
Quantifying particulate matter optical properties and flow rate in
industrial stack plumes from PRISMA hyperspectral imager
Gabriel Calassou1, Pierre-Yves Foucher1, and Jean-François Léon2

1ONERA “The French Aerospace Lab", Département Optique et Techniques Associées (DOTA), 2 avenue Edouard Belin,
31055 Toulouse, France
2Laboratoire d’Aérologie, CNRS Université Toulouse 3, 14 avenue Edouard Belin, 31400 Toulouse, France

Correspondence: Jean-François Léon (jean-francois.leon@aero.obs-mip.fr)

Abstract. Industrial activities such as metallurgy, coal and oil combustion, cement production and petrochemistry release

aerosol particles into the atmosphere. We propose to analyze the aerosol composition of plumes emitted by different indus-

trial stacks using PRISMA (PRecursore IperSpettrale della Missione Applicativa) satellite hyperspectral observations. Three

industrial sites have been observed: a coal-fired power plant in Matla, South Africa (imaged on September 25, 2021), a steel

plant in Wuhan, China (March 24, 2021), and gas flaring at an oil extraction site in Hassi Messaoud, Algeria (July 9, 2021).5

Below-plume surface reflectances are constrained using a combination of PRISMA and Sentinel-2/MSI images. The radiative

transfer simulations are performed for each scene including the surface, background atmosphere, and plume optical properties.

The plume aerosol optical thickness (AOT), particle radius, volume of coarse mode aerosol and soot are then retrieved within

the plumes following an optimal estimation framework. The mean plume retrieved AOT at 500 nm ranges between 0.27 and

1.27 and the median radius between 0.10 µm and 0.12 µm. We found a volume fraction of soot of 3.6% and 10.4% in the10

sinter plant and coal-fired plant plumes, respectively. The mass flow rate of particulate matter at point source estimated by an

integrated mass enhancement method varies from 840±155 g s−1 for the flaring emission to 1348±570 g s−1 at the coal-fired

plant.

1 Introduction

Industrial activities such as metallurgy, coal and oil combustion, cement production and petrochemistry release aerosol particles15

into the atmosphere. The size and the chemical composition of the particles vary according to the the combustion or industrial

processes. Fine particles emitted by coal-fired plant (Huang et al., 2017; Saarnio et al., 2014; Linnik et al., 2019; Zhang et al.,

2004) or steel factories (Oravisjärvi et al., 2003; Mbengue et al., 2017; Dall’Osto et al., 2008; Weitkamp et al., 2005; Tsai et al.,

2007) are generally enriched in heavy metals. Fine particles are also composed of inorganic matter such as sulfate, nitrate and

chloride (Riffault et al., 2015; Brock et al., 2003) and PAH or various organics emitted during incomplete combustion (Leoni20

et al., 2016). The aformentioned toxic elements released by industries or power plants cause adverse heath effects (Pope and

Dockery, 2006; Pope et al., 2015; Brook et al., 2010; Bagate et al., 2006) and damages to the environment (Minkina et al.,

2020). Regulations on industrial emissions has led to a reduction in emissions (eg. Directive 2010/75/EU). However, emissions

standards and the degree to which they are enforced varies geographically among both high- and low-to-medium income
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countries. Although monitoring networks dedicated to the survey of particulate matter atmospheric concentrations exist, the25

geographical coverage of such networks also varies geographically.

The operational monitoring of aerosol emissions by stationary industrial point sources can benefit from satellite imagery.

Heavy industries often use stacks to emit and disperse hot air, particulate matter and gaseous pollutants into the atmosphere

that form visible plumes. Stack plumes can be observed from space using dedicated VIS-SWIR camera however the retrieval

of their aerosol content and properties remains a challenge. Retrieval algorithms (Calassou et al., 2021; Philippets et al.,30

2018; Foucher et al., 2019) have been developed for the characterization of industrial stack plume using airborne VIS-SWIR

hyperspectral imagery. The method proposed by Calassou et al. (2021) relies on an optimal estimation method (Rodgers, 2000)

for estimating the plume aerosol optical depth and aerosol modal radius. The algorithm introduces the use of Sentinel-2/MSI

VIS-SWIR images in order to evaluate the surface reflectance. We propose in this paper to apply this methodology to PRISMA

(PRecursore IperSpettrale della Missione Applicativa) hyperspectral acquisitions over selected industrial emitors around the35

world.

The selected industrial sites are presented in the following section along with a literature review of the aerosol properties

that could be expected in their stack plumes. We analyse the ability of the proposed methodology to detect the aerosol plume

associated to stack emission and to retrieve the aerosol optical properties within the plume. The estimation of the particulate

mass flow rate emitted by the stacks is also analyzed.40

2 Selection of point source industrial sites

2.1 Coal-fired power plant

Coal-fired plants emit a mixture of different size of aerosol particles. Particles emitted from coal combustion are formed by pri-

mary emission (without phase change) and through nucleation, condensation and coagulation of vaporized species (Ninomiya

et al., 2004; Saarnio et al., 2014). Ash formed during pulverized coal combustion has a bi-modal size distribution (Wu et al.,45

1999) resulting from different formation processes and influenced by char composition (Baxter, 1992; Kleinhans et al., 2018).

Several clean-up techniques (e.g. electrostatic precipitator or wet flue gas desulfurization) are implemented at facility-level in

order to mitigate toxic and particulate matter emissions (Bhanarkar et al., 2008). The implementation of mitigation techniques

differs upon national regulations (Xu et al., 2016). Early airborne measurements of the aerosol size distribution within the

plume of a coal-fired plants (Cantrell and Whitby, 1978; Richards et al., 1981) have shown nuclei smaller than 0.03 µm, an50

accumulation mode between 0.1 µm and 1.0 µm, and a coarse mode between 2.0 µm and 7.0 µm mainly composed of fly ash.

Ehrlich et al. (2007) have found a coarse mode between 6 µm and 7 µm while recent observations in smokestack plumes of

coal-fired plants in South Korea (Shin et al., 2022) indicate a coarse mode of particles having a diameter between 2.25 µm and

4.50 µm. Shin et al. (2022); Ehrlich et al. (2007) have observed an accumulation mode with an aerodynamic diameter of 0.6 µm

and geometrical standard deviation of 1.3. The mass fraction of the fine mode aerosol is between 48% and 62% (Saarnio et al.,55

2014; Ehrlich et al., 2007). The aerosol fine fraction emitted by coal-fired plant is mainly composed of water-soluble species

like SO2−
4 (21 %) and Ca (26 %) (Saarnio et al., 2014).
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Figure 1. PRISMA acquisition over Matla power station on 12th February 2022.

The power station of Matla (S26◦ 16′ 52.8′′,E29◦ 8′ 29.4′′) is located at Kriel, Mpumalanga, South Africa. The power station

own by ESKOM has an installed capacity of 6×600MW units. The planned retirement is between 2030 and 2034. The

PRISMA image acquired on 12th February 2022 over Matla (Figure 1) shows a distinct aerosol plume advected over a vegetated60

area following a N-E axis.

2.2 Sinter plant

An iron and steel producing site is a complex of related plants that emit both stack and fugitive particulate matter. The sintering

process is a major source of particulate matter and heavy metals. A sinter plant emits particles that are greater in quantity and

finer in particle size than other steelmaking emissions (Abreu et al., 2015). Particles are composed of SO−4
2 , NO3, Na, K, Mg65

and Ca2+, NH+
4 and trace metals (Almeida et al., 2015; Sylvestre et al., 2017). The chemical profile of particles emitted by a

sinter stack is enriched in K+, Cl−, Na and Pb (Hleis et al., 2013). Black carbon (BC) and organic carbon are also detected in

the sinter stack emissions (Tsai et al., 2007; Guinot et al., 2016). Following Leoni et al. (2016) the aerosol size distribution is

composed of three modes having aerodynamic diameters of 0.1 µm, 0.6 µm and 6 µm, respectively. The fine mode fraction can

be estimed between 30 % et 65 % based on the PM fractions measured by Ehrlich et al. (2007) and Almeida et al. (2015).70

China produces about half of the world’s steel (Bo et al., 2021). The emission of air pollutant by the steel industry in

China has been responsible for air quality degradation and human health problems leading to the introduction of strengthened

emission standards (Tang et al., 2020). Wuhan Iron and Steel Co., Ltd. (N30◦ 38′ 24′′, E114◦ 27′ 36′′) is an integrated steel plant
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in Wuhan, Hubei province in China. Its nominal crude steel capacity is 15,910 t/year. The factory is located in a peri-urban

zone composed of residential areas and agricultural plots.75

The plume observed on PRISMA image on 24th march of 2021 (Figure 2) is located at the East of the steelmaking industry

and move northeastward. The landscape is heterogeneous, being a mix of residential housing and fields.

Figure 2. PRISMA acquisition over Wuhan (China) on 24th March 2021.

2.3 Oil flaring

Flaring is the act of burning off excess gas from oil wells. Flaring happens for economical reasons when excess gas can’t be

stored and sent elsewhere or for security reason. Flaring from oil wells (also called upstream flaring or flaring of associated80

gas) is a significant source of greenhouse gases, aerosol particles and precursors of particles (Klimont et al., 2017).

The incomplete combustion of the flared gas produces soot consisting of mass-fractal-like aggregates of BC containing

nanoscale spherules (Fung, 1990). The associated emission factor for BC ranges between 0.13 gm−3 (Schwarz et al., 2015;

Weyant et al., 2016) to 1.6 gm−3 gas flared (Stohl et al., 2013). Flared gas volumes in terms of methane equivalent are

globally estimated using the method proposed by Elvidge et al. (2016) and based on VIIRS flare detection (Elvidge et al.,85

2013). However the BC emission factor can vary significantly between different oil and gas field (Huang and Fu, 2016). BC

strongly absorbs visible light (Bond and Bergstrom, 2006; Bond et al., 2013). Its density is estimated between 1.7 gm−3

(Kondo et al., 2011) and 1.9 g cm−3 (Medalia and Richards, 1972; Janzen, 1980). The diameter of soot particle emitted by

flaring ranges between 10 nm to 200 nm and most commonly lies between 10 nm to 50 nm (Fawole et al., 2016).

4



Figure 3. PRISMA acquisition over Hassi Messaoud (Algeria) on 9th July 2021.

Hassi Messaoud oil field (N31◦ 80′, E6◦ 5′) is located in Ouargla province in Algeria. It’s production is centered on 56000m3 d−1.90

Hassi Messaoud is a hotspot of gas flaring in the world and an anomalous point source of methane (Lauvaux et al., 2022; Guan-

ter et al., 2021; Varon et al., 2021). A PRISMA image was acquired on 9th July 2021 at 11:00 LT showing 3 distinct plumes, 2

localed south of the main city and one in the north. The plumes are easily detectable due to the high contrast between the dark

smoke and the bright reflective desertic landscape. The northern plume (Figure 3) has a northwest orientation, a length of 3 km

and an area of 2 km2. This plume is emitted by 4 flares.95

3 Retrieval process

3.1 Satellite data and pre-processing

PRISMA mission was launched in March 2019 by the Italian Space Agency for a duration of 5 years. The standard size of

a single image is 30 × 30 km with a ground sampling distance of 30 m. PRISMA is flying a Sun-synchroneous low Earth

orbit at an altitude of 615 km with a local time of equator crossing on descending node at 10:30 (Cogliati et al., 2021). The100

hyperspectral imaging spectrometer onboard PRISMA covers the nominal 400-2500 nm spectral range with a sampling interval

between 11 to 15 nm. PRISMA hyspectral data have been used to detect methane plumes and to quantify methane emission

due to oil extraction (Guanter et al., 2021) and carbon dioxyde emission by power plants (Cusworth et al., 2021).

The aim of the pre-processing is to estimate the surface reflectance below the aerosol plume by a combination of multispectral

SENTINEL-2(S2)/MSI and hyperspectral PRISMA observations. S2/MSI observations are acquired within a few days delay105
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from PRISMA acquisitions. S2/MSI images were acquired on 27 June 2021, 23 March 2021 and 20 February at 11 LT for the

flaring, sinter plant and coal-fired plant study cases, respectively. S2/MSI has 13 spectral bands between 0.4 µm and 2.2 µm.

The pixel resolution is between 10 and 60 m depending on the channel. Both PRISMA and S2/MSI images are first corrected

from background atmospheric effects using COCHISE software (Poutier et al., 2002), a front-end of MODTRAN software.

The atmospheric parameters used for the atmospheric correction are the ones provided by ESA along with the S2/MSI images110

(Main-Knorn et al., 2017). The co-registration between both images is operated by using an optical flow algorithm named

GEFOLKI (Brigot et al., 2016). The hyperspectral reflectances below the plume in the PRISMA image are infered from the

out-of-plume PRISMA reflectances and the S2/MSI images using the Coupled Non-negative Matrix Factorization (CNMF)

technique (Yokoya et al., 2012). The CNMF estimates the hyperspectral surface reflectances below the plume as a linear

combination of hyperspectral endmembers weighted by the S2/MSI reflectances. The hyperspectral endmembers are extracted115

from the hyperspectral image by a vertex composant analysis (VCA) unmixing method (Nascimento and Dias, 2005).

3.2 Direct model

The signal measured by a satellite sensor is usually expressed in radiance (Wsr−1 µm−1 m2). For a flat, homogeneous and

Lambertian ground in a configuration where the environmental effects are neglected, the measured signal can be decomposed

as:120

Ltot = Latm + ρ
(Ed +Es)(Td +Ts)

π(1− ρS)
(1)

where Latm is the atmospheric radiance, i.e. the radiance without interaction with the ground, Ed and Es are respectively the

direct and scattering part of the solar irradiance, Td and Ts are the direct and scattering parts of the atmospheric transmittance,

ρ is the surface reflectance and S is the spherical albedo of the atmosphere (Kaufman et al., 1997; Vermote et al., 1997; Liou,

2002). For convenience, we normalize the solar illumination by converting the Top of Atmosphere (TOA) radiance Ltot into a125

TOA reflectance signal ρTOA. The conversion from radiance to TOA reflectance is performed by the following equation:

ρTOA =
πLtot

ETOAµs
(2)

where ETOA represents the TOA solar irradiance and µs is the cosine of the azimuth solar angle. In the presence of a plume,

all the radiative terms except the surface reflectance ρ are affected.

The direct model associated with pixel i for a spectro-imager is based on the COMANCHE software (Poutier et al., 2002)130

for the calculation of the different terms Latm, Ed, Es, Td, Ts and S under plane and parallel atmospheric hypothesis. A first

calculation is done corresponding to the atmospheric conditions of the acquisition, then a second calculation is necessary to

introduce the aerosol plume radiative impact. To avoid a complex 3D atmospheric model while taking into account the spatial

heterogeneity of the plume concentration, we introduce a dual AOT model. The dual AOT model for a Nadir viewing angle

is illustrated in Figure 4. Besides the AOT associated with pixel i for the upward irradiance and noted δ is associated to the135
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different optical paths in the column above the pixel i (blue lines in Figure 4), a second AOT noted δ∗ for the downward

irradiance. δ∗ is associated to the optical path of the direct solar flux intercepting pixel i surface at ground level (red line in

Figure 4). Thus δ∗ doesn’t correspond to pixel i atmospheric column as illustrated in Figure 4. Depending on the geometry of

the plume (height, thickness and direction) and the solar position, δ∗ can take very heterogeneous values: low values for pixels

at the edge of the plume when the downward flux doesn’t intercept the plume, values close to δ (pixels at the heart of a fairly140

extensive plume) or high values at the edge of the plume when the downward flux crosses the plume at its heart. The final direct

model for pixel of coordinates (xi,yi) with corresponding AOT δ is:

Ltot = Lδ
atm + ρ

(Eδ∗

d +Eδ
s )(T

δ
d +T δ

s )

π(1− ρS)
(3)

Where, Xδ means a calculation of X including a plume homogeneous plane parallele layer associated to the AOT value δ.

Our assumption is that these two parameters can be estimated independently using only the radiance observed at pixel i at145

sensor level: δ is associated with the extinction and scattering (reflection) properties of the plume while δ∗ is only associated

with the extinction properties of the aerosol plume.

Figure 4. Schematic representation of the interaction of solar radiation with a particle plume emitted by a stack.

3.3 Optimal estimation formalism

The optimal estimation method (OEM) is a regularized matrix inverse method based on Bayes’ theorem (Rodgers, 2000). The

measured spectral radiance vector y is modelled as a vector-valued function:150

y = F (x)+ ϵ (4)
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where F is the forward model, ϵ the modelling noise and x the state vector. The forward model F accounts for the atmosphere,

instrument, surface and plume aerosol properties.

The optimal estimation uses an iterative approach that minimizes a cost function χ given by:

χ= (x−xa)
TS−1

a (x−xa)+ (y−Kx)TS−1
ϵ (y−Kx) (5)155

The Jacobian matrix of the problem K is built using a Look-Up-Table (LUT) of radiative transfer simulations calculated

with MODTRAN (Berk et al., 2014) at each iteration. The state vector is limited to the aerosol plume parameters and composed

of the AOTs at 550 nm (δ550 and δ∗550), the median radius of the accumulation mode (rmedian), the volume proportion of the

coarse mode in the size distribution (Vcoarse) and the volume proportion of carbonaceous particles in the accumulation mode

(Vsoot). Associated with each parameter of x, a prior distribution is given by the state vector xa and the prior uncertainties in160

the variance-covariance matrix Sa.

The matrix Sϵ contains both the measurement uncertainties Sy and the uncertainties of the model parameters that are not

retrieved, Sb. Sb includes the different uncertainties due to: (i) the reconstruction of the surface reflectances under the plume

with the CNMF, (ii) the water vapor concentration in the atmosphere and (iii) the background aerosol visibility. The uncer-

tainties coming from the surface reflectances are obtained by calculating the spatial standard deviation for each wavelength of165

the hyperspectral spectrum for pixels outside the spatial footprint of the plume (firstly visually identified). The uncertainties

due to the water vapor concentration and the background aerosol visibility are empirically fixed based on a literature review

of hyperspectral instrument retrievals (Bhatia et al., 2018; Rodger, 2011; Yang et al., 2017). For water vapor, the uncertainties

can be as low as a few % but a more realistic 10% is retained. The uncertainty of the background aerosol visibily is set to 5 km.

The uncertainties of the unknown in the model b are projected on the state space by approximating these uncertainties to the170

first order thanks to Kb, the Jacobian matrix containing the partial derivatives associated to these parameters. The observation

uncertainties is given by:

Sϵ = Sy +KT
b S

−1
b Kb (6)

The cost function χ is minimized using the Levenberg-Marquardt (LM) algorithm. At each iteration the state vector xi is

updated by:175

xi+1 = xi +(KTS−1
ϵ K +S−1

a × (1+ γ))−1

× [KTS−1
ϵ K(y−Kx)+S−1

a (x−xa)]. (7)

where γ is a regularization term allowing to adjust the step size of the LM algorithm.

The uncertainties associated to the posterior state vector x̂ are contained in the variance-covariance matrix Ŝ given by:

Ŝ = (S−1
a +KTS−1

ϵ K)−1 (8)
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Table 1. Prior information fine mode aerosol median radius rm, model type and volume fraction Vc. Std is the standard deviation of the

lognormal mode.

rm (std.) type Vc (%) Vsoot (%)

flaring 0.065 (1.5) soot 52 100

sinter plant 0.13 (1.4) sulfate + soot 62 0

coal-fired plant 0.18 (1.5) sulfate + soot 52 0

The averaging kernel matrix is used for the purpose of error analysis. The averaging kernel matrix A can be defined analyti-180

cally as the product of the Jacobian matrix K and the gain matrix G.

G= (KTS−1
ϵ +S−1

a )−1KTS−1
ϵ (9)

The different terms of A can also be defined as the partial derivative ∂x̂/∂x∗ representing the variation of the posterior state

vector x̂ with respect to the changes of the true state x∗. The diagonal elements of A are the degrees of freedom (DOF) of

the retrieved parameter. DOF evaluate the independence of each restitution to the prior constraint and range between 0 (totally185

depend on the prior vector) to 1 (totally dependent on the measurements).

3.4 Aerosol models

The size distribution of the aerosol models is bi-modal and includes an accumulation (fine) and a coarse mode. The refractive

index of the accumulation mode is defined as an internal mixture between the refractive index of a scattering (sulfate) and

an absorbing aerosol (soot) from the OPAC database (Hess et al., 1998). Prior information for the aerosol models is given190

in Table 1. The prior aerosol models and associated uncertainties are established following the literature review presented in

section 2. The literature review proposes a range of aerodynamic diameters for the accumulation modes and partial information

on the width of the size distribution. The aerodynamic diameter is set to 0.22 µm, 0.67 µm and 0.60 µm for the flaring, sinter

plan, and coal-fired plant respectively. Coarse mode for the sinter and coal-fired emissions is simulated as a dust-like non-

spherical aerosol using an axis ratio of 2 (Mishchenko et al., 1997; Dubovik et al., 2002). The physical radius of the coarse195

mode is set to 0.5 µm (standard deviation of 2.0). The aerosol optical properties are simulated using the MOPSMAP T-matrix

algorithm (Gasteiger and Wiegner, 2018). Prior estimate of the coarse mode fraction is based on reported particulate mass

fraction. For flaring emission, as there is no reported value for Vc, we have fixed the prior value to the one of the coal-fired

plant.

The simulated atmosphere contains a stack plume having a thickness of 100m (Leoni et al., 2016) and a base at 50m above200

the ground. The plume height is defined empirically however it has a negligible impact on the forward model simulations. The

direct simulation are performed at the spectral resolution of PRISMA for the ranges 420 nm to 870 nm, 1000 nm to 1090 nm,

1190 nm to 1290 nm, 1530 nm to 1710 nm and 2080 nm to 2400 nm.
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3.5 Retrieval of mass flow rate

The pixel-by-pixel columnar mass density ∆Ω (in gm−2) of the plume is given as the ratio between δ and the mass extinction205

efficiency αext (Hand and Malm, 2007). αext (at 550 nm wavelength) is a function of the retrieved aerosol model parameters

given by the state vector x.

The uncertainties on ∆Ω are estimated using the posterior uncertainties on δ and αext. ∆Ω is then used to estimate the

mass flow rate at the point source. The different methods developed to estimate the mass flow rate from satellite imagery can

be classified in four families: inversion methods using Gaussian plumes (Bovensmann et al., 2010), the so-called source pixel210

methods (Jacob et al., 2016), the cross-sectional methods also called the cross sectional flux method (Tratt et al., 2011, 2014;

Krings et al., 2011, 2013) and the integrated mass enhancement method (Varon et al., 2018, 2021; Frankenberg et al., 2016).

The integrated mass enhancement (IME) method overcomes the shortcomings of the previously presented methods with respect

to the configuration of the studied data, i.e. a plume image for which the knowledge of the wind comes from large mesh

meteorological data and for which the knowledge of the stability of the atmosphere is unknown to us. IME for a given pixel j215

of area Aj is given by:

IME =

N∑
j=1

∆ΩjAj , (10)

The mass flow rate Q (in g s−1) is the ratio between the IME and a characteristic resident time of the particles in the detected

plume. The resident time can be expressed as the ratio between an effective wind speed Ueff and a characteristic length of the

plume L (Frankenberg et al., 2016; Varon et al., 2018), leading to:220

Q=
Ueff

L
× IME, (11)

As stated by Varon et al. (2018), Ueff and L must be viewed as operational parameters to be related to the observed wind

speed and plume extent. The definition of L will influence the relationship between Ueff and the 10-m wind. L is usually

defined as equal to the square root of the area of the detected pixels. In the case of constant direction propagation over time, L

can be chosen as equal to the length of a study area in the plume propagation direction and Ueff as an average wind speed. In225

this configuration, the IME calculation is equivalent to the calculation of an average cross sectional flux.

The flow rate uncertainties δQ are estimated using the relative uncertainties on Ueff and ∆Ω. Ueff and its relative error are

estimated from the ensemble model of ERA-5 re-analysis.
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4 Retrieval of aerosol optical properties in industrial stack plumes

4.1 Gas flaring230

In the case of the Hassi Messaoud gas flare, the surface reflectances are easily reconstructed by CNMF due to a homogeneous

ground surface. Moreover, the high contrast between the plume and the ground favors the detection of the plume.

The DOFs associated with the retrieved AOT and median radius, as well as the number of iterations in the LM algorithm are

used to detect the spatial footprint of the plume. The DOF on the AOT is equal to 0.99 on average and the values are spatially

homogeneous in the plume. Applying a threshold of 0.5 on the median radius DOF (Figure 5a) highlights the footprint of235

the plume, except near the source. The mask obtained with DOF>0.5 keeps the pixels whose retrievals are more than 50%

independent of the prior constraint.

The number of iterations of LM algorithm also gives a good proxy for the plume footprint. The visual comparison between

the color composition (Figure 3) and the number of iterations of LM algorithm (Figure 5b) indicates that most of the plume

is found within 10 iterations. We note that at the source level, the LM algorithm does not converge probably due to the flame240

thermal emission. Indeed, the temperature of this flame is estimated to 1750K according to Skytruth1 and leads to a significant

emission in the SWIR that is not accounted for in our model. The masks given by DOF > 0.5 and the number of iterations < 10

are combined (multiplied by each other) to give a plume mask (Figure 5c). The resulting plume detection corresponds well to

the visual inspection of the corresponding color composition (Figure 3).
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Figure 5. OEM results on the flaring plume: (a) median radius DOF, (b) Number of iterations in the LM algorithm, (c) combined mask

The AOT is a component of the state vector in the optimal estimation procedure. Its value is retrieved by minimizing the cost245

function that integrates the look-up tables computed using the direct radiative transfer model and the aerosol optical properties

(section 3.3 and 3.4). The initial value of AOT is set to 0.5 with an uncertainty of 1.0. The retrieved AOT map (Figure 6a)

reflects the plume structure and shows several maxima in the plume, near the point source and downwind. The mean plume

AOT is equal to 0.27 (see summary Table 3) to which is associated a mean statistical uncertainty equal to 0.011.

1Skytruth website : https://skytruth.org/flaring/
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Some artifacts that are due to CNMF recontruction are located near the road and correspond to sandy structures that have250

moved between the PRISMA and the S2/MSI acquisitions.
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Figure 6. Estimation of (a) aerosol optical thickness at 550 nm, (b) fine mode median radius and (c) coarse mode fraction in the flaring

plume.

The retrieved radii (Figure 6b) are rather homogeneous with a spatial variation of 0.03 µm and on average equal to 0.12 µm

with a statistical uncertainty of 0.02 µm. The final Vc (Figure 6c) converges to 46 % with a spatial standard deviation of 13%.

4.2 Sinter plant

Plume delineation for the sinter and the coal-fired plants follows the same procedure based on DOF and iteration number that255

has explained for the gas flaring case (section 4.1). In the case of the sinter plant, one must pay attention to the geometry of

illumination of the scene. Indeed, we can observe in Figure 2 that the plume propagation direction is 20◦ with respect to the

geographical North. The solar azimuth angle θs is 144◦. So the angular difference between the direction of illumination of the

sun and the direction of the plume is 56◦. For a plume having a vertical extent of ≈ 500m, the distance between the crossing

points of the downward flux and the upward flux is almost equal to the widest part of the plume. Consequently, an additional260

AOT associated to Ed (see section 3.2 and discussion section hereafter) is also retrieved. Moreover, a variable fraction of soot

particles in the accumulation mode (volume fraction Vsoot) is introduced in the state vector to better fit the aerosol hyperspectral

signal.

The ascending part of the plume appears, as in the case of Hassi Messaoud, to be the densest (Figure 7) The plume puffs are

perceptible through AOT local maxima.265
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Figure 7. Estimation of (a) aerosol optical thickness at 550 nm, (b) fine mode median radius and (c) coarse mode fraction and (d) volume of

soot in the sinter plant plume.
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Finally, the other retrieved parameters of the state vector are spatially homogeneous. The median radius of the accumulation

mode is on average equal to 0.11 ± 0.02 µm in the pixels present in the plume mask. The statistical uncertainties associated

with these radii are equal to 0.05 µm. The volume proportion of the coarse mode is 59% (with a statistical uncertainty of 14%),

being 20% higher than the measurements found in the literature.

4.3 Coal-fired plant270

For the coal-fired plant case study, the plume mask detection fails to recover the entire plume (Figure 8). Only the densest part

of the plume near the source, as well as another area of vegetation with dark and homogeneous surface reflectances (Figure 8)

are identified. The partial detection can be due to a poor reconstruction of the vegetated soils in the visible part of the spectrum

because of the growth of the vegetation between the PRISMA and S2/MSI images (8 days). For every pixel where the surface

reconstruction error is high there is a low sensitivity to aerosol optical depth. So optically thin plumes (AOT below 0.7) can’t275

be detected.

1 km
0.0

0.5

1.0

1.5

2.0

Figure 8. Optical thickness map at 550 nm obtained from the OEM. A local study of the OEM retrievals is performed at points A and B.

To illustrate the variability in the retrieval conditions, we have selected two areas of 3×3 pixels in each detected zone (A

and B in Figure 8). Point A is located in a dense part of the plume, while point B is located downwind. Both points are located

over vegetated areas. Retrieved AOT at point A is 1.8 while it is 0.8 further downwind at point B (see Table 2). The sensitivity

of the retrieval model to the spectral variations induced by the different physical parameters is proportional to the particle280

concentration in the plume. We first observe that the degrees of freedom associated with the radius are higher for point A
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(0.65) than for point B (0.51), indicating that the point B retrieved radius is strongly constrained by its prior information than at

point A. The aerosol radius at point B is equal to 0.20 µm, which is relatively close to the prior value, while the retrieved radius

for point A is equal to 0.10 µm Finally, it is interesting to note that the retrieved AOT associated with the descending solar flux

(δ∗) is much lower at point B than point A due to its shifted position with respect to the propagation axis of the plume.285

Table 2. Aerosol optical parameters in the coal-fired plant plume at selected location A and B (see Figure 8).

radius (µm) δ δ∗ Vsoot(%) Vcoarse(%) DOFradius

A 0.10 1.86 2.05 9.25 84 0.65

B 0.20 0.80 0.12 13.04 67 0.51

5 Mass flow rate

The surface mass concentration ∆Ω (Figure 9) is estimated using the retrieved AOT and the mass extinction efficiency (see

section 3.5). The detection limit (borders of the plumes) is around 0.1 gm−2. The surface mass concentration is up to 2 gm−2 in

the case of the coal-fired plant plume. The surface mass calculated in the densest areas of plumes corresponds to an atmospheric

concentration between 1mgm−3 and about 10mgm−3 for a plume vertical extent of 100m. The mass flow rate is estimated290

in selected parts of the plumes after visual inspection (red rectangles in Figure 9). The selected areas are outside the rising part

of the plume. The effective wind speed Ueff is equal to 7m s−1, 3m s−1 and 2m s−1 for the flaring emission, sinter plant and

coal-fired plant, respectively. The flow rate is splitted into the fine and coarse mode components (Table 3). The total estimated

flow rate varies from 840 g s−1 for the flaring emission to 1348 g s−1 for the coal-fired plant emission. The uncertainties are

discussed in the section below (section 6.1).295
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Figure 9. Plume surface mass (in g ·m−2) retrieved for (a) flaring emission, (b) sinter plant emission, and (c) coal-fired plant emission. Red

rectangles are the selected area for mass flow rate estimation.
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Table 3. Average retrieved plume aerosol properties.The aerosol optical thickness δ and the mass extinction efficiency αext are given at

550 nm.

retrieved aerosol parameters

flaring sinter coal-fired

rmedian (µm) 0.12 0.11 0.10

δ (no unit) 0.27 0.94 1.27

Vcoarse (%) 46 59 81

Vsoot (%) 100.0 3.6 10.4

αext (m2 g−1) 3.07 1.20 0.99

mass flow rate (g s−1)

Fine mode 394 383 131

Coarse mode 446 965 926

Total 840 ±150 1348 ±570 1057 ±366

6 Discussion

6.1 Uncertainty analysis

Figure 10. Relative error on the surface reflectance reconstruction for the flaring site (green), sinter plant (orange) and coal-fired plant (blue).
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The surface reflectance reconstruction below the plume is affected by (i) the co-registration process, (ii) the time lag between

PRISMA and S2/MSI acquisitions (iii) and the endmembers used for the CNMF. For heterogeneous scenes, like the sinter plant

and the coal-fired plant, the endmembers are less representative than for homogeneous scenes like the flaring site. Although the300

surface reflectances are high around the flaring site (≈ 0.1), the associated error is 2 times lower than for the 2 others studied

cases (Figure 10). The relative error on the surface reflectance reaches to 60% at 500 nm in the case of the coal-fired plant

(Figure 10). The vegetation growth between the PRISMA and S2/MSI acquisition in the case of the coal-fired plant might be

responsible for such a drastic impact on the reflectance reconstruction.

The error associated to the surface reflectance estimation and to the aerosol properties retrieval process (given by the matrix305

Ŝ in equation 8) are used to estimate the uncertainties on the plume surface mass estimate. The surface mass uncertainties

(δ∆Ω) is estimated by using the uncertainties on the AOT (hereinafter δ(AOT )) and on the mass extinction efficiency (δαext).

δ∆Ω=

√(
δ(AOT )

AOT

)2

+

(
δαext

αext

)2

×∆Ω (12)

and δαext can be decomposed into:

δαext =

√√√√ n∑
i=1

(
∂αext

∂x̂i

)2

Ŝi,i ×αext (13)310

where i represents the values of all the parameters of the posterior state vector x̂ except AOT and Ŝi,i the variances of each of

these parameters present on the diagonal of the variance-covariance matrix Ŝ. The Ŝ matrix also contains the surface reflectance

CNMF error. The estimated uncertainties on the retrieved parameters are given in Table 4.

Table 4. Uncertainties on the retrieved aerosol parameters.

flaring sinter coal-fired

δ∆Ω (mgm−2) 0.21 4.78 3.39

δαext (m2 g−1) 0.62 0.47 0.27

δrm (µm) 0.02 0.05 0.02

δ(AOT ) (no unit) 0.01 0.35 0.08

δVc (%) 12.18 14.03 3.82

δVsoot (%) - 6.15 2.64

The contribution of the error on the retrieved parameters to the surface mass uncertainty depends on the case study. When

the surface reflectances are poorly reconstructed (sinter and coal-fired plant) the AOT error contribution is around 40% while315

the contribution is 7% for the flaring site (Table 5). However the error associated to the retrieval of the coarse mode fraction

in the case of the flaring emission drastically impacts the error on the surface mass concentration (75%). The error associated
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to the estimation of the soot fraction in the accumulation mode has rather a weak impact on final error on the surface mass

concentration. Indeed the soot fraction is rather low (see Table 3) for the sinter and coal-fired plant plumes.

The error on the flow rate is due to the cumulative error on the effective wind speed and the surface mass concentration320

(see Table 5, bottom part). The wind uncertainties are equal to 1m s−1, 0.5m s−1 and 0.5m s−1 for the flaring emission, the

sinter and coal-fired plant, respectively. The wind speed uncertainty represents a substantial contribution to flow rate variance,

which could be decreased thanks to a better knowledge of local atmospheric conditions. In the case of the sinter plant, the

variance in the flow rate estimate is still largely dominated by the large error on the surface mass concentration (see Table 4).

The uncertainties on the total mass flow rate, given the uncertainties on the surface mass concentration and the effective wind325

speed are estimated to 155 g s−1, 570 g s−1 and 366 g s−1 for the gas flaring, sinter plant and coal-fired plant, respectively (also

reported in Table 3).

Another source of error on the estimation of the flow rate comes from the definition of Ueff in the IME method. The

relationship between Ueff and the 10-m wind speed depends on the measurements condition, on the method used to estimate

the flow rate and on the intrument specifications (Varon et al., 2018). Based on large-eddy simulations for methane plumes, an330

underestimation of the actual flow rate by 30 to 50% can be expected (Nesme et al., 2021; Varon et al., 2021).

Table 5. Relative contribution (in %) of parameters uncertainty to the surface mass variance and to the flow rate variance.

contribution to surface mass variance

flaring sinter coal-fired

rm (%) 18 24 35

δ (%) 7 46 40

Vc (%) 75 28 22

Vsoot (%) - 2 3

contribution to flow rate variance

Wind (%) 34 7 40

∆Ω (%) 66 93 60

6.2 Concentration and flow rate

As we have selected remarkable plumes, the flow rate must be seen as top estimations. The total flow rate calculated for

each site is in the upper range of expected values, being about 1 kg s−1. The sites are large scale facilities in countries having

legislation less restrictive than the European standards. For Hassi Messaoud flaring site, the flares emit 0.10 billion cubic meters335

(BCM) of gas in 2021 according to SkyTruth. Applying the emission factor of Caseiro et al. (2020), the corresponding annual

emission of fine particles is 108 g. Assuming that these flares emit continuously over the year, the average flow rate associated

with a flare is 3 g s−1. The fine mode flow rate associated with one flare is 98.5 g s−1 (the plume is generated by 4 flares),

being about 2 orders of magnitude greater than the average flow rate. By analyzing 130 images of S2-A and S2-B over Hassi
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Messaoud for which the flares were visible, we have detected only 5 plumes having the same size or even larger. Consequently,340

the case study of Hassi Messaoud is probably an uncommom phenomenom.

The impact on the air quality in the surrounding of the facilities will drastically depends on the ventilation of the plume and

how it vertically disperses. The detection limit of 0.1 g/m2 for the visible plume corresponds to an atmospheric concentration

of 200 µg/m3 for a plume vertical extent of 500m. The atmospheric concentration is about one order of magnitude above the

50 µg/m3 limit of the EU Directire 2008/50/EC that must not be exceeded more than 35 times during a calendar year. Although345

the proposed method is not dedicated to the monitoring of air quality around the facilities, high spatial resolution observations

of plume transport can provide unique information for understanding the impact of industrial emissions. The main limitation

for an operational survey of plume emissions are the reduced amount of observations due to the cloud occurrence and the

revisit time of the satellite.

7 Conclusion350

We propose an inversion framework to retrieve instantaneous particulate matter emission by industrial stacks using hyper-

spectral PRISMA satellite images. Aerosol plume satellite retrieval over continental surfaces is a challenge and we had to

implement different steps to unravel the impact of the underlying surface and the impact of the particle size, concentration and

type on the satellite signal. At first, the fusion algorithm with operational S2/MSI images provides an estimate of the surface

reflectance and its uncertainties below the plume. The radiative impact of the plume on a background atmosphere is then sim-355

ulated for varying plume particle median radius, aerosol optical thickness and volume proportion of soot also considering the

geometrical conditions of the scene. The uncertainties associated to the surface reflectance estimation are propagated to the

final aerosol solution using the OEM formalism. The use of OEM allows to retrieve a plume mask and the associated aerosol

properties. Setting up the prior aerosol model for each type of emission was achieved based on available but scarce literature

review. The inversion was tested over 3 types of industries: a coal-fired plant, a sinter plant and an oil flaring site. In most of360

the cases not all the plume area can be investigated and the mass flow rate was estimated by selecting limited portions of the

plume. Moreover, the relationship between actual wind speed and IME effective wind speed would required further investi-

gations considering the uncertainties on the retrieved surface mass as well as the plume dynamic. Nevertheless, the retrieved

aerosol physical characteristics and the estimated instantaneous emission flow rate are within the expected range for each type

of emission.365

The synergy between PRISMA and S2/MSI could be improved in several ways. Using a time series of S2/MSI rather than

the nearest image in time could improve the estimation of the surface reflectance variability. Moreover, the aerosol model as

retrieved using the hyperspectral imager could be prescribed to S2/MSI with the aim of providing regular acquisition of the

plume time evolution. Lastly, going down to a 10 m spatial resolution could improve the detection of narrow plumes provided

that the surface is rather homogeneous.370

A comprehensive validation exercise of the retrieved parameters would require in situ measurement of the mass float rate

by aerosol size fraction, aerosol size distribution and chemical composition within the plume as well as the plume extent.
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However, due to the large difficulties of accessing industrial infrastructures, the validation of the retrieved mass flow rate or

aerosol properties remains virtually impossible for our case studies. At least a consistency check could be tested between soot

emission by flares based on the stack emission temperature and the retrieved soot flow rate. And as a perspective, the use of375

high spatial resolution satellite for aerosol retrievals on industrial sites is also promising for the improvement of top-down

emission inventories as the number of hyper spectral satellite missions is expected to increase in the near future.
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