
RC1: 

This is a fine piece of measurement calibration paper. My understanding on 

measurement techniques are very thin, so I will only comment on data processing: 

 

(1) From my point of view, the authors applied different algorithms to fit the low cost 

sensor data and compared the performance, but the authors do not discuss how the 

results can be used to predict the PM and other pollutants. Specifically, is it used to 

predict unobserved locations or forecast short-term future?  

 

Thanks for your question. You are right that we applied different algorithms to fit the 

low-cost sensor data and compared the performance. The prediction in this paper means 

that we use the fitted model from the empirical value to estimate the current raw data from 

the sensor with the same location, with the purpose to get more accurate result. The model 

used to predict unobserved locations or forecast short-term future will be discussed in the 

future research. 

 

 (2) Also, let's say, RF seems to outperform other methods, is RF calibrated output 

considered to be the final product? or low cost sensor raw data still should be the 

reference?  

 

Thanks for your question. The RF outperforms other methods. The calibrated output 

result of RF in this paper is accurate enough, and can be the final product. The current raw 

data of the sensor is still used as the input of the model to obtain the current accurate 

calibrated data. 

 

（3）Do the authors consider the better performance from RF that can be overfitting, 

and other methods with a lower predictive performance can be more explainable? 

 

Thanks for your question. With the purpose of avoiding over-fit in the five models, the 

randomly divide parameters of train ratio and test ratio are 80% and 20%, respectively. To 

ensure the robustness of the model evaluation, the 5-fold cross validation is also conducted. 

The dataset is divided into 5 mutually exclusive subsets with same size, the 4 subset is 

randomly selected as the training set each time, and the remaining 1 subset is used as the 

test set. After completing each round of validation, select 4 copies again to train the model 

and use the remaining 1 copy for validation. After several rounds (less than 5), the loss 

function is selected to evaluate the optimal model and parameters (Mahesh et al., 2023; 

Zimmerman et al., 2018).  

 

 

(4) The formula in Equation (1) does not seem valid for MLR, because all those terms 

are correlated. Additional treatments or justifications are needed.   

  

Thanks for your question. After the data collected by the LCS, the raw data should be 

preprocessed. The PM3006 particulate matter sensor can output six kinds of particle range 



(i.e., >0.3μm, >0.5μm, >1.0μm, >2.5μm, >5.0μm and >10μm, respectively). By subtracting the six 

particle range values in turn, the individual particle counters are obtained, and expressed as x0.5, x1.0, 

x2.5, x5.0 and x10.0, listed in Table 1, the measured particle number concentration is converted to PM 

mass concentrations in the PM2.5 and PM10 size fractions.  

The particle counter terms are pretreated and individual from each other. The multi-input 

one-response preprocessing and prediction models can be written as Eq. (1) to obtain 

the concentrations Ypm2.5.  

Ypm2.5=w1_pm2.5∙x0.5 + w2_pm2.5∙x1.0 + w3_pm2.5∙x2.5+w4_pm2.5∙T+w5_pm2.5∙RH + bpm2.5,    (1) 

Where Wpm2.5= [w1_pm2.5, w2_pm2.5, w3_pm2.5, w4_pm2.5, w5_pm2.5] is the corresponding weight coefficients; 

the Xpm2.5 = [x0.5, x1.0, x2.5, T, RH] represents the individual particle counters, the temperature sensor 

and humidity sensor; the bpm2.5 is the intercept values of the model. 

To obtain the concentration Ypm10, the multi-input one-response preprocessing and prediction models 

can be written as Eq. (2).  

Ypm10=w1_pm10∙x0.5 + w2_pm10∙x1.0 +

w3_pm10∙x2.5+w4_pm10∙x5.0+w5_pm10∙x10.0+w6_pm10∙T+w7_pm10∙RH + bpm10,               (2)    

Where Wpm10= [w1_pm10, w2_pm10, w3_pm10, w4_pm10, w5_pm10, w6_pm10, w7_pm10] is the corresponding 

weight coefficients; the Xpm10 = [x0.5, x1.0, x2.5, x5.0, x10.0, T, RH] represents the individual particle 

counters, the temperature sensor and humidity sensor; the bpm10 is the intercept values of the model. 

 

(5) Minor comments: 

p1,l10: a typo "algorithms"     

p2,l5: additional parentheses 

Table 4: a typo II, III for O3    

 

Thanks for your suggestion. The errors are revised in the new vision. 

 



RC2: 

This study presents a low-cost multi-parameter air quality monitoring system (LCS) that 

incorporates diverse machine learning algorithms. While the utilization of GA-BP techniques 

is emphasized, the paper falls short in clearly elucidating its novelty, thereby preventing a 

comprehensive understanding of its unique contribution. Additionally, the presence of several 

structural weaknesses within the paper necessitates significant revisions to enhance its 

coherence and overall quality.  

Specific Comments: 

Introduction 

(1) The introduction would benefit from a more comprehensive review of recent literature.  

Additionally, the presence of unclear terms, such as "multi-dimensional multi-response" on 

line 16, requires clarification to ensure a precise and unambiguous understanding. In addition, 

the rationale behind the selection of the five specific algorithms used in the study remains 

unclear. Providing a clear justification for the choice of these algorithms would enhance the 

understanding of the research methodology and its relevance to the study's objectives. 

 

Thanks for your question. The new version is as follows. 

The development along with increased population and urbanization brings disadvantages, such as 

decreasing air quality and impact on public and individual health (Khreis et al., 2022; Manisalidis 

et al., 2020; Singh et al., 2021). Among the atmospheric pollutants, the primary pollutant is fine 

particulate matter, which affects the respiratory system and cardiac activity of humans. The 

secondary pollutants are SO2, CO, NOx, and O3, which also induce disease or chronic poisoning. To 

improve the understanding of air pollution exposure and predict future air quality 

trends(Zimmerman et al., 2018), air quality assessment and forecasting are the essentials. The 

conventional air quality monitoring instrumentations are high cost, which has limited the spatial 

coverage of the monitoring stations(Zimmerman et al., 2018). The development and applications of 

the low-cost commercially available sensor-based air quality monitoring system (LCS) would 

considerably reduce both installation and maintenance costs (Spinelle et al., 2017). The larger spatial 

density of the air quality grid monitoring network becomes possible, which would play an important 

role in monitoring pollution trend, locating of pollution source, supporting environmental 

management(Zhao et al., 2019) and support better epidemiological models(Khreis et al., 2022; 

Zimmerman et al., 2018). These demands promote the LCS growing gradually(Cui et al., 2021; 

Wang et al., 2016). 

The LCS typically utilizes the electrochemical or light scattering sensors for gas-phase or particulate 

pollutants measurement, such as sulfur dioxide (SO2), nitrogen oxide (NO2), carbon monoxide (CO), 

ozone (O3) and particulate matters (PM). These electrochemical sensors have intrinsic problems, 

such as temperature or humidity impacts, and gaseous cross-sensitivities (Spinelle et al., 2015, 2017; 

Wan et al., 2016; Zimmerman et al., 2018). For example, limited by the poor selection performance, 

the NO2 electrochemical sensor also undergo redox reactions in the presence of O3 gaseous 

pollutants. The diffusion coefficient of the electrochemical sensor can be affected by temperature 

and relative humidity(Hitchman et al., 1997; Masson et al., 2015). The reagent of the 

electrochemical sensor is consumed over time, which affects the stability of the sensor. These 

features of the sensors have historically been poorly addressed by laboratory calibrations, limiting 

the utility for air quality monitoring (Zimmerman et al., 2018).  
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The de-convolving of cross-sensitivity effect and stability on sensor performance is 

complex(Zimmerman et al., 2018). The linear or multivariate linear calibration models 

(Alexopoulos, 2010; Khreis et al., 2022; Zoest et al., 2019) have been developed. However the 

performance is poor on ambient data(Khreis et al., 2022). The accurate and precise calibration 

models for the low cost sensors are particularly critical to the success of dense sensor networks, as 

poor signal to noise ratios and cross-sensitivities hamper their ability to distinguish the pollutant 

concentrations. There has been increasing interest in multifarious algorithms for low-cost sensor 

calibration, and lots of studies using multi-input multi-output models(Alexopoulos, 2010) and 

neural networks(Spinelle et al., 2015) have been published. The artificial neural network (ANN) 

calibration model has the intelligence to process nonlinear data (Amuthadevi et al., 2021; Janabi et 

al., 2021), which has been used in calibration models for measuring ozone or nitrogen 

oxide(Esposito et al., 2016; Spinelle et al., 2015). For example, the ANN calibration model was 

used to calibrate O3 and the uncertainty could meet the European data quality objectives; however, 

meeting these objectives for NO2 remained a challenge(Spinelle et al., 2015). Dynamic neural 

network calibrations of NO2 sensors were demonstrated with the mean absolute error less than 2 

ppb; however, the performance for O3 was not same(Esposito et al., 2016). High-dimensional multi-

response model was used to calibrate CO, NO, NO2, and O3, with the 5 min average RMSE values 

of 39.2, 4.52, 4.56, and 9.71, respectively(Cross et al., 2017). Random-forest-based machine 

learning algorithm was used to improve the calibration strategies of low-cost sensors, with the mean 

absolute error values 38 ppb for CO, 10 ppm for CO2, 3.5 ppb for NO2, and 3.4 ppb for O3, 

respectively(Zimmerman et al., 2018). Furthermore, multiple linear regression(Ionascu et al., 2021) 

based temperature and humidity correction and ANN based calibration shown the potential for 

significant further improvement for leave one out cross validation(Ali et al., 2021). With the 16 days 

process, the combined supervision calibration model was used to improve the R2 of SO2, NO2 and 

O3 by 75.8%, 38.6% and 4.7% to 0.58, 0.61, and 0.90, respectively(Cui et al., 2021). An integrated 

genetic programming dynamic neural network model was used to accurately estimate the carbon 

monoxide and nitrogen dioxide pollutant concentrations from the multi-sensor measurement 

data(Davut et al., 2022). A predictive model using multilayer perceptron, support vector regression, 

and linear regression was developed to analyze the CO2 and particulate matter of in-vehicle, with 

the R2 of 0.9981(Chew et al., 2021). The CNN, LSTM-CNN, and  CNN-LSTM models were used 

to improve the prediction performance of the ozone by 3.58%, 1.68%, and 3.37%, respectively(Reza 

et al., 2023). However, these calibrations have only been tested utilizing fewer models with a short 

measurement period and small number of sensor matrix, each containing one sensor per pollutant 

(Cross et al., 2017; Esposito et al., 2016; Spinelle et al., 2015), not have been utilized to evaluate 

and predict the concentration values of multi pollutants simultaneously, such as PM2.5, PM10, SO2, 

NO2, CO and O3. 

The random-forest (RF)(Breiman, 2001; Liu et al., 2012), multivariate linear regression 

(MLR)(Alexopoulos, 2010), K Nearest Neighbor (KNN)(Zhao et al., 2021), BP neural network(Xu 

et al., 2021), and genetic-algorithm-back-propagation neural (GA-BP) network(Ning et al., 2019; 

Wang et al., 2019) are five commonly used machine learning algorithms with different 

characteristics. With the strong nonlinear mapping ability and adaptive ability, the RF, BP, and GA-

BP are suitable for processing complex, high-dimensional, and nonlinear data with high prediction 

accuracy, such as the air quality monitoring. With the purpose to quantify the degree of influence of 

the independent variable, the MLR is suitable for evaluating the influence of multiple independent 
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variables on the dependent variable, such as the cross-sensitivity effect between different factors. 

The KNN is also a widely common algorithm to compare with RF, BP, GA-BP and MLR. 

In this work, the LCS is developed to measure PM2.5, PM10, SO2, NO2, CO and O3 simultaneously, 

and the performances of the calibration strategies based on the five machine learning algorithms are 

contrasted. Taking the original electronic signals of the sensors as input and measurements obtained 

by the reference instrumentations as output, five calibration strategies are applied and contrasted. 

The measurement is implemented in the real-world conditions almost a 12-month period (1 March 

2021 and 28 February 2022) spanning multiple seasons and a wide range of meteorological 

conditions to ensure calibration model robustness. The performance of the different algorithms with 

the parameters, such as determination coefficient (R2), root mean square error (RMSE) (Janabi et 

al., 2021), mean square error (MSE) and mean absolute error (MAE), are compared and discussed. 

The rest of this paper is organized as follows. The measurement setup is described in section 2. The 

principles of the calibration strategies are presented in section 3. The results and discussion are 

shown in section 4. The conclusion and discussion are drawn in section 5. 

 

(2) Measurement setup 

This section would greatly benefit from expansion to ensure a comprehensive understanding 

of the study. Specifically, there is a need for more clarity regarding the data collection process, 

including details on the quantity of data collected for each pollutant and any procedures 

employed for outlier removal.  

 

Thanks for question.  

The time taken for one set of data collection was one minute and repeated 4 times. The outlier data 

of the 4 sets of data was eliminated by using the Dixon principle. The remained data was used to 

get the mean values for each experiment. The values of the LCS and reference instruments were 

separately logged to the server with the interval of 5 minutes. 

 

(3) Additionally, in Section 2.1, the inclusion of a map illustrating the data collection site would 

provide crucial contextual information.  

 

Thanks for question. The map is added in the new version, and the detail is as follows. 

 

Figure 1 Location of the air quality monitoring station during the measurement period 

 

file:///E:/汉威电子研发相关/相关论文规范和标准/发表和规划论文/SCI/AMT修改回复/正式回复/修改(20231113)%20RC2.docx%23_ENREF_16
file:///E:/汉威电子研发相关/相关论文规范和标准/发表和规划论文/SCI/AMT修改回复/正式回复/修改(20231113)%20RC2.docx%23_ENREF_16


Measurements for gas-phase pollutants and particle pollutants were made continuously between 1 

March 2021 and 28 February 2022, which were used as the start and end dates for the analyses. The 

location, shown in Figure 1, was 30 Yaochang Streat, Zhongyuan District, Zhengzhou City, Henan 

Province of China. There was an independent reference monitoring system for PM2.5, PM10, CO, 

SO2, NO2 and O3 measurement. The LCS was mounted at a consistent height with the reference 

monitoring system. The time taken for one set of data collection was one minute and repeated 4 

times. The outlier of the 4 sets of data was eliminated by using the Dixon principle. The remained 

data was used to get the mean values for each experiment. The values of the LCS and reference 

instruments were separately logged to the server with the interval of 5 minutes. During the 

measurement period, the ranges of the ambient temperature and relative humidity separately were 

minus 5℃ to plus 50℃ and 10% to 98%. 

 

(4) In Section 2.2, it is essential to specify the precise names of the sensors used or provide 

access to datasheets, particularly for the Alphasense sensors. Clarifying whether the PM 

sensor used is named PM300S, for instance, would enhance the transparency of the study.  

 

Thanks for your question. The LCS uses the commercially available particulate matter sensor 

(PM3006, Cubic sensor and Instrument Co., China) and electrochemical SO2, NO2, O3, CO sensors 

(B4, Alphasense, UK), respectively. 

 

(5) Moreover, the paragraph discussing laboratory tests requires expansion. Given the 

apparent linearity of the sensor response to concentrations, it is necessary to explicate the 

rationale behind testing non-linear methods. Exploring concentration curves at various 

temperatures and humidity levels would contribute to a more thorough analysis.  

 

Thanks for your question. The rationale behind testing non-linear methods is as follows. 

1) The linear or multivariate linear calibration models have been developed. However the 

performance is poor on ambient data, because the output voltages of the four type of gaseous sensors 

were nonlinearly fluctuated with the linearly increasing temperature and the relative humidity (RH) 

(Cui et al., 2021).  

2) The cross-interference between the four types of gaseous sensors is another problem that needs 

to be addressed. The cross-interference effect is nonlinear. 

   The laboratory test is conducted with the purpose to check whether the sensors work effectively 

before installed into the LCS, calibrated with the different models and used in real-world conditions. 

The linearity of the gas sensors is tested under steadily increased concentration, which is from 0 - 5 

mgm-3 for CO sensor, 0 - 0.2 mgm-3 for NO2, 0 - 1.1 mgm-3 for O3 and 0 - 1.4 mgm-3 for SO2 with 

five more test points, shown in Figure 3. Since the units of outputs of the reference instruments and 

the sensors were different, the slope was not expected to be 1(Cui et al., 2021). From the Figure 3, 

we can tell that the R2 for the gas sensors were more than 0.93, which indicated that these gas sensors 

had good linear responses before calibration, and verified the sensor working properly and 

effectively and could be applied to the LCS.  
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(6) Lastly, directly citing the manufacturer of the reference monitors mentioned on line 23 of 

page 5, as well as providing information on the methodology employed for the weekly 

calibrations, would significantly strengthen the study's transparency.  

 

Thanks for your question. The detail is as follows. 

According to the technical specifications for operation and quality control of ambient air quality 

continuous automated monitoring system for SO2, NO2, O3 and CO of China(China, 2018), and the 

technical guide for automatic monitoring by beta ray method for particulate matter in ambient air 

(PM10 and PM2.5) (China, 2020), the reference gas and particulate analyzers are checked and 

calibrated weekly and monthly, respectively.  

 

(7) Calibration method  

The equation (2) seems unclear; there might be a typographical error with X' instead of X.   

 

Thanks for your question. The error is revised in the new version. 

 

(8) Furthermore, in section 3.2, it would be beneficial to include additional statistics such as 

Mean Squared Error (MSE) or Mean Absolute Error (MAE) to provide a more 

comprehensive evaluation of the model's performance.  

 

Thanks for your question. The revised version is as follows. 

To quantitatively compare the performances of the five calibration models applied to the LCS,  and 

balance the disadvantages of the different metrics, the determination coefficient (R2), root mean 

square error (RMSE) (Janabi et al., 2021), mean square error (MSE) and mean absolute error (MAE) 

are utilized.  The R2 reflects the fit degree between the model output data and the reference monitor 

measurement. The measurement results should meet the requirements of environmental standards 

of China(Wan et al., 2016). The RMSE measures how much error there is between the predicted 

values and the reference measurements, and is sensitive to extreme values(Chai et al., 2014). The 

MAE is a good choice to evaluate the error when the distribution is not Gaussian (Reza et al., 2023). 

The formulas for the evaluation metrics are presented as equations (5) - (8), respectively. 
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Where ŷ
i
, yi and y̅ represent the ith model output data form the algorithm-based LCS system, the 

reference data from the reference instrumentations, and the mean value of the reference 

instrumentations, respectively. The n is the number of the measurement data in the dataset. 

 

 

(9) Results and discussion 
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Paragraph 4.1 presents intriguing insights; however, it could benefit from a clearer 

presentation. For instance, the method of determining the number of trees in the random 

forest is not explicitly elucidated.  

 

Thanks for your question. The revised version is as follows. 

For the RF model, the number of trees is determined by using grid search method, which will search 

the optimal hyper-parameter by traversing a given hyper-parameter combination (Zhu et al., 2022). 

A total of 11 kinds of tree numbers are set between 2 and 22. By using grid search to traverse these 

11 kinds of tree numbers to obtain different R2. 

 

(10) Additionally, while it is evident that a sub-period was chosen for testing, the rationale 

behind this selection remains unexplained. Clarifying these aspects would enhance the overall 

coherence and understanding of the paragraph. 

 

Thanks for your question. For instance, the R2 for different gas pollutants within 1 March 2021 and 

30 June 2021 are shown in Figure 7. The R2 is improved as the number of trees increasing. The rate 

of increase and the variation of R2 is negligible beyond 20. The terminal node is specified using a 

maximum number of sub-node points per node. The R2 is also improved as the number of sub-nodes 

increasing under the same tree number. The rate of increase and the variation of R2 is negligible 

beyond 100. More number of the tree or the sub-node incur higher computational cost and time for 

the training and small performance improvement. Using this method, the same number of trees can 

be obtained with the different gas pollutants within 1 July 2021 and 31 October 2021, 1 November 

2021 and 28 February 2022. 

 

 

(11) In paragraph 4.2, including the size of each segment, as well as the reference temperature, 

humidity, and concentration range, would enhance the comprehensiveness of the 

experimental setup and contribute to a more detailed understanding of the study. 

 

Thanks for your question. The revised version is as follows. The temperature and humidity results 

are also provided.  

 

Figure 9 Temperature/relative humidity ranges during the measurement period 
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During the measurement period, the ranges of the ambient temperature and relative humidity 

separately were -5℃ to 50℃ and 10% to 98%., shown in Figure 9. The ambient temperature 

increased, decreased and fluctuated separately within 1 March 2021 and 30 June 2021, 1 July 2021 

and 31 October 2021, 1 November 2021 and 28 February 2022, dividing the whole measurement 

period into three segments. 

 

(12) In Figure 9 (b), including a normalized version of the Root Mean Square Error (RMSE) 

would be beneficial to enable an accurate comparison among the three periods. The same 

principle applies to Table 3; including a normalized version of the Root Mean Square Error 

(RMSE) would facilitate an accurate comparison among the different parameters.  

 

Thanks for your question. The RMSE in table is obtained using equation (6). Where ŷ
i
 and yi 

represent the ith model output data form the algorithm-based LCS system, and the reference data 

from the reference instrumentations, respectively. Thus, the result is the normalized version. The 

wrong expression is revised in the new version. 
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n
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i
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i
)
2n

i=1 ,                                                      (6) 

 

 

(13) Furthermore, the text mentions a division into train and test sets. It would be valuable to 

clarify whether a cross-validation was also conducted to ensure the robustness of the model 

evaluation.  

 

Thanks for your question. To ensure the robustness of the model evaluation, the 5-fold cross 

validation is also conducted. The dataset is divided into 5 mutually exclusive subsets with same size, 

the 4 subset is randomly selected as the training set each time, and the remaining 1 subset is used as 

the test set. After completing each round of validation, the 4 copies are selected again to train the 

model and the remaining 1 copy is used for validation. After several rounds (less than 5), the loss 

function is selected to evaluate the optimal model and parameters (Mahesh et al., 2023; Zimmerman 

et al., 2018). 

 

(14) These consideration are also valid for the results of gas measurements. Moreover it would 

be insightful to include a discussion of the varying results obtained for each segment. For 

instance, a better detailed analysis of why the performance of SO2 is consistently good for 

period II but considerably poorer for the other periods would enrich the understanding of the 

data and provide valuable insights into the underlying factors influencing the results. 

 

Thanks for your question. The revised version is as follows. 

For the data of SO2, the results of RF are better than the ones of other methods, and have little 

difference among the three periods. However, the performances of other methods (MLR, KNN, BP, 

GA-BP) are poorer for the first and third periods. There may be some reasons for this phenomenon. 

The first one is the cross interference effect from NO2 and O3, which have the wide range of 

fluctuations (from about 20 μgm-3 to 125 μgm-3) and increasing tendency in period I, respectively.  

The NO2 and SO2 can react chemically under certain conditions to produce sulfuric acid (H2SO4) 
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and nitric acid (HNO3), which will affect the reading of SO2 sensor. The O3, highly oxidizing gas, 

may react with SO2 to form H2SO4 or sulfite (H2SO3), resulting in inaccurate sensor readings. The 

second one is the ambient temperature has a wide range of fluctuations (from about minus 5 ℃ to 

plus 45 ℃) during the first and third periods, which will affect the stability of electrode material 

and the readings of the sensor. The last one is the concentration of ambient SO2 is high (more than 

30 μgm-3) in period I and period III, beyond the actual measurement range of the SO2 sensor, which 

will be researched in future. 

 

(15) Finally, there is a typo on line 6 of page 14 (dada instead of data). 

 

Thanks for your question. The typo is revised in the new version with the red color. 

 

(16) Conclusion  

The conclusion paragraph would benefit from a more explicit discussion on the presence of a 

recommended algorithm for calibration and a thorough examination of its potential 

limitations. By addressing the challenges associated with generalizing black box models, 

notably random forests, the conclusion could provide a more nuanced understanding of the 

practical implications and constraints that may arise from the study's findings.  

 

Thanks for your question. The conclusion is revised in the new version. 

A low-cost air quality monitoring system (LCS) based on RF, MLR, KNN, BP, GA-BP algorithms 

were proposed. The system can measure gas-phase pollutants (SO2, NO2, CO and O3) and particle 

pollutants (PM2.5 and PM10), simultaneously. With the purpose to estimate the performance of the 

five algorithms, the LCS was mounted at the same location (Zhengzhou City, China) and consistent 

height with the reference monitoring system. The measurement was made continuously from 1 

March 2021 to 28 February 2022, with the ranges of the ambient temperature and relative humidity 

separately minus 5℃ to plus 50℃ and 10% to 98%. The values of the LCS and reference 

instruments were separately logged to the server for further comparative analysis.  

With the pretreated and individual particle counters, T and RH as input, and the concentrations of 

PM2.5 and PM10 measured by the reference instrumentation separately as output, the multi-input 

one-output evaluation models based on RF, MLR, KNN, BP, GA-BP algorithms can be obtained. 

With the four types of electro-chemical sensors raw data, T and RH as input, and the measurements 

from the reference monitors as output, the multi-input multi-output evaluation models based on the 

five algorithms can be obtained. The performance of the calibration models are quantitatively 

compared by utilizing R2, RMSE, MSE and MAE.  

The experimental results show that the R2 of RF for the PM is better than 0.98; the R2 of MLR for 

the PM is less than 0.91; the R2 of the other three model are within 0.86 and 0.98. The R2 of RF for 

the gas pollutants (SO2, NO2, CO and O3) is better than 0.93; the R2 of KNN, BP and GA-BP for the 

gas pollutants (SO2, NO2, CO and O3) is within 0.27 to 0.97; the R2 of MLR for the NO2, CO and 

O3 is within 0.46 to 0.90, but for SO2 less than 0.40, and even less than 0.1.  

The maximum RMSE values of PM2.5, PM10, O3, CO, NO2, and SO2 between the reference data and 

the RF, MLR, KNN, BP, GA-BP-based algorithms data are 5.49, 18.68, 13.05, 14.35, and 14.35; 

10.37, 45.05, 27.08, 23.10, and 23.65; 4.08, 17.79, 10.57, 14.67, and 14.40; 0.06, 0.23, 0.16, 0.18, 

and 0.18; 3.99, 14.54, 9.61, 11.07, and 11.21; 2.84, 28.80, 16.44, 21.39, and 21.16, respectively. The 



maximum MAE values of PM2.5, PM10, O3, CO, NO2, and SO2 between the reference data and the 

RF, MLR, KNN, BP, GA-BP-based algorithms data are 3.45, 12.80, 8.31, 9.55, and 9.54; 5.28, 23.20, 

13.35, 15.26, and 15.43; 2.88, 13.46, 7.33, 11.14, and 10.90; 0.05, 0.19, 0.11, 0.14, and 0.14; 2.80, 

11.08, 6.85, 8.27, and 8.41; 1.16, 4.24, 2.84, 3.43, and 3.40, respectively. 

It is should be noted that the results of RF are better than the ones of other methods, have very good 

agreement with the reference monitors, and have little difference among the three periods. However, 

the performances of other methods (MLR, KNN, BP, GA-BP) have poor agreement, especially 

during the first and third periods, which are the winter and spring.  There may be some reasons, 

such as the cross interference effect, the wide range of fluctuation of the climatic factors, and the 

limitation of the actual measurement range and precision. 

Overall, we conclude that, with careful data management and calibration using the machine learning 

algorithms, especially the RF method, these measurements are consistent with the national 

environmental protection standard requirement of China, the LCS may significantly improve our 

ability to spatial heterogeneity in air pollutant concentrations. The air pollutant maps will assist 

researchers, policymakers, and communities in developing new policies or mitigation strategies to 

enhance human health. In the next research, we will focus on improving the matching of the 

measurement precise and range, the generalization of the algorithms in more applications, and the 

performance of the SO2 sensor.  

 


