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Abstract. A simultaneous deployment of Doppler, temperature, and water-vapor lidars is able to provide profiles of molecular

destruction rates and turbulent kinetic energy (TKE) dissipation in the convective boundary layer (CBL). Horizontal wind pro-

files and profiles of vertical wind, temperature, and moisture fluctuations are combined and transversal temporal autocovariance

functions (ACFs) are determined for deriving the dissipation and molecular destruction rates. These are fundamental loss terms

in the TKE as well as the potential temperature and mixing ratio variance equations. These ACFs are fitted to their theoretical5

shapes and coefficients in the inertial subrange. Error bars are estimated by a propagation of noise errors. Sophisticated analy-

ses of the ACFs are performed in order to choose the correct range of lags of the fits for fitting their theoretical shapes in the

inertial subrange as well as for minimizing systematic errors due to temporal and spatial averaging and micro- and mesoscale

circulations. We demonstrate that we achieve very consistent results of the derived profiles of turbulent variables regardless

whether 1-s or 10-s time resolutions are used. We also show that the temporal and spatial length scales of the fluctuations of10

vertical wind, moisture, and potential temperature are similar with a spatial integral scale of ≈ 160 m at least in the mixed

layer (ML). The profiles of the molecular destruction rates show a maximum in the interfacial layer (IL) and reach values of

εm ' 7 ·10−4g2kg−2s−1 for mixing ratio and εθ ' 1.6 ·10−3K2s−1 for potential temperature. In contrast, the maximum of the

TKE dissipation is reached in the ML and amounts ' 10−2m2s−3. We also demonstrate that the vertical wind ACF coefficient

kw ∝ w′2 and the TKE dissipation ε∝
(
w′2
)3/2

. For the molecular destruction rates we show that εm ∝m′2
(
w′2
)1/2

and15

εθ ∝ θ′2
(
w′2
)1/2

. These equations can be used for parameterizations of ε, εm, and εθ. All noise errors bars are derived by error

propagation and are small enough to compare the results with previous observations and large eddy simulations. The results

agree well with previous observations but show more detailed structures in the IL. Consequently, the synergy resulting from

this new combination of active remote sensors enables the profiling of turbulent variables such as integral scales, variances,

TKE dissipation, and the molecular destruction rates as well as deriving relationships between them. The results can be used20

for the parameterization of turbulent variables, TKE budget analyses, and the verification of large eddy simulations.
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1 Introduction

Improved understanding and modeling of turbulent transport processes in the convective boundary layer (CBL) requires in-

depth studies of the budgets of second and other higher-order moments of atmospheric variables. Key variables include turbu-

lent kinetic energy (TKE) and water-vapor and temperature variances; the latter in terms of absolute humidity, mixing ratio,25

or specific humidity variances as well as of temperature or potential temperature variances. The analysis of TKE and variance

budgets and their components is important for the verification of weather forecast, climate, and earth system models. Further-

more, the representation of budgets of second-order moments of atmospheric variables is essential for the parameterization of

turbulent transport processes in mesoscale models, in which the turbulence is not explicitly resolved, or for the parameterization

of sub-grid scale cloud processes.30

In a turbulent flow, eddy diameters span a range of length scales (Tennekes and Lumley, 1972). For a turbulent boundary

layer, the largest eddies, which have the largest velocity fluctuations and thus the largest contributions to the velocity variances

and the TKE, generally scale with the depth of that layer. These large eddies break down into smaller and smaller eddies.

Although the resulting small eddies contribute less to the variances and have much less energy, they are important because

when they get small enough, the fluctuations are damped by molecular viscosity in such a way that they become the major sink35

for TKE in the budget equation. We will refer to this sink as the molecular destruction of variances or dissipation of TKE. The

sources of turbulence thus occur at the largest turbulent scales, but the sink of the turbulence is at the smallest scales. Whether

TKE is increasing or decreasing depends on the balance between the sources and the sink, so establishing the magnitude of

the sink is a key to proper modeling of turbulent mixing effects. A common approach to turbulence parameterization (TP)

in mesoscale numerical weather prediction (NWP) models is to solve budget equations for TKE and other scalar variances,40

presented later in this paper. This procedure requires predictive equations for those variances, including temperature (or poten-

tial temperature) and water-vapor specific humidity or mixing ratio. As is the case for TKE, the generation of scalar variance

occurs at larger turbulence scales, but the major sink is due to molecular damping or “destruction” at the smallest scales. These

rates must be parameterized in mesoscale NWP models.

Large eddy and direct numerical simulation (LES and DNS) models predict turbulence fields by explicitly resolving tur-45

bulent processes into the inertial subrange. Resolving these processes avoids the need for TPs at their spatial grid increments

(≈< 100 m), but it is still necessary to parameterize the remaining sub-grid scale processes such as the TKE dissipation and

molecular destruction rates. Therefore, from the meso- to the turbulent scales, vertical profiling of TKE dissipation and de-

struction rates of molecular variances are very useful. On the mesoscale, these measurements can be used for the verification

of TPs. On the smaller scales, these observations are very important for the verification of the performance of LES and DNS.50

This verification should be performed under a range of different meteorological conditions, from the surface layer (SL),

through the mixed layer (ML) and the interfacial layer (IL) at the CBL top to the lower troposphere. Previous studies, as

early as the 1970s, used mainly in-situ measurements (Caughey and Palmer, 1979; Lenschow et al., 1980). These sensors

were operated on research aircraft; in the future, it should also be possible to perform these measurements on unmanned aerial

vehicles (UAVs). However, turbulence measurements from aircraft and UAVs are limited with respect to duration and vertical55
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range, and there can be questions as to where the observations are located relative to the CBL top (Turner et al., 2014a).

Furthermore, it is difficult to measure instantaneous vertical profiles of mean and turbulent variables, thereby limiting their

applications for process studies and model verification.

A powerful alternative is the operation and application of ground-based active remote systems which are considered in this

work. In the SL, scanning lidar system were successfully combined to derive high-resolution profiles for studying Monin-60

Obukhov similarity theory (Späth et al., 2022) but close to the surface, the temporal-spatial resolutions of lidar systems is not

sufficient to resolve the major part of the turbulent fluctuations. However, due to some recent technological advances, Doppler

lidar (DL) systems are now available for 24/7 measurements of horizontal and vertical wind profiles in the CBL. The range

and time resolutions of line-of-sight (LOS) velocity measurements with DLs is high enough to resolve turbulent processes

above the SL from the ML to the IL. Recently, it has been demonstrated that conically scanning DLs are capable of measuring65

horizontal wind profiles with high vertical and temporal resolution as well as accuracy (Berg et al., 2017). Six-beam staring

modes of DLs have been developed with even greater information content, as TKE, momentum flux, and horizontal wind

profiles can be determined simultaneously (Bonin et al., 2017). Furthermore, vertically staring DLs have been extensively used

for the measurement of vertical wind (w) statistics (Lenschow et al., 2000; Wulfmeyer and Janjić, 2005; Hogan et al., 2009;

Lothon et al., 2009; Tucker et al., 2009; Ansmann et al., 2010; Lenschow et al., 2012) and TKE dissipation profiles (Frehlich70

and Cornman, 2002; O’Connor et al., 2010; Banakh et al., 2017; Bodini et al., 2018; Wildmann et al., 2019).

For the measurement of scalar variances and their destruction rates, high-resolution vertical profiling of temperature and

moisture is also possible with active remote sensing. Sufficient spatial-temporal resolutions can be reached with water-vapor

differential absorption lidar (WVDIAL) and the water-vapor Raman lidar (WVRL) techniques. For WVDIAL, this was demon-

strated in Wulfmeyer (1999); Lenschow et al. (2000); Späth et al. (2016); Muppa et al. (2016); Wulfmeyer et al. (2016). For75

WVRL, this performance was confirmed in Wulfmeyer et al. (2010); Turner et al. (2014a, b); Wulfmeyer et al. (2018); Osman

et al. (2019).

With respect to temperature measurements, recently a breakthrough has been achieved using the temperature rotational

Raman lidar (TRRL) technique. The first demonstration of high-resolution temperature profiling during daytime in the CBL,

from which higher order moments could be derived, was presented in Hammann et al. (2015); Behrendt et al. (2015). These80

publications were also based on the High Definition Clouds and Precipitation (HD(CP)2) Observational Prototype Experiment

(HOPE) (https://hdcp2.zmaw.de) (Macke et al., 2017) data, as in this work. The first combined measurements of sensible

and latent heat flux profiles in Behrendt et al. (2020). Furthermore, Lange et al. (2019) showed that using a compact design

even quasi-operational measurements down to a vertical resolution of 7.5 m and a temporal resolution of 10 s are possible

so that it is straightforward to analyze temperature variance profiles in the daytime CBL. Therefore, the combination of DL,85

WVRL/WVDIAL, and TRRL can be used for extensive turbulence studies based on their single profiles or a combination of

these. Further details about the combined WV and T Raman lidar methodology are found in Wulfmeyer and Behrendt (2021).

DL measurements are either available from observatories such as from the Atmospheric Radiation Measurement (ARM)

Program Southern Great Plains (SGP) site (Sisterson et al., 2016), where DLs have been operated for several years in an alter-

nating conically scanning and vertical pointing mode (Berg et al., 2017), the Land-Atmosphere Feedback Observatory (LAFO,90
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see https://lafo.uni-hohenheim.de/en, Späth et al. (2023)), as well as other observatories. However, combined measurements

with coincident WVDIAL, WVRL, and TRRL are sparse. Currently, to our knowledge the longest, operational dataset that has

simultaneous, high-resolution DL and WVRL observations was collected at the SGP site. Further dedicated data sets were col-

lected during various field campaigns such as the HOPE and the Land-Atmosphere Feedback Experiment (LAFE) (Wulfmeyer

et al., 2018).95

In this work, we present the derivation of TKE dissipation as well as molecular destruction rate profiles from the HOPE

campaign. This study is organized as follows: In section 2, we present the field campaign and the data set used in this study.

We revisit the TKE, water-vapor, and temperature budget equations and discuss the terms containing the dissipation rates in

section 3. Some examples of their parameterizations are presented. In section 4, we show how we derived and evaluated the

transverse temporal autocovariance functions (ACFs) and the power spectra of the lidar time series in order to derive profiles of100

variances, the ACF coefficients, and the integral time scales in dependence of temporal and spatial resolutions. First examples

of the profiles of TKE dissipation as well as of molecular destruction rates using our method for a case during HOPE are

presented in section 5. These results contain detailed error analyses. In section 6, the results are discussed and compared with

previous methods and corresponding results. A summary and an outlook are given in section 7.

2 HOPE campaign: Description of the case and the data sets105

We present analyses of turbulence profiles from Intensive Observations Period (IOP) 5 of HOPE, which was performed in

Spring 2013 close to the city of Jülich in Germany. IOP5 was executed on 20 April 2013. The data set was collected with the

WVDIAL and the TRRL of the Institute of Physics and Meteorology (IPM) at the University of Hohenheim (UHOH) as well as

a DL operated by the Karlsruhe Institute of Technology (KIT) between 11:30-12:30 UTC. The lidar systems were located at a

site close to the village of Hambach near Research Centre Jülich at 50◦ 53’ 50.56" N and 6◦ 27’ 50.39" E, 110 m above sea level.110

During this time period, the atmosphere was cloud free and contained only a few aerosol layers in the free troposphere. Around

local noon, the surface sensible heat flux was≈ 250 W m−2, which corresponds to a kinematic heat flux of 0.2 K m s−1 whereas

the latent heat flux was≈ 90 W m−2. The Obukhov length was L0 =−126 m and the convective velocity scale w∗ ' 0.7 m s−1

leading to a quasi-steady CBL depth with zi ≈ 1280 m. Consequently, according to Lothon et al. (2006), we were dealing with

a weak convective case as ζ =−zi/L0 ' 10 was small. Further details of the data sets and the meteorological conditions are115

presented in Wulfmeyer et al. (2016); Muppa et al. (2016).

The UHOH WVDIAL is based on a Ti:Sapphire laser transmitter tuned to≈ 820 nm, which can be operated up to an average

power of 10 W, in combination with a very efficient receiver. The transmitter fulfills all requirements for very accurate absolute

humidity measurements due to its excellent stability and the narrow bandwidth of the laser spectrum (Wagner et al., 2013). The

receiver consists of an 80-cm, 3D scanning telescope, a high-transmission, narrow-band interference filter, and an Avalanche120

photodiode. This system permits the measurement of water-vapor profiles with a temporal resolution of 1-10 s and a spatial

resolution of 15-150 m in the lower troposphere. Further details are found in Späth et al. (2016).
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The UHOH TRRL is a combined water-vapor and temperature rotational Raman lidar. The laser transmitter is a frequency-

tripled, injection-seeded Nd:YAG laser, which delivers up to 15 W average power at 355 nm. The heart of this system is a

very efficient, high-transmission series of interference filters in front of four sensitive photomultipliers, which collect four125

signals: the elastic backscatter, two channels sensitive to the rotational Raman scattering by nitrogen and oxygen, and the

vibrational-rotational Raman channel of water vapor. In this work, we focus on the temperature profiles measured with the

TRRL. Hammann et al. (2015) and Behrendt et al. (2015, 2020) showed that this system is capable of daytime temperature

profiling with a temporal resolution of 10 s and a spatial resolution of 30-150 m in the lower troposphere.

At the Hambach site, KIT operated a coherent DL based on a Er:YAG, 1.6-µm laser transmitter (Wind-Tracer “WTX” from130

Lockheed Martin Coherent Technologies, Inc.). This DL measured the line-of sight wind velocity with a temporal resolution

of 1-10 s and an effective range-resolution of ≈ 60 m (Träumner et al., 2011). The DL measurements covered the CBL up to

the top of the boundary layer and partly above, depending on the aerosol particle concentration. Mean horizontal wind and

vertical wind profiles were determined by alternating between a velocity-azimuth display (VAD) algorithm and a vertically

staring mode (Maurer et al., 2016). The DL was running in the vertical mode for 56 min and then switched to a scanning mode135

with conical scans (PPIs) at elevation angles of 5 and 75 degrees with a rotation speed of 6 degrees per second followed by

3 slice scans (RHI) at azimuth positions shifted about 120 degrees. Thus, an averaging time of ≈ 240 s was used for deriving

a horizontal wind profile. Centered in the time period used for the turbulence profiling, this scan was performed between

12:00:10-12:04:30 UTC. Due to the high SNR of the KIT DL in the CBL, vertical wind profiles can be determined with

resolutions of 1 s and 50 m, respectively.140

The WVDIAL, TRRL, and the DL data were processed consistently with a temporal resolution of either 1 s or 10 s with

the same time steps from 11:30-12:30 UTC. All measurements started at 350 m above ground level (agl). We maintained a

vertical resolution of 50 m in the DL vertical wind profiles, as the resulting signal-to-noise-ratio (SNR) was good enough for

accurate measurements up to the IL. The WVDIAL and the TRRL data were processed with vertical resolutions of 70 m and

100 m, respectively, in order to maintain an acceptable SNR up to the IL. For the WVDIAL, we evaluated data with 1 s and145

10 s resolutions for studying changes in the ACFs and the power spectra whereas the TRRL data could only be evaluated with

10 s due to the lower SNR. The TRRL data were overlap corrected up to 800 m (Hammann et al., 2015) and the WVDIAL

data up to 300 m with constant correction functions. Afterwards, the WVDIAL absolute humidity measurements and the TRRL

temperature measurements were transformed into specific humidity s or mixing ratiom as well as potential temperature θ using

a hydrostatic pressure profile. The analysis could be performed using either s or m; however, as the absolute humidity was150

only a few g m−3 the relative difference betweenm and s was in the sub-percentage region. We preferred to derive and analyze

profiles of m and θ for the comparison with previous measurements as well as with LES and mesoscale model output, as these

are the typical prognostic variables. Finally, all data were gridded to a vertical range grid of 15 m from 350 m to 1600 m AGL.

Also, radiosonde profiles at 11 UTC and 13 UTC were included in the horizontal wind analyses in order to close measurement

gaps of the DL in the IL.155
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3 Vertical profiles of TKE dissipation as well as molecular destruction rates

3.1 Governing equations and parameterizations

The TKE dissipation and the molecular destruction rates are the sink or loss terms in the TKE and mixing ratio and potential

temperature variance budget equations. TKE is defined as e= (u′2 + v′2 +w′2)/2 where u′, v′, and w′ are the fluctuations of

the three wind components. Under horizontally homogeneous conditions, the TKE prognostic equation reads160

∂e

∂t
'− ∂

∂z

[
w′
(
e+

p′

ρ0

)]
−u′w′ ∂u

∂z
− v′w′ ∂v

∂z
+
g

θ0
w′θ′v − ε (1)

where ε is the TKE dissipation, p′ is the atmospheric pressure fluctuation, ρ0 is air density, u′w′ and v′w′ are the momentum

fluxes, g is the acceleration due to gravity, θ0 is the potential temperature, andw′θ′v represents the buoyancy flux. In this version

of Eq. 1, the horizontal gradients of fluxes are neglected.

The TKE dissipation can be parameterized in multiple ways; see, e.g., Deardorff (1973); Mellor and Yamada (1974). For165

instance, Nakanishi and Niino (2009) represent it as

ε≈ e3/2

B1 l
(2)

where B1 is a closure coefficient and l is the mixing length or grid scale. Of course, this is only one example; there are many

other parameterizations available. In any case, if ε and TKE can be measured simultaneously, it is possible to evaluate this

parameterization.170

The budgets for water-vapor mixing ratio variance m′2 and the potential temperature variance θ′2, respectively, are given by

∂m′2

∂t
'−2w′m′

∂m

∂z
− ∂

∂z
w′m′2− 2εm (3)

∂θ′2

∂t
'−2w′θ′

∂θ

∂z
− ∂

∂z
w′θ′2− 2εθ (4)

also under horizontally homogeneous conditions. Here, εm and εθ are the molecular destruction rates of m′2 and θ′2, re-

spectively. Our objective here is to directly measure profiles of εm and εθ. Their quantification becomes more interesting as175

higher-order turbulence closure schemes are under development where the temperature and mixing-ratio variances budgets

have to be studied in great detail including all loss terms. Examples are the Mellor–Yamada–Nakanishi–Niino (MYNN)-Eddy

diffusivity mass flux (EDMF) scheme (Nakanishi and Niino, 2009; Olson et al., 2019), and the Cloud Layers Unified By Bi-

normals (CLUBB) scheme (Golaz et al., 2002; Huang et al., 2022). Furthermore, the study of variance budgets is required for

the parameterization of sub-grid clouds in mesoscale models (Van Weverberg et al., 2016). In LES and DNS, the molecular180

destruction rates are not parameterized but it is assumed that these are resolved or negligible. Thus, a comparison of their

simulations and our measurements can be used to study the sub-grid scale closure of these models.

6



3.2 Derivation of dissipation and destruction rate profiles

Wulfmeyer et al. (2016) introduced a method to measure vertical profiles of ε, εm, and εθ. For the sake of completeness, we

summarize here the most important steps. We start with the derivation of the structure function D(r) and its transformation in185

the temporal domain using Taylor’s hypothesis (see also Tatarski (1961) and Monin and Yaglom (1975)). The relation between

the structure function and the ACF is presented and discussed more in detail in Wulfmeyer et al. (2016).

If the turbulence is stationary and isotropic and the temporal and vertical resolutions of the lidar observations are high enough

to resolve the inertial subrange, then the resulting transversal temporal ACFs Ai(τ) with lag τ of the fluctuations of vertical

wind w′, mixing ratio m′, and potential temperature θ′ at each height range z show a dependence of τ2/3 and can be written190

as follows:

Aw′(τ) = w′2− kw τ2/3 = w′2− ε2/3V 2/3 τ2/3 (5)

Am′(τ) = m′2− km τ2/3 =m′2− 0.5a2m
εm
ε1/3

V 2/3 τ2/3 (6)

Aθ′(τ) = θ′2− kθ τ2/3 = θ′2− 0.5a2θ
εθ
ε1/3

V 2/3 τ2/3 (7)

where the constants a2m and a2θ are expected to be in the range of 2.8−3.2 (Stull, 1988). The determination of the variances and195

the ACF coefficients ki can be achieved by the procedures introduced in Lenschow et al. (2000) and Wulfmeyer et al. (2016).

As the lidar measurements are performed in the temporal domain, the horizontal wind profile V must also be determined to

derive the dissipation and the molecular destruction rates.

Generally, lidar-based measurements of the ACFs are influenced by system noise and spatial and temporal filtering effects.

Therefore, it is reasonable to study the ACFs using the following transformations:200

ln
(
w′2−Aw′(τ)

)
=

2

3
ln(τ) + ln(kw) (8)

ln
(
m′2−Am′(τ)

)
=

2

3
ln(τ) + ln(km) (9)

ln
(
θ′2−Aθ′(τ)

)
=

2

3
ln(τ) + ln(kθ) (10)

Alternatively, the transformations

kw =
w′2−Aw′(τ)

τ2/3
(11)205

km =
m′2−Am′(τ)

τ2/3
(12)

kθ =
θ′2−Aθ′(τ)

τ2/3
(13)

can be used to identify the most reasonable range of the number of lags to use to derive the fit (we will refer to this number as

the "fitlags") because in this region the ACF coefficients should be constant. Consequently, these Eqs. 8-10 and 11-13 can be

applied for lags ≥ 1 to investigate whether the lidar measurements agree with the theoretical shape of the ACFs and in what210

range of lags the ACF coefficients should be derived in dependence of the time resolution (see below section 4).
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The ACFs should also be studied with respect to their temporal and spatial integral scales Tw and Rw for w′, Tm and Rm
for m′, and Tθ andRθ for θ′. This can be realized using the following relationships:

Tw =
2

5

(√
w′2
)3 1

εV
, Rw =

2

5

(√
w′2
)3 1

ε
(14)

Tm =
2
√

8

5a3m

(√
m′2
)3√ ε

ε3m

1

V
, Rm =

2
√

8

5a3m

(√
m′2
)3√ ε

ε3m
(15)215

Tθ =
2
√

8

5a3θ

(√
θ′2
)3√ ε

ε3θ

1

V
, Rθ =

2
√

8

5a3θ

(√
θ′2
)3√ ε

ε3θ
(16)

Please note that the integral time scales can be directly derived from the ACFs using the equation (Wulfmeyer et al., 2016)

Ti =
2

5

(
varatm,i

ki

)3/2

(17)

where Ti is the integral time scale of the atmospheric variable of interest i, varatm,i is its atmospheric variance, and ki is the

corresponding ACF coefficient (see Eqs. 5-7). This equation turned out to be most robust (i.e., least sensitive) to system noise.220

The variances can be measured with DL, WVDIAL, WVRL, TRRL, and the horizontal wind profiles can be measured with

conically scanning DL or 6-beam staring DL. Obviously, this combination of instruments and measurement configurations is

necessary but also complete for deriving the TKE dissipation and molecular destruction rates.

Solving Eqs. 5-7 or 14-16 for these variables yields for ε

ε =
k
3/2
w

V
(18)225

or ε =
2

5

(√
w′2
)3

V Tw
=

2

5

(√
w′2
)3

Rw
, (19)

for εm

εm =
2km

√
kw

a2m

1

V
(20)

or εm =
4

5

m′2
√
w′2

a2mT
2/3
m T 1/3

w V
=

4

5

m′2
√
w′2

a2mR
2/3
m R1/3

w

, (21)

and finally for εθ230

εθ =
2kθ
√
kw

a2θ

1

V
(22)

or εθ =
4

5

θ′2
√
w′2

a2θ T
2/3
θ T 1/3

w V
=

4

5

θ′2
√
w′2

a2θR
2/3
θ R

1/3
w

. (23)

Using Eqs. 20 and 22 we also achieve

km
kθ
' εm
εθ

(24)

In this work, we apply Eqns. 18, 20, and 22 for the derivation of the dissipation and the molecular destruction rates, as it is the235

most direct way to derive and to use the required combination of structure coefficients.
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4 Derivation of profiles of TKE dissipation and molecular destruction rates of water-vapor and temperature

variances

4.1 Horizontal wind profile

As demonstrated in Eqns. 18-23, analyzing the turbulence profiles using the transversal ACFs or the power spectra requires that240

the horizontal wind profile be measured simultaneously. We applied and merged two data sources to get the horizontal wind

profile, namely the horizontal wind profiles derived from conical scans of the KIT DL and radiosonde wind observations. We

used the three hourly conical scans performed by the KIT DL between 11 UTC and 13 UTC and the radiosounding at 13 UTC

to derive a best estimate of the horizontal wind profile during the period of interest.

The results are presented in Fig. 1. The boundary layer depth zi ' 1280 m was determined using the WVDIAL backscatter245

lidar statistics and is indicated by the dashed gray line. The 5-min DL-derived wind profiles at 11, 12, and 13 UTC are shown

in green, blue, and pink, with error bars derived from DL radial velocity statistics. The sounding from 13 UTC is shown in

black. For this profile, an error of 1 m s−1 at each height level was assumed. As the SNR of the wind measurements was not

good enough to retrieve the wind profile in the IL above 1300 m, the information of the sounding was taken in this region.

A best estimate of the horizontal wind profile during the turbulence measurement period was derived by using a noise error250

weighted average of the DL and the radiosonde profiles. The resulting wind profile and its error estimates are presented by

the red bullets and error bars. This wind profile and its error bars, gridded to 15 m in the vertical, were used for deriving the

dissipation and molecular destruction profiles, as well as the uncertainties in these profiles using standard error propagation

(see also Wulfmeyer et al. (2016), Appendix b.4). The largest deviation between the wind profiles occurs in the ML. However,

the resulting weighted mean shows reasonable, nearly constant wind speed in the CBL and a windshear-driven increase of255

wind speed in the IL.

4.2 Methodologies and procedures for the determination of variances and the ACF coefficients

The determination of the ACFs and its coefficients with respect to its theoretical shape in the inertial subrange is more de-

manding than the estimation of variances for two reasons: 1) The difference of the total and the atmospheric variances around

lag zero have to be determined with high accuracy. 2) A suitable range of lags for the ACFs must be evaluated for deriving its260

coefficient by a fit to the data. The determination of this coefficient is influenced by system noise, filter effects of temporal and

vertical averaging, and atmospheric effects, e.g., the influence of regional meso- or microscale circulations that may influence

the fluctuations on the corresponding temporal and spectral scales.

For the derivation of turbulence profiles we applied Taylor’s hypothesis of frozen turbulence. We assumed that this was valid,

as zi was quasi steady over our analysis period, the CBL was nearly well-mixed, the temporal and vertical variability in the265

horizontal wind profiles V (z) was rather small, and the mean horizontal wind speed in the CBL was high with U ≈ 8 m s−1.

As described above, the basic data sets were time-height cross sections of w, m, and θ. The following, systematic steps were

performed for the data analyses:
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Figure 1. Horizontal wind profiles determined from a radiosonde launch at 13 UTC and three conical DL scans. For the soundings (black

bullets), an error of 1 m s−1 was assumed. The errors in the DL profiles were derived by error propagation of the uncertainty in radial

velocities. The red bullets show the weighted average of these profiles, which was used for the derivation of turbulence profiles. The grey

dashed line indicates zi.
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– Gridding of all data to vertical resolutions of 15 m and temporal resolutions of 1 s or 10 s, respectively

– Despiking, detrending, and high-pass filtering of the data at each height z270

– Derivation of the ACFs Aw′(τ,z), Am′(τ,z), and Aθ′(τ,z)

– Application of the functions defined in Eqs. 8-10 and 11-13 for lags ≥ 1 to identify the inertial subranges and to investi-

gate over what range of time lags the ACFs should be fitted

– Fit of the ACFs over this range of lags to determine atmospheric variances, the ACF coefficients, and their errors as a

function of height275

– Characterization of vertical and temporal filter effects and its influence on the shape of the ACFs

– Determination of the profiles of the integral time scales

– Corresponding derivation and evaluation of the power spectra, detection of the inertial subranges for consistency with

respect to filter effects and system noise in the frequency domain

– Combination of the profiles of the ACF coefficients and the horizontal wind profile for deriving profiles of TKE dissipa-280

tion and molecular destruction rates including error propagation

The time gridding of the data at each height for the chosen averaging time (1 s or 10 s) was performed by block averaging all

data points that fell into the corresponding time grid window. Then, the time gridded data were vertically interpolated to 15 m.

Please note that this does not change the real vertical resolution of the data, which was 60 m for w′ (Träumner et al., 2011) and

100 m for θ′ (Hammann et al., 2015). For the m′ of the WVDIAL, we applied a Savitzky-Golay filter width of 135 m (Späth285

et al., 2016). We estimated the full-width at half-maximum (FWHM) of an impulse response at the effective filter resolution,

which is about 70 % of the filter width or ≈ 95 m in this case. For the WVDIAL and the TRRL, the vertical resolutions were

limited by system noise. At each height, despiking of the hour-long time series was performed by identifying as outliers all

data points that fell outside of a± 5 standard deviation window around the time series median. Only for the w data, we kept the

outlier threshold fixed above 1200 m at ± 5 standard deviations of the 1190 m data. Otherwise, because of the large noise of w290

in the entrainment zone, the outlier threshold would have gotten so large that many noise peaks would not have been filtered

out. This procedure was repeated iteratively for the remaining data points until no more outliers were found. The outliers were

set to Not a Number (NaN). Due to the high quality of the lidar data analyzed here, despiking became mainly necessary in

regions with low SNR, for instance for the WVDIAL and TRRL data in the region of the IL and above. The remaining time

series were detrended (subtraction of the time series mean for the w′ data and subtraction of a linear fit from the time series for295

the m′ and θ′ data) and then high-pass filtered using a 30-minute cutoff.

Figure 2 presents the resulting time-height cross section of w′ and m′ with 1 s resolutions and θ′ with 10 s resolution,

respectively. The gap in the w′ data around 12 UTC is due to the switch to the conical scan mode for horizontal wind profiling.

The data confirm the general challenge of coherent DL vertical wind measurements in the IL and above because the SNR of this
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Figure 2. Time-height cross section ofw′ (upper panel, 1 s resolution),m′ (middle panel, 1 s resolution), and θ′ (lower panel, 10 s resolution).

The black areas indicate measurement gaps or data identified as outliers.
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type of DL depends strongly on the presence of aerosol particles. Otherwise, the upper panel demonstrates the high resolution300

and SNR of vertical wind measurements in the CBL. The structure of the turbulent updrafts and downdrafts in the CBL are

resolved with great detail. These coherent structures are also clearly visible in the time-height cross sections for m′ and θ′,

although with higher noise levels. The increase of m′
2

and θ′
2

from the ML to the IL with a maximum in the latter is already

visible. m′
2

is smaller than θ′
2

in the ML. The expected high vertical correlation of the data and the correlation between the

data can be recognized, particularly for the large updrafts.305

4.3 Transverse, temporal autocovariance functions and spectra for vertical wind

After the determination of the ACFs of the time series, we studied their shapes for all three variables of interest. We started

Figure 3. Aw′(τ) for a variety of heights using the 1-s data using Eq. 5.

with the examination of Aw′(τ) because the w′ data provided the best resolution and SNR in the ML. The results are presented
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Figure 4. 3D plot of Aw′(τ,z) based on the 1-s data.

in Fig. 3 between 350 m and 1250 m. The small deviations between lags 0 and 1 confirm the low noise level of the w′ measure-

ments. Atmospheric variance associated with mesoscale features affects the ACFs beginning at about lag 25 and beyond. This310

is also visible in the 3D representation of the ACFs, which is presented in Fig. 4. This figure highlights one of the advantages

of the range-resolved lidar measurements because mesoscale influences on the ACFs can be studied as a function of height.

It seems that there is more micro- to mesoscale influence at heights between 400-600 m, which may be related to wind shear

in the horizontal wind profile at the same height range. However, as these features do not influence the ACFs at small lags, a

suitable range of lags can be chosen for the fit of the ACF coefficients in the inertial subrange.315

The suitable ranges for the fits of the ACFs can be evaluated in more detail using Eqns. 8-10 or 11-13. The latter is visualized

in Fig. 5 for a height of 545 m. For w′2 around 2.6 m2s−2, the result for kw is approximately constant for a range between 7 to

25 lags. This result did not change considerably for other heights (not shown) but even extended to lag 30 at 845 m. We assume
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Figure 5. Example of the evaluation of the range of suitable lags according to Eq. 11 at a height of 545 m.

that the deviation of the ACF at small lags is due to the spatial filtering of turbulent fluctuations in each range gate of 60 m, as

already studied by Frehlich and Cornman (2002). A minimum fit lag of 7 corresponds well with the approach of Bonin et al.320

(2017), who used the along-beam averaging length (60 m in our case) divided by the mean horizontal wind speed (8-9 m s−1

here) as a time scale beyond which volume averaging effects can be neglected. Up to about lag 25, no height dependence of

the onset of the mesoscale variability was found so that we identified for this measurement situation an outer time scale of

turbulence Iout ≈ 25 s limiting the inertial subrange. Therefore, a range of 7 to 25 lags was chosen for the fits of the ACFs for

the 1 s data.325

Figure 6 shows the corresponding series of power spectra Sw′(ν). There is a nearly height independent spectral maximum

around 0.003 Hz and another one at 0.01 Hz. For higher frequencies, the shape of the spectra correspond very well with the

inertial subrange up to a frequency of νI ≈ 0.1 Hz. This behavior is nearly height independent. Beyond this frequency, the roll
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Figure 6. Power spectra Sw′(ν) of the vertical wind fluctuations on double-logarithmic scales for a variety of heights. The theoretical

-5/3-slope of the inertial subrange is shown as a solid dark blue line.
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off of the spectra with a steeper slope is very likely due to the spatial filter effects due to the single shot pulse length. Because

of the high SNR of the vertical wind data, it is very useful to perform the vertical wind analyses with a time resolution of 1 s330

in order to study the ACFs at small lags, which translates to the shape of the power spectra close to the Nyquist frequency

of Ny = 0.5 Hz. This also allows for estimating the loss of w′2 due to the spatial filtering, which is approximately 1 % here.

All these effects are consistent with and can also be detected in the temporal domain using the ACFs, as discussed above.

Therefore, we recommend performing all turbulence analyses in the temporal domain (i.e., using autocorrelations) because the

Fourier transformation does hardly provide additional information and introduces additional noise due to the transformation335

process.

It is essential to investigate the sensitivity of the ACFs for both 1 s and for 10 s resolutions in order to find out whether the

coarser time resolutions can be used as well. Figure 7 demonstrates that the ACFs agree very well and that it is possible to use

Figure 7. Comparison of Aw′ using 1 s or 10 s resolutions of the vertical wind speed data. Large symbols: 10 s resolution, smaller symbols:

1 s resolution. Colored solid lines: Fits of the theoretical shapes of the ACFs using the 1-s data.
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Figure 8. Small dark green and large green circles: Profiles of the variance of the vertical velocity fluctuations for 1-s and 10-s data,

respectively, including noise error bars. Small pink and large red squares: The corresponding results for the integral time scales Tw.

either 1 s or 10 s resolution; however, the number of lags for the fit of the ACFs has to be adapted. Except for situations where

a nonlinear dependency of noise errors is reached, 1-s data analyses are preferred because in this case the resulting noise errors340

of the turbulence data are independent of the time resolution but the inertial subrange is better resolved. As mentioned above,

a range of 7-25 lags was used for the 1-s resolution data, corresponding to about 1-3 lags for 10-s data. The total measured

variance at lag 0 was smaller for 10-s data because the atmospheric variance at scales between 1 and 10 s is not captured and

the noise variance was slightly lower because of the additional time averaging. Figure 7 also shows that the fits of the ACFs

using the chosen lags of 7-25 for the 1-s data (colored solid lines) resulted in a very good agreement with the measured ACFs.345

For instance, at 845 m, the fit provided an estimated atmospheric variance of 1.62 m2s−1 and kw ' 0.11 m2s−8/3.
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Using these lag ranges for fitting the ACFs, we determined the profiles of the integral time scales Tw and the variance of the

vertical wind fluctuations for both the 1-s and the 10-s data. The results are presented in Fig. 8. The Tw profiles were derived

with Eq. 17, which turned out to be most robust, and agree very well in the ML within a few seconds and amount here to

Tw ' 20 s. There seems to be a reduction of Tw in the IL, which is particularly strong for the 10-s results for Tw. However, it350

is very likely that this was due to systematic effects by the reduction of data points after quality control. The reduction was

less for the 1-s Tw data where more data points were available in the IL and resulted in an estimate of Tw ' 16 s in this region.

These considerations show that for this type of Doppler lidar and its measurement performance, the 1-s data should be used for

turbulence analyses.

A similar conclusion can be derived for the profiles of the vertical wind variances w′2. The error bars for the variance were355

derived according to Wulfmeyer et al. (2016), Appendix b.4. The variance profiles agree very well except in the lower ML

where the 1-s data derive a slightly higher variance. In the IL, the 10-s data are more noisy as for Tw, which we attribute again

to less data points and resulting poorer sampling statistics. In the IL, we derived a decay of the vertical wind variance resulting

in values of w′2 ' 0.4− 0.6 m2s−2. The maximum of the variance profile is located at 530 m, which corresponds to 0.4 z/zi.

The variance maximum is approximately 2.5 m2s−2. This is in good agreement with previous results (Lenschow et al., 2000;360

Lothon et al., 2006, 2009). These results confirm that the 1-s data should be preferred for vertical wind turbulence analyses

and, therefore, we proceeded with these data for the derivation of turbulence profiles.

4.4 Transverse, temporal autocovariance functions and spectra for water vapor mixing ratio

For the mixing ratio fluctuations, we are challenged by the trade-off between the accuracy and resolution of the WVDIAL

measurements. The non-linear reduction of system noise as a function of the spatial resolutions is explained in Wulfmeyer365

et al. (2015), Eq. 28, whereas the reduction of noise due to temporal averaging behaves the same as for the DL for high

SNR and becomes also non-linear at low SNR, for example due to background signal subtraction. To our knowledge, the

UHOH WVDIAL is currently the active remote sensing system that measures water-vapor profiles and their fluctuations with

the highest resolution and accuracy (Späth et al., 2016; Behrendt et al., 2020). However, it is still necessary to find the best

trade-off with respect to spatial and temporal resolutions to measure the mixing ratio fluctuations. Therefore, we investigated370

the measurements using 1 s and 10 s resolutions. However, we kept a vertical resolution of 100 m (see above section 4.2.1).

At higher vertical resolution, the data became too noisy and we wanted to avoid stronger spatial filtering effects at coarser

resolution.

The ACFs are presented in Fig. 9. This figure confirms that at 1-s resolution, the measurements in the near-range are not

strongly influenced by noise but the variance in the WVMR is also very small. In the ML, the mixing ratio variance increases375

and reaches a maximum in the IL (in contrast to the vertical wind variance) but this is also true for the system noise. Fortunately,

the combination of 1-s or 10-s temporal and 70-m spatial resolutions provide a compromise so that the atmospheric variance

can still be recovered throughout the CBL. This is reflected in Fig. 9. Though the total variances of the time series and the

contribution of the noise variances are visible in the marked increase at lag 0, it is still possible to separate noise and atmospheric

variance by the extrapolation of the ACFs to lag 0.380
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Figure 9. Am′(τ) for a variety of heights using Eq. 6. Please note that the ACFs are shown on a logarithmic scale in order to capture the

large dynamic range of the WVMR variances in dependence of height.
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Figure 10. Comparison of Am′(τ) for three heights using either 1-s or 10-s data. Solid lines: Fits of the theoretical shapes of the ACFs.

The comparison between the ACFs computed using the 1-s and 10-s resolutions is presented in Fig. 10. As for the vertical

wind data, a range of 7-25 lags for the 1-s data and 1-3 lags for the 10-s data turned out to be optimal for the fit of the ACFs. The

fits using the 1-s data are also shown on this plot up to lag 30 and agree well with the theoretical shapes of the ACFs. The power

spectra for the 1-s data are shown in Fig. 11. There is an apparent deviation from the expected slope in the inertial subrange at

high frequencies. However, these deviations are almost entirely due to the high noise levels, which led to a deviation from the385

-5/3-slope on the logarithmic scale. This is substantiated by the fits (solid green, dark red, and grey lines) of the spectra to the

Kolomogorov function ν−5/3 (solid blue line) in the inertial subrange plus the noise floor. These fits show that the WVDIAL

still resolves atmospheric fluctuations over the 0.005-0.05 Hz range but these are masked by the larger noise floor. Therefore,

in all cases, the inertial subrange is resolved but less obvious due to the higher noise level. Particularly, this is important for the
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Figure 11. Power spectra of the WVMR fluctuations using 1-s data. The 10-s spectra are very consistent (not shown). The fits of the

Kolmogorov spectrum with the noise floor are also shown.

22



Figure 12. Small cyan and large blue circles: Profiles of the variance of the WVMR fluctuations for 1-s and 10-s data, respectively. Small

pink and large red squares: The corresponding results for the integral time scales Tm. The vertical variability of Tm is likely due to the

division by small and noisy values of km (see Eq. 17).
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critical measurements in the IL (i.e., the data in green at 1145 m) where the molecular destruction rate reaches a maximum,390

which at least should be quantified by this measurement method.

Using these lag ranges for fitting the ACFs, we determined the profiles of the integral time scales Tm and the variance of

the WVMR fluctuations m′2 for both the 1-s and the 10-s data. Again, the error bars for the variance were derived according

to Wulfmeyer et al. (2016), Appendix b.4. The results are presented in Fig. 12. Both data sets are plotted on a log scale to

visualize the strong non-linear increase of m′2 in the ML and the capability of the WVDIAL to recover this large dynamic395

range of atmospheric variances. In the ML, the determination of Tm is strongly influenced by system noise at low variance

values because in this case also km is small resulting in a large uncertainty of Tm (see Eq. 17). Nevertheless, the 1-s and 10-s

are consistent within a few seconds. On average in the ML, Tm ' 20 s, is similar to the Tw of the vertical wind. However, in the

IL, the 10-s Tm increases significantly to around 50 s whereas the 1-s Tm show strong fluctuations also to very small values.

Here, we consider the 10-s data as more realistic because the noise level of the 1-s data increases in a non-linear manner above400

the CBL so that it is better to use longer time averages.

The profiles of m′2 using 1-s or 10-s data are very consistent in the entire CBL confirming our methodological approach to

determine m′2 using different time resolutions. Using the extrapolation of the ACF to lag 0, reasonable estimates of m′2 are

derived even if the inertial subranges are not fully resolved. Also, over the entire CBL, there is almost no evidence of loss of

variance due to temporal filtering effects. With the WVDIAL, it is possible to derivem′2 and its non-linear increase over nearly405

three orders of magnitude in the ML. In the IL, m′2 reached a maximum very close to zi. Interestingly, we found two maxima

in the m′2 profile, one at 1150 with a value of m′2 ' 0.25 g2kg−2 and the other one at zi with a value of m′2 ' 0.75 g2kg−2.

In the following, we used the the 1-s and 10-s kw profiles in combination with the 10-s km profiles because the latter provided

more robust results in the IL.

4.5 Transverse, temporal autocovariance functions and spectra for potential temperature410

For the potential temperature fluctuations, it is particularly difficult to derive structures in the ACF and the power spectra due

to the large noise level in the TRRL observations. Though the improvement of TRRL towards the resolution of temperature

fluctuations was substantial in recent years (see, e.g., Lange et al. (2019)), it is still only possible to study the data with 10-s

resolution. Nevertheless, as the temporal resolution of 10 s was still sufficient to use lags 1-3 for the extrapolation using the

WVDIAL data and its results did not show significant differences in the determination of variances and temporal integral scales415

between the 1-s and 10-s data, we applied this technique also to the 10-s TRRL data for providing realistic profiles of Tθ, θ′2,

and kθ.

The corresponding ACFs are presented in Fig. 13 and the fits to the theoretical shapes of the ACFs for three heights in

Fig. 14. Over all ranges, the derivation of the atmospheric temperature variance and the slope of the ACFs are at the detection

limits. This is also visible in the power spectrum in Fig. 15. A range that corresponds to the inertial subrange is barely visible.420

However, this is also not necessary, as long as the 10-s data contain the major contributions of θ′2, as shown for the WVDIAL

data. Using lags 1-3 for fitting the ACFs, we determined the profiles of the integral time scales Tθ and the variance of the

potential temperature fluctuations. As above, the error bars for the variance were derived according to Wulfmeyer et al. (2016),
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Figure 13. Aθ′(τ) for a variety of heights using using Eq. 7 at a resolution of 10 s.

Appendix b.4. The results are presented in Fig. 16. For the same reasons as for Tm, Tθ is strongly affected by system noise at

low variance values. In spite of the large fluctuations, Tθ seems to be larger than Tw and Tm in the lower ML and decreases425

towards the IL. Our estimate of Tθ ranges between ' 30,s in the ML and ' 14 in the IL. In contrast to Tm, there seems to be a

reduction of Tθ from the ML towards the IL. In the major part of the ML, all T s for w′, m′, and θ′ are similar for the 1-s and

10-s data and range between ' 20− 30 s.

Using the fits of the ACFs, we are able to detect the expected small θ′2 in the ML and its increase to a maximum in the IL

reaching a statistically significant θ′2 ' 1.1 K2 very close to zi. In contrast to m′2, we did not find a strong non-linear increase430

of θ′2 in the ML but it remained around ' 0.1 K2 over almost the entire part of the ML. As for the m′2 profile, there seems to

be another slight peak of the variance at 1020 m, which corresponds to approximately 0.8 z/zi, with a value of θ′2 ' 0.2 K2.
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Figure 14. Aθ′(τ) for 10 s at three heights with the corresponding fits of the theoretical shape of the ACFs.

A comparison of the integral length scales is presented in Fig. 17. There are strongly deviations in the lower ML and the IL;

however, in the center of the ML, the integral length scales are similar and amount ' 160 m. As for m′, we applied the 1-s and

10-s kw profiles in combination with the 10-s kθ profiles because only the latter provided robust results in the CBL.435

5 Profiles of TKE dissipation and molecular destruction rates

5.1 TKE dissipation

The derivation of the profiles of the ACF coefficient kw and the TKE dissipation ε (see Eq. 18) using the 1-s and 10-s data are

presented in Fig. 18. The error bars are based on Wulfmeyer et al. (2016), Appendix b.4. Similar to w′2, both kw and ε reach a

maximum near 530 m, which corresponds to approximately 0.4 z/zi. Up to this height, likely due to filter and noise effects, the440
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Figure 15. Power spectra Sθ′(ν) of the potential temperature fluctuations on double-logarithmic scales for a variety of heights. The theoret-

ical -5/3-slope of the spectra is hardly visible due to the high noise level of the data and the need to use 10-s data. However, a large part of

the atmospheric variances are still recovered over this spectral range.

27



Figure 16. Pink circles: Profiles of the variance of the potential temperature fluctuations for 10-s data. Red squares: The corresponding

results for the integral time scale.
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Figure 17. Comparison of the integral length scales Rw (small dark green and large green stars), Rm (small blue and large cyan stars), and

Rθ (red stars) including error bars due to noise error propagation according to Wulfmeyer et al. (2016), Appendix b.4 adapted to Ri.
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Figure 18. Small dark green and large green circles: Profiles of TKE dissipation ε using Eq. 18 derived with 1-s and 10-s resolutions,

respectively. Small pink and large red squares: Corresponding profiles of the ACF coefficients kw with 1-s and 10-s resolutions, respectively.
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difference between the 1-s and 10-s data is largest, whereas the results are very similar in the rest of the ML. At the maximum,

ε' 1 ·10−2 m2s−3 for the 1-s data and ε' 8.5 ·10−3 m2s−3 for the 10-s data, respectively. At this height, kw ' 0.19 m2s−8/3

for the 1-s data and kw ' 0.17 m2s−8/3 for the 10-s data, respectively. Both ε and kw decrease towards the IL to values around

ε' 1 · 10−3 m2s−3 and kw ' 0.04 m2s−8/3 at 1300 m, respectively. In the IL, as expected from the analyses of the variances

and the integral time scales, the 10-s data showed a high variability whereas the 1-s data still permitted robust derivations of ε445

and kw. As also in the ML a more accurate determination of turbulence profiles can be expected due to the better resolution of

the inertial subrange, we used the 1-s profiles for the derivations of molecular destruction rates below.

Figure 19. Small dark green circles: TKE dissipation ε derived with 1 s resolution. Large light green circles: ε derived with 10 s resolution.

Solid black line: Fit using Eq. 19 combining all data and using the a mean spatial integral length scale Rw ' 162.5m.

For parameterizations of ε, it can be related to the vertical wind variance profile w′2. The results are presented in Fig. 19

with the theoretical function from Eq. 19. For this fit we used all the data and inserted a mean integral length scale averaged
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Figure 20. Dark green diamonds: Rw for 1-s data. Light green diamonds: Rw for 10-s data.

over all data and the entire CBL, which resulted inRw ' 162.5 m (see Fig. 17). Please note that the averages ofRw were quite450

consistent between the 1-s (' 160 m) and 10-s data (' 165 m) and decreased only by 20 s towards the IL so that it was valid to

use just an average value forRw. Thus, we achieved

ε' 2

5

1

160m

(
w′2
)3/2

, (25)

which turned out to be in excellent agreement with our measurements.

Further refinements are possible using the observed dependence of Rw on w′2, which is presented in Fig. 20. For w′2 >455

0.5 m s−1, Rw seems to be fairly constant but it is uncertain in the IL. It is important to study whether our results for Rw
and its small height dependence are universal so that our results can also be applied to other measurements or whether it is

necessary to investigate more detailed similarity relationships forRw in order to derive a more general parameterization of ε.
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5.2 Profiles of molecular destruction rates

Using high-resolution profile observations of the water-vapor mixing ratio m and the potential temperature θ, the equivalent460

methodology can be applied to derive profiles of the ACF coefficient and the molecular destruction rates for these two scalars.

5.2.1 Molecular destruction of mixing ratio variance

Figure 21. Small pink and large cyan circles: Profiles of εm using Eq. 20 derived with 1-s and 10-s resolutions for kw, respectively. Large

blue squares: Profile of km with 10-s resolution.

The derivation of the profiles of the ACF coefficient km and the mixing ratio molecular destruction rate εm (see Eq. 20) is

presented in Fig. 21. We present only the km profile for 10 s because it agreed very well with the 1-s profile in the ML but the 1-

s data became unstable and partly negative in the IL. For the derivation of εm, we used two options, either the kw profile for 1 s465
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or 10 s. Both resulting profiles are included in Fig. 21. Similar tom′2, both km and εm maintain the double peak structure in the

CBL and reach a maximum in the IL very close to zi. At the maximum, km ' 0.05 g2kg−2s−2/3 and εm ' 7 ·10−4 g2kg−2s−1

considering the more robust results from kw using the 1-s data. For a parameterization of εm it is very interesting to relate it

Figure 22. Small cyan circles: εm derived with km at 10 s and kw at 1-s resolutions. Large blue circles: εm derived with km and kw at 10-s

resolutions. Fit using Eq. 21 combining all data and using a mean spatial integral length scales of Rm =Rw ' 160m.

to both m′2 and w′2 using Eq. 21. The results are presented in Fig. 22. For this comparison we used all the data and a mean

integral length scale ofRm =Rw ' 160 m (see also Fig. 17) and achieved:470

εm '
4

15

1

160m
m′2

√
w′2 , (26)

which agrees well with our data over nearly three orders of magnitude. Most of the variability between theory and observation

can be explained by the noise error bars. The data points of the 1-s data that deviate more from the theoretical curve (e.g.,
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m′2 ' 0.1 g2kg−2 and εm ' 4 · 10−5 g2kg−2s−1) belong to the top of the IL where the derivation of εm became particularly

uncertain. The agreement of our observations with Eq. 21 indicates that a parameterization of εm is possible with the variances475

m′2 andw′2. Obviously, this kind of plot provides also the opportunity to estimate a kind of mean spatial integral scale between

Rm andRw by determining its slope.

5.2.2 Molecular destruction of potential temperature variance

Figure 23. Small blue and large red circles: Profiles of εθ using Eq. 22 derived with kθ at 10 s resolution and kw at 1 s and 10 s resolutions,

respectively. Green squares: Corresponding profiles of the ACF coefficients kθ with 10 s resolution.

The profiles of the ACF coefficient kθ and the potential temperature destruction rate εθ (see Eqs. 22 and 23) are presented

in Fig. 23. As for εm, εθ was determined either using the kw profile for 1 s or 10 s, respectively. Similar to θ′2, both kθ and εθ480

reach a maximum in the IL very close to zi. At the maximum, εθ ' 1.6 · 10−3 K2s−1 and kθ ' 0.09 K2s−2/3. Also here, there
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seems to be a second maximum below zi at approx. 1050 m. For a parameterization of εθ, we relate it to both θ′2 and
√
w′2

Figure 24. Small cyan circles: εθ derived with kθ at 10 s and kw at 1-s resolutions. Large red circles: εθ derived with kθ and kw at 10-s

resolutions. Solid black line: Fit using Eq. 23 combining all data and using mean spatial integral length scales of Rw ' 160m and Rθ '

200m.

(see Eq. 23). The results are presented in Fig. 24 with the theoretical function from Eq. 23. For this fit we used all the data and

approximated the spatial integral scales in the CBL byRw ' 160 m andRθ ' 200 m. Thus, we estimated

εθ '
4

15

1

(160m)1/3 (200m)2/3
θ′2
√
w′2 ' 4

15

1

186m
θ′2
√
w′2 , (27)485

which agrees reasonably well with our data. Almost all deviations between the theoretical curve and the observations can be

explained by the large noise error bars.
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6 Discussion

In this work, we used high-resolution time series of w′, m′, and θ′ for profiling integral scales, variances as well as ε, εm,

and εθ in the CBL. We developed a technique to identify the suitable range of lags for fitting the theoretical shape of the490

ACFs to the data in order to consider the effects of temporal-spatial averaging/filtering effects using 1-s or 10-s data on the

resulting profiles of turbulent quantities. We did not correct our measurements further with respect to filtering effects, as the

corresponding loss is generally not larger than 10-15 %, as demonstrated and elaborated in Lothon et al. (2006, 2009). We

applied all our derivations in the temporal and spatial spaces because this handling of the data using the theoretical shape of

the transversal ACF is equivalent to spectral analyses so that we avoid additional processing steps. We also calculated spectra495

to study the consistency and plausibility of our temporal statistics.

According to its definition, Ti is a kind of average for the typical duration of a coherent fluctuation in the inertial subrange

or a way to characterize the corresponding horizontal size of a turbulent eddy according toRi ' V Ti assuming that the Taylor

hypotheses is applicable to these scales. Lothon et al. (2006) demonstrated that a length scale L or an outer scale of turbulence

can be defined where the inertial subrange become visible in the data, which resulted in Li ≈ 2.7Ri. However, this concept500

only works, if the inertial subrange is not overwhelmed by mesoscale and microscale circulations so that its onset in the power

spectra is highly variable. Related to these effects, it is essential to separate turbulent from micro- and mesoscale fluctuations

in order to determine Ti correctly. The approximation to integrate the measured ACF to its first zero crossing is not the best

approach and leads to an overestimation of Ti and Ri (compare, e.g., the measured and fitted ACFs on Fig. 7 at 545 m). It is

fundamental to determine the range of the suitable lags first, derive ki from this, and then use Eq. 17 to derive Ti (Wulfmeyer505

et al., 2016). Eq. 17 provided rather robust results even at small variances and large noise levels (see Figs. 8, 12, and 16). For

this procedure, it is not necessary to use a temporal resolution ∆t of the data to "resolve" the inertial subrange but it is required

that a reasonable range of samples is present to realize an accurate fit of the data to the theoretical shape of the ACF. As the zero

crossing τ0,i of the extrapolated ACF is 5/2Ti (Wulfmeyer et al. (2016)), ∆t << τ0,i. This was the case for the 1-s and the

10-s data here because we found τ0,i ' 5/2Ti ' 50s> 10s. This explains the good agreement of the profiles of temporal and510

spatial integral scales, the variances, the TKE dissipation, and the molecular destruction rates for both 1-s and 10-s resolutions.

Thus, we could also estimate Li with τ0,i or Ti because obviously Li ≈ 2.5Ri ' 2.5V Ti ' V τ0.

We determined Tw ' 20 s in the ML, which corresponds toRw ' 160m' 0.13zi (see Fig. 17), with an indication of a slight

decrease towards the IL. Previous measurements of Tw andRw were reported in Lenschow et al. (2000); Lothon et al. (2006).

In the case studied in Lenschow et al. (2000), Tw ' 60 s resulting in Rw ' 180m' 0.12zi with a slight increase towards the515

IL. In spite of this agreement, we need to evaluate more data consistently because Lenschow et al. (2000) used a linear fit to

the ACF to derive Tw and w′2, which could have led to an overestimation of Tw and an underestimation of w′2. In Lothon et al.

(2006); Lenschow et al. (2012) a number of cases were analyzed but here an integration of the ACF to the first zero crossing was

used likely leading to an more severe overestimation of Tw. This can be the reason that Lothon et al. (2006); Lenschow et al.

(2012) foundRw ' 0.3zi whereas we foundRw ' 0.13zi, which is a significant reduction. In any case, for future operational520

analyses of turbulence data it seems to be safe to estimate the upper limit of the number of suitable lags (lagmax) for fitting
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the ACF with its theoretical shape in the inertial subrange according to lagmax < 2Tw/∆t' 0.25zi/(V ∆t)< τ0,w/∆t. It is

necessary to substantiate this relationship with large data sets from observatories such as LAFO (Späth et al., 2023).

With respect to Tm, some results were presented in Lenschow et al. (2000); Wulfmeyer et al. (2016); Osman et al. (2018).

Whereas we derived Tm ' 15s≤ Tw in the ML with a tendency to increase towards to the IL, Tm ' 50− 100 s in these525

publications with a tendency to decrease towards the IL. It is essential to collect more data in combination with a consistent

data processing as introduced in this work to get further insight in the statistics of Tm because similar to the discussion of

Tw, different integration schemes and numbers of lags were used likely resulting in an overestimation of Tm. To the best of

our knowledge, Tθ was only studied in our work as well as in Behrendt et al. (2015); Wulfmeyer et al. (2016); Behrendt et al.

(2020) using data from the same campaign but using a different number of lags, which explains that we specified now a smaller530

Tθ ' 20 s. The tendency of an increase of Tθ towards the lower ML needs more investigation in the future.

Our profile of vertical velocity variance reaches a maximum at ' 0.4zi with a value of w′2 ' 2.5 m2s−2 and decreases

to ' 0.2 m2s−2 in the IL. This location of the maximum is similar to the observations in Lenschow et al. (2000, 2012);

however, this maximum variance is significantly stronger, as for all cases reported in Lenschow et al. (2012) (< 1.5 m2s−2).

This deviation can be partly due to the refined choice of lags for the fit of the ACF. The reduction of variance towards the535

IL rather consistent with the previously analyzed cases. In the CBL, in contrast to w′2, the profiles of m′2 and θ′2 must peak

in the IL because this is the region of largest variables of m and θ. As shown in Lenschow et al. (2000); Wulfmeyer et al.

(2010); Turner et al. (2014b); Muppa et al. (2016); Osman et al. (2018), the range of the peak values is large and our result

(' 1 g2kg−2) is located well within the range of previous reported values (0.4− 4.4 g2kg−2). It is not the subject of this work

to study the relationship of the variance peaks to driving variables (for water-vapor mixing ratio see Wulfmeyer et al. (2016);540

Osman et al. (2019)). Interesting is the strong non-linear increase of m′2 in the ML towards the IL, which contains information

about the turbulent properties of the CBL and will be investigated in future studies. According to our data, this increase is

considerably less for θ′2. In the IL, we derived a peak value of θ′2 ' 1.1 K2, which is slightly larger than another reported in

Behrendt et al. (2015, 2020) and amounted to 0.4 K2. We detected other peaks of the variance of m′2 at 1140 m and of θ′2 at

1050 m, which are unexpected and need also further investigations in the future.545

Fundamental for the derivation of TKE dissipation of molecular destruction rates is the relationship between the variances

and the coefficients ki. Using Eq. 17, these read

varatm,i =

(
5

2
Ti
)2/3

ki , (28)

which agrees very well with our observations (not shown).

TKE dissipation ε can be derived by different techniques such as using the ACF (Davies et al., 2004), the structure function550

(Banakh et al., 2017), the power spectrum (Lothon et al., 2009; O’Connor et al., 2010; Lenschow et al., 2012; Bodini et al.,

2018), and the Doppler spectral width (Doviak and Zrnić, 1993). The Doppler spectral width method is not very common

anymore because most of the commercially available DLs do not store the full Doppler spectrum and the broadening of the

spectrum is not only due to turbulence but also due to several different effects such as wind shear. In contrast, the ACF, the

structure function, and the power spectrum methods are straightforward and relatively easy to implement. Moreover, all these555
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techniques are physically equivalent. As pointed out above, we prefer the use of the ACF because we avoid the introduction of

further data processing steps and the noise introduced by the fast Fourier transform. Also, the noise error propagation is simple

and can be automated along with the determination of ε itself.

The determination of ε by the power spectrum approach was described in O’Connor et al. (2010); Lothon et al. (2009);

Lenschow et al. (2012); Bodini et al. (2018):560

ε' 2π

(
2

3ak

)3/2

(
w′2
)3/2

LN,w
(29)

where ak ≈ 0.55 is the Kolmogorov constant and LN,w is a length scale of the large eddies. Comparison with Eq. 19 yields

LN,w ' 5π

(
2

3ak

)3/2

Rw ' 21Rw , (30)

which may be used for future derivations of ε with power spectra of ACFs. However, this relation seems to be inconsistent with

the derivation of Lothon et al. (2006) (see above), which states Lw ' 2.7Rw (see above). It is currently not clear where this565

large deviation comes from but it may be the case that the definitions of L and LN are not the same.

The magnitude of the ε profile that we observed agrees quite well with those reported in previous studies including its

reduction towards the IL (Lothon et al., 2009; O’Connor et al., 2010; Lenschow et al., 2012). Equations 29 and 19 can be used

as parameterizations of ε. For the turbulence parameterization in the CBL, TKE is mainly determined by w′2 so that for TPs

such as MYNN a parameterization of ε by w′2 in the form of ε∝ e3/2/l ' w′2/l is reasonable and should be tested in more570

detail in the future. This corresponds to the parameterizations of ε chosen in Nakanishi and Niino (2009); Olson et al. (2019),

where l is the mixing length scale (see Eq. 2). Obviously, Eq. 19 can not only be used to determine ε but also the missing B1

coefficient there. Also, the profiling of ε can be applied for comparisons with LES and for TKE budget analyses (see Eq. 1 and

Moeng and Wyngaard (1989); Sullivan and Patton (2011)).

In contrast to TKE dissipation measurements, we are not aware of the use of any remote sensing efforts to determine values575

or even profiles of the molecular destruction rates for temperature and water vapor variances. Both Wulfmeyer et al. (2016)

and Osman et al. (2018) described the first attempts to study the coefficients of the ACFs; however, in this work we managed

to derive profiles of these destruction rates quantitatively. Previous measurements were only possible with in-situ sensors.

Corresponding measurements were reported in Caughey and Palmer (1979) and Lenschow et al. (1980) and yielded results of

εm in the range of 10−4− 10−3 g2kg−2s−1 around zi. Our remote sensing approach yielded εm ' 8 · 10−4 g2kg−2s−1 in the580

IL, which is very consistent with previous in-situ measurements. However, this is just a first example. It is necessary and will

be possible with our combined remote sensing capability to determine profiles of these molecular destruction rates and other

important turbulence quantities in the CBL routinely so that a large database of results can be collected and evaluated.

It is interesting to relate the ACF coefficients, variances, and the molecular destruction rates in more detail. We have demon-

strated how this can be done using a combination of spectral and ACF analyses, as done above for ε. In the inertial subrange of585

the one dimensional spectra of mixing ratio it is known that

εm '
(2π)2/3

β
ε1/3m′2L−2/3m (31)
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where β ' 0.82 is a spectral constant (Lenschow et al., 1980). A corresponding equation holds for εθ. This relationship in-

dicates that in theory the molecular destruction rates are proportional to their variances. Furthermore, inserting Eq. 29 and

assuming that the turbulent length scales for vertical wind, humidity, and temperature are similar, we find590

εm ' 2π

β

√
2

3ak
m′2

√
w′2

LN,m
(32)

εθ ' 2π

β

√
2

3ak
θ′2

√
w′2

LN,θ
(33)

Of course, as studies of spectra and ACFs are equivalent, these equations are consistent with our relationships derived in

Eqs. 18-23. Comparing Eqns. 32 and 33 yields

LN,m,θ ' 32Rm,θ , (34)595

which is similar to Eq. 30 and where Rm,θ is a kind of mean spatial integral scale between w′ and m′ or θ′.

Since our method allows the measurement of vertical profiles of km, kθ, εm, and εθ, these data can be used for more extensive

comparisons with LES, variance budget analyses, and for the development of parameterizations of molecular destruction rates.

The latter is becoming more important, as for the current and the next generation of TPs, 2nd and 3rd order closures are under

investigation (e.g., Olson et al. (2019)). The parameterization of ε is shown in Eq. 25 and Fig. 19. We achieved very convincing600

agreement between the derivation of ε in dependence of w′2 and their theoretical relationship. The deviations between ε

in dependence of w′2 can be almost entirely explained by the noise error propagations. This also holds for the theoretical

relationships between m′2
√
w′2 and εm (see Fig. 22 and Eq. 26) as well as between θ′2

√
w′2 and εθ (see Fig. 24 and Eq. 27).

Also in these cases, the deviation between the theoretical curves and the observations can be explained by the larger noise error

bars. We expect that further improvements of these relationships can be achieved, if the noise of the WVDIAL and the TRRL605

measurements is reduced and the observed height dependence of the spatial integral scales are considered.

In the future, our WVDIAL measurements should be improved with respect to SNR to achieve better performance. This is

now possible because recent updates to that lidar system have resulted in an average power of the laser transmitter of up to

10 W (Späth et al., 2016). Also for the TRRL measurements, significantly better performance is possible, as demonstrated in

Lange et al. (2019). Furthermore, DLs should be used that provide a better performance in the IL both for the observation of610

w′ and its turbulence statistics as well as for the derivation of horizontal wind profiles. These DLs are already commercially

available. Furthermore, for operational profiling of TKE and TKE dissipation, we recommend the operation of two closely

collocated DLs, one in a continuous vertically staring mode and the other one in a six-direction staring mode, as demonstrated

in Bonin et al. (2017). Using the latter configuration, not only horizontal wind profiles can be measured with high temporal

resolution including the potential of additional noise suppression methods for optimizing the SNR in the IL, but additional data615

products such as TKE and the momentum flux profiles can be provided (Späth et al., 2023).
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7 Conclusions

In this work, the transverse temporal ACFs were used to derive vertical profiles of TKE dissipation ε as well as the molecular

destruction rates of mixing ratio and potential temperature εm and εθ, respectively. The prerequisite for deriving representative

values is the applicability of Taylor’s hypothesis of frozen turbulence for the spatial and temporal scales in the inertial subrange,620

which we assumed to be applicable due to the quasi-stationary behavior of the CBL. The molecular destruction rates were

derived by combining measurements of the profiles of the ACF coefficients in the inertial subrange. The data were provided

by a combination of three high-resolution active remote sensing systems, a Doppler lidar (DL), a water-vapor differential

absorption lidar (WVDIAL), and a temperature rotational Raman lidar (TRRL). These systems were collocated at one site

during the HOPE campaign (Macke et al., 2017).625

For this purpose, we applied the methodology proposed in Wulfmeyer et al. (2016). We showed that our approach is equiv-

alent to the use of the transverse spectra of the fluctuations of the vertical wind w′, mixing ratio m′, and potential temperature

θ′; however, our direct use of ACFs does not require additional data processing steps such as applying Fourier transforms to

the data. Also, the propagation of noise errors is straightforward and was included in the analyses and interpretation of our

results. In particular, the synergy achieved by using this array of active remote sensing systems enables us to identify and to630

choose the correct range of lags in the inertial subrange to derive the results for all these quantities (TKE dissipation and the

molecular destruction rates of temperature and moisture variances), as these were consistent with the expected shape of the

ACFs. Another important result was that we demonstrated a methodology to derive consistent profiles of turbulent variables in

dependence of their spatial and temporal resolutions (1 s and 10 s), as long as several lags are located in the inertial subrange,

which can be studied by the temporal and spatial integral length scales. In order to compare and evaluate corresponding data635

sets from different sites, all tools for the derivation of turbulent variables should be harmonized and made available for the sci-

entific community. Therefore, we will start soon to make this software, which is currently written in IDL, available of software

repositories such as Github.

A weakly convective case was selected from the HOPE dataset and derived profiles of temporal and integral scales as well

as of variances. Several relationships between zi, the integral scales, and the outer length scale of turbulence were derived. For640

instance, we found that Rw, Rm, and Rθ ' 160 m are similar at least in the ML so that our results indicate that Ri ≈ 0.13zi.

Further evaluations of similar data sets with harmonized processing tools and steps are necessary to confirm whether this

relationship is universal.

We found a maximum of ε' 0.01 m2s−3 at approx. 0.4zi rolling off to small values of ε' 1 · 10−3 m2s−3 in the IL. We

showed that the ACF coefficient kw ∝ w′2 and ε∝
(
w′2
)3/2

including an estimation of the slope between these variables. This645

resulted in a proposed parameterization of ε, which can be applied in the TKE budget equation for higher-order parameteriza-

tions of CBL turbulence.

We also showed that km ∝m′2, kθ ∝ θ′2, εm ∝m′2
√
w′2, and εθ ∝ θ′2

√
w′2. All these profiles have peaks in the IL so that

the shapes of km and kθ differ from that of kw. This also explains the differences in the profiles of εm and εθ with respect to

41



ε. The profiles of εm and εθ rise from quite small values in the ML to maxima in the IL. In our case, these maxima amount to650

εm ' 7 · 10−4 g2kg−2s−1 for mixing ratio and εθ ' 1.6 · 10−3 K2s−1 for potential temperature in the IL.

This combination of measurements has been realized during the field campaigns HOPE and LAFE (Wulfmeyer et al., 2018)

as well as at the LAFO site Späth et al. (2023). However, the methodology presented in this work can also be applied to larger

data sets such as from the ARM SGP site in the US, the DWD Meteorological Observatory (MOL) in Lindenberg, Germany,

the Payerne observatory of Meteo Swiss for vertical wind and water vapor. Such long-term data are essential to characterize655

turbulence profiles in dependence of meteorological conditions and to gain insight how well the results hold over a wide range

of situations. With respect to water vapor variances, this idea was demonstrated in Turner et al. (2014b); Osman et al. (2019).

The long-term goal should be to provide routine analyses of diurnal cycles of turbulence profiles in different climate regions

for confirming the universality of scaling or to refine them by characterizations of wind shear, the strength of the inversion

layer, and other potential scaling variables. A corresponding setup of instrumentation was proposed for the GEWEX Land At-660

mosphere Feedback Observatories (GLAFOs, Wulfmeyer et al. (2020)) so that these turbulence studies will also be a backbone

of the proposed GLAFO sites. Their results can be applied more extensively for turbulence theory, comparisons with LES,

turbulence parameterizations as well as TKE and variance budget analyses.
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