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Abstract. Large hail events are typically infrequent, with significant time gaps between occurrences at specific locations.

However, when these events do happen, they can cause rapid and substantial economic losses within a matter of minutes.

Therefore, it is crucial to have the ability to accurately observe and understand hail phenomena to improve the mitigation

of this impact. While in-situ observations are accurate, they are limited in number for an individual storm. Weather radars,

on the other hand, provide a larger observation footprint, but current radar-derived hail size estimates exhibit low accuracy5

due to horizontal advection of hailstones as they fall, the variability of hail size distributions (HSD), complex scattering and

attenuation, and mixed hydrometeor types. In this paper, we propose a new radar-derived hail product that is developed using

a large dataset of hail damage insurance claims and radar observations. We use these datasets coupled with environmental

information to calculate a Hail Damage Estimate (HDE) using a deep neural network approach aiming to quantify hail impact,

with a critical success index of 0.88 and a coefficient of determination against observed damage of 0.79. Furthermore, we10

compared HDE to a popular hail size product (MESH), allowing us to identify meteorological conditions that are associated

with biases on MESH. Environments with relatively low specific humidity, high CAPE and CIN, low wind speeds aloft and

southerly winds at ground are associated with a negative MESH bias, potentially due to differences in HSD, hail hardness,

or mixed hydrometeors. In contrast, environments with low CAPE, high CIN, and relatively high specific humidity aloft are

associated with a positive MESH bias.15

1 Introduction

Hail is a weather phenomenon that can cause substantial damage to crops, infrastructure, buildings, and motor vehicles (Gun-

turi and Tippett, 2017; Prein and Holland, 2018). It is crucial to accurately quantify and predict hail damage to enable farmers,

insurance companies, and government agencies to make informed decisions and minimize the impact of hail events. The spatial

coverage of a hailstorm, which can be estimated by hail size reports, remote sensing products, and/or the extent of insured dam-20

ages, is of great importance for assessing the hail risk of an area. Analyzing the environmental characteristics associated with

hailstorms has the potential to advance our understanding of hailstorm processes, microphysics, and prediction. By examining

these factors during hailstorms, we can gain valuable insights into the dynamics and mechanisms at play, contributing to the

broader knowledge in this field.
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Despite its importance, accurately estimating the size of hail or the severity of hail damage remains a challenge. Currently,25

there are three main approaches for estimating hail severity: hail measurements at ground level, insurance claims data, and

weather radar data. Direct observations of hail can be segregated into two categories, reports and in-situ measurements. Reports

have biases related to population location, diurnal sampling bias, and size clustering. In-situ measurements like disdrometers

or hail pads, are the most accurate but are generally sparse or deployed across small areas (Allen and Tippett, 2015).

Insurance data is more widespread than in-situ measurements. However, it has three main limitations. First, it is restricted30

to developed or populated areas where insured properties exist. Second, it only provides the cost of damages, which is highly

dependent on the value of the property, how vulnerable is the property to hail damage, low-level winds, the Hail Size Distri-

bution (HSD), and the density of hailstones (Giammanco et al., 2015). Third, it might be inaccessible due to policy or privacy

concerns.

Radar-derived hail products have the advantage of high spatiotemporal resolution, increased homogeneity, and coverage, but35

three challenges remain for accurate estimation of hail. First, the size distribution and concentration of hailstones cannot be

derived from radar reflectivity alone. Reflectivity is the sum of contributions from individual hydrometeors, and therefore is

highly dependent on both its size and concentration (Dennis and Kumjian, 2017b). Similarly, a mixture of liquid and frozen

hydrometeors could be present in the volume and result in a size estimate with a positive bias. The use of polarimetric radars

can improve the quality of hail size estimates from radar by providing additional observations related to the size, shape, and40

orientation of the hydrometeors (Kumjian and Ryzhkov, 2008; Depue et al., 2007; Ortega et al., 2016). However, long term

polarimetric radar observations required to create a hail climatology are lacking in most locations; and some areas lack polari-

metric radar coverage. The second limitation involves a potential mismatch between radar-estimated hail locations and ground

observations. Hailstones can be transported by environmental and storm-generated winds during their descent, leading to dis-

crepancies between the radar-estimated hail location based on aloft observations and ground-based reports. This limitation can45

be mitigated by modeling the trajectories of the hailstones (Brook et al., 2021), assuming three dimensional wind information

is available; using only low-level information for hail estimation (Ortega et al., 2016; Depue et al., 2007); or by matching

hail size reports or insurance claims to radar-derived hail products within a defined spatiotemporal radius of influence (Warren

et al., 2020; Nanni et al., 2000; Cintineo et al., 2012). However, these mitigation strategies have limitations: 3D wind observa-

tions are unavailable in most locations, and low-level information is only available close to the radar, which reduces coverage50

and is more prone to data quality issues such as ground clutter and beam blockage. Additionally, products that estimate hail

from reflectivity above the freezing level are often not representative of conditions near the ground. Moreover, this matching

requires a sufficiently large sample of hail size reports or insurance claims. The third limitation pertains to the complete lack

of information regarding hail hardness, which can have significant effects on the damage generated (Brown-Giammanco et al.,

2021) as hailstones with different hardness levels may appear identical from the radar’s perspective.55

Despite the limitations of radar-derived hail products, they remain the most effective tool for estimating hail occurrence,

calculating hail risk climatologies, and providing situational awareness for operational forecasters. For example, the Aus-

tralian Bureau of Meteorology (BoM) uses the Maximum Expected Size of Hail (MESH) as guidance for issuing thunderstorm

warnings (Richter and Deslandes, 2007). MESH was originally calculated by fitting the Severe Hail Index (SHI) to the 75th
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percentile of 107 maximum hail size reports using a power-law function (Witt et al., 1998). This was later improved by using a60

larger number of reports, 5897, and fitting to the 75th and 95th percentiles (Murillo and Homeyer, 2019). The SHI is a weighted

vertical integration of hail kinetic energy above the melting layer, which is estimated from radar reflectivity (Witt et al., 1998).

In our study, we leverage MESH data from the BoM’s national network of weather radars, combined with a 10-year dataset

of hail damage insurance claims provided by Suncorp Group Limited (Suncorp) and meteorological data from ERA5 reanaly-

sis (Hersbach et al., 2020), to train a deep neural network capable of predicting hail damage. The structure and data flow of the65

study is:

section 2: Describes the insurance data, applied filtering, and normalization.

section 3: Describes the radar data and calculated products.

section 4: Describes the procedure to match the insurance data to radar observations.

section 5: Describes the development and evaluation of the neural network driven by the matched insurance and radar data70

and aided by meteorological data.

section 6: The new hail damage model is applied to the full data archive, no longer limited by insurance exposure, and the

relationship between the predicted hail damage, MESH, and meteorology is discussed.

2 Insurance Data

Suncorp, one of Australia’s largest insurance companies, provided building-scale insurance data for the entire country. This75

dataset included information such as location, date of the event, sum insured, and incurred loss for residential policies. Addi-

tionally, it contained details about the insured properties, such as the year of construction, roof material, wall material, and the

presence of tree coverage. For instance, a dataset entry might describe a house built in 1975 at a specific latitude and longitude,

featuring a tiled roof, wooden walls, and tree coverage, with an insured sum of 700,000 AUD and an incurred loss of 70,000

AUD on January 1, 2010. Data were limited to areas covered by radar observation and encompassed the time period January80

2010 - June 2022, which resulted in 311,196 individual damage claims. To avoid introducing biases toward more expensive

properties, we computed a damage metric known as the loss ratio, which is the ratio of incurred loss to the insured sum. In

this report, we will refer to this metric simply as damage and express it as a percentage. It is important to note that our study

only investigates hail damage on residential buildings, while damage on vehicles was not provided due to uncertainty with the

damage location.85

Archetype normalization

We recognize that various property types can exhibit different levels of loss ratio from the same hail size and concentra-

tion (Blong, 2007; Brown et al., 2015; Hohl et al., 2002; Mobasher et al., 2022). For example, certain roof types are more

susceptible to hail damage than others, and the presence of tree coverage can also influence observed hail damage. Accurate

analysis and comparison to the radar estimates requires minimizing the influence of these variables on the observed damage.90

To achieve this goal, we identified all possible combinations of property characteristics (roof type, wall type, construction year,
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Figure 1. Relative damage distribution for each archetype. The black box shows the extent of the 25th and 75th percentiles of the data; the

orange line shows the median, and the green triangle the mean. The whiskers show the 5th and 95th percentiles. The dashed green and orange

lines show the mean and median of the full dataset, respectively.

tree coverage) and selected the most frequently occurring combinations (archetypes), such that at least 85% of policies are

represented. This resulted in 12 archetypes with varying levels of vulnerability, 11 archetypes accounted for more than 85% of

the policies, with the rest labelled as other (the 12th archetype). The mean damage for each archetype and for the full data was

calculated (Figure 1). The results indicated that some archetypes were over three times more vulnerable to hail damage than95

others. To ensure the overall archetype mean equalled the unscaled mean of the full data, the damage for each archetype was

rescaled to match the overall mean (Figure 1, top-right). Note that the archetype details are commercially sensitive and are not

shown in this study. The rest of the study uses the normalized damage instead of the original loss ratios, this way the effect

from the different vulnerabilities from the various property types can be minimized.

Event identification100

Insurance data were limited to hail damage claims but the percentage of days with claims in most radar domains did not

accurately represent the true hail frequency, with most days recording at least one claim. The majority of these days recorded

less than ten claims each, while a small number of days saw claim spikes in the thousands (Figure 2). To address this issue,

we defined intense hail events as days with at least 1000 claims and days with between 500 and 999 claims were classified as

medium hail events. A close look at the days surrounding these events show increased claim counts above the baseline starting105

around one week before and returning to baseline about one week after the peak, potentially due to mislabeling of the date or

errors in the reported date of damage. To mitigate this, claims within ± 7 days from each peak were included in the event’s

dataset.

Claims filtering

To ensure that only regions with sufficient exposure and a substantial amount of damaged properties were included in the110

analysis, we applied several filters to the insurance dataset.
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Figure 2. Time series of daily claims for the Brisbane radar domain (Mt Stapylton). Events with more than 999 claims are labelled. A

maximum distance of 150 km to the radar was used. The green and red dashed lines show the 500 and 1000 thresholds, respectively.

1. Exposure Filter: Policies were considered valid during an event only if at least 10 other policies were also valid within

a 1-kilometer radius of the policy in question. This filter helped eliminate areas with insufficient exposure.

2. Damage Filter: Damage claims were retained only if they were associated with regions where at least 5% of policies

within a 1-kilometer radius reported damage. Otherwise, these claims were excluded. This filter aimed to identify areas115

with substantial damage.

3. No-Damage Filter: If a policy did not report damage, it was removed from our analysis if more than 1% of neighboring

policies (within a 1-kilometer radius) reported damage. This step ensured that areas with less than 1% of properties

reporting damage were classified as ”no-damage” areas. One of the reasons to exclude properties without damage within

an area with significant damage is because hailfall can be only a small portion of a 1 km square grid; including undamaged120

properties would artificially lower the actual damage created by hail when averaged. We do recognize that this method

might prevent the identification of certain properties that, due to their low vulnerability, do not record damage even when

exposed to hail.

The difference between the two percentage thresholds (≥ 5% for damage areas and ≤ 1% for undamaged areas) created a

”buffer zone” where the occurrence of hail damage was considered uncertain. Once these filters were applied, the insurance125

data were gridded to match the radars’ grid for each domain precisely. This involved calculating the mean damage within the

boundaries of each radars’ grid box. It’s important to note that grid points with mean damage above zero only represent damage

claims, as undamaged policies were removed from these areas. These filtering thresholds were determined empirically and were

found to have minimal impact on the analysis when varied by up to 10%. Figure 3 provides a visual representation of the effect
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Figure 3. Effect of filtering insurance data; red points show valid policies with reported damage, blue dots show valid policies with no

reported damage and white spaces show no valid policies. Left panel shows the raw data, middle panel shows only policies after filtering,

and the right panel shows the gridded filtered data for the event.

of this filtering and the subsequent gridding. After applying all the filters, our dataset consisted of 18 intense hail events and130

12 medium hail events; these provided 1,775 damage grid points, and 76,703 exposed but undamaged grid points. On average,

the filtering process removed approximately 21.4% of damage claims and 12.3% of exposed but undamaged policies.

3 Radar Data, hail estimate products, and associated meteorology

In this study, data from the Bureau’s radar network was utilized (Soderholm et al., 2022), with a focus on selecting S-band

radars that are better suited for hail observations compared to C-band radars (Ryzhkov et al., 2013). Although this led to a135

reduction in the number of radar sites used in the analysis, it still covered a large proportion of the population and claims.

The geographical distribution of these radars can be observed in Figure 4, and configuration details can be found in Table 1.

Note that only the S-band radars in solid blue circles in Figure 4 were used in relation to the insurance claims as the other

S-band radars (dashed lines) did not record hail events within their domains, or their domains were already covered by other

S-band radars. Nevertheless, these other S-band radars, in dashed circles in Figure 4, were used later in the study in subsection140

”HDE - MESH relationship” and in section 6. The radar reflectivity was calibrated following the method outlined in Louf et al.

(2019), and gridded at a 1 km horizontal and 500 m vertical resolution utilizing the methodology described in Dahl et al. 2019,

appendix A, was implemented, which uses linear interpolation in elevation, and radius of influence on the azimuth-range space.

Grid points too far (> 150 km) or too close (< 6 km) to the radar site were excluded from the dataset.
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Figure 4. Map of the full Bureau’s radar network. The circles represent the coverage of each radar, with numbers corresponding to the radar

ID as listed in Table 1. C-band radars are shown in grey and S-band radars are blue; with solid blue circles indicating the radars used in

conjunction with insurance claims. The dashed S-band radars recorded no hail events occurring within their domains and were not used in

most of the study except section 6 and the ”HDE - MESH relationship” subsection, as these do not involve claims.

Severe Hail Index (SHI)145

The SHI quantifies hail severity using a weighted vertical integration of reflectivities above the environmental freezing level (Witt

et al., 1998). The resulting output is a 2D gridded map which is indicative of the severity of the hail event. In order to calculate

SHI, knowledge of the height of the 0° C and -20° C dry bulb levels are needed, as the integration of reflectivities is done only

between these heights. This information about the temperature profile was retrieved from ERA5 (Hersbach et al., 2020) from

the grid point closest in time to the observation and location to the radar location.150
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Table 1. Australian S-band radar network details.

Radar ID City Radar type Start date Latitude Longitude Beamwidth

2 Melbourne Meteor1500SDP 07/09/1993 -37.8553 144.7555 1

3 Wollongong DWSR8502S 22/10/1995 -34.2624 150.8751 1.9

4 Newcastle DWSR74S 07/09/1999 -32.7298 152.0254 1.9

8 Gympie DWSR8502S 08/11/1999 -25.9574 152.5768 1.9

23 Gladstone WSR74S 24/12/1998 -23.855 151.2626 1.9

28 Grafton WSR74S 23/09/1998 -29.622 152.951 1.9

40 Canberra DWSR74S 22/11/2002 -35.6614 149.5122 1.9

50 Brisbane WSR74S 04/11/1994 -27.608 152.539 1.9

64 Adelaide Meteor1500SDP 27/10/2005 -34.6169 138.4689 1

66 Brisbane Meteor1500SDP 08/06/2006 -27.7178 153.24 1

69 Namoi DWSR8502S 02/06/2010 -31.0236 150.1917 1.9

71 Sydney Meteor1500SDP 15/05/2009 -33.7008 151.2094 1

72 Emerald DWSR8502S 09/03/2010 -23.5498 148.2392 1.9

75 Mount Isa DWSR8502S 14/09/2012 -20.7112 139.5552 1.9

Maximum Estimated Size of Hail (MESH)

The Maximum Estimated Size of Hail (MESH) is a quantitative tool that transforms SHI into hail size by fitting SHI to a chosen

percentile of maximum observed hail size by using a power curve originally developed by Witt et al. (1998) and improved by

Murillo and Homeyer (2019) with a larger report dataset. For this study we use the 75th fit for the Murillo and Homeyer (2019)

dataset. This transformation enables the estimation of hail size from the SHI data.155

Calculation of event SHI swath

The event SHI was computed for each grid point within a radar’s coverage for the event’s day ± one day to account for possible

discrepancies between the reporting time of damage, which has at most a daily accuracy, and the time of radar observations.

This extra day on both sides of the event’s date prevents situations when a hailstorm swath occurs between two days, and

therefore be in the next day (or previous day, depending on which day people report most claims), and therefore only part of160

the swath would be used. Since the maximum SHI for each grid point is being taken, and no two events occur one after the

other in the dataset, the addition of the two extra days has no detrimental effect but solves any of the aforementioned timing

issues. This computation enabled the production of a storm swath map for each event day (Figure 5). The volume scan period

for radars used in this study ranges from 5 to 10 minutes, leading to discontinuous SHI swaths, which are most pronounced

for fast-moving storms (Figure 5, left panel). To mitigate this spurious discontinuity, an interpolation algorithm was employed,165
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Figure 5. Severe Hail Index (SHI) daily maximum for a sample event. The left panel shows a discontinuous storm track due to the time gap

between successive radar scans. The right panel shows the same day with interpolated data based on the optical flow of SHI.

which uses the estimated field advection from its optical flow to fill in these gaps (Figure 5, right panel). This is done using the

scipy python package, specifically the minimize method of the optimize class which applies the Nelder-Mead minimization

algorithm (Nelder and Mead, 1965). This algorithm compares two subsequent scans (images) and attempts to minimize the

difference between the two images by displacing one and comparing to the other. Once the optimal displacement is computed, a

linear interpolation between the two time stamps is calculated. Once the interpolation between scans is computed, the maximum170

SHI for each grid point is retained from the two original time stamps and the interpolation, along with its corresponding

timestamp, allowing for the retrieval of the associated meteorological conditions from ERA5.

Associated meteorological data

Meteorological variables were extracted from ERA5 at ground level and freezing height, including: 3D wind components,

specific humidity, divergence, vorticity, atmospheric temperature, and atmospheric pressure. CAPE and CIN (most unstable175

Convective Available Potential Energy and Convective Inhibition, respectively), were also extracted; for more details on the

calculation of these variables see Groenemeijer et al. 2019 All these variables were retrieved for each grid point at the time

when the maximum SHI of the day occurred. These data served as the input for training the neural network in addition to SHI

and the observed damage.
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4 Claims and Radar Matching – Virtual Advection180

Hail retrievals from radar observations aloft often do not align with observations at ground level, resulting in a common

mismatch (Brook et al., 2021). MESH/SHI are calculated from reflectivities above the environmental freezing level, which

can reside several kilometers above the surface. Depending on the strength of storm-generated and environmental winds,

hail descending below this level may be advected several kilometers from its initial location, leading to the aforementioned

mismatch. By design, MESH (and, by extension, SHI) would have greater skill as a predictor of hail damage during events185

where hail falls with little horizontal movement. To address this issue, we developed a Virtual Advection (VA) algorithm,

which matches ground-level observations of hail damage to the appropriate radar observations aloft, mitigating this error.

Similar approaches have produced substantial improvement of the correlation between observed damage and radar derived hail

estimates (Schiesser, 1990; Hohl et al., 2002; Schmid et al., 1992; Schuster et al., 2006).

VA Algorithm and assumptions190

To apply the VA algorithm, we made certain assumptions. We assumed that the highest damage within a local area corresponded

to the highest observed SHI values aloft, given that differences in vulnerabilities of properties is already mitigated by the

archetype normalization. However, this assumption may not hold true in cases where the hailstorm area is not densely covered

by insured properties, and large hailstones may fall in uninsured areas or areas without buildings. In such cases, this assumption

would systematically lead to a positive bias in SHI values. To address this issue, we filtered the claims data to only include195

grids with sufficient exposure, as described in Section 2. To match damage to SHI, we first sorted each events’ normalised

gridded damage dataset in descending order according to value. Then, we matched the first (highest) damage grid point to

the highest SHI grid point within a 4 km Radius-of-Influence (RoI) around the damage grid point. Once we established

a pair of damage and SHI grid points, we stored the pair in a new VA dataset with its associated horizontal displacement

vector and meteorological variables (from ERA5). We removed this SHI grid point from the available SHI grid and repeated200

the process until we matched all damage grid points to SHI observations. Once there were no more damage grids, the average

horizontal displacement vector was calculated. The matching was restarted but with the average horizontal displacement vector

already applied to the 4 km RoI. This double pass approach allowed for correcting for the environmental wind displacement

(represented by the average horizontal displacement vector of the first run), and the storm generated winds (done in the second

run). The 4 km RoI was selected empirically, with higher values showing only small improvement in the relationship between205

SHI and damage, and smaller numbers showing poor visual matching of the radar and damage swaths. When both runs were

used, up to 8 km of displacement can be achieved, as both runs could result in displacements in the same direction for a given

claim/SHI grid pair. However, this was rare for the studied events, with most events having an average final displacement (after

the second run) less than 2 km, and none of the events having average final displacements above 4 km. Note that no local

consistency in the displacement vector is not enforced for the second run, which allows convergence and divergence of the SHI210

field. If all non-zero SHI observations are used before matching all damage grid points, then the closest zero SHI observation

is used within the RoI. For grid points with contracts and zero observed damage, we matched the lowest SHI observations
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Figure 6. Sample of virtual advection of severe hail event (Brisbane 2014). Left panel shows grid points with exposure that reported no

damage in grey, damaged grid points in red, and grid points with insufficient exposure in white. The blue contour line is derived from MESH

at 40 mm. The middle panel shows the same but with MESH displaced by the weighted average (by damage) of the virtually advected data.

Right panel shows the histogram of the horizontal displacement of MESH to match the damage at ground level, the yellow star shows the

weighted average.

(including zero) within the RoI instead of the highest. Grid points with no valid SHI observations within the RoI due to being

too far or too close to the radar site were excluded from the VA dataset.

We assessed the performance of the VA algorithm using the 2014 Brisbane hailstorm, a well-known event with substantial215

advection that resulted in a large mismatch between MESH (SHI) observations and reported damage locations (Brook et al.,

2021; Warren et al., 2020). The left panel of Figure 6 shows this mismatch. To visualize the algorithm’s performance, we

calculated the weighted average (by damage) of the horizontal VA displacement vectors (yellow star in the right panel of

Figure 6). We then displaced the original MESH grid by this average vector (middle panel of Figure 6), resulting in much better

agreement with the observed damage. We refer to this displacement by the average vector as bulk advected, to differentiate220

it from the data produced by the VA algorithm, which is visualized in the 2D histogram of Figure 6 (right panel). When

comparing this bulk advection with the Brook et al. (2022) individual modeling of the hailstone trajectories for this event, good

agreement can be observed for the overall swath displacement. In addition, Brook et al. (2022) found that the average motion

vector for this event was 2.1 km in a northwesterly cardinal direction, which is very similar to our aforementioned weighted

average horizontal displacement (2D histogram in Figure 6).225

Performance comparison

The VA algorithm was applied to all hail events, and the resulting MESH–damage dataset is presented in the left panel of

Figure 7. The right panel of this figure shows the performance diagram (Roebber, 2009) for various MESH thresholds above

which damage is predicted for each advection correction type. Here the 40 mm threshold shows the highest Critical Success

Index (CSI) for all correction types; this threshold is shown on the left panel (green dashed line), revealing that most damage230

occurs for MESH values above this threshold. This diagram illustrates clear improvement for the advection-corrected sets, with
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Figure 7. Relationship between MESH and damage. The left panel shows virtually advected MESH against observed damage, with the

green dashed line showing the best CSI threshold (for all correction types). The right panel shows the Roebber performance diagram for

non-advected MESH, bulk-advected MESH, and individually (virtually) advected MESH. The stars in the right panel show the best CSI for

each dataset. The grey dashed lines show the bias with their respective values in boxes.

the VA algorithm substantially outperforming the bulk advection method. The scatter plot in this panel highlights two events in

blue and red, that exhibit distinct MESH–damage relationships. Note that since the contours of individually advected MESH

are not well defined for non-damaging hail and the relationship between the radar hail estimate and observed damage is poor

for the bulk-advected dataset, maps of radar derived hail products for all following sections are bulk-advected; while scatter235

plots comparing these products to damage are individually advected.

5 Hail Damage Estimate (HDE)

In this section, we explore the limitations of using MESH as a predictor of hail damage intensity and present a novel approach

for estimating hail damage. While the VA algorithm improves the performance of MESH as a hail damage predictor when

above 40 mm, its ability to estimate damage intensity remains inconsistent across different events, as demonstrated in the left240

panel of Figure 7. This inconsistency suggests that the relationship between MESH and hail damage intensity is dependent on

other factors specific to each event, such as the meteorological condition conducive for hail growth, since differences in vul-

nerabilities due to property factors have already been mitigated (see Archetype normalization subsection). Furthermore, radar

reflectivity has inherent limitations since radar reflectivity is the integral of the particle size distribution times the diameter to

the 6th power under the Rayleigh approximation, so the same reflectivity could be produced by either a few large hailstones or245

a high concentration of smaller hailstones, which would result in very different severity of hail damage for the same reflectivity

(and therefore SHI). In addition, the presence of other hydrometeors like ice crystals or liquid water can further decouple ob-

served reflectivity from severity of hail damage. To explore the information content of meteorological conditions for improving

hail damage estimate, we developed an artificial neural network that incorporates meteorological variables associated with each
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Table 2. Variables used as input for the Hail Damage Estimate (HDE) and their relative importance.

Neural network input variables Description
Mean relative input importance

and standard deviation[%]

SHI Severe Hail Index 35 ± 5

Q_700hPa Specific humidity at 700 hPa pressure level 15 ± 3

WS_0C Wind Speed at 0 C dry bulb level 15 ± 4

V_0M Meridional wind component at ground level 13 ± 5

CAPE most unstable Convective Available Potential Energy 12 ± 4

CIN most unstable Convective Inhibition 10 ± 3

grid point to improve the SHI–damage relationship. Our approach generates Hail Damage Estimates (HDE) that demonstrate250

better agreement with the observed damage.

Neural network structure and selection of input variables

To develop and train the HDE neural network, we utilized TensorFlow and Keras (Abadi et al., 2015). Initially, a wide range

of meteorological variables and radar products were incorporated into the model. We then applied the Shapley Additive Ex-

planations (SHAP, Lundberg and Lee 2017) analysis to identify the most skillful variables, i.e., those with the greatest impact255

on the prediction (Table 2). This allowed us to maintain the model’s accuracy while minimizing its complexity. While initially

the network was deeper, it was optimized to maintain accuracy while minimizing computational cost; our final configuration

consisted of six layers, each containing 6 (input), 9, 7, 6, 3, and 1 (output) neurons, all of which were densely connected and

activated using a rectified linear activation function (excluding the output neuron, which was linear). We linearly normalized

the input variables to ensure their values ranged between 0 and 1.260

Training and performance

To train our model, we utilized the VA dataset, which contained the 18 intense and 12 medium hail events. We had access

to 78,486 distinct damage-SHI points that matched our criteria, with 37,145 points indicating no reported damage and zero

SHI, 39,558 indicating no damage but SHI > zero, and 1,775 indicating both reported damage and SHI above zero. Due to

the highly unbalanced nature of the data (i.e., no damages greatly outnumber damages), we set the model’s initial bias to265

the natural logarithm of the ratio between the damage count and the no damage count (-3.762). By setting the initial bias to

the logarithm of the class ratio, we are effectively providing the model with a starting point that takes into account the class

imbalance (He and Garcia, 2009). We randomly separated the data into two groups: a training dataset (80%) and a validation

dataset (20%). To avoid the training and validation dataset from being highly correlated, the separation was done event-wise,

meaning that 6 random events were used as validation, and the other 24 as training. The meteorological data associated with270
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non-zero SHI points is well defined, as the time when this SHI occurred is known. This is not the case when a grid point with

zero SHI (i.e., outside the storm swath) and any time and therefore associated meteorological data can be assigned. To ensure

that the meteorological data used for training was representative of both hail and non-hail atmospheric conditions, we selected

random time stamps within ± 1 day of the event for grid points where the SHI was zero. We trained the model 1000 times for

1000 epochs each, with random separation of the two sets (24 training events and 6 validation events) and randomly initialized275

model weights but with the same initial bias. Figure 8 (left panel) displays a representative training time series, demonstrating

that the trained model performs well on the training and validation datasets. The vertical dashed line in this panel indicates

the epoch when the model reached its optimal training state, before overfitting, and this weight set was then applied for that

specific training attempt. To calculate HDE, we utilized an ensemble approach with seven members (from the 1000 random

training attempts) that maximized CSI and coefficient of determination (R2). This number of members showed the best balance280

between computational cost and performance, with additional members showing minimal improvement on the ensemble’s skill.

The resulting ensemble mean yielded a CSI of 0.88 and an R2 of 0.79 compared to observations for the full dataset, the 18

intense hail events and 12 medium events. However, the model tends to underestimate large damages (> 10%), as depicted in

the right panel of Figure 8, this is likely due to the under-representation of such cases in the dataset. It is important to note

that this CSI was achieved at 0.5% damage threshold. From the observed damage data (see figures 7, 8, and 9), it is evident285

that there are only a few claims between 0% and approximately 0.5%. This is likely because losses below this ratio fall below

the policies’ deductibles and, therefore, are often not reported by property owners. This apparent discontinuity in the observed

damage data was also observed in the unfiltered data (Claims Filtering subsection), indicating that it is not a result of the

elimination of uncertain damage areas.

HDE - MESH relationship290

To understand the relationship between HDE and the conventional MESH retrieval, a much larger HDE dataset was required

than that available from the VA dataset. Therefore HDE and MESH were calculated for all S-band radars of the Australian

operational weather radar archive. In Figure 9, we present the data obtained. A sigmoid function (equation 1) provided the best

fit for the data while representing a physically realistic relationship, where damage asymptotically approaches 100% as MESH

tends to infinity.295

HDE =
100

1 + e−A(MESH−B)
(1)

This type of relationship has been used before to relate radar-derived hail estimates to hail damage (Schiesser, 1990). Only

points where MESH > 35 mm are shown, as the remaining data points were too numerous to display and damage tends to

zero. The fit is relatively good (R2=0.71), indicating a reasonable correlation between MESH and HDE. Using the inverse of

equation 1, we calculated MESHHDE, which allows for an investigation of how the neural network adjusts the radar observa-300

tions (SHI) using the environmental information. Note that MESHHDE is not intended to replace MESH as a reliable size of
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Figure 8. Left panel shows a sample training time series of the model’s loss for the training and validation data with the vertical dashed line

showing the epoch when the model reached the optimal training state before overfitting. Right panel shows the relationship between observed

damage and HDE’s ensemble mean. CSI is calculated based on 0.5% damage threshold (green dashed lines). The red line shows the best fit

with its equation and coefficient of determination shown on the top left corner. The dashed black line shows the 1:1 relationship.

hail, but rather as a tool to identify where the model has decreased or increase hail intensity according to the environmental

conditions.

We then examined the relationship between MESHHDE and observed claims for the events captured by the damage dataset,

as shown in the right panel of Figure 9, with the two Brisbane events previously highlighted in the same colors. The relationship305

is greatly improved, and both events now show more consistent sizes relative to the observed damage.

HDE case studies

In this section we show the performance and behavior of HDE for the two previously highlighted hail events to analyse how

different meteorological conditions drive HDE behaviour.

Brisbane 2014 hail event310

On November 27th, 2014, Brisbane experienced a severe hailstorm that caused substantial damage to a densely populated

area, resulting in over AUD 1.5 billion losses (normalized to 2017) and more than nine thousand individual building claims

(for Suncorp). Giant hailstones, reportedly measuring around 70 mm in size, were observed during this event (Parackal et al.,

2015). In Figure 10, we present MESH and MESHHDE for this event. We observed that MESHHDE assigns low values of

MESH to zero, due to the inability of low MESH values to cause any damage to property and therefore resulting in zero HDE.315

Additionally, within the eastern-most storm cell, where MESH is high and damage occurred, MESHHDE was mostly lower

than MESH, as highlighted in the bottom-right panel. This finding shows that MESHHDE more closely aligns with the mean
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Figure 9. Left panel shows HDE and MESH calculated for the full radar archive as a 2D histogram with 1% and 1mm bins with the best fit

of equation 1. Right panel shows the relationship between observed damage and MESHHDE, with the previously highlighted events shown

in red and blue.

fit (green dashed line in the bottom-right panel) and corrects the observed positive bias of this event when compared with the

original VA data. While MESHHDE shows a more consistent fit, it is evident that it is not a good representation of the actual

size of expected hail as it is still far below the observed size for this storm. The bottom left and middle panels show the MESH320

and MESHHDE contours over the observed damage respectively.

Brisbane 2020 hail event

In contrast to the 2014 event, the 2020 Brisbane hail event showed a negative bias in MESH relative to the full VA dataset. As

shown in Figure 11, MESHHDE was lower than MESH for most of the domain, but considerably higher than MESH where

hail damage occurred. It is worth noting that this case exhibited some potentially spurious claims, as highlighted within the red325

circles in the panel F. All these point were tracked and found in a cluster in the map (indicated by the red circle in the panel

E) close to the coast and were relatively far from the main storm swaths and could be due to the misclassification of damage

cause (i.e., wind or flood damage instead of hail) in the insurance dataset.

6 Hail damage, MESH, and meteorology

The 2020 event was associated with very different meteorological conditions in the ERA5 reanalysis than the 2014 event,330

with higher CAPE and lower CIN, stronger northerly winds at ground level, lower humidity aloft, and increased winds at the

melting layer (Table 3). Looking at the MESH values from these events alone, one would expect the 2014 event to have caused

more damage than the 2020 event, as the mean MESH values in the storm cores (here defined as the areas with HDE above

zero) were 58.3 mm and 51.6 mm, respectively. Nevertheless, in the observed damage dataset, the 2014 event produced lower
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Figure 10. Comparison of MESH, MESHHDE, and observed damages for an intense hail event in Brisbane on 2014-11-27. Panels A, B,

and C show maps of MESH, MESHHDE (MESH derived from HDE), and the difference between the two, respectively. Panel D and E show

observed damage with bulk-advected MESH and MESHHDE contours overlaid. Panel F shows the relationship between observed damage,

and the grid-point advected MESH and MESHHDE.

damage than the 2020 event, as clearly visible in Figure 7. This discrepancy is not observed in MESHHDE, with mean values335

of 51.3 mm and 61.4 mm, for the 2014 and 2020 events respectively.

The cases mentioned highlight the possibility of storms with relatively low MESH values causing severe damage, such as

the one that hit Brisbane in 2020, or relatively high MESH values leading to comparatively lower damage, as seen in the

2014 Brisbane storm. The disparity could be attributed to a mixture of hail and other hydrometeor types (liquid water, ice

crystals) which would result in a higher MESH value than a volume containing only the hail component. Further, MESH uses340

the environmental freezing level, but the updraft’s freezing level could be well above the environmental freezing level which

could involve larger liquid water droplets than conventional supercooled liquid water droplets (Kumjian and Ryzhkov, 2008).

The disparity could also be attributed to differences in the HSD in these volumes. Volumes with different HSD but equivalent

scattering response would produce similar MESH values but varying ground damage. Since supercooled liquid water (SLW)

droplets are considerably small, most of the reflectivity signal is expected to be caused by hail, smaller frozen hydrometeors or345

large liquid water droplets lofted above the environmental melting layer.
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Figure 11. Same as Figure 10 but for an intense hail event in Brisbane during 2020-10-31. The red circles in panel F show potential spurious

claims, these were tracked to the map and shown in panel E within a red circle.

Table 3. Mean values of MESH, MESHHDE, and environmental parameters for storm cores during the 2014 and 2020 Brisbane events. The

error bounds show the standard deviation within the storm cores.

Variables name 2014 event mean 2020 event mean

MESH [mm] 58.3 ± 3.1 51.6 ± 1.3

MESHHDE [mm] 51.9 ± 4.2 59.4 ± 7.3

Q_700hPa [kg · kg−1] 0.0056 ± 0.0001 0.0031 ± 0.0002

CAPE [J · kg−1] 526.9 ± 0.5 3137.8 ± 21.8

CIN [J · kg−1] 282.3 ± 49.3 88.7 ± 28.7

WS_0C [m · s−1] 7.20 ± 0.07 27.16 ± 0.98

V_0M [m · s−1] 1.72 ± 0.48 -10.59 ± 0.16

Extending this method, we can utilize the difference between MESHHDE and MESH (hereafter ∆MESH) as an indicator

of the skewness of the HSD within a storm, differences in hail hardness, and/or mix hydrometeor volumes. Positive ∆MESH

indicates a larger proportion of damaging hailstones, harder/denser hailstones, and/or less proportion of mixed hydrometeors

in the volume, while negative ∆MESH indicates the contrary.350
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Figure 12 shows the relationship between each meteorological parameter and HDE and ∆MESH as box-plots for the full

radar archive. Using 40 mm for MESH and 0.5% for HDE as thresholds for damage, and HDE as the truth, the leftmost

column (panels A, E, I, M, and Q) represents environments where MESH indicates a false-positive for hail damage while

the second column (panels B, F, J, N, and R) shows opposite environments, where MESH indicates a false-negative. The

Kolmogorov-Smirnov (Hodges Jr, 1958) test was applied to each meteorological variables for the false-positive and false-355

negative cases, showing that while all sets showed significant differences (p-values approaching zero), specific humidity aloft

showed a substantial difference between the two cases, with a D-statistics of 0.64, which is evident from the corresponding

box-plots. A clear threshold was identified based on the analysis (dashed horizontal line in panels A, B, C, and D). It was

found that 82% of the false-positive occurrences happened in environments where the specific humidity at 700 hPa was above

0.0053 kg · kg−1. Coincidentally, the same percentage of false-negative occurrences happened in environments where the360

specific humidity at 700 hPa was below that humidity threshold. By utilizing this threshold, and applying it only for MESH

values between 39 and 41 mm, which account for approximately 50% of the false-positive and false-negative cases, the CSI

of MESH can be improved from 0.76 (at 40 mm against HDE) to 0.79. Environments with false-positive results exhibited

conditions similar to those in negative ∆MESH bins and low HDE bins. This indicates that most of these false positives

resemble environments associated with negative values of ∆MESH and are less likely to have high HDE. False negative cases365

were associated with low HDE and showed similarities to environments with a positive ∆MESH bias, and these cases had

an average HDE of 0.8% and a maximum of 4.2%. CAPE tends to increase with ∆MESH, whereas CIN is larger for more

extreme ∆MESH of either sign. Looking at the relationship to winds, there is a positive correlation with ∆MESH, except for

the extreme positive end. In a similar way these extreme values of ∆MESH are associated with northward winds at the ground

compared to the rest of the distribution that exhibits no trend.370

This analysis indicates that environments with relatively low specific humidity, high CAPE and CIN, low wind speeds aloft

and northward winds at ground are likely to have HSD with a higher proportion of large hailstones or a lower proportion

of other hydrometeors. Regarding environments associated with extreme values of hail damage, these are associated with

high CAPE and CIN values, lower wind speeds at the melting layer, and northward winds at ground. No clear signal with

respect to specific humidity aloft is observed. A recent modeling study on hail production (Lin and Kumjian, 2022) found that375

CAPE acts as a modulator to hail growth, with a non-monotonic relationship with hail size which peaks around 2000–2400

J · kg−1. Although we do observe that about 50% of the samples with high values of HDE occur close to this CAPE range

(Figure 12, panel G), these HDE bins also show about 25% of samples with CAPE values above 3000 J · kg−1 and a clear

positive correlation between CAPE and HDE. Regarding the aforementioned HDE relationship with winds, a similar modeling

study (Dennis and Kumjian, 2017a) found that increased deep-layer east-west shear increases hailstone mass while increased380

low-level north-south shear reduces hailstone mass. Here it is important to note that one of the variables included in the initial

input layer of the HDE model was absolute wind speed shear between the surface and the melting layer but was discarded as

the SHAP analysis showed that it had low influence on the output relative to the other input variables. The zonal or meridional

components of the shear vector were not tested.
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Figure 12. Box-plots of the meteorological variables that drive the HDE model. From left to right columns: (1st) for HDE < 0.5% and MESH

≥ 40mm; (2nd) for HDE ≥ 0.5% and MESH < 40 mm; (3rd) for HDE ≥ 0.5% in 2% bins; (4th) for HDE ≥ 0.5% in 2 mm bins. The 3rd and

4th columns show the distributiion as a function of HDE and ∆MESH, respectively. Sample size per bins are shown on top. The box-plots

follow the same style/structure as figure 1, top panel.
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7 Conclusions385

This study has analyzed more than 10 years of insurance and radar data from Australia to investigate the performance of the

Maximum Expected Size of Hail (MESH) retrieval in predicting and quantifying hail damage. The results showed that MESH

has poor predictive value for damage magnitude estimation, but shows good skill (CSI = 0.88 for MESH larger than 40 mm) as

a binary predictor of hail damage when corrected for horizontal advection of hailstones, which is consistent with Brook et al.

(2021).390

To improve damage magnitude estimation, a neural network was trained with meteorological variables from ERA5 in addi-

tion to SHI (from which MESH is derived) against observed hail damage. Using SHAP analysis, the most important meteoro-

logical variables were identified as specific humidity at 700 hPa, wind speed at the freezing level, northward winds at ground

level, CAPE and CIN. This neural network produced a Hail Damage Estimate (HDE) with a high accuracy (CSI = 0.88 and an

R2 = 0.78) for estimating hail damage occurrence and intensity.395

A comparison of HDE with MESH for the full national radar dataset (14 radars with an average of 18.8 years of coverage)

revealed a relatively good (R2 = 0.71) fit between the two using a sigmoid curve. This curve was used to derive MESHHDE from

HDE with the goal of identifying environments where MESH shows negative or positive biases, potentially due to differences

in hail size distributions (HSD) and/or presence of other hydrometeors along with hail.

Environments with negative bias in radar hail estimates are associated with low CAPE, high CIN, and higher specific hu-400

midity aloft and are likely to be non-damaging if MESH is below 50 mm. In contrast, environments with positive bias are

associated with high CAPE, high CIN, and lower specific humidity aloft and are likely damaging if MESH is above 30 mm.

Extreme hail damage was associated with such positive bias environments that in addition showed low wind speeds aloft and

northerly winds at ground.

The study provides important insights into the performance of MESH/SHI for estimating property damage and the potential405

of using neural networks to improve hail damage estimation and identifying patterns between environmental conditions and a

storm’s HSD, hail hardness, and/or presence of mixed hydrometeor precipitation. It is important to note that these results were

developed for Australian storm environments, and might not be representative of global storm environments. This study was

limited to S-band radars, and future work should expand this technique to C-band radars. In addition, future work will explore

using this novel hail damage estimate for nowcasting applications to provide hail damage warning. Another limitation to our410

findings is the relatively small sample of individual storms, which might only sample a subset of all environmental conditions

that leads to hail storms. Replicating this work on locations with high population density and radar coverage (i.e., Europe or

the USA) would be valuable to potentially mitigate this limitation as well as determine if these same environmental parameters

play dominant roles on HDE.

Data availability. The insurance data provided by Suncorp is not publicly available for privacy reasons. Details regarding the radar data used415

in this study can be found in found in the AURA database online at https://www.openradar.io (Soderholm et al., 2022). ERA5 data can be

accessed at https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (Hersbach et al., 2020).
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