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Abstract. A simultaneous deployment of Doppler, tem-
perature, and water-vapor lidars is able to provide pro-
files of molecular destruction rates and turbulent kinetic en-
ergy (TKE) dissipation in the convective boundary layer
(CBL). Horizontal wind profiles and profiles of vertical wind,5

temperature, and moisture fluctuations are combined, and
transversal temporal autocovariance functions (ACFs) are
determined for deriving the dissipation and molecular de-
struction rates. These are fundamental loss terms in the TKE
as well as the potential temperature and mixing ratio variance10

equations. These ACFs are fitted to their theoretical shapes
and coefficients in the inertial subrange. Error bars are esti-
mated by a propagation of noise errors. Sophisticated analy-
ses of the ACFs are performed in order to choose the correct
range of lags of the fits for fitting their theoretical shapes15

in the inertial subrange as well as for minimizing system-
atic errors due to temporal and spatial averaging and micro-
and mesoscale circulations. We demonstrate that we achieve
very consistent results of the derived profiles of turbulent
variables regardless of whether 1 or 10 s time resolutions20

are used. We also show that the temporal and spatial length
scales of the fluctuations in vertical wind, moisture, and po-
tential temperature are similar with a spatial integral scale of
≈ 160 m at least in the mixed layer (ML). The profiles of the
molecular destruction rates show a maximum in the interfa-25

cial layer (IL) and reach values of εm ' 7×10−4 g2 kg−2 s−1

for mixing ratio and εθ ' 1.6× 10−3 K2 s−1 for potential
temperature. In contrast, the maximum of the TKE dissipa-
tion is reached in the ML and amounts to ' 10−2 m2 s−3.
We also demonstrate that the vertical wind ACF coefficient 30

kw ∝ w′
2 and the TKE dissipation ε ∝

(
w′2

)3/2
. For the

molecular destruction rates, we show that εm ∝m′2
(
w′2

)1/2

and εθ ∝ θ ′2
(
w′2

)1/2
. These equations can be used for pa-

rameterizations of ε, εm, and εθ . All noise error bars are de-
rived by error propagation and are small enough to compare 35

the results with previous observations and large-eddy sim-
ulations. The results agree well with previous observations
but show more detailed structures in the IL. Consequently,
the synergy resulting from this new combination of active
remote sensors enables the profiling of turbulent variables 40

such as integral scales, variances, TKE dissipation, and the
molecular destruction rates as well as deriving relationships
between them. The results can be used for the parameteri-
zation of turbulent variables, TKE budget analyses, and the
verification of large-eddy simulations. 45
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1 Introduction

Improved understanding and modeling of turbulent transport
processes in the convective boundary layer (CBL) require
in-depth studies of the budgets of second- and other higher-
order moments of atmospheric variables. Key variables in-5

clude turbulent kinetic energy (TKE) and water-vapor and
temperature variances; the latter is in terms of absolute hu-
midity, mixing ratio, or specific humidity variances as well
as temperature or potential temperature variances. The anal-
ysis of TKE and variance budgets and their components is10

important for the verification of weather forecast, climate,
and Earth system models. Furthermore, the representation of
budgets of second-order moments of atmospheric variables is
essential for the parameterization of turbulent transport pro-
cesses in mesoscale models, in which the turbulence is not15

explicitly resolved, or for the parameterization of subgrid-
scale cloud processes.

In a turbulent flow, eddy diameters span a range of length
scales (Tennekes and Lumley, 1972). For a turbulent bound-
ary layer, the largest eddies, which have the largest velocity20

fluctuations and thus the largest contributions to the velocity
variances and the TKE, generally scale with the depth of that
layer. These large eddies break down into smaller and smaller
eddies. Although the resulting small eddies contribute less
to the variances and have much less energy, they are impor-25

tant because when they get small enough, the fluctuations
are damped by molecular viscosity in such a way that they
become the major sink for TKE in the budget equation. We
refer to this sink as the molecular destruction of variances or
dissipation of TKE. The sources of turbulence thus occur at30

the largest turbulent scales, but the sink of the turbulence is
at the smallest scales. Whether TKE increases or decreases
depends on the balance between the sources and the sink,
so establishing the magnitude of the sink is key to proper
modeling of turbulent mixing effects. A common approach35

to turbulence parameterization (TP) in mesoscale numerical
weather prediction (NWP) models is to solve budget equa-
tions for TKE and other scalar variances, presented later in
this paper. This procedure requires predictive equations for
those variances, including temperature (or potential tempera-40

ture) and water-vapor specific humidity or mixing ratio. As is
the case for TKE, the generation of scalar variance occurs at
larger turbulence scales, but the major sink is due to molec-
ular damping or “destruction” at the smallest scales. These
rates must be parameterized in mesoscale NWP models.45

Large-eddy and direct numerical simulation (LES and
DNS) models predict turbulence fields by explicitly resolv-
ing turbulent processes into the inertial subrange. Resolving
these processes avoids the need for TPs at their spatial grid
increments (/ 100 m), but it is still necessary to parameter-50

ize the remaining subgrid-scale processes, such as the TKE
dissipation and molecular destruction rates. Therefore, from
the mesoscale to the turbulent scale, vertical profiling of TKE
dissipation and destruction rates of molecular variances are

very useful. On the mesoscale, these measurements can be 55

used for the verification of TPs. On the smaller scales, these
observations are very important for the verification of the per-
formance of LES and DNS.

This verification should be performed under a range of
different meteorological conditions, from the surface layer 60

(SL), through the mixed layer (ML) and the interfacial layer
(IL) at the CBL top to the lower troposphere. Previous stud-
ies, as early as the 1970s, mainly used in situ measurements
(Caughey and Palmer, 1979; Lenschow et al., 1980). These
sensors were operated on research aircraft; in the future, 65

it should also be possible to perform these measurements
on unoccupied aerial vehicles (UAVs). However, turbulence
measurements from aircraft and UAVs are limited with re-
spect to duration and vertical range, and there can be ques-
tions as to where the observations are located relative to the 70

CBL top (Turner et al., 2014a). Furthermore, it is difficult to
measure instantaneous vertical profiles of mean and turbu-
lent variables, thereby limiting their applications for process
studies and model verification.

A powerful alternative is the operation and application of 75

ground-based active remote systems, which are considered
in this work. In the SL, scanning lidar systems were success-
fully combined to derive high-resolution profiles for study-
ing Monin–Obukhov similarity theory (Späth et al., 2022),
but close to the surface, the temporal–spatial resolutions of 80

the lidar systems are not sufficient to resolve the major part
of the turbulent fluctuations. Due to recent technological ad-
vances, Doppler lidar (DL) systems are now available for
24/7 measurements of horizontal and vertical wind profiles
in the CBL. The range and time resolutions of line-of-sight 85

(LOS) velocity measurements with DLs are high enough to
resolve turbulent processes above the SL from the ML to the
IL. Recently, it has been demonstrated that conically scan-
ning DLs are capable of measuring horizontal wind profiles
with high vertical and temporal resolutions as well as ac- 90

curacy (Berg et al., 2017). Six-beam staring modes of DLs
have been developed with even greater information content,
as TKE, momentum flux, and horizontal wind profiles can
be determined simultaneously (Bonin et al., 2017). Further-
more, vertically staring DLs have been extensively used for 95

the measurement of vertical wind (w) statistics (Lenschow
et al., 2000; Wulfmeyer and Janjić, 2005; Hogan et al., 2009;
Lothon et al., 2009; Tucker et al., 2009; Ansmann et al.,
2010; Lenschow et al., 2012) and TKE dissipation profiles
(Frehlich and Cornman, 2002; O’Connor et al., 2010; Ba- 100

nakh et al., 2017; Bodini et al., 2018; Wildmann et al., 2019).
For the measurement of scalar variances and their destruc-

tion rates, high-resolution vertical profiling of temperature
and moisture is also possible with active remote sensing.
Sufficient spatial–temporal resolutions can be reached with 105

water-vapor differential absorption lidar (WVDIAL) and
water-vapor Raman lidar (WVRL). For WVDIAL, this was
demonstrated in Wulfmeyer (1999), Lenschow et al. (2000),
Späth et al. (2016), Muppa et al. (2016), and Wulfmeyer



V. Wulfmeyer et al.: Profiling molecular destruction rates and TKE dissipation 3

et al. (2016). For WVRL, this performance was confirmed in
Wulfmeyer et al. (2010), Turner et al. (2014a, b), Wulfmeyer
et al. (2018), and Osman et al. (2019).

With respect to temperature measurements, a break-
through has recently been achieved using the temperature5

rotational Raman lidar (TRRL) technique. The first demon-
stration of high-resolution temperature profiling during day-
time in the CBL, from which higher-order moments could
be derived, was presented in Hammann et al. (2015) and
Behrendt et al. (2015). Similarly to this work, these pub-10

lications were based on High Definition Clouds and Pre-
cipitation (HD(CP)2) Observational Prototype Experiment
(HOPE) (Macke et al., 2017) data. The first combined mea-
surements of sensible and latent heat flux profiles can be
found in Behrendt et al. (2020). Furthermore, Lange et al.15

(2019) showed that by using a compact design, even quasi-
operational measurements down to a vertical resolution of
7.5 m and a temporal resolution of 10 s are possible so that it
is straightforward to analyze temperature variance profiles in
the daytime CBL. Therefore, the combination of DL, WVRL20

or WVDIAL, and TRRL can be used for extensive turbu-
lence studies based on their single profiles or a combina-
tion of these. Further details about the combined WV and
T Raman lidar methodology are found in Wulfmeyer and
Behrendt (2021).25

DL measurements are available from observatories such as
the Atmospheric Radiation Measurement (ARM) program’s
Southern Great Plains (SGP) site (Sisterson et al., 2016),
where DLs have been operated for several years in an al-
ternating conically scanning and vertically pointing mode30

(Berg et al., 2017); the Land–Atmosphere Feedback Obser-
vatory (LAFO; see https://lafo.uni-hohenheim.de/en, last ac-
cess: 10 February 2024; Späth et al., 2023); and other ob-
servatories. However, combined measurements with coinci-
dent WVDIAL, WVRL, and TRRL are sparse. Currently,35

to our knowledge, the longest operational data set that has
simultaneous high-resolution DL and WVRL observations
was collected at the SGP site. Further dedicated data sets
were collected during various field campaigns such as HOPE
and the Land–Atmosphere Feedback Experiment (LAFE)40

(Wulfmeyer et al., 2018).
In this work, we present the derivation of TKE dissipa-

tion and molecular destruction rate profiles from the HOPE
campaign. This study is organized as follows: in Sect. 2,
we present the field campaign and the data set used in this45

study. We revisit the TKE, water-vapor, and temperature bud-
get equations and discuss the terms containing the dissipa-
tion rates in Sect. 3. Some examples of their parameteriza-
tions are presented. In Sect. 4, we show how we derived and
evaluated the transverse temporal autocovariance functions50

(ACFs) and the power spectra of the lidar time series in or-
der to derive profiles of variances, the ACF coefficients, and
the integral timescales CE1dependent on temporal and spa-
tial resolutions. Examples of the profiles of TKE dissipation
and molecular destruction rates using our method for a case55

during HOPE are presented in Sect. 5. These results contain
detailed error analyses. In Sect. 6, the results are discussed
and compared with previous methods and corresponding re-
sults. A summary and an outlook are given in Sect. 7.

2 HOPE campaign: description of the case and the 60

data sets

We present analyses of turbulence profiles from intensive ob-
servation period (IOP) 5 of HOPE, which was performed in
spring 2013, close to the city of Jülich in Germany. IOP5
was executed on 20 April 2013. The data set was collected 65

with the WVDIAL and TRRL of the Institute of Physics
and Meteorology (IPM) at the University of Hohenheim
(UHOH) and with a DL operated by the Karlsruhe Insti-
tute of Technology (KIT) between 11:30–12:30 UTC. The
lidar systems were located at a site close to the village of 70

Hambach near the Jülich Research Centre at 50◦53′50.56′′ N
and 6◦27′50.39′′ E, 110 m above sea level. During this time
period, the atmosphere was cloud-free and contained only
a few aerosol layers in the free troposphere. Around lo-
cal noon, the surface sensible heat flux was ≈ 250 W m−2, 75

which corresponds to a kinematic heat flux of 0.2 K m s−1,
whereas the latent heat flux was ≈ 90 W m−2. The Obukhov
length was L0 =−126 m and the convective velocity scale
w∗ ' 0.7 m s−1, leading to a quasi-steady CBL depth of zi ≈
1280 m. Consequently, according to Lothon et al. (2006), we 80

were dealing with a weak convective case as ζ =−zi/L0 '

10 was small. Further details of the data sets and the meteo-
rological conditions are presented in Wulfmeyer et al. (2016)
and Muppa et al. (2016).

The UHOH WVDIAL is based on a Ti:sapphire laser 85

transmitter tuned to ≈ 820 nm, which can be operated up to
an average power of 10 W, in combination with a very ef-
ficient receiver. The transmitter fulfills all requirements for
very accurate absolute humidity measurements due to its ex-
cellent stability and the narrow bandwidth of the laser spec- 90

trum (Wagner et al., 2013). The receiver consists of an 80 cm
3D scanning telescope; a high-transmission, narrow-band in-
terference filter; and an avalanche photodiode. This system
permits the measurement of water-vapor profiles with a tem-
poral resolution of 1–10 s and a spatial resolution of 15– 95

150 m in the lower troposphere. Further details are found in
Späth et al. (2016).

The UHOH TRRL is a combined water-vapor and tem-
perature rotational Raman lidar. The laser transmitter is a
frequency-tripled, injection-seeded Nd:YAG laser, which de- 100

livers up to 15 W average power at 355 nm. The heart of
this system is a very efficient high-transmission series of in-
terference filters in front of four sensitive photomultipliers,
which collect four signals: the elastic backscatter, two chan-
nels sensitive to the rotational Raman scattering by nitrogen 105

and oxygen, and the vibrational–rotational Raman channel of
water vapor. In this work, we focus on the temperature pro-

https://lafo.uni-hohenheim.de/en
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files measured with the TRRL. Hammann et al. (2015) and
Behrendt et al. (2015, 2020) showed that this system is capa-
ble of daytime temperature profiling with a temporal resolu-
tion of 10 s and a spatial resolution of 30–150 m in the lower
troposphere.5

At the Hambach site, KIT operated a coherent DL based
on an Er:YAG 1.6 µm laser transmitter (WindTracer WTX
from Lockheed Martin Coherent Technologies, Inc.). This
DL measured the line-of-sight wind velocity with a tempo-
ral resolution of 1–10 s and an effective range resolution of10

≈ 60 m (Träumner et al., 2011). The DL measurements cov-
ered the CBL up to the top of the boundary layer and partly
above, depending on the aerosol particle concentration. Mean
horizontal wind and vertical wind profiles were determined
by alternating between scanning modes and a vertically star-15

ing mode (Maurer et al., 2016). The DL ran in the vertical
mode for 56 min and then switched to a scanning mode with
conical scans at elevation angles of 5 and 75◦ with a rota-
tion speed of 6◦ per second followed by three slice scans
at azimuth positions shifted by about 120◦. Thus, an aver-20

aging time of ≈ 240 s was used for deriving a horizontal
wind profile. Centered in the time period used for the turbu-
lence profiling, this scan was performed between 12:00:10–
12:04:30 UTC. Due to the high signal-to-noise ratio (SNR)
of the KIT DL in the CBL, vertical wind profiles can be de-25

termined with resolutions of 1 s and 50 m.
The WVDIAL, TRRL, and DL data were processed con-

sistently with temporal resolutions of either 1 s or 10 s from
11:30–12:30 UTC. All measurements started at 350 m above
ground level (a.g.l.). We maintained a vertical resolution of30

50 m in the DL vertical wind profiles, as the resulting SNR
was good enough for accurate measurements up to the IL.
The WVDIAL and TRRL data were processed with vertical
resolutions of 70 and 100 m, respectively, in order to main-
tain an acceptable SNR up to the IL. For the WVDIAL, we35

evaluated data with 1 and 10 s resolutions to study changes
in the ACFs and the power spectra, whereas the TRRL data
could only be evaluated with 10 s due to the lower SNR. The
TRRL data were overlap corrected up to 800 m (Hammann
et al., 2015) and the WVDIAL data up to 300 m with con-40

stant correction functions. Afterwards, the WVDIAL abso-
lute humidity measurements and the TRRL temperature mea-
surements were transformed into specific humidity s or mix-
ing ratio m and potential temperature θ using a hydrostatic
pressure profile. The analysis could be performed using ei-45

ther s or m; however, as the absolute humidity was only a
few g m−3, the relative difference between m and s was in
the sub-percentage region. We preferred to derive and ana-
lyze profiles of m and θ for the comparison with previous
measurements as well as with LES and mesoscale model50

output, as these are the typical prognostic variables. Finally,
all data were gridded to a vertical range grid of 15 m from
350 to 1600 m a.g.l. Also, radiosonde profiles at 11:00 and
13:00 UTC were included in the horizontal wind analyses in
order to close measurement gaps of the DL in the IL.55

3 Vertical profiles of TKE dissipation and molecular
destruction rates

3.1 Governing equations and parameterizations

The TKE dissipation and the molecular destruction rates are
the sink or loss terms in the TKE and mixing ratio and poten- 60

tial temperature variance budget equations. TKE is defined as
e = (u′

2
+ v′

2
+w′

2
)/2, where u′, v′, and w′ are the fluctu-

ations of the three wind components. Under horizontally ho-
mogeneous conditions, the TKE prognostic equation reads

∂e

∂t
'−

∂

∂z

[
w′
(
e+

p′

ρ0

)]
− u′w′

∂u

∂z
− v′w′

∂v

∂z

+
g

θ0
w′θ ′v − ε, (1) 65

where ε is the TKE dissipation, p′ is the atmospheric pres-
sure fluctuation, ρ0 is air density, u′w′ and v′w′ are the mo-
mentum fluxes, g is the acceleration due to gravity, θ0 is the
potential temperature, andw′θ ′v represents the buoyancy flux.
In this version of Eq. (1), the horizontal gradients of fluxes 70

are neglected.
The TKE dissipation can be parameterized in multiple

ways; see, e.g., Deardorff (1973) and Mellor and Yamada
(1974). For instance, Nakanishi and Niino (2009) represent
it as 75

ε ≈
e3/2

B1 l
, (2)

where B1 is a closure coefficient and l is the mixing length
or grid scale. Of course, this is only one example; there are
many other parameterizations available. In any case, if ε and
TKE can be measured simultaneously, it is possible to evalu- 80

ate this parameterization.
The budgets for the water-vapor mixing ratio variance m′2

and the potential temperature variance θ ′2, respectively, are
given by

∂m′2

∂t
'−2w′m′

∂m

∂z
−
∂

∂z
w′m′2− 2εm, (3) 85

∂θ ′2

∂t
'−2w′θ ′

∂θ

∂z
−
∂

∂z
w′θ ′2− 2εθ (4)

under horizontally homogeneous conditions as well. Here,
εm and εθ are the molecular destruction rates of m′2 and θ ′2,
respectively. Our objective here is to directly measure pro-
files of εm and εθ . Their quantification becomes more inter- 90

esting as higher-order turbulence closure schemes are under
development where the temperature and mixing ratio vari-
ance budgets have to be studied in great detail, including
all loss terms. Examples are the Mellor–Yamada–Nakanishi–
Niino (MYNN) eddy diffusivity mass flux (EDMF) scheme 95

(Nakanishi and Niino, 2009; Olson et al., 2019) and the
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Cloud Layers Unified By Binormals (CLUBB) scheme (Go-
laz et al., 2002; Huang et al., 2022). Furthermore, the study
of variance budgets is required for the parameterization of
subgrid clouds in mesoscale models (Van Weverberg et al.,
2016). In LES and DNS, the molecular destruction rates are5

not parameterized, but it is assumed that these are resolved or
negligible. Thus, a comparison of their simulations and our
measurements can be used to study the subgrid-scale closure
of these models.

3.2 Derivation of dissipation and destruction rate10

profiles

Wulfmeyer et al. (2016) introduced a method to measure ver-
tical profiles of ε, εm, and εθ . For the sake of completeness,
we summarize the most important steps here. We start with
the derivation of the structure function D(r) and its transfor-15

mation in the temporal domain using Taylor’s hypothesis (see
also Tatarski, 1961, and Monin and Yaglom, 1975). The rela-
tion between the structure function and the ACF is presented
and discussed in more detail in Wulfmeyer et al. (2016).

If the turbulence is stationary and isotropic and the tem-20

poral and vertical resolutions of the lidar observations are
high enough to resolve the inertial subrange, then the result-
ing transversal temporal ACF Ai(τ ) with lag τ of the fluc-
tuations in vertical wind w′, mixing ratio m′, and potential
temperature θ ′ at each height range z shows a dependence of25

τ 2/3 and can be written as follows:

Aw′(τ )= w
′2− kw τ

2/3
= w′2− ε2/3V 2/3 τ 2/3, (5)

Am′(τ )=m
′2− km τ

2/3

=m′2− 0.5a2
m

εm

ε1/3 V
2/3 τ 2/3, (6)

Aθ ′(τ )= θ
′2− kθ τ

2/3
= θ ′2− 0.5a2

θ

εθ

ε1/3 V
2/3 τ 2/3, (7)

where the constants a2
m and a2

θ are expected to be in the range30

of 2.8–3.2 (Stull, 1988). The determination of the variances
and the ACF coefficient ki can be achieved by the procedures
introduced in Lenschow et al. (2000) and Wulfmeyer et al.
(2016). As the lidar measurements are performed in the tem-
poral domain, the horizontal wind profile V must also be de-35

termined to derive the dissipation and the molecular destruc-
tion rates.

Generally, lidar-based measurements of the ACFs are in-
fluenced by system noise and spatial and temporal filtering
effects. Therefore, it is reasonable to study the ACFs using40

the following transformations:

ln
(
w′2−Aw′(τ )

)
=

2
3

ln(τ )+ ln(kw), (8)

ln
(
m′2−Am′(τ )

)
=

2
3

ln(τ )+ ln(km), (9)

ln
(
θ ′2−Aθ ′(τ )

)
=

2
3

ln(τ )+ ln(kθ ). (10)

Alternatively, the transformations 45

kw =
w′2−Aw′(τ )

τ 2/3 , (11)

km =
m′2−Am′(τ )

τ 2/3 , (12)

kθ =
θ ′2−Aθ ′(τ )

τ 2/3 (13)

can be used to identify the most reasonable range of the num-
ber of lags to derive the fit (we refer to this number as the “fit 50

lags”) because in this region the ACF coefficients should be
constant. Consequently, Eqs. (8)–(10) and (11)–(13) can be
applied for lags≥ 1 to investigate whether the lidar measure-
ments agree with the theoretical shape of the ACFs and in
what range of lags the ACF coefficients should be derived 55

CE2dependently of the time resolution (see Sect. 4).
The ACFs should also be studied with respect to their tem-

poral and spatial integral scales Tw and Rw for w′, Tm and
Rm for m′, and Tθ and Rθ for θ ′. This can be accomplished
using the following relationships: 60

Tw =
2
5

(√
w′2

)3
1
ε V

, Rw =
2
5

(√
w′2

)3
1
ε

(14)

Tm =
2
√

8
5a3

m

(√
m′2

)3√
ε

ε3
m

1
V
,

Rm =
2
√

8
5a3

m

(√
m′2

)3√
ε

ε3
m

(15)

Tθ =
2
√

8
5a3

θ

(√
θ ′2

)3√
ε

ε3
θ

1
V
,

Rθ =
2
√

8
5a3

θ

(√
θ ′2

)3√
ε

ε3
θ

. (16)

Note that the integral timescales can be directly derived from
the ACFs using the following equation (Wulfmeyer et al., 65

2016):

Ti =
2
5

(
varatm,i

ki

)3/2

, (17)

where Ti is the integral timescale of the atmospheric vari-
able of interest i, varatm,i is its atmospheric variance, and
ki is the corresponding ACF coefficient (see Eqs. 5–7). This 70

equation turned out to be the most robust (i.e., the least sen-
sitive) to system noise. The variances can be measured with
DL, WVDIAL, WVRL, and TRRL, and the horizontal wind
profiles can be measured with conically scanning DL or six-
beam staring DL. Obviously, this combination of instruments 75

and measurement configurations is necessary but also com-
prehensive for deriving the TKE dissipation and molecular
destruction rates.
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Solving Eqs. (5)–(7) or (14)–(16) for these variables yields

ε =
k

3/2
w

V
(18)

or

ε =
2
5

(√
w′2

)3

V Tw
=

2
5

(√
w′2

)3

Rw

(19)

for ε,5

εm =
2km
√
kw

a2
m

1
V

(20)

or

εm =
4
5

m′2
√
w′2

a2
m T 2/3

m T 1/3
w V

=
4
5

m′2
√
w′2

a2
mR2/3

m R1/3
w

(21)

for εm, and finally

εθ =
2kθ
√
kw

a2
θ

1
V

(22)10

or

εθ =
4
5

θ ′2
√
w′2

a2
θ T

2/3
θ T 1/3

w V
=

4
5

θ ′2
√
w′2

a2
θ R

2/3
θ R1/3

w

(23)

for εθ . Using Eqs. (20) and (22) we also achieve

km

kθ
'
εm

εθ
. (24)

In this work, we apply Eqs. (18), (20), and (22) for the deriva-15

tion of the dissipation and the molecular destruction rates, as
it is the most direct way to derive and to combine the required
structure coefficients.

4 Derivation of profiles of TKE dissipation and
molecular destruction rates of water-vapor and20

temperature variances

4.1 Horizontal wind profile

As demonstrated in Eqs. (18)–(23), analyzing the turbulence
profiles using the transversal ACFs or the power spectra re-
quires that the horizontal wind profile be measured simulta-25

neously. We applied and merged two data sources to get the
horizontal wind profile, namely the horizontal wind profiles
derived from conical scans of the KIT DL and radiosonde
wind observations. We used the 3-hourly conical scans per-
formed by the KIT DL between 11:00 and 13:00 UTC and30

the radiosounding at 13:00 UTC to derive a best estimate of
the horizontal wind profile during the period of interest.

Figure 1. Horizontal wind profiles determined from a radiosonde
launch at 13:00 UTC and three conical DL scans. For the soundings
(black bullets), an error of 1 m s−1 was assumed. The errors in the
DL profiles were derived by error propagation of the uncertainty in
radial velocities. The red bullets show the weighted average of these
profiles, which was used for the derivation of turbulence profiles.
The dashed grey line indicates zi .

The results are presented in Fig. 1. The boundary layer
depth zi ' 1280 m was determined using the WVDIAL
backscatter profile statistics and is indicated by the dashed 35

grey line. The 5 min DL-derived wind profiles at 11:00,
12:00, and 13:00 UTC are shown in green, blue, and pink,
with error bars derived from DL radial velocity statistics. The
sounding from 13:00 UTC is shown in black. For this profile,
an error of 1 m s−1 at each height level was assumed. As the 40

SNR of the wind measurements was not good enough to re-
trieve the wind profile in the IL above 1300 m, the informa-
tion of the sounding was taken in this region. A best estimate
of the horizontal wind profile during the turbulence measure-
ment period was derived by using a noise error weighted av- 45

erage of the DL and the radiosonde profiles. The resulting
wind profile and its error estimates are presented by the red
bullets and error bars. This wind profile and its error bars,
gridded to 15 m in the vertical, were used for deriving the dis-
sipation and molecular destruction profiles, as well as the un- 50

certainties in these profiles using standard error propagation
(see also Wulfmeyer et al., 2016, Appendix b.4). The largest
deviation between the wind profiles occurs in the ML. How-
ever, the resulting weighted mean shows reasonable, nearly
constant wind speed in the CBL and a wind-shear-driven in- 55

crease in wind speed in the IL.

4.2 Methodologies and procedures for the
determination of variances and the ACF
coefficients

The determination of the ACF and its coefficients with re- 60

spect to its theoretical shape in the inertial subrange is more
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demanding than the estimation of variances for two reasons.
(1) The difference in the total and the atmospheric variances
around lag 0 has to be determined with high accuracy. (2) A
suitable range of lags for the ACF must be evaluated for de-
riving its coefficient by a fit to the data. The determination5

of this coefficient is influenced by system noise, filter effects
of temporal and vertical averaging, and atmospheric effects,
e.g., the influence of regional meso- or microscale circula-
tions that may influence the fluctuations on the correspond-
ing temporal and spectral scales.10

For the derivation of turbulence profiles we applied Tay-
lor’s hypothesis of frozen turbulence. We assumed that this
was valid, as zi was quasi-steady over our analysis period,
the CBL was nearly well mixed, the temporal and vertical
variabilities in the horizontal wind profile V (z) were rather15

small, and the mean horizontal wind speed in the CBL was
high with U ≈ 8 m s−1.

As described above, the basic data sets were time–height
cross sections ofw,m, and θ . The following systematic steps
were performed for the data analyses:20

– gridding of all data to vertical resolutions of 15 m and
temporal resolutions of 1 or 10 s;

– despiking, detrending, and high-pass filtering of the data
at each height z;

– derivation of the ACFs Aw′(τ,z), Am′(τ,z), and25

Aθ ′(τ,z);

– application of the functions defined in Eqs. (8)–(10) and
(11)–(13) for lags ≥ 1 to identify the inertial subranges
and to investigate over what range of time lags the ACFs
should be fitted;30

– fit of the ACFs over this range of lags to determine at-
mospheric variances, the ACF coefficients, and their er-
rors as a function of height;

– characterization of vertical and temporal filter effects
and its influence on the shape of the ACFs;35

– determination of the profiles of the integral timescales;

– corresponding derivation and evaluation of the power
spectra and detection of the inertial subranges for con-
sistency with respect to filter effects and system noise in
the frequency domain;40

– combination of the profiles of the ACF coefficients and
the horizontal wind profile for deriving profiles of TKE
dissipation and molecular destruction rates including er-
ror propagation.

The time gridding of the data at each height for the chosen45

averaging time (1 or 10 s) was performed by block averag-
ing all data points that fell into the corresponding time grid

window. Then, the time-gridded data were vertically interpo-
lated to 15 m. Note that this does not change the real verti-
cal resolution of the data, which was 60 m for w′ (Träumner 50

et al., 2011) and 100 m for θ ′ (Hammann et al., 2015). For
the m′ of the WVDIAL, we applied a Savitzky–Golay filter
width of 135 m (Späth et al., 2016). We estimated the full
width at half maximum (FWHM) of an impulse response at
the effective filter resolution, which is about 70 % of the fil- 55

ter width or ≈ 95 m in this case. For the WVDIAL and the
TRRL, the vertical resolutions were limited by system noise.
At each height, despiking of the hour-long time series was
performed by identifying as outliers all data points that fell
outside of a ±5 standard deviation window around the time 60

series median. Only for the w data did we keep the outlier
threshold fixed above 1200 m at ±5 standard deviations of
the 1190 m data. Otherwise, because of the large noise of
w in the entrainment zone, the outlier threshold would have
gotten so large that many noise peaks would not have been 65

filtered out. This procedure was repeated iteratively for the
remaining data points until no more outliers were found. The
outliers were set to not a number (NaN). Due to the high
quality of the lidar data analyzed here, despiking mainly be-
came necessary in regions with low SNR, for instance for the 70

WVDIAL and TRRL data in the region of the IL and above.
The remaining time series were detrended (subtraction of the
time series mean for the w′ data and subtraction of a linear
fit from the time series for the m′ and θ ′ data) and then high-
pass filtered using a 30 min cutoff. 75

Figure 2 presents the resulting time–height cross section
of w′ and m′ with 1 s resolutions and θ ′ with 10 s resolu-
tion. The gap in the w′ data around 12:00 UTC is due to the
switch to the conical scan mode for horizontal wind profil-
ing. The data confirm the general challenge of coherent DL 80

vertical wind measurements in the IL and above because the
SNR of this type of DL depends strongly on the presence of
aerosol particles. Moreover, the upper panel demonstrates the
high resolution and SNR of vertical wind measurements in
the CBL. The structures of the turbulent updrafts and down- 85

drafts in the CBL are resolved with great detail. These co-
herent structures are also clearly visible in the time–height
cross sections for m′ and θ ′, although with higher noise lev-
els. The increase inm′

2
and θ ′

2
from the ML to the IL with a

maximum in the latter is already visible. m′
2

is smaller than 90

θ ′
2

in the ML. The expected high vertical correlation of the
data and the correlation between the data can be recognized,
particularly for the large updrafts.

4.3 Transverse temporal autocovariance functions and
spectra for vertical wind 95

After the determination of the ACFs of the time series, we
studied their shapes for all three variables of interest.

We started with the examination of Aw′(τ ) because the w′

data provided the best resolution and SNR in the ML. The
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Figure 2. Time–height cross section of w′ (a, 1 s resolution),m′ (b,
1 s resolution), and θ ′ (c, 10 s resolution). The black areas indicate
measurement gaps or data identified as outliers.

results are presented in Fig. 3 between 350 and 1250 m. The
small deviations between lags 0 and 1 confirm the low noise
level of the w′ measurements. Atmospheric variance associ-
ated with mesoscale features affects the ACFs beginning at
about lag 25 and beyond. This is also visible in the 3D repre-5

sentation of the ACFs, which is presented in Fig. 4. This fig-

Figure 3. Aw′(τ ) for a variety of heights using the 1 s data and
applying Eq. (5).

Figure 4. 3D plot of Aw′(τ,z) based on the 1 s data.

ure highlights one of the advantages of the range-resolved li-
dar measurements because mesoscale influences on the ACFs
can be studied as a function of height. It seems that there is
more micro- to mesoscale influence at heights between 400– 10

600 m, which may be related to wind shear in the horizontal
wind profile at the same height range. However, as these fea-
tures do not influence the ACFs at small lags, a suitable range
of lags can be chosen for the fit of the ACF coefficients in the
inertial subrange. 15

The suitable ranges for the fits of the ACFs can be eval-
uated in more detail using Eqs. (8)–(10) or (11)–(13). The
latter is visualized in Fig. 5 for a height of 545 m. For w′2

around 2.6 m2 s−2, the result for kw is approximately con-
stant for a range between 7 to 25 lags. This result did not 20

change considerably for other heights (not shown) but even
extended to lag 30 at 845 m. We assume that the deviation of
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Figure 5. Example of the evaluation of the range of suitable lags
according to Eq. (11) at a height of 545 m.

the ACF at small lags is due to the spatial filtering of turbu-
lent fluctuations in each range gate of 60 m, as has already
been studied by Frehlich and Cornman (2002). A minimum
fit lag of 7 corresponds well with the approach of Bonin et al.
(2017), who used the along-beam averaging length (60 m in5

our case) divided by the mean horizontal wind speed (8–
9 m s−1 here) as a timescale beyond which volume-averaging
effects can be neglected. Up to about lag 25, no height de-
pendence of the onset of the mesoscale variability was found
so that we identified for this measurement situation an outer10

timescale of turbulence Iout ≈ 25 s, limiting the inertial sub-
range. Therefore, a range of 7 to 25 lags was chosen for the
fits of the ACFs for the 1 s data.

Figure 6 shows the corresponding series of power spectra
Sw′(ν). There is a nearly height-independent spectral maxi-15

mum around 0.003 Hz and another one at 0.01 Hz. For higher
frequencies, the shape of the spectra corresponds very well
with the inertial subrange up to a frequency of νI ≈ 0.1 Hz.
This behavior is nearly height independent. Beyond this fre-
quency, the roll off of the spectra with a steeper slope is very20

likely attributable to the spatial filter effects due to the single-
shot pulse length. Because of the high SNR of the vertical
wind data, it is very useful to perform the vertical wind anal-
yses with a time resolution of 1 s in order to study the ACFs at
small lags, which translates to the shape of the power spec-25

tra close to the Nyquist frequency of TS1νN = 0.5 Hz. This
allows for estimating the loss of w′2 due to the spatial filter-
ing, which is approximately 1 % here. All these effects are
consistent with and can also be detected in the temporal do-
main using the ACFs, as discussed above. Therefore, we rec-30

ommend performing all turbulence analyses in the temporal
domain (i.e., using autovariances) because the Fourier trans-
formation does hardly provide additional information and in-
troduces additional noise due to the transformation process.

Figure 6. Power spectrum Sw′(ν) of the vertical wind fluctuations
on double-logarithmic scales for a variety of heights. The theoretical
−5/3 slope of the inertial subrange is shown as a solid dark blue
line.

It is essential to investigate the sensitivity of the ACFs for 35

both 1 s and 10 s resolutions in order to find out whether the
coarser time resolutions can be used as well.

Figure 7 demonstrates that the ACFs agree very well and
that it is possible to use either 1 s or 10 s resolution; however,
the number of lags for the fit of the ACFs has to be adapted. 40

Except for situations where a nonlinear dependency of noise
errors is reached, 1 s data analyses are preferred because in
this case the resulting noise errors of the turbulence data are
independent of the time resolution, but the inertial subrange
is better resolved. As mentioned above, a range of 7–25 lags 45

was used for the 1 s resolution data, corresponding to about
1–3 lags for 10 s data. The total measured variance at lag 0
was smaller for 10 s data because the atmospheric variance at
scales between 1 and 10 s is not captured, and the noise vari-
ance was slightly lower because of the additional time aver- 50

aging. Figure 7 also shows that the fits of the ACFs using the
chosen lags of 7–25 for the 1 s data (colored solid lines) re-
sulted in very good agreement with the measured ACFs. For
instance, at 845 m, the fit provided an estimated atmospheric
variance of 1.62TS2 m2 s−1 and kw ' 0.11 m2 s−8/3. 55

Using these lag ranges for fitting the ACFs, we determined
the profiles of the integral timescale Tw and the variance of
the vertical wind fluctuations for both the 1 s and the 10 s
data. The results are presented in Fig. 8. The Tw profiles
were derived with Eq. (17), which turned out to be most ro- 60

bust, and agree very well in the ML within a few seconds and
amount here to Tw ' 20 s. There seems to be a reduction in
Tw in the IL, which is particularly strong for the 10 s results
for Tw. However, it is very likely that this was due to system-
atic effects by the reduction in data points after quality con- 65

trol. The reduction was less for the 1 s Tw data where more
data points were available in the IL and resulted in an esti-
mate of Tw ' 16 s in this region. These considerations show

Volker Wulfmeyer
Durchstreichen

Volker Wulfmeyer
Eingefügter Text
83

Volker Wulfmeyer
Notiz
This should be changed. I made the error to take the measurement value of this profile at lag 0 but it should be the extrapolated value to lag 0 of the dark red line fit (see Fig. 7). This is not 1.62 but 1.83 m^2 s^-2
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Figure 7. Comparison of Aw′ using 1 or 10 s resolutions of the ver-
tical wind speed data. Large symbols: 10 s resolution, smaller sym-
bols: 1 s resolution. Colored solid lines: fits of the theoretical shapes
of the ACFs using the 1 s data.

Figure 8. Small dark green and large green circles: profiles of the
variance of the vertical velocity fluctuations for 1 and 10 s data,
respectively, including noise error bars. Small pink and large red
squares: the corresponding results for the integral timescale Tw .

that for this type of Doppler lidar and its measurement per-
formance, the 1 s data should be used for turbulence analyses.

A similar conclusion can be derived for the profiles of
the vertical wind variance w′2. The error bars for the vari-
ance were derived according to Wulfmeyer et al. (2016), Ap-5

pendix b.4. The variance profiles agree very well, except in
the lower ML where the 1 s data derive a slightly higher vari-
ance. In the IL, the 10 s data are noisier than for Tw, which
we attribute again to fewer data points and resulting poorer
sampling statistics. In this region, we derived a decay of10

the vertical wind variance, resulting in values of w′2 ' 0.4–

0.6 m2 s−2. The maximum of the variance profile is located
at 530 m, which corresponds to 0.4 z/zi . The variance maxi-
mum is approximately 2.5 m2 s−2. This is in good agreement
with previous results (Lenschow et al., 2000; Lothon et al., 15

2006, 2009). These results confirm that the 1 s data should be
preferred for vertical wind turbulence analyses, and, there-
fore, we proceeded with these data for the derivation of tur-
bulence profiles.

4.4 Transverse temporal autocovariance functions and 20

spectra for water-vapor mixing ratio

For the mixing ratio fluctuations, we are challenged by the
trade-off between the accuracy and resolution of the WV-
DIAL measurements. The nonlinear reduction in system
noise as a function of the spatial resolutions is explained in 25

Wulfmeyer et al. (2015, Eq. 28), whereas the reduction in
noise due to temporal averaging behaves the same as for the
DL for high SNR and also becomes nonlinear at low SNR,
for example due to background signal subtraction. To our
knowledge, the UHOH WVDIAL is currently the active re- 30

mote sensing system that measures water-vapor profiles and
their fluctuations with the highest resolution and accuracy
(Späth et al., 2016; Behrendt et al., 2020). However, it is still
necessary to find the best compromise with respect to spatial
and temporal resolutions to measure the mixing ratio fluc- 35

tuations. Therefore, we investigated the measurements using
1 and 10 s resolutions. However, we kept a vertical resolu-
tion of 100 m (see Sect. 4.2). At higher vertical resolution,
the data became too noisy, and we wanted to avoid stronger
spatial filtering effects at coarser resolution. 40

The ACFs are presented in Fig. 9. This figure confirms that
at 1 s resolution, the measurements in the near range are not
strongly influenced by noise, but the variance in the WVMR
is also very small. In the ML, the mixing ratio variance in-
creases and reaches a maximum in the IL (in contrast to the 45

vertical wind variance), but this is also true for the system
noise. Fortunately, the combination of 1 or 10 s temporal and
70 m spatial resolutions provides a compromise so that the
atmospheric variance can still be recovered throughout the
CBL. This is reflected in Fig. 9. Although the total variances 50

of the time series and the contribution of the noise variances
are visible in the marked increase at lag 0, it is still possible to
separate noise and atmospheric variance by the extrapolation
of the ACFs to lag 0.

The comparison between the ACFs computed using the 1 55

and 10 s resolutions is presented in Fig. 10. As for the ver-
tical wind data, a range of 7–25 lags for the 1 s data and
1–3 lags for the 10 s data turned out to be optimal for the
fit of the ACFs. The fits using the 1 s data are also shown
in this plot up to lag 30 and agree well with the theoreti- 60

cal shapes of the ACFs. The power spectra for the 1 s data
are shown in Fig. 11. There is an apparent deviation from
the expected slope in the inertial subrange at high frequen-
cies. However, these deviations are almost entirely due to the
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Figure 9. Am′(τ ) for a variety of heights using Eq. (6). Note that
the ACFs are shown on a logarithmic scale in order to capture the
large dynamic range of the WVMR variances CE3 that depend on
height.

Figure 10. Comparison of Am′(τ ) for three heights using either 1 s
or 10 s data. Solid lines: fits of the theoretical shapes of the ACFs.

high noise levels, which led to a deviation from the −5/3-
slope on the logarithmic scale. This is substantiated by the
fits (solid green, dark red, and grey lines) of the spectra to the
Kolmogorov function ν−5/3 (solid blue line) in the inertial
subrange plus the noise floor. These fits show that the WV-5

DIAL still resolves atmospheric fluctuations over the 0.005–
0.05 Hz range, but these are masked by the larger noise floor.
Therefore, in all cases, the inertial subrange is resolved but
this is less obvious due to the higher noise level. This is par-
ticularly important for the critical measurements in the IL10

(i.e., the data in green at 1145 m) where the molecular de-
struction rate reaches a maximum, which at least should be
quantified by this measurement method.

Using these lag ranges for fitting the ACFs, we determined
the profiles of the integral timescale Tm and the variance of15

Figure 11. Power spectra of the WVMR fluctuations using 1 s data.
The 10 s spectra are very consistent (not shown). The fits of the
Kolmogorov spectrum with the noise floor are also shown.

the WVMR fluctuation m′2 for both the 1 s and the 10 s data.
Again, the error bars for the variance were derived accord-
ing to Wulfmeyer et al. (2016, Appendix b.4). The results are
presented in Fig. 12. Both data sets are plotted on a log scale
to visualize the strong nonlinear increase in m′2 in the ML 20

and the capability of the WVDIAL to recover this large dy-
namic range of atmospheric variances. In the ML, the deter-
mination of Tm is strongly influenced by system noise at low
variance values because in this case km is also small, result-
ing in a large uncertainty in Tm (see Eq. 17). Nevertheless, 25

the 1 and 10 s are consistent within a few seconds. On aver-
age in the ML is Tm ' 20 s similar to the Tw of the vertical
wind. However, in the IL, the 10 s Tm increases significantly
to around 50 s, whereas the 1 s Tm also shows strong fluctu-
ations to very small values. Here, we consider the 10 s data 30

to be more realistic because the noise level of the 1 s data
increases in a nonlinear manner above the CBL so that it is
better to use longer time averages.

The profiles of m′2 using 1 or 10 s data are very consistent
in the entire CBL, confirming our methodological approach 35

to determine m′2 using different time resolutions. Using the
extrapolation of the ACF to lag 0, reasonable estimates of
m′2 are derived even if the inertial subranges are not fully
resolved. Also, over the entire CBL, there is almost no ev-
idence of loss of variance due to temporal filtering effects. 40

With the WVDIAL, it is possible to derive m′2 and its non-
linear increase over nearly 3 orders of magnitude in the ML.
In the IL, m′2 reached a maximum very close to zi . Interest-
ingly, we found two maxima in the m′2 profile, one at 1150
with a value of m′2 ' 0.25 g2 kg−2 and the other one at zi 45

with a value ofm′2 ' 0.75 g2 kg−2. In the following, we used
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Figure 12. Small cyan and large blue circles: profiles of the vari-
ance of the WVMR fluctuations for 1 and 10 s data, respectively.
Small pink and large red squares: the corresponding results for the
integral timescale Tm. The vertical variability in Tm is likely due to
the division by small and noisy values of km (see Eq. 17).

the 1 and 10 s kw profiles in combination with the 10 s km
profiles because the latter provided more robust results in the
IL.

4.5 Transverse temporal autocovariance functions and
spectra for potential temperature5

For the potential temperature fluctuations, it is particularly
difficult to derive structures in the ACF and the power spec-
tra due to the large noise level in the TRRL observations. Al-
though the improvement of TRRL towards the resolution of
temperature fluctuations was substantial in recent years (see,10

e.g., Lange et al., 2019), it is still only possible to study the
data with 10 s resolution. Nevertheless, the WVDIAL data
analyses demonstrated that based on a careful choice of range
bins for the fits, it did not make a large difference to use ei-
ther 1 or 10 s for the determination of variance and temporal15

integral scale profiles. Therefore, we also applied this tech-
nique to the 10 s TRRL data to provide realistic profiles of
Tθ , θ ′2, and kθ .

The corresponding ACFs are presented in Fig. 13, and the
fits to the theoretical shapes of the ACFs for three heights20

are shown in Fig. 14. Over all ranges, the derivation of the
atmospheric temperature variance and the slope of the ACFs
are at the detection limits. This is also visible in the power
spectrum in Fig. 15. A range that corresponds to the inertial
subrange is barely visible. However, this is also not neces-25

sary, as long as the 10 s data contain the major contributions
of θ ′2, as shown for the WVDIAL data.

Using lags 1–3 for fitting the ACFs, we determined the
profiles of the integral timescale Tθ and the variance of the

Figure 13. Aθ ′(τ ) for a variety of heights using Eq. (7) at a resolu-
tion of 10 s.

Figure 14. Aθ ′(τ ) for 10 s at three heights with the corresponding
fits of the theoretical shape of the ACFs.

potential temperature fluctuations. As above, the error bars 30

for the variance were derived according to Wulfmeyer et al.
(2016, Appendix b.4). The results are presented in Fig. 16.
For the same reasons as for Tm, Tθ is strongly affected by
system noise at low variance values. In spite of the large fluc-
tuations, Tθ seems to be larger than Tw and Tm in the lower 35

ML. Our estimate of Tθ ranges between ' 30 s in the ML
and ' 14 s in the IL. In contrast to Tm, there seems to be a
reduction in Tθ from the ML towards the IL. In the majority
of the ML, all T values for w′, m′, and θ ′ are similar for the
1 and 10 s data and range between ' 20–30 s. 40

Using the fits of the ACFs, we are able to detect the ex-
pected small θ ′2 in the ML and its increase to a maximum in
the IL, reaching a statistically significant θ ′2 ' 1.1 K2 very
close to zi . In contrast to m′2, we did not find a strong non-
linear increase in θ ′2 in the ML, but it remained around 45
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Figure 15. Power spectrum Sθ ′(ν) of the potential temperature fluc-
tuations on double-logarithmic scales for a variety of heights. The
theoretical −5/3 slope of the spectra is hardly visible due to the
high noise level of the data and the need to use 10 s data. However,
a large part of the atmospheric variances is still recovered over this
spectral range.

Figure 16. Pink circles: profiles of the variance of the potential tem-
perature fluctuations for 10 s data. Red squares: the corresponding
results for the integral timescale.

' 0.1 K2 over almost the entire part of the ML. As for the
m′2 profile, there seems to be another slight peak in the vari-
ance at 1020 m, which corresponds to approximately 0.8 z/zi
with a value of θ ′2 ' 0.2 K2.

A comparison of the integral length scales is presented in5

Fig. 17. There are strong deviations in the lower ML and
the IL; however, in the center of the ML, the integral length
scales are similar and amount to ' 160 m. As for m′, we ap-
plied the 1 and 10 s kw profiles in combination with the 10 s

Figure 17. Comparison of the integral length scales Rw (small dark
green and large green stars), Rm (small blue and large cyan stars),
and Rθ (red stars), including error bars due to noise error propaga-
tion according to Wulfmeyer et al. (2016, Appendix b.4), adapted to
Ri .

kθ profiles because only the latter provided robust results in 10

the CBL.

5 Profiles of TKE dissipation and molecular
destruction rates

5.1 TKE dissipation

The derivation of the profiles of the ACF coefficient kw and 15

the TKE dissipation ε (see Eq. 18) using the 1 and 10 s data is
presented in Fig. 18. The error bars are based on Wulfmeyer
et al. (2016, Appendix b.4). Similar to w′2, both kw and ε
reach a maximum near 530 m, which corresponds to approx-
imately 0.4 z/zi . Up to this height, likely due to filter and 20

noise effects, the difference between the 1 and 10 s data is the
largest, whereas the results are very similar in the rest of the
ML. At the maximum, ε ' 1× 10−2 m2 s−3 for the 1 s data
and ε ' 8.5× 10−3 m2 s−3 for the 10 s data. At this height,
kw ' 0.19 m2 s−8/3 for the 1 s data and kw ' 0.17 m2 s−8/3

25

for the 10 s data. Both ε and kw decrease towards the IL to
values of around ' 1× 10−3 m2 s−3 and ' 0.04 m2 s−8/3 at
1300 m, respectively. In the IL, as expected from the analy-
ses of the variances and the integral timescales, the 10 s data
showed a high variability, whereas the 1 s data still permitted 30

robust derivations of ε and kw. As also in the ML a more ac-
curate determination of turbulence profiles can be expected
due to the better resolution of the inertial subrange, we used
the 1 s profiles for the derivations of molecular destruction
rates below. 35

For parameterizations of ε, it can be related to the vertical
wind variance profilew′2. The results are presented in Fig. 19
with the theoretical function from Eq. (19). For this fit we
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Figure 18. Small dark green and large light green circles: profiles
of TKE dissipation ε using Eq. (18) derived with 1 and 10 s resolu-
tions, respectively. Small pink and large red squares: corresponding
profiles of the ACF coefficient kw with 1 and 10 s resolutions, re-
spectively.

used all the data and inserted a mean integral length scale
averaged over all data and the entire CBL, which resulted
in Rw ' 162.5 m (see Fig. 17). Note that the averages of Rw

were quite consistent between the 1 s (' 160 m) and 10 s data
(' 165 m) and decreased only by 20 s towards the IL so that5

it was valid to use just an average value for Rw. Thus, we
achieved

ε '
2
5

1
160m

(
w′2

)3/2
, (25)

which turned out to be in excellent agreement with our mea-
surements.10

Further refinements are possible using the observed de-
pendence of Rw on w′2, which is presented in Fig. 20. For
w′2 > 0.5 m s−1, Rw seems to be fairly constant, but it is un-
certain in the IL. It is important to study whether our results
for Rw and its small height dependence are universal so that15

these can also be applied to other measurements or whether it
is necessary to investigate more detailed similarity relation-
ships for Rw in order to derive a more general parameteriza-
tion of ε.

5.2 Profiles of molecular destruction rates20

Using high-resolution profile observations of the water-vapor
mixing ratio m and the potential temperature θ , the equiva-
lent methodology can be applied to derive profiles of the ACF
coefficient and the molecular destruction rates for these two
scalars.25

Figure 19. Small dark green circles: TKE dissipation ε derived with
1 s resolution. Large light green circles: ε derived with 10 s resolu-
tion. Solid black line: fit using Eq. (19) combining all data and using
a mean spatial integral length scale Rw ' 162.5 m.

Figure 20. Dark green diamonds: Rw for 1 s data. Light green dia-
monds: Rw for 10 s data.

5.2.1 Molecular destruction of mixing ratio variance

The derivation of the profiles of the ACF coefficient km and
the mixing ratio molecular destruction rate εm (see Eq. 20) is
presented in Fig. 21. We present only the km profile for 10 s
because it agreed very well with the 1 s profile in the ML, but 30

the 1 s data became unstable and partly negative in the IL.
For the derivation of εm, we used two options, the kw profile
for either 1 s or 10 s. Both resulting profiles are included in
Fig. 21. Similar to m′2, both km and εm maintain the double-
peak structure in the CBL and reach a maximum in the IL 35

very close to zi . At the maximum, km ' 0.05 g2 kg−2 s−2/3

and εm ' 7× 10−4 g2 kg−2 s−1 considering the more robust
results from kw using the 1 s data.
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Figure 21. Small pink and large cyan circles: profiles of εm using
Eq. (20) derived with 1 and 10 s resolutions for kw , respectively.
Large blue squares: profile of km with 10 s resolution.

For a parameterization of εm it is very interesting to relate
it to both m′2 and w′2 using Eq. (21). The results are pre-
sented in Fig. 22. For this comparison we used all the data
and a mean integral length scale of Rm =Rw ' 160 m (see
also Fig. 17) and achieved5

εm '
4

15
1

160m
m′2

√
w′2, (26)

which agrees well with our data over nearly 3 orders of mag-
nitude. Most of the variability between theory and observa-
tion can be explained by the noise error bars. The data points
of the 1 s data that deviate more from the theoretical curve10

(e.g., m′2 ' 0.1 g2 kg−2 and εm ' 4× 10−5 g2 kg−2 s−1) be-
long to the top of the IL where the derivation of εm becomes
particularly uncertain. The agreement of our observations
with Eq. (21) indicates that a parameterization of εm is pos-
sible with the variances m′2 and w′2. Obviously, this kind of15

plot also provides the opportunity to estimate a mean spatial
integral scale between Rm and Rw by determining its slope.

5.2.2 Molecular destruction of potential temperature
variance

The profiles of the ACF coefficient kθ and the potential tem-20

perature destruction rate εθ (see Eq. 22) are presented in
Fig. 23. As for εm, εθ was determined using the kw profile
for either 1 s or 10 s. Similar to θ ′2, both kθ and εθ reach
a maximum in the IL very close to zi . At the maximum,
εθ ' 1.6× 10−3 K2 s−1 and kθ ' 0.09 K2 s−2/3. Here there25

also seems to be a second maximum below zi at approx.
1050 m.

Figure 22. Small cyan circles: εm derived with km at 10 s and kw
at 1 s resolutions. Large blue circles: εm derived with km and kw at
10 s resolutions. Fit using Eq. (21) combining all data and using a
mean spatial integral length scale of Rm =Rw ' 160 m.

Figure 23. Small blue and large red circles: profiles of εθ using
Eq. (22) derived with kθ at 10 s resolution and kw at 1 and 10 s
resolutions, respectively. Green squares: corresponding profiles of
the ACF coefficient kθ with 10 s resolution.

For a parameterization of εθ , we relate it to both θ ′2 and√
w′2 (see Eq. 23). The results are presented in Fig. 24 with

the theoretical function from Eq. (23). For this fit we used all 30

the data and approximated the spatial integral scales in the
CBL by Rw ' 160 m and Rθ ' 200 m. Thus, we estimated

εθ '
4

15
1

(160m)1/3 (200m)2/3
θ ′2
√
w′2

'
4

15
1

186m
θ ′2
√
w′2, (27)
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Figure 24. Small cyan circles: εθ derived with kθ at 10 s and kw at
1 s resolutions. Large red circles: εθ derived with kθ and kw at 10 s
resolutions. Solid black line: fit using Eq. (23) combining all data
and using mean spatial integral length scales of Rw ' 160 m and
Rθ ' 200 m.

which agrees reasonably well with our data. Almost all devi-
ations between the theoretical curve and the observations can
be explained by the large noise error bars.

6 Discussion

In this work, we used high-resolution time series of w′, m′,5

and θ ′ for profiling integral scales; variances; and ε, εm, and
εθ in the CBL. We developed a technique to identify the
suitable range of lags for fitting the theoretical shape of the
ACFs to the data in order to consider the effects of temporal–
spatial averaging/filtering using 1 or 10 s data on the resulting10

profiles of turbulent quantities. We did not correct our mea-
surements further with respect to filtering effects, as the cor-
responding loss is generally not larger than 10 %–15 %, as
demonstrated and elaborated in Lothon et al. (2006, 2009).
We applied all our derivations in the temporal and spatial15

spaces because this handling of the data using the theoretical
shape of the transversal ACF is equivalent to spectral anal-
yses so that we avoid additional processing steps. We also
calculated spectra to study the consistency and plausibility
of our temporal statistics.20

According to its definition, Ti is a kind of average for the
typical duration of a coherent fluctuation in the inertial sub-
range or a way to characterize the corresponding horizon-
tal size of a turbulent eddy according to Ri ' V Ti . This as-
sumes that the Taylor hypothesis is applicable to these scales.25

Lothon et al. (2006) demonstrated that a length scale L or
an outer scale of turbulence can be defined where the iner-
tial subrange becomes visible in the data, which resulted in
Li ≈ 2.7Ri . However, this concept only works if the inertial

subrange is not overwhelmed by mesoscale and microscale 30

circulations so that its onset in the power spectra is highly
variable. Related to these effects, it is essential to separate
turbulent fluctuations from micro- and mesoscale fluctua-
tions in order to determine Ti correctly. The approximation
to integrate the measured ACF to its first zero crossing is not 35

the best approach and leads to an overestimation of Ti and
Ri (compare, e.g., the measured and fitted ACFs in Fig. 7 at
545 m). It is fundamental to determine the range of the suit-
able lags first, derive ki from this, and then use Eq. (17) to
derive Ti (Wulfmeyer et al., 2016). Equation (17) provided 40

rather robust results even at small variances and large noise
levels (see Figs. 8, 12, and 16). For this procedure, it is not
necessary to use a temporal resolution 1t of the data to “re-
solve” the inertial subrange, but it is required that a reason-
able range of samples is present to realize an accurate fit of 45

the data to the theoretical shape of the ACF. As the zero
crossing τ0,i of the extrapolated ACF is 5/2Ti (Wulfmeyer
et al., 2016), 1t � τ0,i . This was the case for the 1 and
10 s data here because we found τ0,i ' 5/2Ti ' 50 s> 10 s.
This explains the good agreement of the profiles of temporal 50

and spatial integral scales, the variances, the TKE dissipa-
tion, and the molecular destruction rates for both 1 s and 10 s
resolutions. Thus, we could also estimate Li with τ0,i or Ti
because obviously Li ≈ 2.5Ri ' 2.5V Ti ' V τ0.

We determined Tw ' 20 s in the ML, which corresponds 55

to Rw ' 160m' 0.13zi (see Fig. 17), with an indication
of a slight decrease towards the IL. Previous measurements
of Tw and Rw were reported in Lenschow et al. (2000)
and Lothon et al. (2006). In the case studied in Lenschow
et al. (2000), Tw ' 60 s, resulting in Rw ' 180m' 0.12zi 60

with a slight increase towards the IL. In spite of this agree-
ment, we need to evaluate more data consistently because
Lenschow et al. (2000) used a linear fit to the ACF to derive
Tw and w′2, which could have led to an overestimation of
Tw and an underestimation of w′2. In Lothon et al. (2006) 65

and Lenschow et al. (2012), a number of cases were ana-
lyzed, but here an integration of the ACF to the first zero
crossing was used, likely leading to an even more severe
overestimation of Tw. This can be the reason that Lothon
et al. (2006) and Lenschow et al. (2012) found Rw ' 0.3zi , 70

whereas we found Rw ' 0.13zi , which is a significant re-
duction. In any case, for future operational analyses of tur-
bulence data, it seems to be safe to estimate the upper limit
of the number of suitable lags (lagmax) for fitting the ACF
with its theoretical shape in the inertial subrange according 75

to lagmax < 2Tw/1t ' 0.25zi/(V 1t) < τ0,w/1t . It is nec-
essary to substantiate this relationship with large data sets
from observatories such as LAFO (Späth et al., 2023).

With respect to Tm, some results were presented in
Lenschow et al. (2000), Wulfmeyer et al. (2016), and Os- 80

man et al. (2018). While we derived Tm ' 15s≤ Tw in the
ML with a tendency to increase towards the IL, Tm ' 50–
100 s was derived in these publications with a tendency to
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decrease towards the IL. It is essential to collect more data
in combination with consistent data processing as introduced
in this work to gain further insight into the statistics of Tm
because, similarly to the discussion of Tw, different integra-
tion schemes and numbers of lags were used, likely resulting5

in an overestimation of Tm. To the best of our knowledge,
Tθ has only been studied in our work as well as in Behrendt
et al. (2015), Wulfmeyer et al. (2016), and Behrendt et al.
(2020) using data from the same campaign but using a dif-
ferent number of lags, which explains why we specified a10

smaller Tθ ' 20 s. The tendency of an increase in Tθ towards
the lower ML needs more investigation in the future.

Our profile of vertical velocity variance reaches a maxi-
mum at ' 0.4zi with a value of w′2 ' 2.5 m2 s−2 and de-
creases to ' 0.2 m2 s−2 in the IL. This location of the maxi-15

mum is similar to the observations in Lenschow et al. (2000)
and Lenschow et al. (2012); however, this maximum vari-
ance is significantly stronger, as is the case for all instances
reported in Lenschow et al. (2012) (< 1.5 m2 s−2). This devi-
ation can be partly due to the refined choice of lags for the fit20

of the ACF. The reduction in variance towards the IL is rather
consistent with the previously analyzed cases. In the CBL, in
contrast tow′2, the profiles ofm′2 and θ ′2 must peak in the IL
because this is the region of the largest variability ofm and θ .
As shown in Lenschow et al. (2000), Wulfmeyer et al. (2010),25

Turner et al. (2014b), Muppa et al. (2016), and Osman et al.
(2018), the range of the peak values is large, and our result
(' 1 g2 kg−2) is well within the range of previously reported
values (0.4–4.4 g2 kg−2). It is not the subject of this work
to study the relationship of the variance peaks with driving30

variables (for water-vapor mixing ratio, see Wulfmeyer et al.,
2016; Osman et al., 2019). The strong nonlinear increase in
m′2 in the ML towards the IL, which contains information
about the turbulent properties of the CBL, is interesting and
will be investigated in future studies. According to our data,35

this increase is considerably less for θ ′2. In the IL, we de-
rived a peak value of θ ′2 ' 1.1 K2, which is slightly larger
than 0.4 K2 reported in Behrendt et al. (2015, 2020). We de-
tected other peaks of the variance ofm′2 at 1140 m and of θ ′2

at 1050 m, which are unexpected and need further investiga-40

tions in the future.
Fundamental for the derivation of TKE dissipation or

molecular destruction rates is the relationship between the
variances and the coefficient ki . Using Eq. (17), these read

varatm,i =

(
5
2
Ti
)2/3

ki, (28)45

which agrees very well with our observations (not shown).
TKE dissipation ε can be derived by different techniques,

such as using the ACF (Davies et al., 2004), the structure
function (Banakh et al., 2017), the power spectrum (Lothon
et al., 2009; O’Connor et al., 2010; Lenschow et al., 2012;50

Bodini et al., 2018), and the Doppler spectral width (Doviak

and Zrnić, 1993). The Doppler spectral width method is not
very common anymore because most of the commercially
available DLs do not store the full Doppler spectrum, and
the broadening of the spectrum is not only due to turbulence 55

but also due to several different effects such as wind shear. In
contrast, the ACF, the structure function, and the power spec-
trum methods are straightforward and relatively easy to im-
plement. Moreover, all these techniques are physically equiv-
alent. As pointed out above, we prefer the use of the ACF 60

because we avoid the introduction of further data processing
steps and noise introduced by the fast Fourier transform. Ad-
ditionally, the noise error propagation is simple and can be
automated along with the determination of ε itself.

The determination of ε through the power spectrum ap- 65

proach was described as follows in O’Connor et al. (2010),
Lothon et al. (2009), Lenschow et al. (2012), and Bodini et al.
(2018):

ε ' 2π
(

2
3ak

)3/2
(
w′2

)3/2

LN,w
, (29)

where ak ≈ 0.55 is the Kolmogorov constant and LN,w is a 70

length scale of the large eddies. Comparison with Eq. (19)
yields

LN,w ' 5π
(

2
3ak

)3/2

Rw ' 21Rw, (30)

which may be used for future derivations of ε with power
spectra of ACFs. However, this relation seems to be inconsis- 75

tent with the derivation of Lothon et al. (2006) (see above),
which states Lw ' 2.7Rw (see above). It is currently not
clear where this large deviation comes from, but it may be
the case that the definitions of L and LN are not the same.

The magnitude of the ε profile that we observed agrees 80

quite well with that reported in previous studies, including
its reduction towards the IL (Lothon et al., 2009; O’Connor
et al., 2010; Lenschow et al., 2012). Equations (29) and (19)
can be used as parameterizations of ε. For the turbulence pa-
rameterization in the CBL, TKE is mainly determined byw′2 85

so that for TPs such as MYNN a parameterization of ε byw′2

in the form of ε ∝ e3/2/l ' w′2/l is reasonable and should
be tested in more detail in the future. This corresponds to the
parameterizations of ε chosen in Nakanishi and Niino (2009)
and Olson et al. (2019), where l is the mixing length scale 90

(see Eq. 2). Obviously, Eq. (19) can be used to determine
not only ε but also the missing B1 coefficient there. More-
over, the profiling of ε can be applied for comparisons with
LES and for TKE budget analyses (see Eq. 1 and Moeng and
Wyngaard, 1989; Sullivan and Patton, 2011). 95

In contrast to TKE dissipation measurements, we are not
aware of the use of any remote sensing efforts to determine
values or even profiles of the molecular destruction rates
for temperature and water-vapor variances. Both Wulfmeyer
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et al. (2016) and Osman et al. (2018) described the first at-
tempts to study the coefficients of the ACFs; however, in
this work we managed to derive profiles of these destruc-
tion rates quantitatively. Previous measurements were only
possible with in situ sensors. Corresponding measurements5

were reported in Caughey and Palmer (1979) and Lenschow
et al. (1980) and yielded results of εm in the range of 10−4–
10−3 g2 kg−2 s−1 around zi . Our remote sensing approach
yielded εm ' 8× 10−4 g2 kg−2 s−1 in the IL, which is very
consistent with previous in situ measurements. However, this10

is just a first example. It is necessary and will be possible
with our combined remote sensing capability to determine
profiles of these molecular destruction rates and other impor-
tant turbulence quantities in the CBL routinely so that a large
database of results can be collected and evaluated.15

It is interesting to relate the ACF coefficients, variances,
and molecular destruction rates in more detail. We have
demonstrated how this can be done using a combination of
spectral and ACF analyses, as done above for ε. In the iner-
tial subrange of the 1D spectra of mixing ratio it is known20

that

εm '
(2π)2/3

β
ε1/3m′2L

−2/3
m , (31)

where β ' 0.82 is a spectral constant (Lenschow et al.,
1980). A corresponding equation holds for εθ . This relation-
ship indicates that in theory the molecular destruction rates25

are proportional to their variances. Furthermore, inserting
Eq. (29) and assuming that the turbulent length scales for
vertical wind, humidity, and temperature are similar, we find

εm '
2π
β

√
2

3ak
m′2

√
w′2

LN,m
, (32)

εθ '
2π
β

√
2

3ak
θ ′2

√
w′2

LN,θ
. (33)30

Of course, as studies of spectra and ACFs are equivalent,
these equations are consistent with our relationships derived
in Eqs. (18)–(23). Comparing Eqs. (32) and (33) yields

LN,m,θ ' 32Rm,θ , (34)

which is similar to Eq. (30) and whereRm,θ is a kind of mean35

spatial integral scale between w′ and m′ or θ ′.
Since our method allows for the measurement of vertical

profiles of km, kθ , εm, and εθ , these data can be used for
more extensive comparisons with LES, variance budget anal-
yses, and the development of parameterizations of molecu-40

lar destruction rates. The latter is becoming more important,
as for the current and next generation of TPs, second- and
third-order closures are under investigation (e.g., Olson et al.,
2019). The parameterization of ε is shown in Eq. (25) and
Fig. 19. We achieved very convincing agreement between the45

measurement of ε CE4dependent on w′2 and their theoretical
relationship. The remaining deviations between ε dependent
on w′2 CE5 can be almost entirely explained by the noise er-
ror propagations. This also holds for the theoretical relation-

ships between m′2
√
w′2 and εm (see Fig. 22 and Eq. 26) as 50

well as between θ ′2
√
w′2 and εθ (see Fig. 24 and Eq. 27). In

these cases, the deviation between the theoretical curves and
the observations can also be explained by the larger noise
error bars. We expect that further improvements of these re-
lationships can be achieved if the noise of the WVDIAL and 55

TRRL measurements is reduced and the observed height de-
pendence of the spatial integral scales is considered.

In the future, our WVDIAL measurements will be im-
proved with respect to SNR to achieve better performance.
This is now possible because recent updates to this lidar sys- 60

tem have resulted in an average power of the laser transmitter
of up to 10 W (Späth et al., 2016). For the TRRL measure-
ments, significantly better performance is also possible, as
demonstrated in Lange et al. (2019). Furthermore, DLs that
provide a better performance in the IL both for the obser- 65

vation of w′ and its turbulence statistics and for the deriva-
tion of horizontal wind profiles should be used. These DLs
are already commercially available. For operational profil-
ing of TKE and TKE dissipation, we recommend the opera-
tion of two closely collocated DLs, one in a continuous ver- 70

ticallyCE6 staring mode and the other one in a six-direction
staring mode, as demonstrated in Bonin et al. (2017). Using
the latter configuration, not only can horizontal wind profiles
be measured with high temporal resolution, including the po-
tential of additional noise suppression methods for optimiz- 75

ing the SNR in the IL, but additional data products such as
TKE and the momentum flux profiles can also be provided
(Späth et al., 2023).

7 Conclusions

In this work, transverse temporal ACFs were used to derive 80

vertical profiles of TKE dissipation ε as well as the molec-
ular destruction rates of mixing ratio and potential temper-
ature εm and εθ , respectively. The prerequisite for deriving
representative values is the applicability of Taylor’s hypoth-
esis of frozen turbulence for the spatial and temporal scales 85

in the inertial subrange, which we assumed to be applicable
due to the quasi-stationary behavior of the CBL. The molec-
ular destruction rates were derived by combining measure-
ments of the profiles of the ACF coefficients in the inertial
subrange. The data were provided by a combination of three 90

high-resolution active remote sensing systems, a Doppler li-
dar (DL), a water-vapor differential absorption lidar (WV-
DIAL), and a temperature rotational Raman lidar (TRRL).
These systems were collocated at one site during the HOPE
campaign (Macke et al., 2017). 95
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We applied the methodology proposed in Wulfmeyer et al.
(2016). We showed that our approach is equivalent to the
use of the transverse spectra of the fluctuations of the ver-
tical wind w′, mixing ratio m′, and potential temperature θ ′;
however, our direct use of ACFs does not require additional5

data processing steps such as applying Fourier transforms to
the data. Also, the propagation of noise errors is straightfor-
ward and was included in the analyses and interpretation of
our results. In particular, the synergy achieved by using this
array of active remote sensing systems enables us to iden-10

tify and choose the correct range of lags in the inertial sub-
range to derive the results for all of these quantities (TKE
dissipation and the molecular destruction rates of tempera-
ture and moisture variances), as these were consistent with
the expected shape of the ACFs. We developed a method-15

ology to derive consistent profiles of turbulent variables for
CE7different temporal resolutions (1 and 10 s), as long as sev-
eral lags are located in the inertial subrange. The latter can
be studied through the temporal and spatial integral length
scales. In order to compare and evaluate corresponding data20

sets from different sites, all tools for the derivation of tur-
bulent variables should be harmonized and made available
for the scientific community. Therefore, we will soon start to
make this software, which is currently written in the Interac-
tive Data Language (IDL), available in software repositories25

such as GitHub.
A weakly convective case from the HOPE data set was se-

lected and profiles of temporal and integral scales as well as
of variances were determined. Several relationships between
zi , the integral scales, and the outer length scale of turbu-30

lence were derived. For instance, we found that Rw, Rm,
and Rθ ' 160 m are similar at least in the ML so that our re-
sults indicate that Ri ≈ 0.13zi . Further evaluations of simi-
lar data sets with harmonized processing tools and steps are
necessary to confirm whether this relationship is universal.35

We found a maximum of ε ' 0.01 m2 s−3 at approx. 0.4zi
rolling off to small values of ε ' 1× 10−3 m2 s−3 in the
IL. We showed that the ACF coefficient kw ∝ w′2 and ε ∝(
w′2

)3/2
and estimated the slope between these variables.

This resulted in a proposed parameterization of ε, which can40

be applied in the TKE budget equation for higher-order pa-
rameterizations of CBL turbulence.

We also showed that km ∝m′2, kθ ∝ θ ′2, εm ∝m′2
√
w′2,

and εθ ∝ θ ′2
√
w′2. All these profiles have peaks in the IL so

that the shape of km and kθ differs from that of kw. This also45

explains the differences in the profiles of εm and εθ with re-
spect to ε. The profiles of εm and εθ rise from quite small
values in the ML to maxima in the IL. In our case, these
maxima amount to εm ' 7×10−4 g2 kg−2 s−1 for mixing ra-
tio and εθ ' 1.6× 10−3 K2 s−1 for potential temperature.50

This combination of measurements has been realized dur-
ing the HOPE and LAFE field campaigns (Wulfmeyer et al.,
2018) as well as at the LAFO site (Späth et al., 2023). How-

ever, the methodology presented in this work can also be ap-
plied to larger data sets for vertical wind and water vapor, 55

such as from the ARM SGP site in the US; the DWD Meteo-
rological Observatory (MOL) in Lindenberg, Germany; and
the Payerne observatory of MeteoSwiss. Such long-term data
are essential for characterizing turbulence profiles CE8 that
depend on meteorological conditions and for gaining insight 60

into how well the results hold over a wide range of situations.
With respect to water-vapor variances, this idea was demon-
strated in Turner et al. (2014b) and Osman et al. (2019).

The long-term goal should be to provide routine anal-
yses of diurnal cycles of turbulence profiles in different 65

climate regions for confirming the universality of scaling
or to refine them by characterizations of wind shear, the
strength of the inversion layer, and other potential scaling
variables. A corresponding setup of instrumentation was pro-
posed for the GEWEX Land–Atmosphere Feedback Obser- 70

vatories (GLAFOs; Wulfmeyer et al., 2020) so that these
turbulence studies will also be a backbone of the proposed
GLAFO sites. Their results can be applied more extensively
to turbulence theory, comparisons with LES, turbulence pa-
rameterizations, and TKE and variance budget analyses. 75
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