
RC2: 
This study presents a low-cost multi-parameter air quality monitoring system (LCS) that 
incorporates diverse machine learning algorithms. While the utilization of GA-BP techniques 
is emphasized, the paper falls short in clearly elucidating its novelty, thereby preventing a 
comprehensive understanding of its unique contribution. Additionally, the presence of several 
structural weaknesses within the paper necessitates significant revisions to enhance its 
coherence and overall quality.  
Specific Comments: 
Introduction 
(1) The introduction would benefit from a more comprehensive review of recent literature.  
Additionally, the presence of unclear terms, such as "multi-dimensional multi-response" on 
line 16, requires clarification to ensure a precise and unambiguous understanding. In addition, 
the rationale behind the selection of the five specific algorithms used in the study remains 
unclear. Providing a clear justification for the choice of these algorithms would enhance the 
understanding of the research methodology and its relevance to the study's objectives. 
Thanks for your question. The “multi-dimensional multi-response" means “multi-input multi-output 
(MIMO)”, and is revised in the new version. The new introduction is revised in the new version. 
The development along with increased population and urbanization brings disadvantages, such as 
decreasing air quality and impact on public and individual health (Khreis et al, 2022; Manisalidis et 
al, 2020; Singh et al., 2021). Among the atmospheric pollutants, the primary pollutant is fine 
particulate matter, which affects the respiratory system and cardiac activity of humans. The 
secondary pollutants are SO2, CO, NOx, and O3, which also induce disease or chronic poisoning. To 
improve the understanding of air pollution exposure and predict future air quality 
trends(Zimmerman et al., 2018), air quality assessment and forecasting are the essentials. The 
conventional air quality monitoring instrumentations are high cost, which has limited the spatial 
coverage of the monitoring stations(Zimmerman et al., 2018). The development and applications of 
the low-cost commercially available sensor-based air quality monitoring system (LCS) would 
considerably reduce both installation and maintenance costs (Spinelle, Gerboles, Villani, Aleixandre, 
& Bonavitacola, 2017). The larger spatial density of the air quality grid monitoring network 
becomes possible, which would play an important role in monitoring pollution trend, locating of 
pollution source, supporting environmental management(C. Zhao et al., 2019) and support better 
epidemiological models(Khreis et al., 2022; Zimmerman et al., 2018). These demands promote the 
LCS growing gradually(Cui et al., 2021; C. Wang et al., 2016). 
The LCS typically utilizes the electrochemical or light scattering sensors for gas-phase or particulate 
pollutants measurement, such as sulfur dioxide (SO2), nitrogen oxide (NO2), carbon monoxide (CO), 
ozone (O3) and particulate matters (PM). These electrochemical sensors have intrinsic problems 
such as uneven quality, signal drift, temperature and humidity impacts, and gaseous cross-
sensitivities (Spinelle et al, 2015, 2017; Wan et al., 2016; Zimmerman et al., 2018) . For example, 
limited by the poor selection performance, the NO2 electrochemical sensor also undergo redox 
reactions in the presence of O3 gaseous pollutants. The diffusion coefficient of the electrochemical 
sensor can be affected by temperature and relative humidity(Hitchman et al., 1997; Masson et al., 
2015). The reagent of the electrochemical sensor is consumed over time, which affects the stability 
of the sensor. These features of the sensors have historically been poorly addressed by laboratory 
calibrations, limiting the utility for air quality monitoring (Zimmerman et al., 2018).  



The de-convolving of cross-sensitivity effect and stability on sensor performance is 
complex(Zimmerman et al., 2018). The linear or multivariate linear calibration models 
(Alexopoulos, 2010; Khreis et al., 2022; Zoest, Osei et al., 2019) have been developed. However 
the performance is poor on ambient data(Khreis et al., 2022). The accurate and precise calibration 
models for the low cost sensors are particularly critical to the success of dense sensor networks, as 
poor signal to noise ratios and cross-sensitivities hamper their ability to distinguish the pollutant 
concentrations. There has been increasing interest in multifarious algorithms for low-cost sensor 
calibration, and lots of studies using multi-input multi-output models(Alexopoulos, 2010) and 
neural networks(Spinelle et al., 2015) have been published. The artificial neural network (ANN) 
calibration model has the intelligence to process nonlinear data(Amuthadevi et al., 2021; Janabi et 
al., 2021), which has been used in calibration models for measuring ozone or nitrogen 
oxide(Esposito et al., 2016; Spinelle et al., 2015). For example, the ANN calibration model was 
used to calibrate O3 and the uncertainty could meet the European data quality objectives; however, 
meeting these objectives for NO2 remains a challenge(Spinelle et al., 2015). Dynamic neural 
network calibrations of NO2 sensors was demonstrated with the mean absolute error less than 2 ppb; 
however, the performance for O3 was not same(Esposito et al., 2016). High-dimensional multi-
response model were used to calibrate CO, NO, NO2, and O3, with the 5min average RMSE values 
of 39.2, 4.52, 4.56, and 9.71, respectively(Cross et al., 2017). Random-forest-based machine 
learning algorithm was used to improve the calibration strategies of low-cost sensors, with the mean 
absolute error for CO, CO2, NO2 and O3 was 38 ppb for CO, 10 ppm for CO2, 3.5 ppb for NO2, and 
3.4 ppb for O3, respectively (Zimmerman et al., 2018). Furthermore, multiple linear 
regression(Ionascu et al., 2021) based temperature and humidity correction and ANN based 
calibration shown the potential for significant further improvement for leave one out cross 
validation(Ali et al., 2021). With the 16 days process, the combined supervision calibration model 
was used to improve the R2 of SO2, NO2 and O3 by 75.8%, 38.6% and 4.7% to 0.58, 0.61, and 0.90, 
respectively(Cui et al., 2021). An integrated genetic programming dynamic neural network model 
was used to accurately estimate the carbon monoxide and nitrogen dioxide pollutant concentrations 
from the multi-sensor measurement data(Davut et al., 2022). A predictive model using multilayer 
perceptron, support vector regression, and linear regression was developed to analyze the CO2 and 
particulate matter of in-vehicle, with the R2 of 0.9981(Chew et al., 2021). However, these 
calibrations have only been tested utilizing fewer models with a short measurement period and small 
number of sensor matrix, each containing one sensor per pollutant (Cross et al., 2017; Esposito et 
al., 2016; Spinelle et al., 2015), not have been utilized to evaluate and predict the concentration 
values of multi pollutants simultaneously, such as PM2.5, PM10, SO2, NO2, CO and O3. 
The random-forest (RF)(Breiman, 2001; Liu et al., 2012), multivariate linear regression 
(MLR)(Alexopoulos, 2010), K Nearest Neighbor (KNN)(Zhao et al., 2021), BP neural network(Xu 
et al., 2021), and genetic-algorithm-back-propagation neural (GA-BP) network (Ning et al., 2019; 
S. Wang et al., 2019) are five commonly used machine learning algorithms with different 
characteristics.  With the strong nonlinear mapping ability and adaptive ability, the RF, BP, and 
GA-BP are suitable for processing complex, high-dimensional, and nonlinear data with high 
prediction accuracy. With the purpose to quantify the degree of influence of the independent variable, 
the MLR is suitable for evaluating the influence of multiple independent variables on the dependent 
variable. The KNN is also a widely common algorithm to compare with RF, BP, GA-BP and MLR. 
In this work, the LCS is developed to measure PM2.5, PM10, SO2, NO2, CO and O3 simultaneously, 



and the performances of the calibration strategies based on the five machine learning algorithms are 
contrasted. Taking the original electronic signals of the sensors as input and measurements obtained 
by the reference instrumentations as output, five calibration strategies are applied and contrasted. 
The measurement is implemented in the real-world conditions almost a 12-month period (1 March 
2021 and 28 February 2022) spanning multiple seasons and a wide range of meteorological 
conditions to ensure calibration model robustness. The performance of the different algorithms with 
the parameters such as determination coefficient (R2), root mean square error (RMSE) (Janabi et al., 
2021), mean square error (MSE) and mean absolute error (MAE) are compared and discussed. The 
rest of this paper is organized as follows. The measurement setup is described in section 2. The 
principles of the calibration strategies are presented in section 3. The results and discussion are 
shown in section 4. The conclusion is drawn in section 5. 
 
(2) Measurement setup 
This section would greatly benefit from expansion to ensure a comprehensive understanding 
of the study. Specifically, there is a need for more clarity regarding the data collection process, 
including details on the quantity of data collected for each pollutant and any procedures 
employed for outlier removal.  
Thanks for question.  
The time taken for one set of data collection was one minute and repeated 4 times. The outlier data 
of the 4 sets of data was eliminated by using the Dixon principle. The remained data was used to 
get the mean values for each experiment. The values of the LCS and reference instruments were 
separately logged to the server with the interval of 5 minutes. 
 
(3) Additionally, in Section 2.1, the inclusion of a map illustrating the data collection site would 
provide crucial contextual information.  

 

Figure 1 Location of the air quality monitoring station during the measurement period 
Thanks for question.  
Measurements for gas-phase pollutants and particle pollutants were made continuously between 1 
March 2021 and 28 February 2022, which were used as the start and end dates for the analyses. The 
location, shown in Figure 1, was 30 Yaochang Streat, Zhongyuan District, Zhengzhou City, Henan 
Province. 
 



(4) In Section 2.2, it is essential to specify the precise names of the sensors used or provide 
access to datasheets, particularly for the Alphasense sensors. Clarifying whether the PM 
sensor used is named PM300S, for instance, would enhance the transparency of the study.  
Thanks for your question. The LCS uses the commercially available particulate matter sensor 
(PM3006, Cubic sensor and Instrument Co., China) and electrochemical SO2, NO2, O3, CO sensors 
(B4, Alphasense, UK), respectively. 
 
(5) Moreover, the paragraph discussing laboratory tests requires expansion. Given the 
apparent linearity of the sensor response to concentrations, it is necessary to explicate the 
rationale behind testing non-linear methods. Exploring concentration curves at various 
temperatures and humidity levels would contribute to a more thorough analysis.  
Thanks for your question. The rationale behind testing non-linear methods is as follows. 
1) The linear or multivariate linear calibration models have been developed. However the 
performance is poor on ambient data, because the output voltages of the four type of gaseous sensors 
were nonlinearly fluctuated with the linearly increasing temperature and the relative humidity (RH) 
(Cui et al., 2021).  
2) The cross-interference between the four types of gaseous sensors is another problem that needs 
to be addressed. The cross-interference effect is nonlinear. 
   The laboratory test is conducted with the purpose to check whether the sensors work effectively 
before installed into the LCS, calibrated with the different models and used in real-world conditions. 
The linearity of the gas sensors is tested under steadily increased concentration, which is from 0 - 5 
mgm-3 for CO sensor, 0 - 0.2 mgm-3 for NO2, 0 - 1.1 mgm-3 for O3 and 0 - 1.4 mgm-3 for SO2 with 
five more test points, shown in 错误!未找到引用源。. Since the units of outputs of the reference 
instruments and the sensors were different, the slope was not expected to be 1(Cui et al., 2021). 
From the 错误!未找到引用源。, we can tell that the R2 for the gas sensors were more than 0.93, 
which indicated that these gas sensors had good linear responses before calibration, and verified the 
sensor working properly and effectively and could be applied to the LCS.  
 
(6) Lastly, directly citing the manufacturer of the reference monitors mentioned on line 23 of 
page 5, as well as providing information on the methodology employed for the weekly 
calibrations, would significantly strengthen the study's transparency.  
Thanks for your question.  
According to the technical specifications for operation and quality control of ambient air quality 
continuous automated monitoring system for SO2, NO2, O3 and CO of China(China, 2018), and the 
technical guide for automatic monitoring by beta ray method for particulate matter in ambient air 
(PM10 and PM2.5) (China, 2020), the reference gas and particulate analyzers are checked and 
calibrated weekly and monthly, respectively.  
 
(7) Calibration method  
The equation (2) seems unclear; there might be a typographical error with X' instead of X.   
Thanks for your question. The error is revised in the new version. 
 



(8) Furthermore, in section 3.2, it would be beneficial to include additional statistics such as 
Mean Squared Error (MSE) or Mean Absolute Error (MAE) to provide a more 
comprehensive evaluation of the model's performance.  
Thanks for your question. The revised version is as follows. 
To quantitatively compare the performance of the five calibration models applied to the LCS, and 
balance the disadvantages of the different metrics, the determination coefficient (R2), root mean 
square error (RMSE) (Janabi et al., 2021), mean square error (MSE) and mean absolute error (MAE) 
are utilized.  The R2 reflects the fit degree between the model output data and the reference monitor 
measurement. The measurement results should meet the requirements of environmental standards 
of China(Jiao et al., 2016). The RMSE measures how much error there is between the predicted 
values and the reference measurements, and is sensitive to extreme values(Chai & Draxler, 2014). 
The MAE is a disadvantage against RMSE and a good choice to evaluate the error when the 
distribution is not Gaussian (Reza, Behzad, & Gulen, 2023). The formula for each of the evaluation 
metrics are presented as equations (5)-(8), respectively. 
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Where y#i, yi and y% represent the ith model output data form the algorithm-based LCS system, the 
reference data from the reference instrumentations, and the mean value of the reference 
instrumentations, respectively. The n is the number of the measurement data in the dataset. 
 
(9) Results and discussion 
Paragraph 4.1 presents intriguing insights; however, it could benefit from a clearer 
presentation. For instance, the method of determining the number of trees in the random 
forest is not explicitly elucidated.  
Thanks for your question. The revised version is as follows. 
For the RF model, the number of trees is determined by using grid search method, which will search 
the optimal hyper-parameter by traversing a given hyper-parameter combination (Zhu, Zhu, Zhou, 
Zhu, & Zhang, 2022). A total of 11 kinds of tree numbers are set between 2 and 22. By using grid 
search to traverse these 11 kinds of tree numbers to obtain different R2. 
 
(10) Additionally, while it is evident that a sub-period was chosen for testing, the rationale 
behind this selection remains unexplained. Clarifying these aspects would enhance the overall 
coherence and understanding of the paragraph. 
Thanks for your question. For instance, the R2 for different gas pollutants within 1 March 2021 and 
30 June 2021 are shown in Figure 7. The R2 is improved as the number of trees increasing. The rate 
of increase and the variation of R2 is negligible beyond 20. The terminal node is specified using a 
maximum number of sub-node points per node. The R2 is also improved as the number of sub-nodes 
increasing under the same tree number. The rate of increase and the variation of R2 is negligible 



beyond 100. More number of the tree or the sub-node incur higher computational cost and time for 
the training and small performance improvement. Using this method, the same number of trees can 
be obtained with the different gas pollutants within 1 July 2021 and 31 October 2021, 1 November 
2021 and 28 February 2022. 
 
 
(11) In paragraph 4.2, including the size of each segment, as well as the reference temperature, 
humidity, and concentration range, would enhance the comprehensiveness of the 
experimental setup and contribute to a more detailed understanding of the study. 
Thanks for your question. The revised version is as follows. The temperature and humidity results 
are also provided.  

t  

Figure 9 Temperature/relative humidity ranges during the measurement period 
During the measurement period, the ranges of the ambient temperature and relative humidity 
separately were -5℃ to 50℃ and 10% to 98%., shown in Figure 9. The ambient temperature 
increased, decreased and fluctuated separately within 1 March 2021 and 30 June 2021, 1 July 2021 
and 31 October 2021, 1 November 2021 and 28 February 2022, dividing the whole measurement 
period into three segments. 
 
(12) In Figure 9 (b), including a normalized version of the Root Mean Square Error (RMSE) 
would be beneficial to enable an accurate comparison among the three periods. The same 
principle applies to Table 3; including a normalized version of the Root Mean Square Error 
(RMSE) would facilitate an accurate comparison among the different parameters.  
Thanks for your question. The RMSE in table is obtained using equation (6). Where y#i and yi 
represent the ith model output data form the algorithm-based LCS system, and the reference data 
from the reference instrumentations, respectively. Thus, the result is the normalized version. The 
wrong expression is revised in the new version. 
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(13) Furthermore, the text mentions a division into train and test sets. It would be valuable to 
clarify whether a cross-validation was also conducted to ensure the robustness of the model 
evaluation.  



Thanks for your question. To ensure the robustness of the model evaluation, the 5-fold cross 
validation is also conducted. The dataset is divided into 5 mutually exclusive subsets with same size, 
the 4 subset is randomly selected as the training set each time, and the remaining 1 subset is used as 
the test set. After completing each round of validation, the 4 copies are selected again to train the 
model and the remaining 1 copy is used for validation. After several rounds (less than 5), the loss 
function is selected to evaluate the optimal model and parameters (Mahesh et al., 2023; Zimmerman 
et al., 2018). 
 
(14) These consideration are also valid for the results of gas measurements. Moreover it would 
be insightful to include a discussion of the varying results obtained for each segment. For 
instance, a better detailed analysis of why the performance of SO2 is consistently good for 
period II but considerably poorer for the other periods would enrich the understanding of the 
data and provide valuable insights into the underlying factors influencing the results. 
Thanks for your question. The revised version is as follows. 
For the data of SO2, the results of RF are better than the ones of other methods, and have little 
difference among the three periods. However, the performances of other methods (MLR, KNN, BP, 
GA-BP) are poorer for the first and third periods. There may be some reasons for this phenomenon. 
The first one is the cross interference effect from NO2 and O3, which have the wide range of 
fluctuations (from about 20 μgm-3 to 125 μgm-3) and increasing tendency in period I, respectively.  
The NO2 and SO2 can react chemically under certain conditions to produce sulfuric acid (H2SO4) 
and nitric acid (HNO3), which will affect the reading of SO2 sensor. The O3, highly oxidizing gas, 
may react with SO2 to form H2SO4 or sulfite (H2SO3), resulting in inaccurate sensor readings. The 
second one is the ambient temperature has a wide range of fluctuations (from about minus 5 ℃ to 
plus 45 ℃) during the first and third periods, which will affect the stability of electrode material 
and the readings of the sensor. The last one is the concentration of ambient SO2 is high (more than 
30 μgm-3) in period I and period III, beyond the actual measurement range of the SO2 sensor, which 
will be researched in future. 
 
(15) Finally, there is a typo on line 6 of page 14 (dada instead of data). 
Thanks for your question. The typo is revised in the new version with the red color. 
 
(16) Conclusion  
The conclusion paragraph would benefit from a more explicit discussion on the presence of a 
recommended algorithm for calibration and a thorough examination of its potential 
limitations. By addressing the challenges associated with generalizing black box models, 
notably random forests, the conclusion could provide a more nuanced understanding of the 
practical implications and constraints that may arise from the study's findings.  
Thanks for your question. the conclusion is revised in the new verison. 
A low-cost air quality monitoring system (LCS) based on RF, MLR, KNN, BP, GA-BP algorithms 
were proposed. The system can measure gas-phase pollutants (SO2, NO2, CO and O3) and particle 
pollutants (PM2.5 and PM10), simultaneously. With the purpose to estimate the performance of the 
five algorithms, the LCS was mounted at the same location (Zhengzhou City, China) and consistent 
height with the reference monitoring system. The measurement was made continuously from 1 
March 2021 to 28 February 2022, with the ranges of the ambient temperature and relative humidity 



separately minus 5℃ to plus 50℃ and 10% to 98%. The values of the LCS and reference 
instruments were separately logged to the server for further comparative analysis.  
With the pretreated and individual particle counters, T and RH as input, and the concentrations of 
PM2.5 and PM10 measured by the reference instrumentation separately as output, the multi-input 
one-output evaluation models based on RF, MLR, KNN, BP, GA-BP algorithms can be obtained. 
With the four types of electro-chemical sensors raw data, T and RH as input, and the measurements 
from the reference monitors as output, the multi-input multi-output evaluation models based on the 
five algorithms can be obtained. The performance of the calibration models are quantitatively 
compared by utilizing R2, RMSE, MSE and MAE.  
The experimental results show that the R2 of RF for the PM is better than 0.98; the R2 of MLR for 
the PM is less than 0.91; the R2 of the other three model are within 0.86 and 0.98. The R2 of RF for 
the gas pollutants (SO2, NO2, CO and O3) is better than 0.93; the R2 of KNN, BP and GA-BP for the 
gas pollutants (SO2, NO2, CO and O3) is within 0.27 to 0.97; the R2 of MLR for the NO2, CO and 
O3 is within 0.46 to 0.90, but for SO2 less than 0.40, and even less than 0.1.  
The maximum RMSE values of PM2.5, PM10, O3, CO, NO2, and SO2 between the reference data and 
the RF, MLR, KNN, BP, GA-BP-based algorithms data are 5.49, 18.68, 13.05, 14.35, and 14.35; 
10.37, 45.05, 27.08, 23.10, and 23.65; 4.08, 17.79, 10.57, 14.67, and 14.40; 0.06, 0.23, 0.16, 0.18, 
and 0.18; 3.99, 14.54, 9.61, 11.07, and 11.21; 2.84, 28.80, 16.44, 21.39, and 21.16, respectively. The 
maximum MAE values of PM2.5, PM10, O3, CO, NO2, and SO2 between the reference data and the 
RF, MLR, KNN, BP, GA-BP-based algorithms data are 3.45, 12.80, 8.31, 9.55, and 9.54; 5.28, 23.20, 
13.35, 15.26, and 15.43; 2.88, 13.46, 7.33, 11.14, and 10.90; 0.05, 0.19, 0.11, 0.14, and 0.14; 2.80, 
11.08, 6.85, 8.27, and 8.41; 1.16, 4.24, 2.84, 3.43, and 3.40, respectively. 
It is should be noted that the results of RF are better than the ones of other methods, have very good 
agreement with the reference monitors, and have little difference among the three periods. However, 
the performances of other methods (MLR, KNN, BP, GA-BP) have poor agreement, especially 
during the first and third periods, which are the winter and spring.  There may be some reasons, 
such as the cross interference effect, the wide range of fluctuation of the climatic factors, and the 
limitation of the actual measurement range and precision. 
Overall, we conclude that, with careful data management and calibration using the machine learning 
algorithms, especially the RF method, these measurements are consistent with the national 
environmental protection standard requirement of China, the LCS may significantly improve our 
ability to spatial heterogeneity in air pollutant concentrations. The air pollutant maps will assist 
researchers, policymakers, and communities in developing new policies or mitigation strategies to 
enhance human health. In the next research, we will focus on improving the matching of the 
measurement precise and range, the generalization of the algorithms in more applications, and the 
performance of the SO2 sensor.  


