Supplementary Tables:

Name	δD (‰)	δ ¹⁷ Ο (‰)	δ ¹⁸ Ο (‰)	d-excess (‰)	Δ ¹⁷ O (per meg)
FL0	6.47	-	0.56	2	-
BER	-2.10 ± 0.17	$\textbf{-0.05}\pm0.02$	$\textbf{-0.25}\pm0.02$	4	82
SW	-75.63 ± 0.17	-5.5515*	-10.55 ± 0.02	9	33
FL1	-81.1	-	-11.65	12	-
WW	-268.30 ± 0.31	-17.9754*	-33.82 ± 0.03	2	27
FL2	-308.14	-	-40.06	12	-
SP	-435.31	-29.6497	-55.39	8	-11
AW	-	-	-		17

Table S1: Standards used in this study. Precision (±) is the standard error. * δ^{17} O values calculated from Δ^{17} O and δ^{18} O.

Name	SW (g)	WW (g)	Ratio	Δ ¹⁷ Ο (ppm)
M20	15.85	3.99	0.2011	21 ± 13
M50	9.93	9.93	0.5000	12 ± 13
M85	16.96	2.98	0.8506	18 ± 13

Table S2: Samples used to perform Δ^{17} O tests. M20 - M85 resulted from a mixture of SW and WW. Ratio is WW_{mass}/(SW_{mass}+WW_{mass}).

Name	Start (Oct. 2022)	Stop (Oct. 2022)	Holder #	Duration (hours)	H ₂ O mean	H ₂ O std	n
SP	10 16:18	10 20:18	1	4	17353	118	13790
BER-01	10 20:18	11 04:18	2	8	17296	215	27634
BER-02	11 04:18	11 12:18	3	8	17163	410	27652
BER-03	11 12:18	11 19:18	4	7	17143	571	24202
BER-04	11 19:18	12 02:18	2	7	17067	310	24215
BER-05	12 02:18	12 09:18	3	7	17177	120	24223
BER-06	12 09:18	12 16:18	4	7	17186	560	24224
BER-07	12 16:18	12 23:18	2	7	17265	168	24228
BER-08	12 23:18	13 06:18	3	7	17232	349	24243
BER-09	13 06:18	13 13:18	4	7	17239	318	24222
BER-10	13 13:18	13 20:18	2	7	17242	146	24208
BER-11	13 21:00	14 04:42	3	7	17256	353	26609
BER-12	14 04:42	14 11:42	4	7	17380	113	24189
BER-13	14 11:42	14 12:24	2	<1	17460	204	2418

 Table S3: Sequence of standard injected for the long term stability test.

For panels (a) and (b)

Data	off	а	b	\mathbb{R}^2
δ ¹8 Ο FL0	0.0327 ± 0.0167	-9.3335 ± 4.5600	-0.0054 ± 0.0009	0.9782
δ ¹8 O FL1	0.0292 ± 0.0316	-1.8082 ± 0.454	-0.0016 ± 0.0004	0.9718
δ ¹8O FL2	$\textbf{-0.0141} \pm 0.0610$	-4.4829 ± 0.6220	-0.0019 ± 0.0003	0.9965
δ D FL0	0.2708 ± 0.2230	15.4957 ± 2.5800	-0.0020 ± 0.0003	0.9805
δD FL1	-0.1496 ± 0.0859	17.3759 ± 8.4800	-0.0031 ± 0.0007	0.9587
δ D FL2	0.0391 ± 0.0859	-14.3201 ± 1.3100	-0.0022 ± 0.0002	0.9953

For panels (c) and (d)

Data	off a		b	\mathbb{R}^2
δ ¹⁸ O SD	0.4171 ± 0.0179	3.7372 ± 0.2340	-0.0019 ± 0.0001	0.9943
δD SD	1.2720 ± 0.1060	13.8565 ± 0.9990	-0.0017 ± 0.0001	0.9778

Table S4: Results of the best fits are reported in Figure 6 of the manuscript. Coefficients reported with standard error. H2O is the mixing ratio in ppmv measured by the CRDS analyzer against the best fit equation: off+a*expb*H2O

Supplementary Figures

Figure S1: Humidity - Isotope response for SW and WW standards. The humidity-isotope response was investigated for SW and WW standards between 15000 - 22000 ppmv. The figure shows the deviation of the raw isotopic signal for each standard at different humidity levels. The deviation was calculated against the highest humidity value for each run. Different symbols represent different runs (8 - 9 Aug for WW, 9-10 Aug for SW). Error bars are the standard deviation of the raw signal for each level, as measured at 1 second resolution.

Figure S2: Pulse train test performed with a single oven and a four position selector. Similarly to Figure 8 in the manuscript, results reported as average \pm standard error calculated for the last 5 minutes of δ^{17} O (a and b), δ^{18} O (c and d), δ D (e and f), d-excess (g and h) and Δ^{17} O (i and j) signals.