MOASA home base is at Bournemouth on the south coast of the UK, operations have predominantly 

focused on sampling over the south of the UK. This includes work over the English Channel (e.g., sampling 425 

transboundary pollution), over varied land-use types (urban and rural) including pollution hotspots such as 

London, and over isolated source regions such as docks and industrial sites. In addition to regular sorties, in 

June and July 2021 the MOASA also participated in an Intensive Observation Period (IOP) in conjunction with 

ground based air quality super-sites located in London, Birmingham and Manchester (UKRI, 2021, OSCA, 

2020). All flights are performed within operational airspace regulations which limit minimum and maximum 430 

flight levels. Observations are mostly in the boundary layer and, as shown in Fig 8, typically near or below 1 km 

GPS altitude. The lowest altitudes (0.15 km minimum) are permitted in offshore and rural areas, whereas 

minimum altitudes in urban areas (or in regions with significant topography or obstacles like masts or chimneys) 

are limited to > 0.3 km. Where possible profile measurements extending into the free troposphere are also 

collected, which allow the boundary layer height to be determined in addition to sampling of aged and/or 435 

transported pollutants.  

In terms of meteorology, conditions representative of both the general background environment and elevated 

pollution events have been targeted. As the southern UK has a maritime climate, with the frequent passage of 

mobile low-pressure systems from the North Atlantic, conditions in the operating area are not always conducive 

to the build-up of pollution. For the targeting of elevated pollution conditions, synoptic high-pressure conditions 440 

with light winds and little cloud/precipitation are favoured. Strong sunshine and elevated temperatures are also 

conducive to the production and build-up of pollutants such as ozone and as such, high pollution events tend to 

be more frequent and severe in the summer (Savage et al., 2013). 

3.1 Ground Network Survey 

Ground Network Survey sorties describe two flight patterns that sample both rural and urban background 445 

regional pollution at various altitudes. One flight pattern is focused on the southwestern UK (Fig 7, panel A1) 

and the other on the eastern UK (Fig 7.A2). A particular feature of these sorties is that they overfly a number of 

AURN ground sites allowing pollutant concentrations at the surface to be compared to those aloft. 

Characterisation of pollution at regional scales is important for air quality model evaluation, particularly for 
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models operating at coarse resolutions such as AQUM, which encompass point-source emissions data but 450 

cannot accurately represent them in terms of location and concentration. 

3.2 High-Density Plume Mapping 

High Density Plume Mapping flights (Fig 7.B) use intensive model grid-box scale sampling to allow for 

assessment of the (often sub-grid in models) scale of pollutant variability in a high pollution region. Repeated 

runs upwind, downwind and within the plume are performed at a range of altitudes. This sortie has primarily 455 

been flown over Port Talbot in South Wales, a heavily industrialised area and AQUM pollution hotspot, but has 

also been flown once north of Cambridge (east UK). In that case, horizontal transects sampling the plume at 

multiple altitudes downwind of the city were conducted. 

3.3 South Coast Survey 

South Coast Surveys were flown onshore and offshore along the south coast of the UK, typically from Dartmoor 460 

National Park in the western UK to Eastbourne in the east (Fig 7.C). These surveys have been flown under 

background and polluted southerly flows to characterise transboundary and long-range transport of pollutants 

from continental Europe. In late 2019, a persistent emissions hot spot (primarily PM2.5 and SO2) was seen in the 

AQUM forecasts, potentially originating from ships in Southampton Docks. Therefore, from late 2019 onwards, 

overflights of the Solent and Southampton Waters were added to the stock sortie.  465 

3.4 Coastal Transition Survey 

The coastal transition sortie (Fig 7.D) also operates along the south coast of the UK. The primary distinction 

from the south coast survey was a zigzag manoeuvre whereby observations across the land-to-sea transition are 

repeatedly sampled. The objective for this sortie is to obtain data for benchmarking model performance across 

the land-sea interface where strong gradients in humidity and temperature can impact forecast pollution fields. 470 

In later flights, these surveys have also been extended eastwards to encompass the Dover Straights to allow 

sampling of pollutants transported from industrial activities around the Dunkirk region of northern France, 

which is another emissions hotspot that can lead to strong pollutant transport over the UK when meteorological 

conditions permit. 

3.5 London City Survey 475 

Circumnavigational flights of London (Fig 7.E) were performed during high and low pollutant loadings to 

characterise city scale emission and dispersion of pollutants from the heavily populated, commercial, and 

industrial Greater London area. Busy air space and air traffic control due to the close proximity to major airports 

(Gatwick, London City, Heathrow) restrict the operational area of the MOASA. Broadly, following a short 

transit to Reading, the sortie takes the MOASA clockwise following the M25 London orbital motorway, which 480 

encircles Greater London. Missed approaches are frequently performed at Elstree airfield to the north and 

Biggin Hill airfield to the southeast. 

A substantial decrease in air traffic during the COVID-19 pandemic provided a unique opportunity to fly at low 

level (approx. 1000 ft) over central London. This central city sampling was added to the stock sortie in 

November 2020 and became the primary sortie for flights during the COVID-19 pandemic. The central London 485 

overpass follows the Thames River to approximately 0.087oW where it deviates south-westerly to comply with 
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air traffic control restrictions. During later flights, north-south and/or east-west transects were also completed to 

observe the urban heat island effect on boundary layer height.  During the IOP’s in June-July 2021, and January-

February 2022 MOASA observations were also made close to the surface air-quality IOP supersite (stars, Fig 

7.E). 490 

3.6 Birmingham and Manchester IOP 

During Clean Air ground based IOP’s in June-July 2021, and January-March 2022 MOASA observations were 

also made over Birmingham (Fig 7.F) and Manchester (Fig 7.G).  These city scale sorties were tailored to best 

suit meteorological conditions on the flight day, and typically involved circumnavigational orbits, or box 

patterns over the cities at altitudes ranging from approximately 0.3 to 0.9 km and/or runs north to south, up wind 495 

and downwind of the city and supersite. Passes directly overhead of the Birmingham and Manchester ground 

supersites (stars, Fig 7f and 7g) were made at each altitude, when possible. During the IOP, MOASA operated 

both in the morning and late afternoon, allowing observation of the build-up of regional scale pollutants over the 

day. Further MOASA flights in these regions are anticipated during a second ground based IOP planned for 

winter 2021/22. 500 

3.7 Summary 

63 flight sorties were flown between June 2019 to April 2022, comprising over 150 hours of atmospheric 

sampling. Flight details are summarised in table 1. Figure 8 shows horizontal and vertical spatial coverage of 

flights over the Clean Air campaign. 

3.8 The MOASA measurement database 505 

Datasets obtained during the MOASA Clean Air project are openly available from the Centre for Environmental 

Data Archive (CEDA) “Collection of airborne atmospheric measurements for the MOASA Clean Air project” 

repository (DOI: 10.5285/0aa1ec0cf18e4065bdae8ae39260fe7d). 

Data files are NetCDF format and contain observations from the NO2CAPS (NO2, ppbv, 1Hz), Ozone monitor 

(O3, 0.5 Hz, ppbv), SO2 analyser (SO2, ppbv, 1Hz), nephelometer (light scattering, Mm-1, 1 Hz), TAP (light 510 

absorption, Mm-1, 1Hz), POPS (particle counts, and calibrated, IOR corrected particle concentration, total mass 

(µg m−3 / bin) and PM2.5 (µg m−3), 1 Hz), as well as meteorological parameters observed by the AIMMS-20 

(ambient temperature (oC), relative humidity (%), pressure (hPa) and wind speed (m/s) and wind direction 

(degree), 1 Hz). Each instrument parameter is presented as a time synchronised, three-dimensionally geo-located 

time-series, with calibrations and corrections applied (where applicable). Each instrument parameter has a 515 

standard name, long name, unit and measurement frequency (compliant with Climate and Forecast (CF) naming 

conventions where possible), which are listed in Appendix 7. Some, but not all, also have a comment, minimum 

and maximum limits and/or a positive attribute. Each variable has the coordinates of time, latitude, longitude 

and altitude. Measurements from all instruments are reported at ambient pressure and temperature. 

To ensure optimal traceability and transparency of data, comprehensive metadata is included in the NetCDF 520 

which details any calibration constants and/or corrections applied to data alongside general information about 

the data, such as contacts, acronyms and references. Data is range checked to ensure observations fall inside the 

recommended operational limits of the instrument and outliers to these limits are flagged. The standard flag 
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format is the parameter name, post fixed with ‘_FLAG’. The three flag values are: 0 = good_data, 1 = 

outside_valid_ranges, and 2 = sensor_nonfunctional. For flag=1, the valid ranges are given in the variable 525 

metadata. Each flag parameter has standard name, frequency, flag value and flag meaning attributes. Derived 

variables (for example, PM2.5 or Angstrom exponents) do not have flags. The configuration file used to process 

each flight data is available alongside the NetCDF as a text file and provides the range check limits and the 

source of these limits. Records of all work done on the instruments (calibrations, cleaning, and maintenance) are 

digitally recorded and available on request.  530 

4 Flight data examples 

This section provides a limited number of case studies applying the MOASA dataset to different scientific 

applications. These examples are intended to showcase different uses of the database and are not intended as 

comprehensive analyses in their own right. We present: i) a statistical analysis of the scales of pollutant 

variability observed across the MOASA air quality dataset, ii) example use of the dataset for evaluation of a 535 

regional air quality modelling system (AQUM), and iii) the vertical structure of pollutants observed during 

repeated flight patterns over Greater London, including during the COVID-19 impacted period. 

4.1 The spatial scales of pollutant variability 

The evaluation of limited-resolution regional air quality models (such as AQUM with a 12km grid length) using 

high resolution in-situ surface or airborne data, is complicated by the differences in spatial scale between the 540 

two. While instrumentation may be capable of measurements at high precision and accuracy, these uncertainty 

metrics may, or may not, provide criteria suitable for determining the degree to which models and observations 

should agree. In many cases the magnitude of natural pollutant variability at scales that are sub-grid for models 

provides an important additional consideration. With this in mind, in this section we use the MOASA Clean Air 

database to assess how observed pollutant variability changes, on average, as a function of length scale, and how 545 

this variability compares to fundamental instrument measurement precision. 

We take a statistical approach that uses data from all MOASA SLRs, over 44 flights between July 2019 and July 

2021. The number of SLRs per flight varies depending on the type of sortie flown, with a minimum of 2 and a 

maximum of 11 (see table 1). The minimum permissible SLR length was capped at 3 minutes to ensure adequate 

counting statistics. In total this yielded 240 SLRs representing 1,389 minutes of sampling and we focus here on 550 

measurements of relative humidity, NO2, SO2 and total particle number concentration. 

High temporal resolution datasets corresponding to each straight and level run (e.g., SO2 in Fig 9), formed the 

basis for the analysis. Measured values in each dataset were split into groups of equal size, with sizes 

corresponding to equivalent ground distances (dint) ranging from 0.42 km to 17 km, in 0.085 km (1 second) 

intervals. The variability observed at each of these length scales was calculated by first calculating the standard 555 

deviation (σ) of points within each group of data, before calculating the mean deviation across all groups in the 

transect. In order to provide a more statistically robust indication of ambient variability than possible from a 

single transect, the mean transect σ for each dint was averaged across all flight transects to give the flight mean 

variability (e.g., Fig 10 for flight M284). Further, the analysis was extended to all flights in the MOASA 
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database, with results presented in Fig 11 as probability density functions of the mean transect σ at selected dint 560 

of 0.42, 0.85, 2.55, 5.10, 12.07, and 15.04 km.  

Figure 10 shows that the variability in observed RH, SO2, NO2 and particulate counts increased as a function of 

sampling scale. This result is unsurprising given that natural variability can only increase when observing over 

greater spatial scales. Interestingly the increase is non-linear, showing rapid change over scales of 0.5-2 km 

before levelling at scales towards 15 km. For reference, the AQUM grid length of 12km is marked on the plots 565 

(vertical dotted line). The horizontal dashed red lines on Fig 10 show the precision of measurements derived 

from ground-based zero tests (where available) where SO2 = 0.90 ± 0.26 σ ppbv, particle counts = 2.95 ± 0.74 σ 

counts and NO2 = 0.17 ppbv ± 0.14. It is clear that even at the smallest spatial scale of 0.42 km, instrument 

precision did not limit ability to sample the natural pollutant variability for this flight. 

Figure 11 extends this analysis to the full MOASA database, providing probability density functions that 570 

indicate the range of variability observed at a number of fixed sampling scales. Of particular note, it is clear that 

measured variability in SO2 was generally close to or below the noise limit of the MOASA instrumentation. 

Hence aside from cases of elevated emissions (such as flight M284, fig 10), instrument performance dominates 

observed SO2 variability in the MOASA database. For RH, NO2 and particle counts, the natural variability is 

generally well sampled by the MOASA instrumentation. It is interesting to note how the peak position and 575 

width of the distributions changes upon moving to progressively longer sampling scales. These changes tell us 

how, in an average sense, we might expect model sub-grid variability to change as a function of grid box length. 

Changes are particularly marked for relative humidity and somewhat less so for NO2 and particulate counts. 

Focussing on the 12km length scale relevant to AQUM, the upper ends of the distributions bound the (average) 

sub-grid variability that we might expect model output to represent. For NO2 this absolute variability is below 580 

7.35 ppbv and for particulate counts below 2412.830 counts/second for 90% of data points. 

4.3 Preliminary model evaluation 

In this section we show examples from two flights illustrating how the MOASA Clean Air database can be used 

for model evaluation purposes. These flights are: M270 high density plume mapping on 15th September 2020, 

selected to measure the vertical distribution of pollutants in the lower atmosphere north of Cambridge (52.2053° 585 

N, 0.1218° E) and M296, a Birmingham city survey as part of the IOP on 1st July 2021. Meteorological 

conditions for the flights are summarised in Fig 12. For M270, there were largely clear skies with light winds 

(<10 m/s) in the south east UK where sampling was undertaken, and high temperatures (The National 

Meteorological Library, 2020), conducive to the accumulation of pollutants in the boundary layer. M296 was 

influenced by high pressure, light winds and thin broken cloud. 590 

Case studies of the flight days have been run using the AQUM UK domain model. This is the same model 

configuration used for the operational air quality forecasting, but for these case studies, no statistical post-

processing (Neal et al., 2014) has been applied to the model data. Each simulation has been run with a 7 day 

spin up period. No adjustments have been made to the emissions used by the model to account for changes in 

activities during the COVID-19 restrictions. Model data points have been linearly interpolated using the time, 595 

latitude, longitude and altitude coordinates of the aircraft at 1 second frequency. The model and aircraft data 

along the flight tracks have then been averaged into 10 second, non-overlapping intervals. 
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Ozone 

Large ozone biases are seen for both flights (Fig 13). The model data show large overprediction when compared 

against the aircraft data at corresponding locations (mean model bias of 18.49 ppb and 48.93 ppb for M270 and 600 

M296, respectively). It is of note that this model bias is expected to have been larger if the AQUM data was 

produced using emissions modified for the COVID-19 pandemic (Grange et al., 2021). The bias appears to be 

relatively consistent across the latitude and longitude ranges of the flights and does not show any particular 

correlation with location. For M270, the bias is lowest near to the surface and increases with altitude up to 

approximately 700 - 800 m, above which the bias decreases. This can be attributed to differences in modelled 605 

and observed boundary layer height, which is discussed further in the following section.  

Savage et al. (2013) also reported biases during a ground-site AQUM comparison.  A statistical post-processing 

routine using ground based observations is applied to the forecast model data in order to generate the operational 

forecast and this is known to significantly improve predictions (Neal et al., 2014). It may be possible to use the 

aircraft observations to help identify sources of model bias, in a similar process to the above, or to determine an 610 

ozone bias correction factor that can be applied to the model data.  

Nitrogen Dioxide and boundary layer height 

Figure 14 shows comparison between the model and aircraft NO2 data for vertically stacked transects conducted 

during M270. The agreement is generally good (within ± 2 ppbv) below 650 m altitude, but the model shows 

large under-prediction above this altitude. Temperature and relative humidity profiles measured by the aircraft 615 

(not shown) indicate a boundary layer height of approximately 1100 m on this day, which corresponds with a 

decrease in observed NO2 concentration above this height. However, the average boundary layer height in the 

model for the observed area is approximately 620 m. This significant under-prediction in boundary layer height 

is responsible for the poor predication of NO2 at elevated altitudes and elucidates the altitude dependence on the 

M270 ozone model bias discussed in the previous section. This comparison indicates the value of evaluating 620 

model performance throughout the atmospheric column and suggests that the good agreement of NO2 seen at the 

surface may in this case have been somewhat fortuitous. 

Nitrogen Dioxide concentrations around Birmingham 

Figure 15 shows model and observed NO2 concentration throughout the first and fourth stacked box patterns 

performed around Birmingham during M296. Strong variation is observed in NO2 concentration aloft of the city, 625 

including enhanced NO2 at all altitudes (maximum 55.70, 49.44, 56.31 and 54.06 µg/m3 NO2 for circuits 1-4, 

respectively. Circuits 2 and 3 not shown). The enhanced NO2 plume is seen above the southwest quadrant of the 

city during the lowest altitude circuit (circuit 1, 423 m, 11:23 to 11:43 UTC) and moves southeast with 

increasing altitude, until the plume is observed primarily over the southeast quadrant of the city during the 

highest altitude circuit (circuit 4, 657 m, 12:33 to 12:52). Light north-westerly winds (0 < 5 knots) associated 630 

with the high-pressure system are observed in all circuits. The observed peak in NO2 seems to be located 

downwind of important sources (motorways and a heavily urbanised area). Comparison with surface-level 

observations (boxes) show that the plume aloft has greater concentrations of NO2. The AQUM model shows 

little variation and comparatively low NO2 concentration in all circuits above the city (maximum 14.44, 13.91, 

11.43 and 10.33 ug/m3 NO2 for circuits 1-4, respectively), and a negative NO2 model bias is evident at the 635 
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observed plume location (maximum difference of -44.26, -44.30, -49.22 and -49.79 ug/m3 NO2 for circuits 1-4, 

respectively). This model bias is expected to have been larger if the AQUM data was produced using emissions 

modified for the COVID-19 pandemic (Grange et al., 2021). In consonance with the observations, the model 

also shows light north-westerly winds at all altitudes. Modelled NO2 concentration is comparable to surface 

level NO2 at the lowest altitude circuit and decreases imperceptibly with altitude. 640 

Given the aircraft flight track is mostly within just four model grid boxes, variation in NO2 concentration, point 

source emissions, influence from local meteorology or dispersion of pollutants due to local topography is not 

expected to be represented in fine detail in the model. The lack of any enhanced NO2 at all levels of the model 

could be attributed to a multitude of reasons, such as NO2 emissions being too low at the observed plume 

location or (given NO2 aloft is observed to be higher than surface level during this flight) inaccurate 645 

representation of the vertical structure of the atmosphere, where layers aloft may have a build-up of pollutants 

due to the slack winds. 

4.4 Long term observations over London  

In this section we look at long term surface level and airborne NO2 and O3 data to illustrate how the two datasets 

can be combined to help characterise persistent trends in the temporal and vertical distribution of pollutants. 650 

Figure 16 (a) and 16 (b) show long-term surface-level background NO2 and O3 observations (time series) 

alongside concurrent airborne NO2 and O3 observations (box plots) within the Greater London area.  The 

median London AURN observations are the hourly median value across all (active for species) AURN sites 

within Greater London (an average of 6.6 NO2 and 4.6 O3 sampling sites for the duration shown). This median 

is then resampled on to a monthly timestep which assists in visualising long-term trends in the surface-based 655 

observations. A list of the AURN sites and site types included in the analysis is given in appendix E. Airborne 

observations from within the Greater London area are used from 21 and 22 flights for NO2 and O3, respectively, 

the flight numbers of which are given as the London sortie type in table 1. Median aircraft altitudes (figure 16.c) 

over the duration of the analysis were approximately 480 m and the difference in altitude between observations 

at the surface and aloft is within 860 m. 660 

 

Higher concentrations of O3 are observed aloft by the aircraft, where, further away from the surface sources of 

nitrogen oxides (NOx=NO+NO2), O3 can reform through the oxidation of NO to NO2 with peroxy radicals and 

subsequent photolysis of NO2 to form O3 (Lee et al., 2020). As such, the increase in O3 is coincident with a 

reduction of the observed NO2 aloft, which, in addition to being reduced by chemical reaction, is also further 665 

away from sources (fossil fuel burning, traffic (Jones et al., 2021, Lee et al., 2020)). Here, the impact of external 

factors (meteorology, boundary layer height, seasonal changes, complex chemistry) are not discussed and is 

beyond the scope of this paper. However, the persistent difference between the surface-based observations and 

airborne observations aloft demonstrates the importance in quantifying the vertical structure of pollutants, so 

their transport to/from the surface and the associated complex chemistry can be better evaluated in models, 670 

potentially reducing the dependence on surface-level model bias corrections, such as those discussed in section 

4.3. 
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The surface based measurements show that following lockdown on 26th March 2020, which saw a 75% 

reduction in road traffic across the UK (Lee et al., 2020),  the concentration of surface-level NO2 decreased at 

all AURN sites within Greater London. Here, we calculate the mean hourly concentration for each site for the 675 

pre- and post- lockdown periods. We define the pre-lockdown period as 26th March 2018 to 25th March 2020 

and the post-lockdown period as 26th March 2020 to 25th March 2022, where comparing like-for-like months 

pre- and post- lockdown minimises the impact of seasonality on the comparison. Individual site data for the two 

periods are shown in appendix E. Averaged across all sites in Greater London, the mean hourly NO2 

concentration decreased by 6.89 ug/m3 (24.74 %) following lockdown.  680 

This can be contrasted with an average increase of 3.35 ug/m3 (8.12 %) in the hourly surface-level O3 across all 

sites in Greater London following lockdown (calculated as per above, with individual site data shown in 

appendix E). The mean increase in O3 is consistent with the reduction in NO emissions following lockdown 

acting to decrease the extent of chemical loss of O3 through reaction with NO (Air Quality Expert Group, 2020). 

However, the increase in surface level O3 is not observed at all sites; of the 6 sites analysed, an increase is seen 685 

in the 5 urban background sites and a decrease is seen in the single suburban site. This suggests more complex 

changes in the production/distribution of O3 in Greater London during the pandemic, consistent with literature 

on UK-wide surface-level O3 during the pandemic (Jephcote et al., 2020, Lee et al., 2020, Air Quality Expert 

Group, 2020, Wyche et al., 2021) and further work is recommended on the effect of observing site location on 

ozone production.  690 

Throughout the pandemic, the start and end of lockdown periods were not clearly defined (restrictions were 

incrementally decreased in different locations on different timescales). As such it presents a complex timeline 

and, given individual flight observations were made over discrete time periods, perturbations in long-term trends 

in airborne NO2 and O3 due to COVID impacted emissions are not immediately evident. However, the 

availability of airborne observations concurrent to this complex timeline presents a unique opportunity to 695 

examine, in depth, case studies of the three-dimensional distribution of emissions below climatological levels 

during the COVID-19 pandemic, as well as the subsequent recovery to ‘normal’ (pre-pandemic) emissions, 

which is beyond the scope of this paper. 

5 Conclusions and future plans 

A long-term, quality assured, dataset on the three-dimensional distribution of NO2, O3, SO2, and fine mode PM-700 

2.5 aerosol, including optical absorption and scattering properties, has been collected over the UK using the 

instrumented Met Office Atmospheric Survey Aircraft from 2019 to April 2022. Observations allow for the 

evaluation of regional air quality models such as AQUM. A description of the MOASA measurement platform 

and instrumentation is presented, along with details of flight plans, designed to allow repeatable, comparable 

observation of pollutants.  705 

63 flight sorties, totalling over 150 hours of sampling, were flown during the campaign. These flights include 

observations of city scale pollution over Birmingham and Manchester during two periods of intensive 
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observations in June-July 2021 and January-February 2022, as well as long-term (2019 to 2022) observations 

over London, including central London overpasses (from October 2020). 

Analysis of relative humidity, total particle counts, NO2 and SO2 over the campaign shows that instrument 710 

precision did not limit the ability to sample the natural pollutant variability, with the exception of SO2, where 

limited instrument sensitivity dominated in all but a few cases where enhanced SO2 concentrations were 

encountered.  

Preliminary comparison of aircraft observations and AQUM data show the utility of the MOASA Clean Air 

database for air quality model evaluation work. For the two flights analysed (M270 and M296), we show several 715 

cases of model-observation discrepancy that provide handles for further investigation associated with biases in 

modelled O3 and NO2 concentrations and boundary layer height. We anticipate that in addition to evaluation 

work, the airborne dataset may also be useful for derivation of bias-correction factors that can be applied to 

model data during post processing. 

Analysis of long-term airborne observations over Greater London from September 2019 to March 2022 show 720 

persistent differences in the vertical distribution of the pollutants that have not routinely been available to 

evaluate and develop air quality models before. Specifically, we show lower concentrations of NO2 and higher 

concentrations of O3 aloft. The database also presents a unique and valuable resource with which to explore 

changes in atmospheric composition associated with reduced emissions during the COVID-19-impacted period. 

Analysis of long-term surface-level trends in the Greater London region show a decrease in NO2 and an increase 725 

in O3 following the mandated COVID-19 restrictions. The availability of concurrent airborne observations 

presents a unique opportunity to examine the three-dimensional distribution of the reduced emissions in detail 

during this time. 

This paper serves as a reference for all future database users. The MOASA Clean Air database is comprised of 

quality assured observations, presented in NetCDF format and is accompanied by robust metadata to ensure 730 

traceability and transparency of data. A Clean Air Data Framework is currently under development which will 

host the data. Whilst the framework is under development, data is available by request.  
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Appendix A: AQ Box schematic  

Appendix B: POPS calibration 

Appendix C: Index of refraction corrections 

ω0nt is determined by calculating the average single scattering albedo over the same flight transect as ω0psd. 945 

First, the Virkkula-corrected TAP (absorption) data is smoothed to a 10 second triangular window to match the 

Muller-corrected nephelometer (scattering) data. The scattering and absorption ÅngstrÖm exponents (SAE and 

AAE, respectively), calculated as per equation C1, were used to adjust the multi-wavelength nephelometer (λ = 

635, 525 and 450 nm) and TAP ( λ = 652, 528 and 467 nm) instruments to the POPS wavelength ( λ = 405 nm) 

using equation C2 (Perim De Faria et al., 2021).  Uncertainties in derivation of AAE (from potential 950 

asynchronous sampling response times and flow rates) were reduced by applying maximum and minimum 

bounds estimated by considering the extremes of expected ambient AE values. Here, the AAE upper and lower 

bounds are 3 and 0.7, respectively, AAE is removed when raw red absorption < 1 Mm-1 and the AAE is set to 

1.5 if the difference between absorption channels is < 1 Mm-1. For the SAE, upper and lower bounds are 2.5 and 

0.5, respectively, SAE is removed when raw red absorption < 10 Mm-1 and the AAE is set to 0.5 if the 955 

difference between scattering channels is < 1 Mm-1. The data is then further averaged over 30 seconds to 

minimise variability from instrument noise/precision and any mismatch of data. To minimise uncertainties in 

wavelength correction using the ÅngstrÖm exponents, ω0nt is derived from the blue wavelengths only, using 

equation C3.   

𝐴𝐸 =  
− log ቀ

AOC𝑡஛ଵ

AOC஛ଶ
ቁ

log(
λ1
λ2

) 
 960 

Equation C1: where AE is the ÅngstrÖm exponent, AOC = Aerosol Optical coefficient (scattering or 

absorption) and λ1 and λ2 are wavelengths pairs. 

AOC஛రబఱ
=  AOC஛୧  ൬

λସ଴ହ

λ୧

 ൰
ି஺

 

Equation C2: where λସ଴ହ is the POPS wavelength (nm), λ୧ is the wavelength of the given scattering or 

absorption coefficient and AE is the ÅngstrÖm exponent. 965 
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ω0௡௧ =
𝑠𝑐𝑎𝑡_𝑏𝑙𝑢𝑒തതതതതതതതതതതതത

஛రబఱ

𝑠𝑐𝑎𝑡_𝑏𝑙𝑢𝑒തതതതതതതതതതതതത
஛రబఱ

+ 𝑎𝑏𝑠_𝑏𝑙𝑢𝑒തതതതതതതതതതതത
஛రబఱ

 

Equation C3: where the bar indicates the 30 second rolling average, for scattering (scat) and absorption (abs) for 

the blue wavelength nephelometer and TAP channels, converted to POPS wavelength (λସ଴ହ). 

Determining ω0 using separate instruments with different uncertainties and principles can lead to potentially 970 

significant errors and biases (Perim De Faria et al., 2021). The uncertainty in the ω0nt calculations is related to 

the corresponding uncertainties in the scattering and absorption coefficients (Peers et al., 2019) measured by the 

nephelometer (4% at 450 nm, 2% at 525 nm and 5% at 635 nm, Müller et al., 2011) and TAP (30%, Ogren et 

al., 2017). These total measurement uncertainties are propagated according to appendix A of Perim De Faria et 

al., 2021 to give an uncertainty for ω0nt (equation C4). 975 

∆𝜔 =  ඨቆ
𝜎௦௖

   (𝜎௦௖ +  𝜎௔)
ଶ  .  ∆𝜎௦௖ቇ

ଶ

  +   ቆ
𝜎௔

   (𝜎௦௖ +  𝜎௔)
ଶ  .  ∆𝜎௔ቇ

ଶ

    

Equation C4: Error propagation for ω0nt, where σsc is independent scattering and σa is independent absorption 

coefficients.  

ω0 is not very sensitive to the real part of the index of refraction, and as such the real part of the estimated index 

of refraction is not very well constrained (Peers et al., 2019). Figure C1 shows ω0psd derived using 980 

IOR=1.615+0.012j and IOR=1.59+0.012j both yield a mean ω0psd of 0.917. As such, we use a real aspect of 

1.59 as derived by McMeeking et al., 2012 during their airborne measurement campaign over London, UK in 

2009. Where insufficient data is available to enable calculation of the ω0 and thus IOR, an IOR for flights in a 

similar location and meteorological conditions is adopted. The uncertainties associated with applying a flight-

mean IOR is investigated in more depth in the following case study. 985 

Case study 

Section 2.7 describes the processing applied to particle sizing measurements to account for sizing errors caused 

by differences in the IOR between the calibrant and ambient particles. The method applies corrections based on 

the assumption of a single ambient IOR per flight, which was derived via an iterative process based on 

achieving closure with independent observations of particles single scattering albedo. In this section we 990 

undertake a sensitivity study to evaluate the magnitude of error arising from the assumption of a flight-mean 

IOR, based on variability observed during an example flight: M270, a high-Density Plume Mapping sortie north 

of Cambridge, where a sequence of straight and level runs at altitudes from 0.30 to 1.32 km were performed 

(Fig C2 and table C1). The wide range of altitudes over a single flight allows examination of the impact of a 

potentially changing airmass with altitude on derivation of a flight mean IOR. Refer to Sect 4.3 for a description 995 

of meteorological conditions for this flight. 

The range of measured single scattering albedos, ω0nt during flight M270 varied throughout the boundary layer 

(0.886 to 0.944, Fig C1 red crosses) and yielded a flight mean ω0nt=0.921 ± 0.019σ (Fig C1, red line). These 

values fall within the range of single scattering albedo’s observed by McMeeking et al., 2011 during airborne 
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observations over London (typically from 0.85 in urban plumes to 0.95 in regional pollution and background 1000 

aerosol). 

A flight mean ω0psd=0.917±0.10 σ (Fig C1, blue line) was calculated using a particle size distribution (PSD) 

corrected with an optimally derived IOR=1.59+0.12j (herein referred to as IORDER). To examine sensitivity in 

particle sizing due to variability in observed ω0 throughout the column, we also undertook PSD corrections 

based on achieving closure between ω0psd and the maximum observed ω0nt (IORMAX, 1.59+0.008j), minimum 1005 

ω0nt (IORMIN, 1.59+0.016j) and an uncorrected PSD (retains the calibrant (PSL) IOR; IORPSL, 1.615+0.001j), 

shown as the grey dotted, dashed and dash-dot lines, respectively, on Fig C1. 

Regression analysis (Fig C3, left column) of normalised PSD’s corrected to IORMIN (top) IORMAX (middle) and 

IORPSL (bottom) against IORDER show good agreement, with r2 of 0.9998, 0.9980 and 0.9983, respectively. 

Mean differences between IORMIN:IORDER , IORMAX:IORDER  and IORPSL:IORDER (Fig C3, right column) are 1010 

9%, 10% and 23%, respectively. The comparatively large uncertainty between corrected and uncorrected size 

distributions underlines the importance of accounting for IOR corrections when making ambient aerosol 

measurements. Mean differences in all comparisons are largest where Dp ≈> 0.4 µm (PSD bin 15). Particle sizes 

in this region are comparable to the wavelength of light of the POPS (405 nm), which are the most efficient at 

scattering shortwave radiation and sizes larger than this can be influenced by Mie resonances (Liu and Daum, 1015 

2000). 

Flight M270 was chosen based on it showing significant variability compared to other Clean Air flights; 

uncertainty in using a flight-mean IOR for less varying flights is expected to be less. For example, flight M302, 

a typical London survey on 22nd July 2021, performed numerous runs at altitudes≈0.5km and yields a difference 

of <2% between distributions corrected by IORMIN and IORMAX.  1020 

In summary, we conclude that use of a flight-mean IOR approach in correcting size distribution data introduces 

modest uncertainty of <10% compared to applying a variable IOR approach.  

Appendix D: PM2.5 composition and density 

 Appendix E: AURN sites used in section 4.4, Long term observations over London 

Appendix F: NetCDF variables 1025 
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Figures 

 

Figure 1: The Met Office Atmospheric Survey Aircraft with instrumentation. Image courtesy Debbie 

O’Sullivan, Met Office, 2021. 1030 

 

Figure 2: Clockwise starting top left: the AQ box (foreground) and nephelometer (background) in the 

MOASA nose bay; the aft instrumented rack housing the O3, NO2 and aerosol LIDAR control system; 

inside the AQ box; inside the cabin looking forward; the Brechtel isokinetic air sample inlet and nose bay 

of the MOASA. 1035 
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Figure 3: Top: timeseries of unprocessed and processed NO2 concentration. Bottom: baseline against cell 

pressure, coloured by altitude, with a linear fit shown with a blue line. Data obtained during flight M304 

in November 2021 and averaged over 10 second intervals. 

 1040 

Figure 4: Theoretical MOASA POPS Mie responses for PSL calibrant (1.615+0.001j) and ambient aerosol 

over London: 1.59-0.022j (McMeeking et al., 2012). Crosses are PSL responses from calibration on 16th 

September 2021.  
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Figure 5: Process to estimate the IOR of the ambient sample by iteratively adjusting the index of 1045 

refraction of the POPS size distribution measurements until the POPS single scattering albedo matches 

the single scattering albedo from the nephelometer and TAP. 

 

Figure 6: An example of raw, calibrated and calibrated with IOR-correction (IOR=1.59+0.12j) particle 

size distributions, where the Y axis is normalised to 1. Overlaid are lognormal accumulation and coarse 1050 

modes (dotted) plus the combination of these lognormal modes (dashed) fitted to the calibrated with IOR 

correction (blue solid line) size distribution. 
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Figure 7: Aircraft flight tracks for a typical (A) ground network survey over the south west (A1) and east 

(A2), during M288 and M262 on 19th May 2021 and 10th January 2020, respectively, (B) high density 1055 

vertical mapping over Port Talbot, South Wales, during M284 on 24th March 2021, (C) south coast survey 

flight, during M301 on 27th July 2021, with focus on overpasses of the Solent and Southampton water, (D) 

coastal transition flight, during M285 on 30th March 2021, (E) London city survey flight IOP, M297 on 2nd 

July 2021. (F) Birmingham IOP flight (left), during M296 on 1st July 2021, (G) a typical Manchester IOP 

flight, during M300 on 20th July 2021. AURN sites are shown as triangles, airports as squares, stars are 1060 

ground based supersites in Birmingham, Manchester and London. The geographical location of each 

sortie is shown in figure 8. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, 

under ODbL. 
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Figure 8: Horizontal (top) and vertical (bottom) spatial coverage of 45 MOASA Clean Air flights from 1065 

27/07/2019 (flight M247) to 11/04/2021 (flight M299). AURN sites are shown as triangles, airports as 

squares, stars are ground based supersites in Birmingham, Manchester and London. The annotations 

relate to the sortie type detailed in Fig.7 where A1 and A2 are Ground Network Surveys, B are High 

Density Plume Mapping flights, C are South Coast Surveys, D are Coastal Transition Surveys, E are 

London City Surveys and F and G are the Birmingham and Manchester, respectively, IOP flights. Map 1070 

by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. 
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Figure 9: SO2 timeseries from 13:22:30 – 13:26:50 during high density mapping flight M284.  
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Figure 10: Mean standard deviation (std, blue line) of relative humidity, particle counts, NO2 and SO2 1075 

over flight M284, as a function of spatial scale from 0.85 km to 17 km. The horizontal dashed red lines 

represent instrument precision (±1 σ) derived from ground-based zero tests (where available). 

 

Figure 11: Density distributions of RH, particle counts, NO2 and SO2 variability over the Clean Air 

campaign, for dint= 0.85, 0.42, 0.85, 2.55, 5.10, 12.07, and 15.04 km. 1080 
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Figure 12: Met Office synoptic chart and combined infra-red and rain-radar images for 12:00 UTC 15th 

September 2020 (top) and 1st July 2021 (bottom) (The National Meteorological Library, 2020). 

 

Figure 13: Correlation of model and aircraft O3 concentrations. Data averaged over 10 second intervals. 1085 

Markers coloured by altitude. Dashed grey line represents agreement between the two datasets. Data 

shown for (a) Flight M270 on 15th September 2020, from 12:13:00 to 13:38:00 (the duration of the stacked 

level runs north of Cambridge) and (b) Flight M296 on 1st July 2021 from 11:23:00 to 12:52:00 (the 

duration of the Birmingham city circuits). 
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 1090 
Figure 14: Longitude-altitude plot of NO2 concentration for vertically stacked transects during flight 

M270 on 15th September 2020. The left-hand figure shows the aircraft data, the middle figure shows the 

model data, and the right-hand figure shows the difference between the model and aircraft. Data 

averaged over 10 second intervals. 
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 1095 

Figure 15:  Aircraft flight tracks coloured by NO2 concentration (µg/m3) for the first (left, 11:23 to 11:43) 

and fourth (right, 12:33 to 12:52) circuit, at altitudes of 423 and 657 metres, respectively, around 

Birmingham during flight M296 on 1st July 2021. Top row shows the aircraft data, middle row shows the 

model data and bottom row shows the difference between the model and observations. Observation data 

is from straight and wings level transects and all data is averaged over 10 second intervals. Wind barbs 1100 

are only shown where the observed wind components exceed the measurement uncertainty. Data in boxes 

is the hourly surface level AURN NO2 concentration for the circuit. Map tiles by Stamen Design, under 

CC BY 3.0. Data by OpenStreetMap, under ODbL. 
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Figure 16: AURN surface-level NO2 (a) and O3 (b) from all urban, rural and industrial background sites 1105 

within the Greater London region, from February 2018 to end of March 2022. The monthly resampled 

median value is shown in dark blue. Also shown are box and whisker plots of NO2 and O3 aircraft 

observations at concurrent dates, where the box extends from the 25th to 75th percentiles, the red 

horizontal lines show the median and the whiskers show the range of data. Panel (c) shows the 

corresonding aircraft altitude, with the box-and-whisker plots retaining the afore-mentioned conditions. 1110 

The vertical dashed red line in (a), (b) and (c) indicates the start of the COVID-19 impacted period, on 

26th March 2020. 
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Figure A1: Air Quality box flow schematic. 1115 

 

Figure B1: POPS calibration from 16th September 2021. The blue circles represent PSL calibration beads 

with nominal diameters from 200 to 3000 nm. The vertical bars represent the error in response for each 

bead size and is the mean standard error of the mean for 15 second segments of each bead response. 
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 1120 

Figure C1: Empirically derived nephelometer and TAP single scattering albedo (ω0nt, red, crosses) and 

theoretically derived particle size distribution single scattering albedo (ω0psd, blue, triangles) for 7 

straight and level runs for flight M270 on 15th September 2021 north of Cambridge. Flight mean ω0nt and 

ω0psd with 1 σ variance (solid lines and shaded areas in red and blue, respectively) are shown. Also shown 

are the mean ω0psd derived using particle size distributions (PSD) corrected with the IOR which yielded 1125 

ω0psd that closely matches the minimum ω0nt (run 0, grey dashed line) and maximum ω0nt (run 4, grey 

dotted line), where PSD IOR = 1.59+0.016j and 1.59+0.008j, respectively. The mean ω0psd derived using 

uncorrected (PSL-calibrant IOR=1.615+0.001j) PSD’s is also shown (grey dot-dash line). The mean ω0psd 

derived using a real component of 1.615 and imaginary component of the retrieved IOR (0.12) is detailed 

in the legend (line not shown).  1130 

 

Figure C2: MOASA flight track for M270 north of Cambridge on 15th September 2020 in the vertical 

(left) and horizontal (right). Triangles are AURN sites, the square is Cambridge airport. Map tile by 

Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. 
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 1135 
Figure C3: Regression analysis (left) of flight M270 run 0 normalised particle size distribution (PSD) 

derived using IOR=1.59+0.016j (IORMIN) against PSD derived from IOR=1.59+0.008j (IORMAX, top) and 

1.615+0.001j (IORPSL) against 1.59+0.012j (IORDER, bottom). Corresponding ratios of the same PSD’s are 

to the right. 

Tables 1140 
Sortie Type Number 

flown 

Flight numbers (number of designated runs in flight) 

Southwest Ground 

Network Survey 

7 M247 (4), M256 (3), M263 (5), M266 (3), M267 (5), M286 (7), 

M288 (4) 

Northeast Ground 

Network Survey 

2 M253 (4), M262 (3) 

South Coast Survey 5 M250, M258 (5), M265 (4), M269 (4), M301 (6) 

Coastal Transition 6 M272 (3), M280 (9), M283** (N/A), M285 (11), M289 (9), 

M322 (N/A) 

High Density Spatial 

Mapping 

5 M257 (2), M270, Cambridge (7), M274, Dover straights (4), 

M281, Port Talbot (10), M284, Port Talbot (4) 

London 23 M251NO2 (5), M252 (3), M264 (3), M273 (4), M275* (3), 

M276* (4), M277* (5), M278* (4), M279* (3), M282* (6), 

M287* (4), M294*iop (5), M297*iop (9), M302* (6), 

M305**NO2O3 (N/A), M311*iop (4), M314*iop  (5), M315*iop (5), 

M319*iop (6), M323* (5), M324* (5), M325* (4), M326* (4) 

Birmingham IOP 8 M290 (8), M291 (9), M295 (10), M296 (9), M310 (7), M312 

(12), M313 (12), M316 (N/A),  

Manchester IOP 7 M292 (7), M293 (7), M298 (5), M299 (6), M300 (6), M317 (5), 
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M320 (6) 

Total flights 63  

Table 1: MOASA Clean Air flights by sortie. The numbers in brackets indicate the number of straight 

and level transects used to derive the index of refraction for PM2.5 (where applicable) and (from flights 

M247 to M302) the analysis in Sect 4.1. “N/A” indicates that no runs were used in forward analysis. 

London flights which include a central overpass are postfixed with an asterisk. Flights with limited data 

are postfixed with a double asterisk. London flights during the ground based IOP’s are also postfixed 1145 

with superscript ‘iop’. London flight with no NO2 data or O3 data are post fixed ‘NO2’ or ‘O3’ 

(applicable to Sect 4.4). 

 

Table C1: Mean altitude and single scattering albedo for seven runs during flight M270 on 15th 

September 2020. 1150 

Run Times Mean altitude (m) ω0nt ω0psd  

(IOR = 1.59 + 0.012j 

0 12:16:20 – 12:20:20 304 0.886 ± 0.03 0.912 

1 12:37:50 – 12:42:20 378 0.904 ± 0.03 0.915 

2 12:52:30 – 12:57:50 686 0.929 ± 0.03 0.923 

3 13:00:00 – 13:04:50 851 0.937 ± 0.04 0.925 

4 13:08:40 – 13:13:10 1002 0.943 ± 0.04 0.927 

5 13:16:20 – 13:21:10 1162 0.928 ± 0.03 0.921 

6 13:23:50 – 13:29:20 1320 0.911 ± 0.03 0.897 

 Flight averages 814.71 0.920 ± 0.019 σ 0.917 ± 0.010 σ 

 Weighte

d 

average 

density 

(gcm3) 

Total 

mass 

Black 

carbon 

Organi

c 

carbon 

NH4NO3 

& 

NaNO3 

(NH4)2S

O4 

NaCl CaSO4 

anhydr

ous 

Fe-rich 

dust 

Othe

r 

(incl. 

boun

d 

water 

Index of 

refraction 

- - 1.95-

0.79j 

[5] 

1.63-

0.021j 

[1] 

NH4NO

3: 1.550, 

0j [6] 

1.53+ 0j 

[1] 

1.54 

+ 0j 

[3] 

1.57 [8] 2.80-

3.34j 

(Iron) 

[3] 

1.33+

0.0j 

Density 

(g/cm3) 

- - 1.8 [1] 1.35 [2] 1.72 [2] 1.77 [3] 

 

2.17 

[3] 

2.96  

[7] 

2.5 [4] 1 

Study   % % % % % % % % 

H2004_ub 1.69 100 14.4 25.1 14.6 21.3 2.1 1.9 10.2 10.4 

H2004_ubhp 1.69 100 9.144 15.94 36.5 13.53 1.33 1.21 6.477 6.604 
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Table D1: Average chemical composition and density (Pp, g/cm3) of UK PM2.5. Where H2004_ub and 

H2004_ubhp are Harrison et al., 2004 urban background and urban background high pollution, 

respectively. High pollution percentages represent findings by  Harrison et al., 2004, who reported an 

approximate doubling of concentrations of elemental carbon, organic compounds, sodium nitrate, 

ammonium sulphate, calcium sulphate and iron-rich dusts on high pollution days, and an increase of 1155 

more than five-fold in the ammonium nitrate concentration. AG2012_ub: Air Quality Expert Group, 

2012 urban background, H2008_ab is Haywood, 2008, airborne measurements derived from the Facility 

for Airborne Atmospheric Measurements Bae146 over 3 flights (shown as reference ranges only). 

H2008_abmed, H2008_abmo and H2008_abmi: median, maximum organics and maximum inorganics, 

respectively for H2008_ab percentage ranges. Index of Refraction and Density: The numbers in square 1160 

brackets refer to the reference for the associated value, which are as follows: [1] Morgan et al., 2010, [2] 

Haywood, 2008, [3] Hinds, 1999, [4] Lafon et al., 2006. [5] Bond and Bergstrom, 2006, [6] Hoon Jung et 

al., 2016, [7] CAMEO chemicals, NOAA, n.d. [8] PubChem, n.d. An assumed density of 1 gcm3 is used for 

`Other including bound water’.  

 1165 

NO2 Site type Mean hourly concentration 

pre-lockdown* (µg/m3 ± 

1σ) 

Mean hourly concentration 

post-lockdown** (µg/m3 ± 

1σ) 

London Bexley Suburban background 22.16 ± 17.21  19.32 ± 16.13 

London Bloomsbury Urban background 32.73 ± 18.52  26.36 ± 16.81 

London Eltham Suburban background 16.33 ± 13.09 13.56 ± 10.92 

London Haringey 

Priory Park South 

Urban background 21.29 ± 15.44 17.02 ± 13.28 

London Hillingdon Urban background 43.73 ± 26.84 26.01 ± 17.83 

London N. Kensington Urban background 26.98 ± 18.21 19.68 ± 15.21 

London Westminster Urban background 31.64 ± 18.52 24.69 ± 16.44 

 Mean 27.84 ± 18.26 20.95 ± 15.23 

O3 Site type Mean hourly concentration 

pre-lockdown* (µg/m3 ± 

1σ) 

Mean hourly concentration 

post-lockdown** (µg/m3 ± 

1σ) 

London Bloomsbury Urban background 37.13 ± 22.01 43.42 ± 22.64 

AG2012_ub 1.71 100 11.81 20.59 29.94 17.47 1.72 1.56 8.37 8.53 

H2008_ab 1.55 100 - 24-59 20 -39 21-37 - - - - 

H2008_abm

ed 

1.58 100 - 41.5 29.5 29 - - - - 

H2008_abm

o 

1.51 100 - 59 20 21 - - - - 

H2008_abmi 1.65 100 - 24 39 37 - - - - 

Mean Pp 1.64 ± 0.07 (1σ) 
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London Eltham Suburban background 45.32 ± 25.62 39.94 ± 23.99 

London Haringey 

Priory Park South 

Urban background 45.39 ± 26.12 49.50 ± 25.73 

London Hillingdon Urban background 31.37 ± 24.22 38.66 ± 23.90 

London N. Kensington Urban background 47.20 ± 26.48 51.66 ± 25.26 

 Mean 41.28 ± 25.22 44.63 ± 24.30 

Table E1: NO2 and O3 AURN sites used in Sec 4.4, Long term observations over London. All figures 

rounded to two significant figures. * Pre-lockdown: 26th March 2018 to 25th March 2020. Post-lockdown: 

26th March 2020 to 25th March 2022. 

 

 Standard name 

Aa prefix of instrument name 

e.g. “NEPH_” indicates a 

housekeeping parameter. 

Units, long name, frequency, and comments (where 

applicable). 

[ ] indicates a changeable parameter 

Dimension time units: seconds since flight_date 00:00:00 

long name: the time the measurement was taken 

timezone: UTC 

frequency: 1 Hz 

AIMMS latitude units: degree north 

long name: aircraft latitude measured by the AIMMS 

frequency: 1 Hz 

 longitude units: degree east 

long name: aircraft longitude measured by the AIMMS, 

frequency: 1 Hz longitude 

 altitude units: m 

long name: aircraft GPS height measured by the AIMMS 

frequency: 1 Hz 

comment: nominally above sea level 

 air_temperature units: K 

long name: ambient air temperature measured by the 

AIMMS 

frequency: 1 Hz 

 relative_humidity units: % 

long name: A measurement of the water vapor that exists in 

a mixture of air and water vapor measured by the AIMMS 

frequency: 1 Hz 

 air_pressure units: hPa 

long name: ambient air pressure measured by the AIMMS 

frequency: 1 Hz 
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 wind_speed units: m s-1 

long name: wind speed measured by the AIMMS 

comment: Applicable only when wings are level and wind 

speed is above the wind component speed threshold. Hence 

the wind speed flag is derived from the wind flow N flag 

the wind flow E flag and the roll angle flag. See config.py 

for the min and max limits of these parameters. 

frequency: 1 Hz 

 wind_from_direction units: degree 

long name: wind direction measured by the AIMMS 

comment: The direction the wind is blowing from. 

Applicable only when wings are level and wind speed is 

above the wind component speed threshold. Hence the 

wind direction flag is derived from the wind flow N flag the 

wind flow E flag and the roll angle flag. See config.py for 

the min and max limits of these individual parameters. 

frequency: 1 Hz 

 roll_angle units: degree 

long name: the rotation about the longitudinal axis of the 

aircraft measured by the AIMMS 

comment: zero degree indicates the wings on a fixed-wing 

aircraft are level with the local horizontal plane. 

frequency: 1 Hz 

positive: right wing down roll angle 

 pitch_angle units: degree 

long name: the angle between the longitudinal axis of the 

aircraft and the horizon measured by the AIMMS 

comment: zero degree indicates the nose and tail of the 

aircraft are level with the local horizontal plane 

frequency: 1 Hz 

positive: nose up 

 true_air_speed units: m s-1 

long name: true air speed measured by the AIMMS 

frequency: 1 Hz 

 northward_wind units: m s-1 

long name: wind flow vector north component measured by 

the AIMMS  

frequency: 1 Hz 

 eastward_wind units: m s-1 

long name: wind flow vector east component measured by 
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the AIMMS  

frequency: 1 Hz 

 yaw_angle units: degree 

long name: yaw angle as measured by the AIMMS 

instrument 

frequency: 1 Hz 

 downward_air_velocity units: m s-1 

long name: vertical wind as measured by the AIMMS 

instrument 

comment: positive is down 

frequency: 1 Hz 

 sideslip_angle units: degree 

long name: angle of sideslip as measured by the AIMMS 

instrument 

frequency: 1 Hz 

Nephelometer forward_scattering_red units: Mm-1, 

long name: corrected red (635nm) scattering (by gas and 

particles, with dark count subtracted) over 0 - 170 degrees, 

smoothed to 15s, measured by the Nephelometer, 

frequency: 1 Hz 

 forward_scattering_green units: Mm-1, 

long name: corrected green (525nm) scattering (by gas and 

particles, with dark count subtracted) over 0 - 170 degrees, 

smoothed to 15s, measured by the Nephelometer, 

frequency: 1 Hz, 

 forward_scattering_blue units: Mm-1, 

long name: corrected blue (450nm) scattering (by gas and 

particles, with dark count subtracted) over 0 - 170 degrees, 

smoothed to 15s, measured by the Nephelometer, 

frequency: 1 Hz, 

 backscattering_red units: Mm-1, 

long name: corrected red (635nm) scattering coefficient for 

backscatter (by gas and particles, with dark count 

subtracted) over 90 - 170 degrees, smoothed to 15s, 

measured by the Nephelometer, 

frequency: 1 Hz, 

 backscattering_green units: Mm-1, 

long name: corrected green (525nm) scattering coefficient 

for backscatter (by gas and particles, with dark count 

subtracted) over 90 - 170 degrees, smoothed to 15s, 
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measured by the Nephelometer, 

frequency: 1 Hz 

 backscattering_blue units: Mm-1, 

long name: corrected blue (450nm) scattering coefficient 

for backscatter (by gas and particles, with dark count 

subtracted) over 90 - 170 degrees, smoothed to 15s, 

measured by the Nephelometer, 

frequency: 1 Hz 

 scattering_correction_green units: Mm-1 

long name: scattering corrections applied to correct raw 

blue scattering data measured by the Nephelometer 

frequency: 1 Hz 

 scattering_correction_blue units: Mm-1 

long name: scattering corrections applied to correct raw 

blue scattering data measured by the Nephelometer 

frequency: 1 Hz 

 scattering_correction_red units: Mm-1, 

long name: scattering corrections applied to correct raw red 

scattering data measured by the Nephelometer, 

frequency: 1 Hz 

 aerosol_angstrom_exponent units: Mm-1 

long name: Angstrom exponent as an average of 

wavelength pair Angstrom exponents, measured by the 

Nephelometer 

frequency: 1 Hz 

 NEPH_sample_temperature units: degree Celcius 

long name: sample air temperature measured by the 

Nephelometer 

frequency: 1 Hz 

 NEPH_cell_temperature units: degree Celcius 

long name: cell temperature measured via a sensor mounted 

in the cell wall (near the light source) (for the 

Nephelometer) 

frequency: 1 Hz 

  NEPH_RH units: % 

long name: sample air relative humidity measured by the 

Nephelometer 

frequency: 1 Hz 

  NEPH_pressure units: hPa 

long name: barometric pressure in the cell measured by the 
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Nephelometer 

frequency: 1 Hz 

  NEPH_flow units: litre min-1 

long name: sample flow rate measured by the 

Nephelometer 

frequency: 1 Hz 

TAP absorption_coefficient_blue  units: Mm-1 

long name: Corrected (Virkkula et al, 2010) blue 

(wavelength = 467nm) absorption coefficient, measured by 

TAP. 

frequency: 1 Hz 

 absorption_coefficient_green  units: Mm-1 

long name: Corrected (Virkkula et al, 2010) green 

(wavelength = 528nm) absorption coefficient, measured by 

TAP. 

frequency: 1 Hz 

 absorption_coefficient_red  units: Mm-1 

long name: Corrected (Virkkula et al, 2010) red 

(wavelength = 652nm) absorption coefficient, measured by 

TAP. 

frequency: 1 Hz 

 TAP_sample_flow  

 

units: litre min-1 

long name: Sample flow for the TAP, as measured by TAP. 

frequency: 1 Hz 

 TAP_sample_air_temp  units: degree Celsius  

long name:  Sample flow for the TAP, as measured by 

TAP. 

Frequency: 1 Hz 

 TAP_case_temp  units: degree Celsius  

long name: Case temperature for the TAP, as measured by 

TAP. 

frequency: 1 Hz 

POPS mass_concentration_of_dried_

pm2p5_aerosol_in_air  

units: µg m-3 

long name: Mass concentration of dried pm2p5 aerosol in 

air for the POPS instrument 

frequency: 1 Hz 

comment: assumes homogeneous spherical particles and a 

density of [density] g/cm^3.  

Calculated using index of refraction [IOR] corrected, 

calibrated mid-bin diameters from the POPS instrument. 
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Diameter range used in PM2.5 calculations: [lower bin] µm 

to [upper bin] µm. Sample is dried (relative humidity 

typically below 20%).  

 number_concentration_of_aer

osol  

units: cm3 

long name: number concentration of aerosol measured by 

the POPS instrument 

frequency: 1 Hz 

 aerosol_particle_counts  units: counts s-1 

long name: particle counts measured by the POPS 

instrument 

frequency: 1 Hz 

 dried_aerosol_size_spectra  units: counts 

long name: number of dried particle counts per bin for the 

POPS instrument 

frequency: 1 Hz 

 bin_boundaries 

 

units: nm, 

long name: nominal and calibrated bin boundaries in terms 

of scattering cross section, and nominal, calibrated and 

calibrated IOR corrected bin boundaries in terms of 

diameter for the POPS instrument. See comment for key., 

frequency: N/A, 

comment: Index for rows (1 to 16) are: 

lr_ss, ur_ss, mbr_ss, mbr_ss_err, lr_d, ur_d, mbr_d, 

mbr_d_err, lc_ss, uc_ss, mbc_ss, mbc_ss_err, lc_d, uc_d, 

mbc_d, mbc_d_err where l=lower, u=upper, mb=mid-bin, 

ss=scattering_signal, d=diameter, r=raw, c=calibrated,  

err=error} 

 POPS_sample_flow 

 

units: cm3 s-1 

long name: sample flow rate measured by the POPS 

instrument 

frequency: 1 Hz 

comment: measured by the laminar flow element and 

differential pressure sensor on the POPS instrument, 

 POPS_bl 

 

 

 

unit: counts 

long name: baseline of the detector (raw analog-to-digital 

counts) measured by the POPS instrument 

frequency: 1 Hz 

 POPS_blth 

 

 

units: N/A 

long name: baseline threshold for particle counting 

frequency: 1 Hz 
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 POPS_laserdiode_temp 

 

 

 

units: degree Celcius 

long name: temperature of laser diode control board 

measured by the POPS instrument 

frequency: 1 Hz 

 POPS_ld_mon 

 

 

 

unit: arbitrary value 

long name: laser diode output power monitor measured by 

the POPS instrument 

frequency: 1 Hz 

 POPS_laserfb 

 

 

 

unit: arbitrary value 

long name: feedback value used when controlling laser 

power using PID control measured by the POPS instrument 

frequency: 1 Hz 

 POPS_ambient_pressure 

 

 

units: hPa 

long name: ambient pressure as measured by the POPS 

instrument 

frequency: 1 Hz 

 POPS_pumpfb 

 

 

 

unit: arbitrary value 

long name: feedback value used when controlling pump 

speed using PID control measured by the POPS instrument 

frequency: 1 Hz 

 POPS_onboard_temp 

 

 

 

units: degree Celcius 

long name: on-board temperature measured by the POPS 

instrument 

frequency: 1 Hz 

NO2 mass_concentration_of_nitrog

en_dioxide_in_air 

units: µ m-3 

long name: manually calculated nitrogen dioxide 

concentration with manual baseline subtracted, as measured 

by the NO2 instrument 

frequency: 1 Hz 

 concentration_of_nitrogen_di

oxide_in_air 

units: ppbv 

long name': manually calculated nitrogen dioxide 

concentration with manual baseline subtracted, as measured 

by the NO2 instrument 

frequency: 1 Hz 

 NO2_manual_baseline 

 

units: Mm-1 

long name: baseline used in manual concentration 

calculation of NO2. 

frequency: 1 Hz 

 NO2_man_baseline_1 

 

units: Mm-1 

long name: manually calculated baseline method 1 (for the 
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NO2 instrument) 

comment: derived by linearly interpolating between 

consecutive baseline measurements. 

frequency: 1 Hz 

 NO2_man_baseline_2 

 

units: Mm-1 

long name: manually calculated baseline method 2 (for the 

NO2 instrument) 

comment: derived using defined scaling of Rayleigh 

corrected baseline loss (Mm-1) per mb to determine 

baseline based on NO2 cell pressure 

frequency: 1 Hz 

 NO2_man_baseline_3 units: Mm-1 

long name: manually calculated baseline method 3, as per 

method 2, but do a linear fit to pressure-dependence of 

background only when pressure span is bigger than 250 mb 

(for the NO2 instrument) 

frequency: 1 Hz 

 NO2_cell_pressure 

 

units: hPa 

long name: cell pressure measured by the NO2 instrument 

frequency: 1 Hz 

 NO2_cell_temperature 

 

 

units: K 

long name: cell temperature measured by the NO2 

instrument 

frequency: 1 Hz 

 NO2_N 

 

units: cm-3 

long name: nitrogen dioxide molecular number density 

calculated at sensor pressure and temperature (for the NO2 

instrument) 

frequency: 1 Hz 

O3 mass_concentration_of_ozone

_in_air 

units: µg m-3, 

long name: mass concentration of ozone measured by the 

ozone instrument 

frequency: 0.5 Hz 

 concentration_of_ozone_in_ai

r 

units: ppbv 

long name: concentration of ozone measured by the ozone 

instrument 

frequency: 0.5 Hz 

 O3_cell_pressure units: hPa 

long name: measurement-cell pressure measured by the 

ozone instrument 
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frequency: 0.5 Hz 

 O3_cell_temperature units: degree_Celsius 

long name: measurement-cell temperature measured by the 

ozone instrument 

frequency: 0.5 Hz 

 O3_volumetric_flow_rate units: cm3 min-1  

long name: volumetric flow rate measured by the ozone 

instrument 

frequency: 0.5 Hz 

SO2  mass_concentration_of_sulfur

_dioxide_in_air 

units: µg m-3 

long name: 

mass_concentration_of_sulfur_dioxide_measured_by_the_

SO2_instrument 

frequency: 1 Hz 

comment: minimum detection limit ± 2.661 µg m-3. Be 

aware of signal to noise at low concentrations 

 concentration_of_sulfur_dioxi

de_in_air 

units: ppbv 

long name: sulfur dioxide concentration measured by the 

SO2 instrument 

frequency: 1 Hz 

comment: minimum detection limit ± 1PPB. Be aware of 

signal to noise at low concentrations 

 SO2_internal_temperature 

 

 

units: degree_Celsius 

long name: internal temperature measured by the SO2 

instrument 

frequency: 1 Hz 

 SO2_reaction_temperature 

 

 

units: degree_Celsius 

long name: reaction (or chamber) temperature measured by 

the SO2 instrument 

frequency: 1 Hz 

 SO2_pressure 

 

 

units: hPa 

long name: reaction chamber pressure measured by the 

SO2 instrument 

frequency: 1 Hz 

 SO2_flow units: litre min-1 

long name: sample flow measured by the SO2 instrument 

frequency: 1 Hz 

Table F1: Units, description (long name) and frequency of Clean Air NetCDF variables. 1170 
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