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Abstract: Observations of vertical wind profile in Chongqing, a typical mountainous city in China,14

are important, but sparse and have low resolution. To obtain more wind profile data, this study15

matched the Aeolus track with ground-based wind observation sites in Chongqing in 2021. Based on16

the obtained results, verification and quality control studies were conducted on the wind observations17

of a wind profile radar (WPR) with radiosonde (RS) data, and a comparison of the Aeolus Mie-cloudy18

and Rayleigh-clear wind products with WPR data was then performed. The conclusions can be19

summarized as follows: (1) A clear correlation between the wind observations of WPR and RS was20

found, with a correlation coefficient (R) of 0.71. Their root-mean-square deviation increased with21

height, but decreased at height between 3 and 4 km. (2) After quality control of Gaussian filtering22

(GF) and empirical orthogonal function construction (EOFc, G = 87.23%) of the WPR data, the R23

between the WPR and RS reached 0.83 and 0.95, respectively. The vertical distribution showed that24

GF could better retain the characteristics of WPR wind observations, but with limited improvement in25

decreasing deviations, whereas EOFc performed better in decreasing deviations, but considerably26

modified the original characteristics of the wind field, especially regarding intensive vertical wind27

shear in strong convective weather processes. (3) In terms of the differences between the Aeolus and28

WPR data, 56.0% and 67.8% deviations were observed within ± 5 m/s for Rayleigh-clear and29

Mie-cloudy winds vs. WPR winds, respectively. Vertically, large mean differences of both30

Rayleigh-clean and Mie-cloudy winds versus WPR winds appeared below 1.5 km, which is attributed31

to the prevailing quiet and small winds within the boundary layer in Chongqing, in this case the32
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movement of molecules and aerosols is mostly affected by irregular turbulence. Additionally, large33

mean differences at the height range between 4 to 8 km for Mie-cloudy versus WPR winds may be34

related to the high content of cloud liquid water in the middle troposphere of Chongqing. (4) The35

differences in both Rayleigh-clear and Mie-cloudy versus WPR winds had changed. Deviations of36

58.9% and 59.6% were concentrated between ±5 m/s for Rayleigh-clear versus WPR winds with GF37

and EOFc quality control, respectively. In contrast, 69.1% and 70.2% of deviations appeared between38

±5 m/s for Rayleigh-clear versus WPR and EOFc WPR winds, respectively. These results shed light39

on the comprehensive applications of multi-source wind profile data in mountainous cities or areas40

with sparse ground-based wind observations.41

Keywords:Wind profile radar, Aeolus satellite, data verification, data quality control, mountainous42
city43

1 Introduction44

The detection of the atmospheric wind profile is essential for studying atmospheric dynamics,45

interactions between weather and pollution, and predict extreme weather (Baker et al., 1995; King et46

al., 2017; Stettner et al., 2019; Sun et al., 2022). Furthermore, the value of atmospheric wind47

observations has been illustrated by assimilation applications in numerical weather prediction48

(Benjamin et al., 2004; Weissmann and Cardinali, 2007; Michelson and Bao, 2008). In particular,49

wind fields within the boundary layer are mostly turbulent and difficult to simulate using models50

without the assimilation of wind observations (Belmonte and Stoffelen 2019; Simonin et al., 2014).51

For areas with complex terrain, such as mountainous cities, individual ground-based observation52

stations usually have poor representation, and thus vertical observations are essential (Sekuła et al.,53

2021; Lu et al., 2022b). Therefore, unconventional wind profile observations are urgently required for54

analysis and assimilation into numerical prediction models to describe the transport of mesoscale55

weather systems, as well as to advance our knowledge of atmospheric component movement in the56

actual atmosphere.57

Wind profile radar (WPR) data may partially compensate for the limitations of conventional58

wind field observations. WPR detects the scattering effect of atmospheric turbulence on59

electromagnetic waves to detect the Doppler effect signals of air movement, and is capable of60

providing horizontal wind vectors with high temporal and vertical resolution (Weber et al., 1990;61
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Dibbern et al., 2001). The automated, continuous, and real-time vertical wind profiles from the WPR62

could fill the gaps in upper-air observations, both in time continuity and vertical resolution. Terrain63

and climate characteristics in unique regions could have different impacts on WPR echoes, resulting64

in separate data observation errors. Therefore, data verification, and occasionally adequate quality65

control, are required before the application of WPR data in a specific region (Zhang et al., 2015; Guo66

et al., 2020). In comparison, radiosonde (RS) data are often considered reliable atmospheric wind67

observations to verify WPR data (Weber et al., 1990; Chen et al., 2021).68

Owing to advances in satellite detection, wind fields acquired from satellites can supplement69

conventional ground-based observations in space coverage. Atmospheric motion vector detection can70

only extract the wind information of layers with clouds. The United States and Europe have71

successively detected sea surface wind fields using microwave radiometers and scatterometers72

(Endlich et al., 1971; Njoku et al., 1980; Gaiser et al., 2004; Barre et al., 2008). The World73

Meteorological Organization regards the detection of global three-dimensional wind fields as one of74

the most challenging and important meteorological observation missions in the 21st century (WMO,75

2001). The United States and Europe have conducted space-borne wind lidar measurement programs,76

as these are the best methods for detecting three-dimensional wind fields (Beranek et al., 1989; Baker,77

2008; Wernham et al., 2016). The Aeolus satellite was launched following the European Space78

Agency’s (ESA) fifth Earth Explorer mission on August 22, 2018. As the world’s first Doppler wind79

lidar in space, Aeolus has enabled the continuous detection of global wind profiles from the ground to80

the lower stratosphere with a vertical resolution of 0.25–1 km (Marseille et al., 2008; Reitebuch et al.,81

2006; Zhang et al., 2019). Therefore, the wind profile data detected by Aeolus can compensate for the82

lack of spatial coverage and vertical resolution of ground-based wind field observations to some83

extent.84

Located at the edge of the Sichuan Basin, Chongqing is a typical mountainous city in China85

known for its complex topography. Owing to the unique terrain, the mechanism of extreme weather86

and movement of atmospheric components in the city are intricate and complex, making vertical87

observations essential. Interference sources for the vertical detection of WPR might form in88

mountainous areas, which are different from those in plain areas. Thus, reasonable data verification89

and quality control should be conducted before application to ensure the accuracy and90

representativeness of the WPR. The spatial distribution of ground-based vertical wind observations in91
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Chongqing is sparse, and it is worthwhile to verify the performance of Aeolus wind products and92

apply them to related mechanistic studies or numerical assimilation systems. To this end, wind profile93

observations of RS, WPR, and Aeolus were collected and matched in terms of time and space for94

2021 in Chongqing. Based on the matched results, data verification and quality control of WPR wind95

observations were implemented using RS data, and the performance of Aeolus wind products in96

Chongqing was analyzed to provide a scientific basis for multi-source wind profile data applications97

in mountainous cities. The remainder of this paper is organized as follows: the RS, WPR, and Aeolus98

data used in this study, the matching procedure, data verification, and quality control methods are99

described in Section 2; Section 3 presents the comparison and quality control results of the WPR and100

Aeolus wind profile data; finally, the main conclusions are summarized in Section 4.101

2 Data and methods102

2.1 Data103

2.1.1 Ground-based wind profile data104

Shapingba (57516; 106.27°E, 29.34°N) is a national weather station and the only RS station in105

Chongqing. Wind speed and direction at 0000 and 1200 UTC (universal time coordinated) were106

obtained from an L-band sounding system on vertical height levels every 1 s from the surface to 30107

km in the air (Zhang et al., 2020). Shapingba station belonged to the network of the L-band sounding108

system by China Meteorological Administration. The operational radiosonde stations in China widely109

use GTS1 ditital radiosonde as key components of L-band sounding system, which have high110

accuracy within the troposphere in detecting fine resolution profiles of meteorological factors (Bian et111

al., 2011; Guo et al., 2016; Guo et al.,2021b).112

There are two wind profile radars in Chongqing, one at Shapingba station and the other at113

Youyang station (57633; 108.76 ° E, 28.84 ° N). Radars can operate almost automatically and114

continuously, acquiring vertical profiles of horizontal wind speed and wind direction (Guo et al.,115

2021a). The WPR in Shapingba and Youyang are from the same manufacturer, sharing the same116

temporal and spatial vertical resolutions of 5 min and 120 m, and vertically detecting 48 and 45 layers117

up to 9360 and 8910 m, respectively.118
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RS wind data are generally reliable vertical observations. Considering Shapingba WPR is119

located at the same station with RS, while Youyang Station is 360 km away from the RS, therefore,120

the data verification of WPR wind observations was conducted based on Shapingba WPR and RS121

data in this study (Figure 1).122

123
Figure 1. Geographic locations of ground-based wind observation stations and Aeolus tracks along within124
Chongqing. The magenta dots denote ground-based observation stations, while red and blue line represent125
Aeolus trackes. The backgroud is the terrain heights.126

2.1.2 Aeolus wind products127

Launched on August 22, 2018, the first space-borne Doppler wind lidar, Aeolus, developed by128

the ESA, has been circling in a sun-synchronous orbit at an altitude of approximately 320 km, with a129

7-day repeat cycle (ESA, 2008). Based on the original detection information, a series of products was130

released by the ESA. The Aeolus Level-2B products can provide scientific wind products, which can131

be used to obtain wind profile data from the ground to approximately 30 km in the air, with a vertical132

resolution of 0.25–2 km and an uncertainty of 2–4 m/s, varying with height (Rennie, 2018; Chen et al.,133

2022). Level-2B wind products are classified into Rayleigh-clear and Mie-cloudy winds. Specifically,134

Rayleigh channels mainly detect wind fields with atmospheric molecules as tracers in the troposphere135

and lower stratosphere, whereas the Mie channel detects signals from aerosols and cloud droplet136
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particles within the boundary layer or in the cloud (Witschas et al., 2020). In this study, the horizontal137

line-of-sight (HLOS) wind products of both Rayleigh and Mie channels were used. Additionally, the138

validity flag and estimated errors were extracted for quality control of HLOS wind products (Tan et139

al., 2017; Guo et al., 2021a).140

2.2 Methods141

2.2.1 Data matching and verification procedures142

Figure 2: Flowchart of the multi-source wind profile data matching and verification procedures. WPR

stands for wind profile radar, RS stands for radiosonde, EOF stands for empirical orthogonal function.

construction, and HLOS stands for horizontal line-of-sight.143

In an attempt to make full use of the multi-source vertical wind data from Chongqing,144

appropriate procedures were used to match the RS, WPR, and Aeolus data in time and space to make145

up the limited ground-based wind profile observations. A flowchart of the procedure is shown in146

Figure 2.147

First, data verification and quality control effect analysis of the Shapingba WPR were148

implemented based on RS data. Based on the approach used by Zhang et al. (2016) and Guo et al.149

(2021a), the Aeolus data were removed once the distances between adjacent tracks of Aeolus and150

ground-based sites exceeded 1°. With this procedure, Shapingba station is not suitable for comparison151

with Aeolus data, whereas Youyang WPR data is. Time and space matches of the WPR and Aeolus152

data were posed before the comparison, the geographic location of WPR stations and Aeolus tracks153

are shown in Figure 1. Specifically, because of the higher temporal resolution of WPR, the mean154

values of WPR data within 10 min before and after Aeolus sampling were used. Vertically, Aeolus155

data were interpolated and matched to the layers of WPR data. Subsequently, Aeolus data were156
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screened by validity flags and estimated errors. Thereafter, both the original Youyang WPR detection157

and quality control data were converted into HLOS winds for comparison with the Aeolus data. The158

WPR wind vector was projected onto the HLOS winds using the following equation (Witschas et al.,159

2020):160

�������� = ��� ѱ������ − ����� . ����� (1)161

where ѱAeolus is the Aeolus azimuth angle, which could be extracted from the Level 2B products,162

while wdRWP and wsRWP are WPR wind direction and speed, respectively.163

2.2.2 Statistical method164

The mean bias (MB) and root mean squared error (RMSE) were adopted as indicators (Equations165

2 and 3) for the verification of the WPR and Aeolus wind products, which compares absolute and166

relative deviations, respectively.167

MB = 1
� �=1

� � � − � �� (2)168

RMSE = �=1
� � � −� �

2
�

�
(3)169

where o i represents the observation values and r i represents the referent values.170

2.2.3 Data quality control of the wind profile radar171

2.2.3.1 The initial quality control172

The first step in quality control is to eliminate the abnormal increase of horizontal wind in a173

small vertical range of WPR data, including screening invalid data exceeding the climate extreme174

values and the vertical consistency test. The extreme climate wind values on the relative layers (Zuo175

2020) are listed in Table 1. For the vertical consistency test, if the wind difference between a specific176

layer and its adjacent layer is greater than three times that of the two layers below, the value is177

considered as an abnormal observation to be deleted (Zhang et al., 2015).178

Table 1: Extreme climate wind values in vertical layers179

Pressure(hPa) 1000 850 700 500 400 300 250
Height(m) 0 1500 3000 5500 7000 9000 10000

Extreme wind(m/s) 36.01 46.30 61.73 102.89 128.61 154.33 154.33
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2.2.3.2 Gaussian filtering (GF) method180

GF is a smooth filtering method that can be used to smooth out the details and noise of181

two-dimensional graphs, and the observed value of the central point and its surrounding values are182

summed in one-to-one correspondences. GF is similar to mean filtering, but its preset convolution183

operator presents a Gaussian distribution. In this study, the convolutional operator was used to184

calculate the weighted average of the WPR data to filter the high-frequency noise in the observation185

of WPR. The Gaussian filtering function of the one-dimensional zero-mean normalization is as186

follows:187

�(�) = 1
2��

�
�2

2�2 (4)188

where σ is the scale factor that determines the width of the Gaussian filter and further affects the189

degree of data smoothing. The larger the σ value, the wider the frequency band of the Gaussian filter,190

and the better the data smoothing effect. However, an excessively large σ value causes excessive191

data loss and distortion. In this study, σ was set to 3.192

2.2.3.3 Empirical orthogonal function construction (EOFc) method193

Based on the spatial-temporal sequence formed by wind field data W, calculations similar to194

empirical orthogonal decomposition were performed, and the main modes obtained by calculation195

were used to reconstruct the spatial-temporal sequence to construct new wind fields. Specifically, the196

X matrix is formed by selecting N times, a period of time before and after a certain moment, and L197

layers of effective data, vertically. X is represented below:198

� =

�1,1 �1,2
�2,1 �2,2

⋯
�1,�
�2,1

⋮ ⋮
��,1 ��,2

⋱ ⋮
⋯ ��,�

(5)199

Subsequently, the covariance matrix of X, that is, S = XXT, and its eigenvalues and eigenvectors200

were calculated. According to the arrangement of the eigenvalues from largest to smallest, the201

cumulative interpretation variance of the first m eigenvectors can be expressed as follows:202

� = �=1
� ��� �=1

� ��� (6)203

The larger the eigenvalue corresponding to the eigenvector, the more its corresponding204

distribution reflects the typical characteristics of the original field. The time coefficient T = ETX was205



9

calculated with the eigenvector E. Finally, the main modes decomposed by EOF were used to206

reconstruct the time series within N times, following the use of X = ET to obtain the vertical207

distribution of the wind field at the corresponding time. In the reconstruction of the time series, a208

cut-off threshold (G ≥85%) was set for the interpretation of the cumulative variance to control the209

quality of the observed data.210

Assuming that the cumulative interpretation variances of the first m feature vectors met G ≥85%,211

and the first m-1 did not meet G ≥85%, the feature vectors of the first m modes were adopted in the212

reconstruction of the sequence, and the corresponding winds at moment j of the ith altitude layer are:213

���,� = �=1
� ��,�� ��,� (7)214

The EOFc method can eliminate outliers and pulsating noise from observation data, and has been215

applied in quality control research of observational elements in previous studies, such as in Qin et al.216

(2010).217

2.2.4 Quality control of Aeolus wind products218

The quality of the Aeolus HLOS wind products is controlled by validity flags and estimated219

errors, which are also present in Level 2 B data products. Only data with flags equal to 1 were220

considered valid. The data were subsequently filtered according to estimated errors, the theoretical221

values calculated based on the measured signal levels, and the temperature and pressure sensitivity of222

the Rayleigh channel response (Dabas et al., 2008). Previous studies have revealed that notable223

observation errors appeared when the estimated errors were large (Witschas et al., 2020).224

Consequently, thresholds for estimated errors of 7(5) m/s were applied for Rayleigh(Mie) winds in225

this study, based on the method described by Guo et al. (2021a). Using the parameters valid_flag and226

hlos_estimate_error, 18241 Mie-cloudy wind profile samples and 1010 Rayleigh-clear samples were227

excluded. As a result, there are 1003 remaining usable Mie-cloudy samples and 1558 remaining228

Rayleigh-clear samples. Through the quality control process, significant reductions in the estimated229

error were achieved for the Mie-cloudy wind products, from 42.22 m/s to 3.50 m/s. Similarly, for the230

Rayleigh-clear wind products, the estimated error has been reduced from 78.69 m/s to 4.58 m/s.231
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3 Results and discussion232

3.1 Data verification and quality control of WPR233

234
Figure 3. Scatter density plots for wind profile radar (WPR) vs radiosonde (RS) data during (a) rainy days235
and (b) no rainy days, and vertical distribution of (c) root mean squared error (RMSE) and (d) mean bias236
(MB) for WPR vs RS during all days, rainy days and no rainy days.237

Data verification and quality control of the Shapingba WPR were performed based on RS data238

from the same station. The missing data rate for the Shapingba WPR is 22.78%, resulting in 8117239

valid wind profile samples. For the Wulong WPR, the missing data rate is 30.08%, resulting in 7350240

valid wind profile samples. RS data has a missing data rate of 13.55%, with 631 valid samples. To241

address the missing data, different approaches were employed based on the nature of the missing242

values. When specific levels within a profile have missing data, linear interpolation is used to fill in243

the gaps. However, if an entire layer of data is missing within a profile, the entire profile is excluded244

from the analysis.The WPR detects data vertically above the station, while the RS data are derived245

from air balls, which can respectively drift as far as 0-90, 2-25 and <10 km at 200, 500 and 850 hPa246

away from the releasing station (Zeng et al., 2019). Therefore, certain differences exist in the spatial247
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sampling of WPR and RS. Assuming that the atmospheric horizontal distribution is uniform within248

dozens of kilometers, the WPR and RS wind fields will be comparable. Additionally, the exact release249

times of the air balls were 23:15 and 11:15 UTC, and they generally take 25 min to rise to 10 km.250

Therefore, the mean values of the 23:15 – 00:00 and 11:15 – 12:00 WPR data were processed to251

compare the WPR and RS data. Finally, for comparison with the Aeolus data, wind fields derived252

from WPR and RS data were converted into zonal wind components for data verification and quality253

control.254

To clarify influences of weather, especially precipitation, on wind profile radar observation255

quality, scatter plots and vertical distribution of statistical parameters for WPR versus RS during rainy256

days and no rainy days were given in Figure 3. Between 1.5 and 4.5 km, WPR deviations during rainy257

days exceeded a little that without rain, and the RMSE and MB between WPR and RS were slightly258

smaller during rainy days than that without rain below 1.5 km and above 4.5 km. The correlation259

coefficient between WPR and RS with rain was a bit lower than that without rain. Generally speaking,260

precipitation could affect WPR observation quality, but the deviation distributions were overall the261

same during rainy and no rainy days, with slight differences on different layers. As a result, we262

discussed the quality control effects of WPR data based on all data, including rainy days and no rain263

days.264

265

Figure 4: Scatter density contour plots for (a) original and Gaussian filtering (GF) WPR vs RS data, (b)

original and empirical orthogonal function construction (EOFc) WPR vs RS data. In which, the fill

contour plots represent original WPR vs RS data, while the contour plots without filling color show GF

or EOFc WPR vs RS data.
266
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Based on Quality Control 1 of the WPR data mentioned above, 784 invalid wind speed data were267

filtered, after which GF and EOFc were conducted on WPR winds. The fill contour plots in Figure 4268

represent the scatter density distributions of the original WPR and RS data. The correlation269

coefficient(R) was 0.71, with scatters distributed along the reference line, indicating a correlation270

between the two types of data. Large numbers of dots with significant deviations from the reference271

line between the wind speeds of ± 10 m/s implied large differences between the WPR and RS in the272

observation of low wind speeds. The contour plots without filling color in Figure 4(a) are scatter273

density distributions of GF-controlled WPR and RS, with an R of 0.83, showing better correlation274

compared with the original WPR and RS wind data. The GF method screened parts of the data far275

away from the reference line, which are wind data with large differences between WPR and RS,276

contributing to an improvement in the correlation of the two types of data. The performance of the277

WPR data quality control based on EOFc is more significant in Figure 4(b) compared to GF. For278

EOFc, G was selected to be greater than 85% for the first time; specifically, the first two modes were279

added after EOF decomposition, with G = 87.23%. The R between the EOFc WPR and RS winds280

reached 0.95, with scatters more concentrated around the reference line compared with the original281

and GF WPR.282

283

Figure 5: Probability density distributions vertical variations of (a) RS minus original and GF WPR

data, (b) RS minus EOFc WPR data. The blue numbers represent the proportion of RS minus original

WPR within -10 to 10 m/s. In (a), the red number represent the proportion of RS minus GF WPR within

the range, and in (b), the red for proportion of RS minus EOFc WPR within the range.
284

The vertical wind deviation distributions of the original and quality-controlled WPR are shown285

in Figure 5, and the vertical distributions of the statistical parameters are shown in Figure 5. The286
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distribution of deviations between the RS and original WPR data followed normal distribution on287

various layers. The median of the distribution was centred around 0 near ground within 2 km, and288

gradually moved towards to the negative values above 2 km, indicating significant negative289

deviations on the upper layers. Large negative deviations emerged on different layers, however, large290

positive deviations mainly distributed around 3-5 km, with the maximum around 30 m/s. Comparing291

RS with the original WPR data, 98.2% of the deviations distributed within the -10 to +10 m/s range292

near the surface. However, this proportion decreases with increasing altitude, with only 75.6% of the293

deviations falling within this range between 6-7 km. Furthermore, when comparing RS with the WPR294

data corrected using GF and EOFc, a higher proportion of deviations was observed to concentrate295

between -10 to +10 m/s at different altitudes. Specifically, the deviations between RS and EOFc WPR296

exhibit a higher proportion of deviations within the -10 to +10 m/s range compared to those between297

RS and GF data. From the perspective of statistical parameters, the RMSE of RS and the original298

WPR deviation increased with height overall, but decreased at heights between 3 and 4 km. The299

vertical MB distribution between the RS and original WPR data presented an M-shaped distribution,300

with positive MB values near the ground and negative values in the other layers. According to the301

vertical distribution of the deviation scatter points, the negative deviations are significantly larger than302

the positive deviations. For a relatively small MB value of approximately 4 km, some of the large303

positive deviations in Figure 5 at this level balance the negative values. Similarly, large positive and304

negative deviations appeared at approximately 6 km, forming small MB values at this level. In305

general, wind speeds increase with height, leading to an increase in the observation deviations of the306

WPR.307

308
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309

310

Figure 6: Vertical distributions of RMSE and MB for (a) RS vs GF WPR data, (b) RS vs EOFc WPR

data.
311

Taking RS data as true values, the zonal WPR wind data in Chongqing exhibited various312

detection errors with height, indicating that quality control of the original WPR data is necessary. The313

red histograms in Figure 5(a) represent the vertical deviation distributions between RS data and the314

GF WPR with respect to height. Compared with the original WPR data, GF eliminates some large315

deviation values of different layers, making the distribution more centred around 0, especially on the316

upper layers. The vertical distributions of the RMSE and MB between the RS and WPR data317

corresponded to modifications. The RMSE of the RS and GF WPR data is reduced below 3 km318

compared to the original WPR, while the alteration of MB mainly manifests above 4 km. Remarkably,319

the negative value of MB above 4 km increased after GF in the WPR data. This was because of the320

reduction in the larger positive deviation value, and the negative deviation could not be offset.321

Subsequently, the EOFc method was adopted for the zonal winds in the original WPR data. The322

vertical deviation distributions of RS and EOFc WPR reduced many large negative deviations in the323

different vertical layers, making distribution more in line with normal distribution(Figure 5b). The324

statistical parameters of the vertical distribution also showed significant changes compared to the325

original data. A significant decrease in the RMSE value and a notable reduction in the negative MB326

above 1 km were observed between the RS and EOFc WPR (Figure 6). Combining both the vertical327

distribution for deviation scatters and statistical parameters, the EOFc WPR winds were similar to the328

RS data at various heights. Although the deviations of the two types of data were significantly329

reduced, it is worth noting that the EOFc WPR data have modified the characteristics of the original330
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wind fields to a large extent, especially under strong convective weather conditions with large vertical331

wind shear. In comparison, the GF WPR data could better retain the basic characteristics of the332

original wind fields. However, the GF method exhibited a limited reduction in the detection333

deviations of the WPR data. In general, the two quality control methods have different effects on the334

reduction of detection deviations and the retention of the original information.335

3.2 Comparison of the Aeolus and WPR wind data336

337

Figure 7: Probability density distributions of deviations and wind distributions of (a) Rayleigh-clear and (c)

Mie-cloudy vs WPR original and GF WPR winds, (b) Rayleigh-clear and (d) Mie-cloudy vs original and

EOFc WPR winds.
338

Owing to the limited spatial coverage of ground-based wind profile data, data verification of339

Aeolus products in Chongqing was conducted to compensate for the spatial coverage of wind340
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observations to some extent. The match procedure results indicate that the Youyang WPR data can be341

used to verify the Aeolus products described in Section 2. The probability density distribution (PDD)342

of deviations between and wind distributions of both Aeolus Rayleigh-clear and Mie-cloudy products343

versus WPR data are shown in Figure 7. The PDD of deviations between Rayleigh-clear and WPR in344

Figure 7(a) generally present as a Gaussian distribution, with 82.9% of deviations concentrating345

between ± 10 m/s and 56.0% of deviations between ± 5 m/s. Quality control with the GF and EOFc346

methods was conducted on original WPR observations, and the PDD of deviations between347

Rayleigh-clear and quality-controlled WPR winds were concentrated around 0. For deviations348

between Rayleigh-clear and GF WPR winds, 85.8% of deviations were centralized between ± 10 m/s349

and 58.9% of deviations between ± 5 m/s. In comparison, 86.3% of deviations of Rayleigh-clear and350

EOFc WPR winds appeared between ± 10 m/s and 59.6% of deviations between ± 5 m/s. The351

scatter distributions of the Rayleigh-clear and WPR winds were shown in Figure 7(a) and 7(b),352

respectively. WPR detects winds between -5 and 10 m/s as larger than Rayleigh-clear wind, while it353

underestimates wind speeds in the range of ±10 m/s to ±20 m/s compared with Aeolus Rayleigh354

wind products. Figure 7(c)–(d) show the PDD of deviations and wind distributions of between the355

Mie-cloudy and WPR winds. 86.2% of deviations of Mie-cloudy versus original WPR data were356

centralized between ±10 m/s and 67.8% of deviations between ±5 m/s, while 86.9% of deviations of357

Mie-cloudy versus GF WPR winds were centralized between ± 10 m/s and 69.1% of deviations358

between ±5 m/s. For the EOFc WPR winds, 87.5% of deviations appeared between ±10 m/s and359

70.2% of deviations between ± 5 m/s. The PDD of wind detected by WPR is similar to that of360

Mie-cloudy wind, but WPR generally overestimates wind in the range of -5 and 20 m/s compared361

with Aeolus Mie wind products. First, the deviations of the Mie-cloudy and quality-controlled WPR362

data were more concentrated around 0 compared with the original WPR.Additionally, compared with363

Rayleigh-clear winds, deviations in the Mie-cloudy versus WPR data were small, which may be364

attributed to the detection principles of the two channels. Compared with the Rayleigh channel, the365

tracers for the Mie channel, including aerosols and cloud droplets within the boundary layer and in366

the cloud, mainly centralized at lower vertical levels with smaller wind speeds, resulting in smaller367

wind deviations for the Mie-cloudy observations.368
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369

Figure 8: Vertical distribution of mean differences and deviations between (a) Rayleigh-clear vs GF WPR

data, (b) Rayleigh-clear vs original and EOFc WPR data, (c) Mie-cloudy vs original and GF WPR data and

(d) Mie-cloudy vs original and EOFc WPR data.

370

Figure 8 shows the vertical distribution characteristics of the differences between Aeolus371

products and WPR data. The red solid line represents the vertical distributions of the mean differences372

between Aeolus and the original WPR data, and the shaded areas denote positive and negative373

deviations from the mean differences. Mean differences between the Rayleigh-clear and original374

WPR winds have large negative deviations below 1.5 km, with the maximum deviation reaching375

-5.2-13.0, -5.2+12.61 m/s. However, the mean difference between these data maintained within ± 1376

m/s from the heights of 1.5 to 8 km, with simultaneous decreasing negative and positive deviations377

with height. The wind measurement capability of the Rayleigh channel is largely limited by the378

receiving intensity, and the Sichuan Basin is one of the large-value aerosol regions in China (Zhang et379

al., 2012; Lu et al., 2022a). Particularly, below 1.5 km within the boundary layer, strong aerosol380
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scattering will inevitably affect molecular scattered signals, thus reducing the accuracy of Rayleigh381

channel wind field inversion (Tan et al., 2017; Guo et al., 2021a). In contrast, the vertical distribution382

of mean differences between Mie-cloudy and original WPR data (Figure 8c and d) showed large383

values within the boundary layer (below 1.5 km) and middle troposphere (4–8 km). The maximal384

deviation within the boundary layer reached 2.09-18.23, 2.09+14.76 m/s, while the maximal values385

were 7.49-19.98, 7.49+21.64 m/s in the middle troposphere. For the Mie channel, aerosols and cloud386

droplet particles were used as tracers for wind measurements. Owing to the influence of the387

topography in Chongqing, the prevailing quiet and small winds within the boundary layer result in the388

dominant influence of turbulent motion on large particles (Lu et al., 2022b). This contributes to larger389

deviations in Mie wind observations because of the irregularity of turbulence. The notable mean390

differences in the middle troposphere may be affected by the distribution of cloud droplets. Previous391

studies have revealed that due to the influence of the topography of the Tibetan Plateau, the liquid392

cloud water contents around 27°N to 35°N in central China are remarkably larger than those in the393

southern and northern regions at the same altitude (Yang et al., 2012), with nimbostratus and394

altostratus prevailing in the affected areas (Yu et al., 2004). These may contribute to large mean395

differences and deviations between Mie winds and WPR data at altitudes of 4–8 km in Chongqing,396

which is located on the eastern side of the Tibetan Plateau. According to existing observations, the397

frequency of cloud occurrence in the middle troposphere in spring, autumn, and winter is higher than398

that in summer, which can explain to some extent why the annual mean differences between Mie399

winds and WPR around 4–8 km have large values, whereas the average values in summer do not400

(Guo et al., 2021a). Based on the GF and EOFc quality control of the WPR data, the mean differences401

between the Rayleigh-clear and WPR winds were found to not change significantly, with only some402

reduction in the differences between the Rayleigh-clear and EOFc WPR data within the boundary403

layer. However, by controlling the WPR data quality, the positive and negative deviations of the mean404

difference at various heights can be effectively reduced (Figure 8a and 6b). Specifically, GF can405

reduce deviations above 3 km, whereas EOFc modifies the positive deviations within the boundary406

layer. For the Mie winds, a remarkable reduction was observed for mean differences at an altitude of407

approximately 6–8 km and deviations in various layers with quality-controlled WPR data compared408

with the original WPR data.409
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4 Conclusions410

To evaluate the observation quality of the multi-source wind profile data in Chongqing, this411

study matched the Aeolus, RS, and WPR data for 2021. The matching results indicate that the412

Youyang WPR can be used for comparison with the Aeolus winds. Additionally, data verification and413

quality control studies of ground-based WPR data were conducted based on Shapingba RS wind414

observations. The main conclusions are as follows:415

A correlation was found between the RS and original WPR zonal wind data, with an R of416

69.92% and scatter points generally distributed along the reference line. The RMSEs of the RS and417

WPR data increased with height overall, except at an increase of approximately 3–4 km. The MB was418

vertically distributed in an M-shape, with relatively smaller MB values appearing at 4 and 6 km419

because of the cancellation of positive and negative deviations.420

Screened by the extreme wind climate values and the vertical consistency test, 784 WPR wind421

observations were eliminated. The R between RS versus GF WPR data and EOFc (G = 87.23) WPR422

data were 0.83 and 0.95, respectively, demonstrating a better correlation between RS and EOFc WPR423

data. A comparison of the deviations in the vertical distribution of the RS and WPR data before and424

after quality control revealed that the EOFc WPR data are closer to RS winds at various heights,425

resulting in smaller deviations between the two. However, it should be noted that the EOFc WPR426

winds have a broader filter than the original data, which can remarkably alter the characteristics of the427

original wind fields, particularly in cases of severe convection weather conditions where there are428

significant vertical wind shears. While preserving the basic features of the original wind field, the GF429

method has a limited impact on reducing the deviations of the original WPR wind observations.430

The Rayleigh and Mie winds detected by Aeolus exhibited various deviations from the WPR431

data; 56.0% of deviations between Rayleigh-clear and WPR data existed within ± 5 m/s, while432

67.8% of deviations existed between Mie-cloudy and 67.8% of deviations between WPR data were433

within ± 5 m/s. The Mie channel detects aerosols and cloud droplets as tracers, which are lower than434

the height layers detected by the Rayleigh channel, resulting in relatively small wind speed deviations.435

However, the mean differences between Rayleigh-clear and WPR winds are smaller than those of436

Mie-cloudy winds, especially in the middle troposphere of 4–8 km. This may be due to the influence437

of the topography of the Tibetan Plateau, resulting in a remarkable increase in the liquid cloud water438
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content from 27°N to 35°N in central China compared to other regions. Chongqing is located in the439

affected areas; thus, the accuracy of Mie wind observations is influenced by the middle troposphere.440

The deviations between the Aeolus and WPR data changed to some extent after quality control441

of the WPR data, both for the Rayleigh-clear and Mie-cloudy winds. The scatter points of the Aeolus442

and WPR data, which were far away from the reference line, decreased; 58.9% of deviations between443

the Rayleigh-clear and GF WPR data were centralized between ± 5 m/s, and 59.6% of deviations for444

EOFc WPR data were within ± 5 m/s. For the Mie channel, 69.1% of deviations were concentrated445

± 5 m/s between the satellite and GF WPR data, and 70.2% of deviations existed between the Mie446

and EOFc WPR data. The mean differences of the Rayleigh channel and WPR data changed little447

after quality control was conducted using both the GF and EOFc methods on WPR data; however,448

both positive and negative deviations to the mean values decreased. For Mie winds, quality control on449

WPR made distinct modifications to the mean differences between 6 – 8 km and deviations to the450

mean values of all layers between Mie-cloudy and WPR data.451
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