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Abstract The significance of air quality monitoring for analyzing the impact on public health is growing worldwide. A crucial 

part of smart city development includes deployment of suitable air pollution sensors at critical locations. Note that there are 

various air quality measurement instruments ranging from expensive reference stations that provide accurate data to low-cost 10 

sensors that provide less accurate air quality measurements. In this research, we use a combination of sensors and monitors, 

which we call hybrid instruments and focus on optimal placement of such instruments across a region. The objective of the 

problem is to maximize a satisfaction function that quantifies the weighted closeness of different regions to the places where 

such hybrid instruments are placed (here weights for different regions are quantified in terms of the relative population density 

and relative PM2.5 concentration). Note that there can be several constraints such as those on budget, minimum number of 15 

reference stations to be placed, set of important regions where at least one sensor should be placed and so on. We develop two 

algorithms to solve this problem. The first one is a genetic algorithm that is a metaheuristic and works on the principles of 

evolution. The second one is a greedy algorithm that selects the locally best choice in each iteration. We test these algorithms 

on different regions from India with varying sizes and other characteristics such as population distribution, PM2.5 emissions, 

budget available, etc. The insights obtained from this paper can be used to quantitatively place reference stations and sensors 20 

in large cities rather than using ad hoc procedures or rules of thumb.  

1 Introduction 

According to the World Health Organization (WHO), ambient air pollution is a significant threat to people's health, causing 

around 6.7 million premature deaths annually in 2019 (Fuller et al., 2022). Shockingly, 99% of the global population resides 

in areas that don't meet WHO's air quality guidelines, with 89% of these premature fatalities occurring in low or middle-income 25 

countries (WHO, 2022; Pandey et al., 2021). To address this issue, it's crucial to develop suitable sensor networks by putting 

the air pollution monitors or sensors at appropriate locations, meeting the requirements of various groups in the city, and 

providing much-needed information. Air pollutant concentrations have traditionally been monitored using reference stations 

(we will refer to them as monitors in this paper) which are highly accurate but also very costly, limiting their widespread 

deployment (Lagerspetz et al., 2019). To achieve accurate air pollution monitoring within metropolitan regions, hundreds or 30 
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even thousands of reference stations are required, which proves costly to maintain and operate (Zikova et al., 2017). However, 

the emergence of low-cost air quality sensors presents an opportunity for higher-density deployments and improved spatial 

resolution in monitoring (Spinelle et al., 2017; Castell et al., 2017). Low-cost sensors offer a cost-effective solution, reducing 

installation and maintenance expenses and facilitating broader spatial coverage, particularly in remote areas. Therefore, in 

order to balance the accuracy of monitoring along with costs involved in such instruments, we will consider deployment of 35 

both monitors and sensors in this paper. 

 

Some studies focus on optimizing air quality monitoring networks (AQMNs) using different models: physical models (Araki 

et al., 2015; Hao and Xie, 2018) and learning-based models (Hsieh et al., 2015). However, the accuracy of these methods relies 

heavily on the precision of the air quality models, and both Hao and Xie (2018) and Hsieh et al. (2015) required existing air 40 

quality measurements as inputs for their prediction models which largely depend on the quality and completeness of input 

data. The studies by Li et al. (2017), Brenzia et al. (2015), and Zikova et al. (2017) discuss ad-hoc placement of air quality 

sensors in their respective study regions or using some rules of thumb. But this shows that the placement of sensors is not 

optimized under the budget constraints that might be present. To address these challenges, it becomes crucial to develop more 

strategic approaches for placing air quality sensors. Properly optimized sensor placement can lead to a more comprehensive 45 

and accurate understanding of air pollution patterns, facilitating targeted pollution control measures and ultimately improving 

public health and environmental management. 

 

Lerner et al. (2019) present a method for optimizing sensor placement based on sensor characteristics and land use analysis. 

Sun et al. (2019) also propose an optimal sensor placement strategy based on population density without relying on air pollution 50 

data. Their study highlights that humans naturally depend on the closest station to observe and obtain relevant information 

regarding the environment when multiple stations are present in a city. The satisfaction regarding the information increases as 

one moves closer to the adjacent station. Unlike Lerner et al. (2019), Sun et al. (2019) represent the benefit of placing a sensor 

in a particular grid to the citizens not just living in that grid but also to those living the nearby grids. However, Sun et al. (2019) 

has limitations in that it does not incorporate air pollution data as a parameter in optimization, which raises concerns about the 55 

accuracy and reliability of the obtained results. Furthermore, both Lerner et al. (2019) and Sun et al. (2019) only consider 

deployment of one type of sensor but as we discussed previously, both monitors (that are very accurate) and sensors (that are 

not that accurate but much more economical than monitors) should together be considered for deployment.  

 

Note that Castell et al. (2017) also highlighted that sensors alone may not provide accurate air quality measurements as 60 

compared to reference instruments or monitors. Our proposed approach aims to leverage the strengths of both sensors and 

monitors to enhance air quality monitoring in a cost-effective manner. We propose to develop a framework for placing hybrid 

instruments with the objective of maximizing the public satisfaction by considering emission spread and population density as 

parameters (while considering the benefit of placing instruments in nearby grids and not just the grids where they are placed). 
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Also, several notable constraints such as having at least one sensor in a given set of important grids (like important residential 65 

or commercial areas), not having monitors in certain given grids (like places with sparse population, water bodies, etc.), having 

a minimum number of grids where monitors should be placed in the network, etc., have been proposed in the optimization 

formulation. Therefore, the following are the contributions of our work:  

• Our research focuses on optimal deployment of hybrid air-quality monitoring networks consisting of monitors and 

sensors where the goal is to maximize public satisfaction by providing accurate air quality information while 70 

considering several budget and other constraints. 

• We propose a Genetic algorithm (GA) and a greedy algorithm (GrA) to solve the developed optimization problem. 

• We test the developed algorithms on networks of varying sizes and geographic locations. 

This paper's remaining sections are organized as follows: Section 2 describes the optimization problem and presents the 

algorithms for solving the problem. The next section provides the numerical results tested using different algorithms under 75 

different settings. The final section concludes our study and provides future directions. 

2 Methodology 

This section is divided into two parts. The first part describes the problem statement for optimization of a hybrid instrument 

network. The second part describes the methods proposed to solve the optimization problem. The second part is further sub-

divided into two sub parts: GA and GrA respectively. 80 

2.1 Problem Statement 

Our approach focuses on placing sensors and monitors in order to maximize a utility function quantifying popular satisfaction 

with the instrument placements. Realising that humans naturally depend on the closest station to observe and obtain relevant 

information regarding the environment when multiple stations are present in a city, we assume that an individual's satisfaction 

𝑔(𝑑) is a function of his or her distance 𝑑 to the closest sensor or monitor (Sun et al., 2019). Intuitively, the satisfaction with 85 

the information increases as one moves closer to the adjacent station. That is because people will have higher confidence on 

the readings by sensors or monitors that are closer to them rather than readings from instruments that are farther from them. 

Therefore, 𝑔(𝑑) must satisfy the following conditions as stated in Sun et al. (2019): (i) 𝑔(𝑑) must be a decreasing function, 

i.e., for any 𝑑1 ≤  𝑑2, 𝑔(𝑑1) ≥  𝑔(𝑑2), (ii) for any 𝑑 ≥  0, 𝑔(𝑑) ≥  0 and 𝑔(0) =  1. The foremost condition corresponds 

to the relation of satisfaction function with distance, while the latter ones assure the fact that the 𝑔 𝜖 [0, 1] and 𝑔 is the highest 90 
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when the distance is zero. The following exponentially decreasing function 𝑔(𝑑)  readily satisfies the aforementioned 

conditions (Sun et al., 2019): 

𝑔(𝑑) = exp (−
𝑑

𝜃
),                                    (1) 

where 𝜃 is an exponential decay constant1. The exponential decay function is often chosen in similar studies and practical 

applications because of its simplicity and effectiveness in modelling the attenuation of signal or influence with increasing 95 

distance in studies such as Sun et al. (2019). It aligns with the intuitive idea that the influence of air quality monitoring decreases 

as one moves farther away from the monitor. We also present the results with another appropriate satisfaction function later.  

Note that monitors and sensors are not differentiated while determining the satisfaction function in our problem. That is because 

in many practical air quality monitoring scenarios, users may not be either interested or be able distinguish between the data 

collected from monitors and sensors (if the information related to the type of instrument is not openly available). From the 100 

user's perspective, the primary concern may be just to obtain reasonable air quality information, rather than worry about the 

specific source of the data.  

 

In accordance with the standard procedure for environmental monitoring (Krause et al., 2008, Hsieh et al., 2015), we divide 

the city into distinct, equal-sized square grids. Then, we place our hybrid instruments (sensors and monitors) in these 105 

fragmented grids. Let 𝑉 =  {𝑎|𝑎 =  1, 2 … , 𝑛} represent a set of grids in the interested geographical area, in which 𝑛 =  |𝑉| 

represents the total number of grids. For each 𝑎 ∈ {1, 2 … , 𝑛}, let 𝑝𝑎 represent the percentage of people living in grid 𝑎, 

𝑒𝑎 represents the percentage of PM2.5 emissions2 in grid 𝑎 and 𝑚𝑎   denotes the weighted average of 𝑝𝑎 and 𝑒𝑎 of grid 𝑎, i.e., 

𝑚𝑎 = (𝑤1 ∗ 𝑝𝑎) + (𝑤2 ∗ 𝑒𝑎) , where  0 ≤ 𝑤1, 𝑤2 ≤  1  and 𝑤1 + 𝑤2 = 1 . Note that both population density and PM2.5 

emissions are important factors while deciding the relative importance of various grids. Population density reflects the 110 

concentration of people residing in that grid, while the PM2.5 emissions are an indicator of the level of fine particulate matter 

in the air within that grid (secondary aerosol production and pollution transport also play a role in the concentrations but they 

are not considered here due to lack of data). Doing a weighted average of the corresponding percentage values of these 

parameters provides a single value that quantifies the importance of a particular grid and allows comparing between different 

grids. Also, if we do not the weighted averaging, and individually minimize some metrics related to emission and population 115 

then it will result into a multi-objective optimization problem which is much more difficult to solve and analyze (Deb, 2001). 

 

We will now introduce some variables to define the optimization formulation. The notations are summarized in Table A1 of 

Appendix A. Let 𝑆 be a set of grids where instruments (sensors and monitors) are placed (i.e., set 𝑆 consists of each grid 𝑎 

 
1 Depending on the largest distances that are considered in a grid network and the precision that is being considered, 𝜃 should be appropriately decided. For instance, if the 

computation precision being used is say about 10−5 and the largest distance is say 10 units then 𝜃 = 1 might reasonable since 𝑒−
10

1 = 4.5 ∗ 10−5.   
2 We acknowledge with the distinction between PM2.5 emissions and PM2.5 concentrations (which are to be measured by the network), with the possible impacts of secondary 

aerosol formation and pollution transport not being accounted for by using emissions information alone. In our approach, we initially prioritize PM2.5 emissions as the foundational 

data for instrument placement. However, the placement of the instruments can be updated as better estimates of PM2.5 concentrations become available after the initial placement 

of sensors. 
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such that at least a sensor or a monitor is placed at grid 𝑎). For each grid 𝑎 ∈ {1, 2 … , 𝑛}, let 𝑥𝑎  be equal to one, if a sensor is 120 

placed at grid  𝑎 otherwise it is equal to zero, 𝑦𝑎  be equal to one if a monitor is placed at grid 𝑎, otherwise it is equal to zero 

and 𝑧𝑎 be equal to one if any instrument is placed at grid 𝑎, otherwise it is equal to zero. Let 𝑐 be the cost of a sensor, 𝑐′ be the 

cost of a monitor and 𝑃 be the total available budget. Let 𝐵 be the set of grids where at least one sensor should be placed. Let 

𝐶 be the set of grids where a monitor cannot be placed. Let ℎ be the minimum number of monitors that should be deployed. 

Let 𝑀 be a very large positive number and 𝑚 be a very small positive number. The formulation for optimally placing hybrid 125 

instruments is as follows:  

  

                                Max ∑ 𝑚𝑎. 𝑔(𝑑(𝑎))𝑛
𝑎=1  (2) 

                         s.t.  ∑ (𝑐𝑥𝑎 + 𝑐′𝑦𝑎)  ≤ 𝑃𝑛
𝑎=1  (3) 

                                ∑ 𝑥𝑎 ≥ 1𝑎 𝜖 𝐵  (4) 

                                ∑ 𝑦𝑎 = 0𝑎 𝜖 𝐶  (5) 

                                ∑ 𝑦𝑎 ≥ ℎ𝑛
𝑎=1  (6) 

                                𝑀𝑧𝑎 + 𝑚 ≥ 𝑥𝑎 + 𝑦𝑎 , ∀ 𝑎 =  1,2, … , 𝑛       (7) 

                                𝑥𝑎 + 𝑦𝑎 ≥ 𝑧𝑎 , ∀ 𝑎 =  1,2, … , 𝑛 (8) 

 

where 𝑑(𝑎) = min
𝑏 𝜖 𝑉

 {𝑧𝑏 . 𝑑(𝑎, 𝑏) +  𝑑(𝑎). (1 − 𝑧𝑏)} and 𝑑(𝑎) = max
𝑏 𝜖 𝑉

 𝑑(𝑎, 𝑏). 

The objective is to choose a subset of grids 𝑆 ⊆ 𝑉 that maximizes the overall satisfaction percentage under given constraints. 130 

Here, we define 𝑑(𝑎, 𝑏) as the distance between grid 𝑎 and grid 𝑏 (note that when we are finding distances between two grids 

we mean distances between the centres of the grids), 𝑑(𝑎) is the minimal distance between grid 𝑎 and any grid of set 𝑆 

(assuming that 𝑆 is not an empty set, which is the case because of the constraint in Equation (4)). The condition in Equation 

(3) is the budget constraint which states that the total cost of all instruments cannot exceed 𝑃. The condition in Equation (4) 

ensures that a sensor is placed in at least one of the grids belonging to the set 𝐵. We do not put analogous constraints such as 135 

Equation (4) for monitors as monitors cannot be place anywhere since they need where electricity availability, they are big, 

heavy and costly as compared to sensors. Equation (5) ensures that no monitor is placed at any grid belonging to the set 𝐶 

(these grids can belong to locations like open areas, areas near waterbodies, etc.). Note that it may not be cost-effective or 

practical to deploy expensive monitors in certain areas and thus monitor deployments are restricted, but sensor deployments 

are not. The condition in Equation (6) ensures that at least ℎ monitors are deployed. Equations (7) and (8) are the definitional 140 

constraints for variable 𝑧𝑎. That is, they ensure that for each grid 𝑎,  𝑧𝑎 is equal to one if 𝑥𝑎 + 𝑦𝑎 ≥ 1 otherwise, 𝑧𝑎 is equal 

to zero. 

As mentioned before, users may not be either interested or be able distinguish between the data collected from monitors and 

sensors. However, the network designer may be interested in distinguishing between the satisfaction obtained from monitors 
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and sensors. Therefore, we provide an alternate optimization formulation that distinguishes between the satisfaction obtained 145 

from monitors and sensors in Appendix B.  

2.2 Methods 

We will now present different algorithms to solve the proposed formulation. We will first introduce Genetic Algorithm (GA).  

2.2.1 Genetic Algorithm 

A Genetic Algorithm is a metaheuristic that is inspired by the natural selection process and genetics (Deb, 2001). It mimics 150 

the principles of survival of the fittest, crossover, and mutation to iteratively search for optimal solutions. The algorithm starts 

by creating an initial population of potential solutions, represented as strings of individuals. Consider a string comprising of 

2𝑛 elements (𝑛 is the total number of grids), with the first 𝑛 elements are for the placement of sensors and the next 𝑛 elements 

are for the placement of monitors. Each element in the string can take a value of either 0 or 1, where 1 indicates the presence 

of a sensor or monitor (depending on whether we are looking in the first 𝑛 or last 𝑛 elements) in the corresponding grid, and 0 155 

indicates the absence. We now consider a modification of the above string where we remove the elements that correspond to 

monitors belonging to set 𝐶 . The removed elements will always have value equal to zero due to the definition of set 𝐶 

(consequently, monitors will not be placed on the grids belonging to the 𝐶 set) and thus they are separated so that the values 

of these elements do not change due to different processes in GA. The aforementioned modified string is used in our problem. 

Each string encodes a set of decision variables, representing a candidate solution to the problem.  160 

 

We define a fitness metric that is used to assign a relative merit (fitness) to each solution based on the corresponding objective 

function value and constraint violations. The fitness, 𝐹(𝐻), of any string 𝐻 is calculated as follows: 

 

𝐹(𝐻) = {
𝑓𝑛                                              𝑖𝑓 𝐻 𝑖𝑠 𝑎 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙 𝑠𝑡𝑟𝑖𝑛𝑔
𝑓𝑛𝑚𝑖𝑛 −  𝐷1 − 𝐷2 − 𝐷3       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     

 
(9) 

 

    Where,  𝐷1 = { 
0                                                ∑ (𝑐𝑥𝑎 + 𝑐′𝑦𝑎)  ≤ 𝑃𝑛

𝑎=1

∑ (𝑐𝑥𝑎 + 𝑐′𝑦𝑎) − 𝑃𝑛
𝑎=1          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

 
      (10) 

 

                 𝐷2 = {
 0                                                ∑ 𝑥𝑎 ≥ 1𝑎 𝜖 𝐵                       
1                                                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

 
(11) 

                 𝐷3 = { 
0                                                ∑ 𝑦𝑎 ≥ ℎ𝑛

𝑎 =1   

ℎ − ∑ 𝑦𝑎                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑛
𝑎 =1

 
(12) 

 165 

Here, 𝑓𝑛 is the objective function value for string 𝐻 as obtained by Equation (2), 𝑓𝑛𝑚𝑖𝑛 is the minimum value of objective 

function values over all the feasible solution strings in a given population of strings, and 𝐷1, 𝐷2  and 𝐷3 are penalty values for 

violating constraints in Equation (3), (4) and (6), respectively. Note that there is no penalty value for violating the constraint 
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in Equation (5) as that is automatically satisfied due to the way we define our strings (recall that we removed the elements 

corresponding to the grids of set 𝐶). 170 

 

In each generation (or iteration) of GA, the Roulette Wheel Selection (RWS) is used to select solutions from a population 

based on their fitness values (Deb, 2001). RWS provides a proportional selection mechanism where fitter solutions have a 

higher probability of being selected, but it still allows weaker solutions to have some chance of being chosen. After the 

selection procedure, crossover procedure is followed where two strings are randomly selected from the mating pool, and a 175 

partial interchange from both strings is done to generate two new strings. We use the two-point crossover operator where two 

distinct crossover points divide the strings into three substrings and the middle substring is exchanged between the strings 

(Deb, 2001). After crossover, mutation procedure is carried out where the mutation operator alters 1 to 0 or vice versa in each 

element of a string with probability 𝑃𝑚  (referred to as the mutation probability). Note that mutation helps in maintaining 

diversity in the population. After applying the genetic operators, parent population and offspring population are combined, 180 

strings in the combined population are sorted in non-increasing order and the top half of the combined population is selected 

as the population for the next generation. This process is repeated over multiple iterations or generations until the termination 

criteria (to be specified next) is met. We now describe the termination criteria. Let the average fitness value of strings in the 

population of 𝑖th iteration or generation be 𝑘𝑖. Let 𝑁 be the maximum number of iterations of GA that are allowed. Then, the 

algorithm stops at the end of the 𝑖th iteration if |
𝑘𝑖−𝑘𝑖−1

𝑘𝑖−1
| ≤ 𝛼 (where 𝛼 is a given value) or if 𝑖 becomes equal to 𝑁.  185 

  

2.2.2 Greedy Algorithm 

The second method to solve the optimization problem from Section 2.1 is a Greedy Algorithm (GrA). A greedy algorithm 

iteratively comes up with a solution by making choices that are locally optimal in each iteration but it is not guaranteed to 

produce an optimal solution. In this algorithm, we first place a sensor at one of the locations from set 𝐵 to satisfy Equation (4). 190 

This placement is done by selecting the grid with the highest 𝑚𝑎 among the set 𝐵. Then, we find the placement location for ℎ 

monitors to satisfy Equation (6) by ensuring that Equation (5) (which tells us about the grids where monitors can’t be placed) 

is not violated. We now define grid location 𝑠∗ with largest information gain as 𝑠∗  = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆  ∑ 𝑚𝑎 (𝑔(𝑑′(𝑎, 𝐾 ∪ 𝑠)) −𝑛
𝑎=1

𝑔(𝑑′(𝑎, 𝐾))) where 𝐾 is the set of grids that have either a sensor or a monitor already placed (note that 𝐾 is not an empty set 

because we have at least one grid belonging to set 𝐵 that has a sensor placed) and 𝑑′(𝑎, 𝐾) represents the minimum distance 195 

between grid 𝑎 and any grid of set 𝐾. The placement of ℎ monitors is done by repeatedly choosing the grid location with the 

largest information gain 𝑠∗. Let 𝑃′ = 𝑃, where 𝑃′ is the budget that remains after we subtract the cost of different instruments 

that are placed in different iterations of GrA. After the placement of one sensor plus ℎ monitors, the available budget 𝑃′ =

𝑃 − 𝑐 − ℎ𝑐′. After satisfying Equation (6), there is no benefit of placing more monitors that are costly and thus we target to 
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place sensors. We keep placing sensors such that the grid location with the largest information gain 𝑠∗ is selected while 200 

ensuring that 𝑃′ is updated with every placement of sensor and budget constraint is satisfied. The algorithm terminates when 

there is an insufficient budget to place sensors, i.e., when 𝑃′ < 𝑐.  

We now provide an example to illustrate the greedy algorithm in Appendix C.  

3 Results 

In this section, we will present results by testing our proposed algorithms in different settings. Our algorithms have been 205 

employed in two distinct areas within Surat and Mumbai cities. Both algorithms were implemented in MATLAB and executed 

on a computer with Intel® Core™ i7-2600 processor and 8 GB RAM.  

3.1 Surat City 

We first consider a portion of Surat which is a major city in the state of Gujarat, India, for optimal placement of air quality 

instruments. In this study, we take a pilot project area of 5 km x 5 km in Surat and divide it into 25 grids (thus each grid is of 210 

the size 1 km x 1 km). The total number of grids in Surat are 25 which are numbered from 1 to 25 from left to right in the 

increasing order and from top to bottom in the increasing order (see Table 1). For calculating the optimal locations for hybrid 

instruments, we use the average percentage of population density (WorldPop provides open source3 population density data at 

a spatial resolution of 1 km x 1 km) and PM2.5 emission data (The Energy and Resources Institute (TERI) provided us PM2.5 

emission data for Surat city at a spatial resolution of 1 km x 1 km) for the part of Surat city that we focus. Figures 1 and 2 215 

provide the intensity of population density (in population per sq. km) and emissions (in kT/yr) for the grids for Surat City that 

are considered in this paper. 

 

Table 1. Numbering of grids in the portion of Surat City that are considered. 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 

 
3 https://hub.worldpop.org/geodata/summary?id=41746 
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 220 

 

Fig 1. Intensities of population density for the considered grids of Surat City (in population per sq. km) in the left and PM2.5 

emissions data for the considered grids of Surat City (in kT/yr) in the right. 

 

 225 

Fig 2. Hybrid placement obtained by GA (left) and GrA (right) for the Surat network with budget value of $295000. Map data © 

2023 Google. 

 

Figure 2 displays the placement locations of sensors (purple points) and monitors (orange points) in Surat city as obtained by 

Genetic algorithm (left) and Greedy algorithm (right) with the budget value of $295000. Note that the objective function value 230 

corresponding to both the algorithms for this case is around 96.3 (see Figure 3) but the spatial distribution of the instruments 

is not the same. That is because this is a discrete optimization problem and it is possible that two solutions with very different 

looking spatial distribution can have the same objective function value. Note that there is no scope to further add any instrument 

in the solution of any of the algorithms as there are two monitors and seventeen sensors and 2*122000 + 17*3000 = 295000. 

Also, note that the weights taken in the objective function are 𝑤1 = 𝑤2 = 0.5. That is because by averaging these variables, 235 

we strike a balance between the need to monitor areas with high pollution levels (captured by PM2.5 emissions) and areas with 
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high population density (captured by the population density). Note that we will present the sensitivity analysis with different 

weights later. The parameter values that are used in this placement are as follows: cost of a sensor (𝑐) is $3000, cost of a 

monitor (𝑐′) is $122000,4 total available budget (𝑃) is $295000, value of 𝜃 and ℎ are 1 and 2, respectively. The GA parameters 

that are used are as follows: population size is equal to 1000, mutation probability (𝑃𝑚) is equal to 0.1, maximum number of 240 

iterations or generations is 500 and value of 𝛼  is 10−5 . Note that we determined that 𝛼 = 10−5  consistently yielded 

satisfactory convergence while ensuring computational efficiency through systematic tuning involving a range of 𝛼 values.  

 

Figure 3 shows the values obtained and computational time for the two algorithms, considering different total available budgets 

(i.e., 𝑃). Note that the obtained value on the vertical axis in Figure 3 is objective function value as given by Equation (2). The 245 

minimum budget that is considered is $253,000, which is equal to the cost of three sensors plus ℎ monitors (any value of 

budget lower than this will not yield a feasible solution of the problem as the budget constraint will not get satisfied). The 

maximum budget in Figure 3 is $313,000, which allows for the placement of 2 monitors and 23 sensors, covering the entire 

portion area (as there are a total of 25 grids) under minimum possible budget as at least 2 monitors need to be placed by 

Equation (6). Note that if the budget is sufficiently large and the optimal solution involves covering all the grids then GA can 250 

provide solutions where at some places interchanging sensors with monitors will not change the value of the solution. That is 

because the objective function does not differentiate between monitors and sensors and the solutions of GA are generated 

through a probabilistic process and thus may exhibit a different spatial distribution than that obtained by GrA.   

 

  255 

Fig 3. Plot comparing genetic vs greedy algorithms for varying total available budget values. 

 
4 We obtained the cost estimate for a monitor through the cost of continuous ambient air quality monitoring stations (CAAQMS) imported to India whose 

price is available at the following link: https://timesofindia.indiatimes.com/india/centre-asks-states-not-to-procure-imported-air-quality-monitors-indigenous-

systems-to-be-deployed/articleshow/95901936.cms. Similarly, the cost of a sensor (here Aeroqual S500) is estimated from the following link: 

https://www.cleanair.com/product/aeroqual-s500-starter-kit/. 
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From Figure 3, it can be observed that, for most budget points, the obtained values for GrA and GA are very close. Also, note 

that the obtained values for both the algorithms increase with the increase in budget because it is possible to place more 

instruments with the increase in budget and that results in increase in the overall satisfaction function value. Note that the 260 

computation time of GA is significantly larger than that of GrA because GA samples through a set of possible solutions and 

iteratively applies various operators such as selection, crossover and mutation whereas GrA is a deterministic algorithm that 

comes up with a single solution. 

We provide an example in Appendix D to show the performance of different network configurations that have different 

variations with respect to the optimal solution. 265 

3.1.1 Sensitivity Analysis 

In this section, we will present the results with a different 𝑔(𝑑) function and consider different weighs corresponding to 𝑝𝑎 

and 𝑒𝑎 in the objective function. 

3.1.1.1 Sensitivity analysis with another 𝒈(𝒅) function  

As previously mentioned, the 𝑔(𝑑) function should be a decreasing function. Therefore, we explore an alternative function 270 

𝑔(𝑑) =   
1

𝑑+1
 apart from the exponential function. We have now obtained the results by greedy algorithm and genetic algorithm 

for Surat city network (5x5 size) using 𝑔(𝑑) =  
1

𝑑+1
, while keeping all the other parameters the same (as in Figure 3).  

 

Fig 4. Plot comparing two functional forms of 𝒈(𝒅). 

 275 
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Figure 4 presents the values obtained by different algorithms and functional form for 𝑔(𝑑) with varying budget values. It can 

be seen in the above figure that the values obtained by the genetic algorithm and the greedy algorithm for 𝑔(𝑑) = 𝑒−𝑑 are very 

close and thus the solid blue and red curves almost overlap. The same holds for 𝑔(𝑑) =
1

𝑑+1
 and therefore the dashed black 

and purple lines almost overlap. Note that the values that are obtained by the two algorithms for 𝑔(𝑑) =
1

𝑑+1
 are greater than 

that obtained for 𝑔(𝑑) = 𝑒−𝑑. That is because 
1

𝑑+1
> 𝑒−𝑑 for all positive values of 𝑑. However, notice that the pattern of the 280 

values that are obtained for the two functional forms is the same, i.e., the values decreases as the total available budget 

increases. Also, notice that the values obtained by the two functional forms converge at the budget value of $313,000. Since it 

is not possible to have percentage values greater than 100, the values for both the functional forms will remain the same for 

budget values greater than $313,000. We believe that similar patterns will be observed by other functional forms of 𝑔(𝑑) as 

long as they satisfy the conditions that are necessary for satisfaction functions (i.e., 𝑔(𝑑) must be a decreasing function and 285 

𝑔(0) = 1). We have defined a similarity index that quantifies the difference in the placement of hybrid instruments as obtained 

by different algorithms. Suppose the number of grids where the placement of hybrid instruments by the two algorithms is 

identical is given by 𝑘 (a grid is said to have identical placement by the two algorithms if the grid contains a sensor as 

determined by both the algorithms or a monitor as determined by both the algorithms). Also, let the maximum number of 

hybrid instruments that can be placed in the given constraints be equal to 𝑝. Then, similarity index is given by 𝑘/𝑝. Since the 290 

solution obtained by the genetic algorithm is probabilistic, we tested five runs of genetic algorithm (for a given budget value) 

and compared the solution obtained by each run to the solution obtained by the greedy algorithm to determine the similarity 

indices and finally obtained the average similarity index by taking the mean of five similarity indices. Figure 5 shows the 

average similarity index for different budget values and for different 𝑔(𝑑) functions (while keeping equal weights for the 

percentages of population density and emissions). Note that similarity index is upper bounded by one. Also, we see that as 295 

budget values increase the average similarity index for both 𝑔(𝑑) functions increase. That is because as the budget increases 

the number of grids at which instruments can be placed increases and both the algorithms usually place sensors at most grids 

except at a few grids where monitors are placed to meet the requirement of minimum monitors. Note that the average similarity 

index is around 0.5 for low budget values due to the existence of solutions that have varying placements but have close 

objective function values (but as the budget increases the variation in the placement reduces as explained before). Also, the 300 

average similarity indices obtained by the two 𝑔(𝑑) functions are close for most of the budget values. 
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Fig. 5 Average similarity index for different 𝒈(𝒅) functions. 

 305 

3.1.1.2 Sensitivity Analysis for different weights in the objective function 

We have also conducted the sensitivity analysis by varying the weights between the percentages of population density and 

PM2.5 emissions (i.e., 𝑝𝑎 and 𝑒𝑎) for Surat city. Table 2 shows the weights corresponding to the different cases that have been 

considered. We have determined the results for both Greedy algorithm and Genetic algorithm by keeping all the parameters 

same (as in Figure 3).  310 

 

Table 2. Different cases for the weights 

Case Weightage for 𝑝𝑎 Weightage for 𝑒𝑎 

1 0.25 0.75 

2 0.5 0.5 

3 0.75 0.25 
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Fig 6. Plot comparing cases for different weights corresponding to 𝒑𝒂 and 𝒆𝒂.  315 

 

Figure 6 shows the values that are obtained for different cases, budget values and algorithms. As before, the values obtained 

by GA and GrA are very close for given weights and budget. Among these cases, the values corresponding to Case 3 (where 

𝑝𝑎 = 0.75 and 𝑒𝑎 = 0.25) are the highest and that corresponding to Case 1 (where 𝑝𝑎 = 0.25 and 𝑒𝑎 = 0.75) are the lowest. 

Thus, as the relative weightage for population density increases in the objective function, the values obtained increases. 320 

However, it can be seen that the difference between the values for Cases 1 and 3 is not that large, signifying that the objective 

function values may not be that sensitive to the relative weightage between population density and emissions. Figure 7 shows 

the average similarity index for different budget values and different cases corresponding to the weights of percentages of 

population density and PM2.5 emissions (while keeping 𝑔(𝑑)  as exponential function). It can be seen that the average 

similarity index increases with budget values for the same reason as mentioned for Figure 5. Also, the values of similarity 325 

indices are close for most of the budget values. 
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Fig. 7 Average similarity index for different weights corresponding to 𝒑𝒂 and 𝒆𝒂. 

 330 

3.2 Mumbai City 

We now present the results that we tested for portions of Mumbai, which is the financial hub of India. In this case, we only 

considered the contribution of population in the objective function (i.e., 𝑤1 = 1, 𝑤2 = 0 , implying 𝑚𝑎 = 𝑝𝑎 ) due to 

unavailability of PM2.5 emission data for Mumbai city. However, the aforementioned change does not have any significant 

issue on the results that we present as we plan to test the effect of varying the budget (as in the last section) and the effect of 335 

varying the size of the network (i.e., the number of grids). All the parameter values for the algorithm's execution were the same 

as in the example for Surat city (i.e., Figure 3), except for the variable 𝜃, which has now been set to 5 (note that 𝜃 has been 

increased now because we have a larger number of grids in Mumbai network as compared to Surat, resulting in higher average 

distances between the grids for the Mumbai network and thus we need to update 𝜃 for better normalization). Consider a region 

of size 10 km x 10 km in Mumbai City that has been divided into 100 grids (i.e., each grid is of the size 1 km x 1 km). Figure 340 

8 shows the variation of values obtained and computation time with total available budget for GA and GrA for this region. The 

solid lines represent the obtained values and dashed lines are used to represent the computation time in seconds for different 

algorithms. It can be seen that the genetic algorithm (GA) provides higher value as compared to the greedy algorithm (GrA) 

for most of the cases. Thus, it highlights the importance of GA in obtaining values that are closer to the optimal as compared 

to GrA when the network size increased (however this advantage comes at the high computational cost of GA as compared to 345 

GrA).  
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Fig 8. Plot comparing genetic versus greedy algorithm for varying total available budget values. 

 350 

Figure 9 shows the placement of hybrid instruments obtained for the two algorithms (GA and GrA) when the budget is equal 

to $283000 when we have all the other parameters the same as that in Figure 8. The blue and orange points represent the 

placement of sensors and monitors, respectively. In Figure 9a, two sensors are positioned in the northeast area, while no sensors 

or monitors are placed in that area in Figure 9b. In Figure 9b, monitors/sensors are predominantly concentrated on the left side 

of the Mumbai area, whereas in Figure 9a, the sensors/monitors exhibit a more diverse and scattered distribution. Note that 355 

out of 100 grids, sensors and monitors can be placed in only 15 grids by maximizing the objective function. The leftmost and 

southern areas have the highest population density, which explains the concentration of sensors and monitors in those regions. 

There is difference in the solutions that are obtained by the two algorithms because GA samples through various solutions that 

to proceed towards a solution is closer to the optimal whereas GrA is a deterministic algorithm and may get stuck near a locally 

optimal solution. 360 
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Fig 9. Sensor placement obtained by GA (left) and GrA (right) for 10 km x 10 km (100 grids) region in Mumbai when the budget is 

equal to $283000. Map data © 2023 Google. 

 365 

 

 

Fig 10. Plot comparing genetic and greedy algorithms for varying number of grids. 
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Figure 10 shows the comparison between GA and GrA with varying number of grids for the budget value of $283000.5 The 370 

solid lines represent the obtained values in percentage for different algorithms and dashed lines are used to represent the 

computation time in seconds for different algorithms. As the number of grids increases, there is a noticeable decline in citizen 

satisfaction (i.e., the obtained values) because the budget 𝑃 remains the same and thus the satisfaction averaged across all the 

grids reduces as it gets distributed across the total region (note that the percentage of population in each grid also reduces as 

the number of grids increase and thus that also contributed to the observed trend). Also, the values obtained by GA and GrA 375 

are similar and in some cases, GA outperforms GrA whereas the reverse happens in other cases. Note that the computation 

time required for GA increases rapidly with the increase in the number of grids because with the increase in the number of 

grids, the size of each string in GA increases and it takes more iterations before the termination criterion is reached in GA (as 

the number of feasible solutions increase with the increase in grid size). However, the increase in the computational time of 

GrA is not that high as it is a polynomial-time algorithm (Cormen et al., 2022), i.e., the computational time increases 380 

polynomially with respect to the increase in the problem size (i.e., the number of grids in our problem).   

4 Conclusions 

This research paper proposed an optimization formulation for placement of hybrid instruments (sensors and monitors). The 

objective of the problem is to maximize the satisfaction function while satisfying various constraints for the placement. To 

solve this formulation, we proposed two algorithms: a genetic algorithm (GA) which is a metaheuristic that works using the 385 

principles of evolution and a greedy algorithm (GrA) that makes choices that are locally optimal in each iteration. We tested 

the placement solutions generated by these algorithms on networks from different locations (Surat and Mumbai) that differed 

over sizes and characteristics (population distribution, budget and PM2.5 distribution). We observed that as the total available 

budget increased, the obtained values from the two algorithms also increased as it became possible to place more instruments 

(sensors and monitors). We found that GrA is very computationally efficient as compared to GA, but we found that both GrA 390 

and GA provided close values (in some cases GA outperformed GrA whereas in other cases the reverse happened). Note that 

since GA searches through a set of solutions over multiple iterations and uses operators like mutation it has a better likelihood 

of getting towards the optimal solutions whereas GrA may get stuck near a local optimum in some cases. These findings 

suggest that if time is not constrained (i.e., we have a few days to decide the placement solution) it might be better to use GA 

and GrA together (i.e., use the best solution out of the two algorithms) to place the instruments whereas in scenarios where 395 

there is scarcity of time, it is advised to use GrA. While the study's results are specific to these locations, the underlying 

methodology and principles learned from these cases can be broadly applied to other areas facing similar air quality monitoring 

challenges. The methodology presented in our paper serves as a template for optimizing sensor networks in any location, 

 
5  The population data (in terms of population per square km) is available at the following link: 

https://docs.google.com/spreadsheets/d/1tdDUXnu4EQb2t3g_M96RXb4mkRXdaFP3/edit#gid=1468141414 . This data contains the largest set of grids used with 35 x 35 = 1225 

grids. There are two sheets, one shows the numbering of grids and the other contains the population data. The population data for both Surat and Mumbai have been obtained from 

the following website: https://hub.worldpop.org/geodata/summary?id=41746  

https://docs.google.com/spreadsheets/d/1tdDUXnu4EQb2t3g_M96RXb4mkRXdaFP3/edit#gid=1468141414
https://hub.worldpop.org/geodata/summary?id=41746
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provided that relevant data on population, emissions, and potential grid locations are available. Our research aims to provide 

valuable insights for future government decision-making processes regarding the optimal deployment of hybrid instruments 400 

in cities lacking an existing sensor network.   

 

There are several interesting future extensions of this work that are possible. We acknowledge the challenges associated with 

quantifying PM2.5 emissions in areas lacking an established monitoring network, as evident in the Mumbai case. However, in 

future, solutions such as considering existing models or satellite-derived data as proxies for local PM2.5 concentrations during 405 

the network design phase can be implemented. Also, after the placement of instruments, one could iteratively update the 

placement of the network using some existing models or proxy data as newly collected data update the prior estimates of 

concentrations in the different grid cells. In addition, we assumed a particular form of the satisfaction function (consisting of 

exponential terms) but other forms can also be tested. Similarly, other factors apart from population density and PM2.5 

concentrations such as socio-economic disparities across various grids can also be factored while determining the satisfaction 410 

function. Note that exploring other objective functions such as improving estimates of population exposure, monitoring the 

largest known sources, etc., would also be very interesting. To address these alternative objectives, we could make the 

following modifications to our approach. First, the objective function could be defined appropriately whether it is optimizing 

public satisfaction, estimating exposure, or addressing specific environmental issues. Also, depending on the chosen objective, 

we may need to adapt the data collection methods used. For example, if the goal is to estimate population exposure, we may 415 

need to tailor the data collection frequency accordingly. The analysis methods and models used for decision-making can be 

customized based on the objective. For instance, if the goal is to address specific environmental concerns, sophisticated 

modelling techniques may be employed to assess pollutant dispersion. When other objective functions are used then the fitness 

function in the genetic algorithm will get modified. The selection, crossover and mutation operators will not change if the 

constraints remain the same and there would only be change in the objective function. Similarly, the greedy algorithm will 420 

have a modified gain function 𝑠∗ and the rest of the algorithm will remain the same provided the constraints in the problem 

remain the same. Thus, our approach can be flexibly adapted to address a range of objectives. Note that there is also potential 

for creating user-friendly software tools or decision support systems based on the methodology presented in our paper. Such 

tools would enable users with limited algorithmic expertise to apply similar optimization techniques to their specific locations, 

addressing the concern of not having the ability to run the algorithm. In these software tools, the users will only have to provide 425 

input values for the problem like the network they want to solve, costs of instruments, budget, the algorithm they want to use, 

etc., and the toolbox will provide the results. 

 

 

 430 
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Appendix A 

Table A1 

Notations Description 

𝑉 Set of all grids  

𝑛 Total number of grids 

𝑆 Set of grids selected for deploying hybrid instruments 

𝑔(𝑑) An individual's satisfaction as a function of his or her distance 𝑑 to the closest sensor or monitor  

𝜃 Exponential decay parameter 

𝑝𝑎 Percentage of population living in grid 𝑎 

𝑒𝑎 Percentage of concentration of PM2.5 in grid 𝑎 

𝑚𝑎 Weighted average of 𝑝𝑎 and 𝑒𝑎 

𝑐  Cost of each sensor 

𝑐′ Cost of each monitor 

𝑃 Total available budget 

ℎ Minimum number of monitors to be deployed 

𝑧𝑎 Binary variable signifying whether a sensor or a monitor is placed at grid 𝑎 or not 

𝑥𝑎 Binary variable signifying whether a sensor is placed at grid 𝑎 or not 

𝑦𝑎 Binary variable signifying whether a monitor is placed at grid 𝑎 or not 

𝐵 Set of grids where at least one sensor is to be placed 

𝐶 Set of grids where monitors cannot be placed 

𝑀 A very large positive number 

𝑚 A very small positive number 

𝑃𝑚 Mutation probability 

𝑁 Maximum number of iterations of GA that are allowed 

𝑑(𝑎) Minimum distance between grid 𝑎 and the grids containing hybrid instruments 

𝑑(𝑎, 𝑏) Distance between grid 𝑎 and grid 𝑏 

𝑑(𝑎) Maximum distance between grid 𝑎 and any other grid of set 𝑉 

𝑑′(𝑎, 𝐾) Minimum distance between grid 𝑎 and set 𝐾 

Appendix B 

We provide an alternate optimization formulation whose objective is to maximize the weighted sum of satisfaction functions 

from monitors and sensors. Let 𝑤𝑠  be the weight corresponding to the satisfaction from sensors and 𝑤𝑚  be the weight 435 

corresponding to the satisfaction from monitors. Let 𝑑(𝑎) be the minimum distance between grid 𝑎 and any grid containing 



21 

 

sensors and 𝑑′(𝑎) be the minimum distance between grid 𝑎 and any grid containing monitors. The remaining parameters and 

variables mean the same as before. Then, the formulation is as follows: 

          

max 𝑤𝑠 ∑ 𝑚𝑎. 𝑔(𝑑(𝑎))𝑛
𝑎=1 + 𝑤𝑚 ∑ 𝑚𝑎. 𝑔(𝑑′(𝑎))𝑛

𝑎=1                (B1) 

   

s.t.  ∑ (𝑐𝑥𝑎 + 𝑐′𝑦𝑎)  ≤ 𝑃𝑛
𝑎=1                                                            (B2)  

 ∑ 𝑥𝑎 ≥ 1𝑎 𝜖 𝐵                                                                                      (B3)  

 ∑ 𝑦𝑎 = 0𝑎 𝜖 𝐶                                                                                       (B4)  

 ∑ 𝑦𝑎 ≥ ℎ𝑛
𝑎=1                                                                                        (B5)  

where 𝑑(𝑎) = min
𝑏 𝜖 𝑉

 {𝑥𝑏 . 𝑑(𝑎, 𝑏) +  𝑑(𝑎). (1 − 𝑥𝑏)} , 

𝑑(𝑎) = max
𝑏 𝜖 𝑉

 𝑑(𝑎, 𝑏) and 𝑑′(𝑎) = min
𝑏 𝜖 𝑉

 {𝑦𝑏 . 𝑑(𝑎, 𝑏) +  𝑑(𝑎). (1 − 𝑦𝑏)}. 440 

Thus, the relative values of the weights 𝑤𝑠  and 𝑤𝑚  decide the relative importance being given to monitors and sensors. 

Typically, 𝑤𝑚  should be chosen larger than 𝑤𝑠  as monitors are more accurate than sensors. One could solve the above 

formulation with minimal changes to the proposed genetic and greedy algorithms. 

Appendix C 

We now provide an example of a 3x3 network (i.e., a network having 3x3 = 9 grids) to illustrate the greedy algorithm. The 445 

population density data (in population per sq. km) and PM2.5 emissions data (in kT/yr) for a 3x3 network are provided below 

on the left and right, respectively. 

Table C1: Population density data                                                                        Table C2: PM2.5 emissions data 

65646 29660 15504   
 

0.143405 0.120589 0.097773 

9487 2984 2260   
 

0.114025 0.142434 0.170843 

2042 2393 1711   
 

0.084646 0.16428 0.243914 

 

Then we calculate the percentage of population density (𝑝𝑎) and PM2.5 emissions (𝑒𝑎) for each grid and then calculate 𝑚𝑎 450 

which is an average of 𝑝𝑎 and 𝑒𝑎. The following tables show the values of 𝑝𝑎 (left) and 𝑒𝑎 (right). 

Table C3: Percentage of population density                                Table C4: Percentage of PM2.5 emissions 

49.85 22.5231 11.7734   11.1868 9.407 7.6271 

7.2042 2.266 1.7162   8.895 11.111 13.3273 

1.5506 1.8172 1.2993   6.6031 12.8153 19.0274 

 

The following values are the 𝑚𝑎 values for each grid of the 3x3 network that we consider. 

 455 
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Table C5: Average of the percentages of population density and PM2.5 emissions  

30.5184 15.965 9.7002 

8.0496 6.6885 7.5217 

4.0769 7.3162 10.1633 

 

Suppose the set  𝐵 in which at least one sensor is to be placed from Equation (4) is consists of grids 7 and 9 and set 𝐶 in which 

no monitor can be placed from Equation (5) is given by set 7. Suppose ℎ = 2, which represents the minimum number of 

monitors required. Let the cost of sensor (𝑐) and monitor (𝑐′) be 200 and 8000 units respectively. The total available budget 460 

be 16500 units.  

 

 

Fig C1. Example to show the working of greedy algorithm 

 465 

Figure C1p shows the initial empty grids which are grey in color. Figure C1q shows the grid area in which two grids (i.e., grids 

7 and 9) are shown in light green color grids which tells us about grids in set 𝐵, where at least one sensor must be placed. 

Given that the value of 𝑚𝑎 for grid 9 is greater than that of grid 7, a sensor is initially placed in grid 9 to satisfy Equation (4).  

The placement of a sensor at grid 9 reduces the available budget to 16300 units. 

Figure C1r shows the placement of sensor at grid 9 and a grid (corresponding to set 𝐶) which is shown by orange colored 470 

square grid (i.e., grid 7). The monitors are positioned at grid 1 and 2 based on the values obtained from the largest information 

gain 𝑠∗ and in adherence to the Equation (5) which has a requirement that no monitor be placed on any grid belonging to set 

𝐶. This further reduces the budget from 16300 units to 300 units by subtracting 16000 units (i.e., 𝑐′ℎ) 

We continue to place sensors until the budget constraint is violated. We will place next sensor at the grid with largest 

information gain  s∗ and that grid is grid 3. This further reduces the budget from 300 units to 100 units. The algorithm stops 475 

here as there is no sufficient budget to proceed. Figure C1s shows the final solution using greedy algorithm where grey colored 

square grids show the empty grids, purple-colored square grids show the placement location of sensors and light yellow colored 

square grids shows the placement location of monitors. 
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Appendix D 

We present an example to show the performance of different network configurations that have different variations with respect 480 

to the optimal solution. Consider an example of 3 x 3 network. Let the cost of a sensor (𝑐) and a monitor (𝑐′) be $3000 and 

$122000 respectively. Suppose the budget value is equal to $253000. The numbering of the grids follows the convention that 

numbers first increase as we go from left to right in the increasing order and numbers increase as we go from top to bottom. 

Let the set 𝐵 in which at least one sensor is to be placed from Equation (4) consist of grids 7 and 9 and set 𝐶 in which no 

monitor can be placed from Equation (5) be set 7. We consider four different feasible solutions as follows: 485 

Case 1: Solution obtained from greedy algorithm. 

 

 

Fig D1. Hybrid placement obtained by GrA. Map data © 2023 Google. 

 490 

Figure D1 shows the solution that is obtained in Case 1. The purple points show the placement location of sensors and orange 

points show the placement location of monitors. It can be seen that monitors are placed at grids 1 and 2 and sensors are placed 

at grids 3, 4 and 9. 

Case 2: Sensor placed at grid 3 in Case 1 is moved to grid 7 (all the other instrument locations remain the same as in Case 1). 

Case 3: Monitor placed at grid 1 in Case 1 is moved to grid 5 (all the other instrument locations remain the same as in Case 1). 495 

Case 4: When sensor placed at grid 3 in Case 1 is moved to grid 7 and monitor placed at grid 1 in Case 1 is moved to grid 5 

(all the other instrument locations remain the same as in Case 1). 

 

The following table shows the values that are obtained for different cases. 

Case Obtained Value 

Case 1 83.8154 

Case 2 80.2608 

Case 3 68.7521 

Case 4 65.1975 

 500 
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It can be seen that Case 1 has the largest value and the value decreases as we go from Case 1 to Case 4. Thus, Case 1 is the 

closest to the optimal solution and Case 4 is the farthest. Note that Case 4 has both the modifications that are made in Cases 2 

and 3 with respect to Case 1. Since there was a decrease in the value as we go from Case 1 to Case 2 and a decrease in value 

from Case 1 to Case 3, the largest decrease in value is seen as we go from Case 1 to Case 4. 
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