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Abstract. High-resolution three-dimensional (3D) wind velocity measurements are of major importance for the characteri-

zation of atmospheric turbulence. The use of a multi-beam wind-LiDAR focusing on a measurement volume from different

directions is a promising approach for obtaining such wind data. This paper provides a detailed study on the propagation of

measurement uncertainty of a three-beam wind-LiDAR designed for mounting on airborne platforms with geometrical con-

straints that lead to increased measurement uncertainties of the wind components transverse to the main axis of the system. The5

uncertainty analysis is based on synthetic wind data generated by an Ornstein-Uhlenbeck process as well as on experimental

wind data from airborne and ground-based 3D ultrasonic anemometers. For typical atmospheric conditions, we show that the

measurement uncertainty of the transverse components can be reduced by about 30 % – 50 % by applying an appropriate

post-processing algorithm. Optimized post-processing parameters can be determined in an actual experiment by characterizing

measured data in terms of variance and correlation time of wind fluctuations. These results allow an optimized design of a10

multi-beam wind-LiDAR with strong geometrical limitations.

1 Introduction

In the atmospheric sciences, our knowledge of the atmospheric boundary layer (ABL) is mainly based on observations of

turbulent flow (Garratt, 1994). Atmospheric turbulence is a complex phenomenon with scales involved ranging from submeters

to kilometers (Wyngaard, 2010). For large spatial and temporal scales, the ABL plays an important role in fields such as15

numerical weather prediction (Bauer et al., 2015), climate science (Davy, 2018) or air pollution meteorology (Quan et al.,

2014). However, the focus of interest has recently shifted to smaller scales, which include microphysical aspects of clouds that

are not yet sufficiently understood (Bodenschatz et al., 2010). Progress in this field is needed to further reduce uncertainties in

weather models and climate projections (Bony et al., 2015; Stevens et al, 2020). To shed light on this part of the ABL there is

a strong demand for highly resolved, local, and small-scale three-dimensional (3D) wind data.20

Highly resolved 3D wind data can be acquired by conventional sensors such as 3D ultrasonic anemometers and multi-

hole Pitot tubes. Those are not remote measurement techniques, since the measurement volume is in close vicinity of the

instrument, and depending on the mounting platform the wind turbulence can be disturbed in a way that precludes measuring

highly-resolved wind in the ABL. Coherent Doppler LiDAR (Light Detection and Ranging) is the measuring technique of

choice for the remote measurement of wind, widely used for wind industry applications (Pena et al., 2013; Kumer et al., 2016;25
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Hill, 2018; Fuertes et al., 2014; Lundquist et al., 2015). The measuring technique can be based on continuous wave or pulsed

lasers, mostly operating at 1550 nm. To resolve 3D information rather than single line-of-sight information, conical scans are

widely used. Such systems average over large lateral spatial and temporal scales and usually assume a homogeneous wind flow

within the measuring volume (Bingöl et al., 2009), typically covering a range of tens of meters (Schlipf et al., 2020; Wilhelm

et al., 2021). This precludes the measurement of complex and small-scale turbulence (Sathe et al., 2015).30

A novel 3D wind-LiDAR, the CloudKite Turbulence LiDAR (CTL), is developed by the Fraunhofer Institute for Physical

Measurement Techniques IPM and the Max Planck Institute for Dynamics and Self-Organization (MPI-DS). Because high-

resolution measurements are best achieved at short measurement ranges, the CTL system is designed to be mounted on an

airborne platform such as the Max Planck CloudKite (MPCK) (Bagheri et al., 2018; Schröder et al., 2022; Stevens et al.,

2021), an instrumented balloon/kite hybrid capable of flying up to 2km above the ground. The CTL is based on a multi-beam35

arrangement and uses an FMCW (Frequency-Modulated Continuous Wave) laser to measure wind speeds in the vicinity of

the carrier platform, e.g. at a distance of 10− 15m. With this approach, non-intrusive high-resolution measurements can be

achieved. The 3D wind vector is resolved by focusing three independent, spatially separated line-of-sight LiDAR detectors on

one single measuring point.

The CTL enables single-point 3D wind measurements at the meter scale with a temporal resolution of 10 Hz and thus40

opens up the possibility of investigating turbulence on a much smaller scale than with classic scanning LiDARs (Pauscher

et al., 2016) and in altitudes and situations which were previously inaccessible. Further use cases with limited space like wind

turbines or meteorological masts are conceivable. However, there are systematic constraints when using a LiDAR system on

an airborne platform. The main measurement uncertainty results from the individual detector errors and the limited space for

mounting (see Appendix A for the consideration of other error sources, such as effects of temperature and platform motion).45

The small distance between the detectors from which the laser beams originate means that the three LiDAR beams have a

small angle to the transverse components. The measurement uncertainty of the resulting reconstructed 3D wind vector can

be calculated by error propagation theory from the intrinsic detector uncertainty and the system geometry. Due to the small

angles, the spatial dimensions which are transverse to the main direction of the detector system suffer from high uncertainties.

This might constrain the use cases of the CTL for its application. However, as shown in this study, considering this effect in50

post-processing can enhance the data quality.

In this study, the measurement uncertainties are analyzed and an uncertainty propagation model is introduced to identify the

dependencies of uncertainty, geometry, detector assumptions, and turbulence characteristics of the measured wind data. This

is done using synthetic wind data generated by an Ornstein-Uhlenbeck process, a well-known model for simulating turbulent

wind data (Uhlenbeck and Ornstein, 1930; Pope, 2011; Zárate-Miñano et al., 2013). Our analysis shows that it is possible to55

reduce the uncertainties of the transverse components of a measured 3D wind vector by applying appropriate low-pass filtering

to the data, i.e. averaging of the data points.

Furthermore, a series of analytical expressions are developed to determine the best post-processing parameters that minimize

the measurement uncertainty of a given wind data set, and also to illustrate how they can be applied to real in-field data. The

latter is done by using experimental wind data taken with the MPCK in the framework of the EUREC4A-campaign (Stevens et60

2

https://doi.org/10.5194/amt-2023-184
Preprint. Discussion started: 12 March 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. Schematic of the CloudKite Turbulence LiDAR (CTL). It consists of three optical heads (telescopes), the LiDAR box including

data processing and control module, the battery module and the carbon mounting frame. The side length of the triangle is dt = 3m.

al, 2020). Our results highlight the reliability and potential of CTL for use in future field campaigns to characterize ABLs at

high resolution while providing the necessary post-processing tools for analysis of the collected data by CTL and systems of

similar design concepts.

2 Setup Description

2.1 The CloudKite Turbulence LiDAR65

The setup of the novel, currently developed 3D wind-LiDAR is shown in Figure 1. The main specifications are summarized in

Table 1. The core optical LiDAR module with three optical channels was custom-built by ABACUS Laser GmbH (Göttingen,

Germany), based on a joint concept development.

Under typical atmospheric conditions, a velocity resolution in terms of full-width half-maximum (FWHM) can be achieved

of at least 0.1 ms−1, with a temporal resolution of 10 Hz, according to the specifications provided by the manufacturer.70

This is derived from the fluctuations of the velocity value when measuring a constant wind value. As the detection is shot-

noise limited, a Gaussian distribution is assumed, for which σ = FWHM/(2
√

2ln2). Consequently, a detector uncertainty in

terms of standard deviation can conservatively be estimated to be σdet = 0.04 ms−1. Also, the LiDAR system has an internal

reference channel which suggests that the detector noise is even below 0.04 ms−1.

The core LiDAR was integrated into a system design that spatially separates the three optical heads, which are equipped75

with focusing 3-inch telescopes. The laser beams are focused on one measurement volume, which ensures a spatial resolution
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of < 1 m3. This configuration allows to reconstruct a 3D wind vector from the three line-of-sight (LoS) measurements. The

separation of the laser telescopes and the focus distance is chosen to maximize the accuracy of the wind vector measurement

within the limitations of the mounting platform.

The usage of the CTL on the MPCK enables short-range remote wind measurements with high lateral spatial resolution and80

high velocity resolution of the transverse spatial components in altitudes of interest within the atmospheric boundary layer.

Sampling rate 10 Hz

Spatial resolution < 1 m3

Spatial dimensions 3

Wind velocity accuracy (LoS) < 0.1 ms−1

Measuring distance 7 m - 50 m

Laser wavelength 1545 nm

Table 1. Specifications of the CloudKite Turbulence LiDAR (CTL).

2.2 Measurement geometry

Figure 2 shows the geometry of the MPCK and the CTL with its three telescopes mounted on the keel of the MPCK kite.

The global coordinate system xyz is defined as shown in Fig. 2a, where the MPCK’s keel tail-end is pointing in x-direction

and usually aligns to the direction of the mean wind. The LiDAR detector geometry constitutes a pyramid with an equilateral85

triangle as the base, a telescope at each corner, and the focus point at the top edge (see Fig. 2b). The distance dt between two

telescopes defines the side length of the base, and the length of one long edge is defined by the focus distance df . The height

of the pyramid is denoted by h, which corresponds to the distance of the mounting platform to the focus point. The unit vectors

in line-of-sight direction of the three detectors are defined in the detector coordinate system uvw as:

û1 =




−cosθ

0

sinθ


 , û2 =




1
2 cosθ
√

3
2 cosθ

sinθ


 , û3 =




1
2 cosθ

−
√

3
2 cosθ

cosθ


 (1)90

with angle θ = arccos
dt√
3df

. The direction of the entire detector system ûdet is defined in the detector coordinate system uvw

as the direction of the w-axis:

ûdet =




0

0

1


 (2)
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Figure 2. (a): Schematic of the MPCK in the global coordinate system xyz. The MPCK aligns with the mean wind direction (blue arrow,

x-axis). ûdet points in the main direction of the detector system. (b): Geometry of the detection system in the detector coordinate system

uvw. The direction of the detection system ûdet (see (a)) is perpendicular to the base of the detection system and points in the direction of the

spatial component w. This component is denoted as longitudinal component of the measured wind data. The lateral and vertical components u

and v are denoted as transverse components. dt and df are the spatial distance of the optical telescopes and their focus distance, respectively.

The distance of the LiDAR ground-plane to the measuring volume is denoted as h. û1, û2 and û3 are the unit vectors in the line-of-sight

direction of each LiDAR detector (optical head).

The detector coordinate system (uvw) is defined by a rotation relative to the global coordinate system (xyz). A vector a′ in

the detector coordinate system is described by a vector a in the global coordinate system as:95

a′ = Rx (α)Ry (β)Rz (γ)a (3)

The rotation matrices Rx (α) , Ry (β) and Rz (γ) describe the counter-clockwise rotation of a vector by a certain angle about

the given axis. For the analysis and the results presented in this paper, we first rotated the system around the z-axis by the angle

γ, which corresponds to an intrinsic rotation around the w-axis. This is followed by a rotation by the angle β around the y-axis

and then by the angle α around the x-axis. With α = 90◦, β = 0◦ and γ = 0◦ the detector system points in the y-direction,100

which is transverse to the mean wind direction.

The unit vectors of the detector system ûdet, û1, û2 and û3 are defined in the detector coordinate system (Eqs. (1) and (2))

and can be transferred to the global coordinate system by equation (3). In the following all vectors and matrices are defined

in the global coordinate system. With the rotations defined above (α = 90◦, β = 0◦ and γ = 0◦) the longitudinal component

of the detector system (w) aligns to the y-component and the transverse components (u,v) to the x and z-components of the105

global detector system.
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For the results of this paper, the distance between two telescopes is assumed to be dt = 3m and the focus distance is set to

df = 15m. In this focus distance, it is assumed to measure wind which is not affected by wind turbulence introduced by the

LiDAR mounting platform, i.e. the MPCK.

3 Methods110

3.1 Synthetic wind data

We want to model wind data without wind gusts or large changes in atmospheric conditions and relatively weak turbulence

intensity. For this kind of wind, the single-point velocity probability density function (PDF) can be assumed to be Gaussian

(Calif, 2012). For generating such synthetic wind fluctuation data, an Ornstein-Uhlenbeck process (OU) can be used as a simple

stochastic differential equation (SDE) model (Zárate-Miñano et al., 2013; Pope, 2011; Risken, 1989), which allows to control115

fluctuations, time correlations and turbulence intensity.

Each spatial component of the synthetic wind vector vsim
i (t) is described in time steps dt by an OU process as follows:

dvi =−1
τ

[vi−µi]dt +

√
2Var

τ
dWi. (4)

Here, the first term on the right-hand side corresponds to a drift term toward the mean reversion level µi, which corresponds

to the mean wind velocity, with the index i referring to the spatial coordinates x, y, and z. The second term is a stochastic120

term featuring the increment dWi of a Wiener process. The parameters τ > 0 and Var > 0 are the correlation time and the

variance of the generated wind data, respectively. To generate a synthetic wind data set, the OU process is discretized using the

Euler–Maruyama method (Kloeden and Platen, 1992) and implemented in Python code.

For the uncertainty propagation model, a synthetic wind data set is needed with realistic and typical turbulence characteris-

tics. As typical values we consider the variance Var to be in the order of 1 – 4 m2s−2 and the correlation time τ as 5 – 10 s.125

The characterization of the experimental data (Sect. 3.2), which will be used later in this work, exhibits values for the variance

ranging from 0.02 up to 5.2 m2s−2. This broad distribution makes it difficult to choose one “typical” value of variance for the

synthetic wind data set. For the correlation time it is challenging to derive accurate values from the experimental wind data

available, as discussed later (see Sect. 6).

Based on these considerations a synthetic data set vsim was used with variance of the data set of Var = 1 m2s−2 and a130

correlation time of τ = 7.5 s. For simplicity, the same values are chosen for each spatial component vsim
i . The mean reversion

levels are chosen for the three spatial components as µx = 8 ms−1, µy =−4 ms−1, and µz = 0 ms−1.

3.2 Experimental wind data

The experimental wind velocity data vexp used for the analysis was acquired by a 3D ultrasonic anemometer mounted on

the MPCK, which measured all three spatial components with 30 Hz sampling frequency. The data are samples of 1-2 hours135
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duration taken during flights at different altitudes as part of the EUREC4A-campaign (https://eurec4a.eu/) on RV Meteor

(Stevens et al., 2021).

In addition to the MPCK data, ground-based measured wind data has been used for the present investigation. The data was

taken by A. Bertens from MPI with a 3D ultrasonic anemometer (“Ultrasonic Anemometer3D”, part no. 4.3830.20.340, Thies

Clima, Göttingen) on the research station “Schneefernerhaus” close to Zugspitze (Bertens, 2021).140

To get detector data with characteristics as similar as possible to a data set of the CTL, the time resolution of the experimental

data set has to be reduced to ∆t = 0.1 s. This is achieved by merging consecutive data points by an arithmetic average.

The experimental wind data is characterized using mean velocity, variance, and correlation time. The mean velocity is

defined as v̄ = 1
N

∑N
t=0 vt and the variance as σ2

v = 1
N−1

∑N
t=0(vt− v̄) with N as the number of data points.

The correlation time of the time series can be calculated by solving the integral of the auto-correlation function acf or145

from a fit of the function exp(−1/τdt) on the auto-correlation data. Another approach to calculating the correlation time is

T =−1/ ln(acf(1)). The methods could be validated by applying them to synthetic data and comparing the correlation time

calculated by the Ornstein-Uhlenbeck parameter with the result from the auto-correlation function. For the results presented in

the following sections, the latter approach was chosen.

3.3 Uncertainty propagation model150

This section presents the uncertainty propagation model. It takes an input wind data set, either synthetic or experimental,

and calculates the expected detector data by projecting the wind data on the directions of the detectors. Then, statistically

independent Gaussian distributed deviations are added to each detector data point, which is meant to simulate the intrinsic

detector measurement uncertainty. The “erroneous” detector data is then reconstructed and compared to the input data set. This

uncertainty analysis reveals the dependencies of the measurement uncertainty for a multi-beam wind LiDAR.155

An initial wind speed vector is denoted as vinit(t) and is provided either from a theoretical turbulence model, i.e. a synthetic

data set vsim(t) (see Sect. 3.1), or from field measurements vexp(t) (see Sect. 3.2). The expected measurement data vdet
d (t)

for each LiDAR detector d is the line-of-sight component in the direction of the detector unit vectors ûd(t) (see Eq. (1)) with

d = 1, 2 and 3 and can be calculated by projecting the initial wind vector vinit(t) on the detector unit vectors:

vdet
d (t) = ûd ·vinit(t). (5)160

The values of all three detectors form a vector vdet(t). In this notation equation (5) becomes

vdet(t) = MT vinit(t) (6)

with vdet = (vdet
1 ,vdet

2 ,vdet
3 ) and M = (û1, û2, û3).

Each detector has a certain intrinsic measurement uncertainty. As there is no precise knowledge about the origin of the mea-165

surement uncertainty, we model realistic measurement data by adding a random deviation to each detector for each time step,

which can be regarded as simulated errors. This has been done similarly by Schlipf et al. (2020). The deviations or errors

δdet
d are Gaussian distributed with zero mean and a standard deviation σdet

d for each detector d, estimated by assumptions on
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the measurement principle and the initial configuration of the system (see Table 2). σdet is denoted as the ”intrinsic detector

uncertainty” of the measurement system and is assumed to be the same for all detectors. The wind data for the detector d with170

added error is denoted as verr
d and is defined by:

verr
d (t) = vdet

d (t) + δdet
d (t). (7)

In an actual experiment, there is no a priori knowledge of vinit(t) or vdet(t). Only the “erroneous” detector data verr(t)

is available. Using widely used reconstruction formulas (e.g. Holtom and Brooms (2020); Schlipf et al. (2012, 2020)) and

applying the geometry of the detector system, it is possible to reconstruct a 3D wind vector vrecon(t) from the “erroneous”175

measurement data as:

vrecon(t) =
(

MT
)−1

verr(t) = Tverr(t), (8)

where T =
(

MT
)−1

denotes the reconstruction matrix. The result of this reconstruction algorithm is a 3D wind vector with

an intrinsic measurement uncertainty.

3.4 Post-processing of reconstructed wind data180

The LiDAR detectors are introducing errors that can be regarded as statistically independent. The fluctuation of the data due to

wind turbulence is, however, correlated between all three detectors. Because of this, applying a post-processing averaging on

the resulting reconstructed data might be advantageous to reduce the resulting measurement uncertainty of the reconstructed

3D wind vectors. This will not reduce the number of time steps but will smooth out fluctuations on the scale of the averaging

time, which can be interpreted as reducing the “physical” time resolution. The aim of this post-processing is to reduce the185

measurement uncertainty but not lose information about relevant turbulence characteristics in the data.

The post-processing averaging can be implemented as a low-pass filtering of the respective component of the reconstructed

wind velocity vector. Different approaches are discussed and compared in the Appendix B. For the present investigations, a

Gaussian filter was chosen as an implementation of low-pass filtering. It can be interpreted as a moving average with Gaussian

weights. The filter function is defined with the standard deviation σfilt as:190

g(t) =
1√

2πσfilt
exp

( −t2

2(σfilt)2

)
. (9)

The filtering is done by convolving the data set with the filter function. Here, the given Gaussian filter function is truncated to

a window function with the length of 4σfilt. To simplify the interpretation of the results of the analysis with Gaussian filtering,

the standard deviation of the Gaussian filter is set to σfilt = n/4, where n is the length of the window. Using a simple moving

average with n as the number of averaged data points for the analysis yields similar results, i.e., the same minima of uncertainty195

as n changes (see Appendix B).
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3.5 Evaluation of processed data

The measurement uncertainty of the reconstructed wind data is determined by comparing each time step of the initial wind

velocity vinit(t) with the reconstructed and post-processed wind data vrecon(t). The deviations of both data sets at a time step

t = T are defined for each spatial component i as:200

ai,T = vinit
i,T − vrecon

i,T . (10)

The measurement uncertainty σi is calculated for each spatial component i in terms of the standard deviations of the distribution

of the point-wise deviations ai,T of both data sets:

σi =

√√√√ 1
N

N∑

t

(ai,T −µi)2 with µi =
1
N

N∑

T

ai,T . (11)

Since the deviations are based on Gaussian errors with a mean at 0 ms−1 the standard deviation (Eq. (11)) is the same as the205

root mean square error:

RMSEi = (N−1
N∑

t

(vinit
i,T − vrecon

i,T )2)
1
2 .

3.6 Error propagation theory

The error propagation theory describes how uncertainties or random errors of a function depend on the uncertainties of vari-

ables in the function definition. The theory describes the variables of the functions as experimental quantities that have a210

certain uncertainty due to measurement limitations. For the following analysis this theory is used to compare the results of the

uncertainty propagation model with theoretical values and justify our approach.

If the function is a linear combination f =
∑n

j ajxj and in the case of uncorrelated variables, the uncertainty of the function

σf with variables xj , coefficients aj and uncertainty of the variables σj is defined as (for Guides in Metrology, 2008):

(σf)
2

=
n∑

j

σ2
j a2

j . (12)215

Each spatial component of the reconstructed 3D wind vector vrecon
i of the 3D FMCW wind-LiDAR in the Cartesian coordinate

system is a linear combination of the measured detector data verr
1 , verr

2 and verr
3 (see Sect. 3.3):

vrecon
i = Ti1verr

1 + Ti2verr
2 + Ti3verr

3 . (13)

T denotes the reconstruction matrix, defined in Sect. 3.3, and only depends on the geometrical constraints of the detector

system. From this and equation 12, it follows for the theoretical uncertainty of the spatial components of the reconstructed220

wind vector σtheory
i with σdet as the intrinsic detector measurement uncertainty (which is assumed to be the same for all

detectors):

σtheory =
√

(Ti1)2 + (Ti2)2 + (Ti3)2 σdet. (14)
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Telescope distance dt 3 m

Focus distance df 15 m

Direction of detector system ûdet y

Detector uncertainty σdet 0.04 ms−1

Sampling rate fs 10 Hz

Variance of synthetic data Var 1 m2s−2

Correlation time of synthetic data τ 7.5 s

µx 8 ms−1

Mean reversion levels µy -4 ms−1

µz 0 ms−1

Table 2. Parameter choices for all figures and results unless otherwise stated (default configuration).

4 Theoretical Analysis

4.1 Assumptions225

The results of the following analysis are based on assumptions on the detector geometry, on turbulence characteristics of

the synthetic wind data set, and on the detector uncertainty. All parameter choices are summarized in Table 2 and are used

for all figures and results (denoted as the default configuration of the system) unless otherwise stated. Due to reasons of

radial symmetry, the uncertainty propagation model gives the same results for the transverse components x and z when using

synthetic wind data. Therefore, only the results of the transverse component x are presented for the part with synthetic data.230

4.2 Theoretical uncertainty propagation

A theoretical approach to calculate the uncertainty of the reconstructed wind vector is the error propagation theory, which was

introduced in Sect. 3.6. Equation (14) defines the theoretical uncertainty of the spatial components of the reconstructed wind

vector vrecon
i in relation to the reconstruction matrix T and the intrinsic detector uncertainty σdet. With the input parameters

as given in Table 2, the theoretical uncertainty of the spatial components of the reconstructed wind vector is σtheory
x ,σtheory

z =235

0.28 ms−1 for the transverse components and σtheory
y = 0.02 ms−1 for the longitudinal component in direction of the detector

system.

4.3 Uncertainty analysis without post-processing

This section and the next sections present the results of the uncertainty propagation analysis. With the uncertainty propagation

model described in Sect. 3.3 the measurement uncertainty of a 3-beam wind-LiDAR like the CTL can be estimated based on240
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Figure 3. Results of the measurement uncertainty propagation model without applying a post-processing averaging. This figure compares the

initial data set with the “erroneous”, reconstructed data set. The uncertainty of the transverse component (x-component, Figure (a) and (b)) is

increased compared to the detector uncertainty of σdet = 0.04 ms−1. The longitudinal component (y-component, figure (c) and (d)) shows

a reduced uncertainty. (a), (c): Segment of the input data (blue) and the corresponding reconstructed data (orange). (b), (d): Normalized

histogram of the deviation between input and reconstructed data. The dashed line shows a Gaussian fit to the distribution. The measurement

uncertainty σ is given in the text insert.

geometric constraints, turbulence characteristics, and post-processing averaging. A synthetic wind data set with defined turbu-

lence characteristics is used as an input data set (see Sect. 3.1) and the expected measurement data of each respective detector is

calculated (Eq. (5)). After adding random Gaussian errors (Eq. (7)), which simulate the intrinsic detector uncertainty, a recon-

struction algorithm is applied (Eq. (8)), and the resulting data set is compared with the input data (Eq. (10)). The measurement

uncertainty of each component is calculated as the standard deviation of the distribution of the point-wise deviations of the two245

data sets (Eq. (11)). The following results are based on the default configuration of the system as defined in Table 2.

Figure 3 shows the resulting measurement uncertainty of the CTL if no post-processing is applied to the reconstructed

measurement data. The plots show the comparison of the input data set (synthetic wind data) and the reconstructed data set. As

expected, the values of the measurement uncertainty are the same as calculated by error propagation theory (see Sect. 4.2). This

shows that in the simple case of reconstructing and analyzing the data for each time step individually, the overall measurement250

uncertainty depends only on the input measurement uncertainty and geometrical parameters. The characteristics of the input

data, i.e. the fluctuation of the data and the mean values, do not influence the result in the case of not applying post-process

averaging.
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Figure 4. Uncertainty propagation analysis with post-processing. A Gaussian filter is applied with a window length of n = 6 data points.

(a), (c): Segment of the input wind velocity data (blue) and the corresponding reconstructed data (orange). (b), (d): Normalized histogram of

the deviation between the input data and the reconstructed and post-processed data. The dashed line shows a Gaussian fit to the distribution.

The measurement uncertainty σ is given in the text insert. (a), (b): transverse component (x-component). (c), (d): longitudinal component

(y-component).

4.4 Uncertainty analysis with post-processing

Figure 4 shows the results of the uncertainty propagation analysis when applying a post-processing to the reconstructed mea-255

surement data. The same input parameters are used as for the results in Figure 3. The measurement uncertainty of the x-

component (transverse component) is σx,n=1 = 0.28 ms−1 without post-processing and σx,n=6 = 0.15 ms−1 with applying

a Gaussian filter with window length of six data points (as explained in Sect. 3.4). The uncertainties for the y-component

(longitudinal component) are σy,n=1 = 0.023 ms−1 without averaging and σy,n=6 = 0.09 ms−1 in the post-processed case.

Figure 5 shows the behavior of the measurement uncertainty depending on the filter length, i.e. averaging time for the260

relevant spatial components. The figure shows that in the case of the transverse component (x) the uncertainty is reduced and

reaches a minimum at around 7 data points. This reduction of the measurement uncertainty comes at the cost of increasing the

measurement uncertainty of the longitudinal component. Nevertheless, the results show that there is a clear benefit of applying

a post-processing averaging on the reconstructed wind data with lengths of up to 7 data points. In this range, the measurement

uncertainty of the transverse component is significantly reduced, while the longitudinal uncertainty still remains below the265

uncertainty of the transverse component. Another possibility is to only apply the post-processing on the transverse component.
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Figure 5. The measurement uncertainty depends on the length of the post-processing averaging window n. The plot shows the results of

the uncertainty propagation analysis based on a synthetic wind data set with input parameters as defined in Table 2. The x-component

corresponds to a transverse component of the wind vector in the detector coordinate system and the y-component denotes the longitudinal

component. The curve of the measurement uncertainty of the transverse component has a minimum for a certain averaging length, in this

specific case, at about 7 data points (red cross).

This approach does not increase the uncertainty of the longitudinal component. However, it depends on the application of the

data whether a differentiated processing of the individual wind data components is permissible or not.

4.5 Dependence on the sampling rate

Up to now, we considered the uncertainty propagation model with synthetic input data with a fixed sampling rate. The CTL is270

developed to measure with a sampling rate of 10 Hz. However, it is worth to investigate how the post-processing parameters

for decreasing the measurement uncertainty depend on the sampling rate of the detector. Figure 6 shows the results of the

uncertainty propagation model in the default configuration (see Table 2) with synthetic input data with various sampling rates.

To generate such data, the time step of the Ornstein-Uhlenbeck process is changed while keeping the other input parameters

(Var, τ , and µi) constant. The results show that the uncertainty of the transverse component is smaller for higher sampling275

rates independent of the window length (Fig. 6). Furthermore, the minimum of the transverse uncertainty is shifting to larger

numbers of window length n for higher sampling rates. At lower sampling rates, the ability to reduce the transverse uncertainty

becomes smaller. It thus follows that, compared to the results of the previous sections, the transverse uncertainty can be even

further reduced for LiDAR systems with a higher sampling rate than the standard CTL sampling rate of 10 Hz.

From a physical point of view, it would also make sense to investigate various sampling rates depending on an averaging280

time instead of the window length n. However, for the experimental setup and its application in the field, the window length is

the relevant quantity and was thus chosen as the variable parameter.
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Figure 6. Measurement uncertainty of reconstructed and post-processed wind components for various sampling rates. Results are based on

the uncertainty propagation model with a synthetic wind data set in default configuration (see Table 2).
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Figure 7. (a): Length of the filter window n for which the measurement uncertainty of the transverse wind components gets minimized by a

post-process low-pass filtering, i.e. averaging. The minimum depends on the correlation time and variance of the synthetic data set used for

the uncertainty analysis (input parameters same as for the other figures, see Table 2). (b): Value of the minimized measurement uncertainty

for various values of correlation time and variance. The values of uncertainty which are 30 %, 40 % and 50 % less than the uncertainty

without post-processing (σ = 0.28 ms−1) are plotted with dashed white lines. The red cross indicates the default configuration (standard

values of variance and correlation time, see Table 2) in both plots.
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4.6 Dependence of the uncertainty on turbulence characteristics

As mentioned above, the ability to reduce the measurement uncertainty by averaging over multiple data points depends on

geometric parameters and the detector uncertainty on the one hand, and turbulence characteristics on the other hand. Increasing285

the averaging length will first decrease the uncertainty of the transverse components until a minimum is reached (Fig. 5).

This minimum depends on the turbulence characteristics, i.e. the size (variance) and integral time length (correlation time)

of turbulent fluctuations of the data set. Figure 7a shows for a wide range of typical turbulence characteristics for which

averaging length the measurement uncertainty of the transverse component gets minimized. Figure 7b gives the value of the

respective uncertainty minima. The results plotted in the figures are calculated as follows: For a given variance and correlation290

time, a synthetic wind data set is generated. The uncertainty propagation model provides the dependency of the measurement

uncertainty on the averaging length, i.e. the length of the filter window. The window length for which the uncertainty gets

minimized is determined and plotted for various values of variance and correlation time. Input parameters for Fig. 7 are the

same as above and noted in Table 2.

The results show that the measurement uncertainty of the transverse component can be reduced compared to the case without295

averaging (σx,n=1 = 0.28 ms−1) for all turbulence values used for the calculations. In the case of small variance and long

correlation time, it gets reduced the most. In this case, the weak fluctuation of the data allows long averaging without losing

measurement accuracy.

5 Experimental Application

The results of the last section (Sect. 4) were based on synthetic data generated by an Ornstein-Uhlenbeck process. The depen-300

dency of the measurement uncertainty of the reconstructed wind components on the length of the averaging window, turbulence

characteristics of the wind data set, and other parameters were analyzed. In this section, experimental input data sets are used

as input data for the uncertainty propagation model. It will be investigated whether the findings from the first part can be

transferred to an actual experiment.

5.1 Uncertainty analysis with experimental wind data305

For various experimental data sets the measurement uncertainty of the CTL in default configuration (see Table 2) is calculated

depending on the length of the averaging window as explained in Sect. 3.3. For this, the experimental wind data is taken as

the initial wind data, assuming that the data set represents the actual wind for the sampling rate used. Then the detector data

is calculated, which is a projection of the initial data on the detector unit vectors. After adding Gaussian distributed errors at

each detector, the 3D data set is reconstructed and compared to the initial data set. The results of the uncertainty analysis with310

experimental data (see Sec. 3.2) from the MPCK and from ground-based sonic anemometer measurements are plotted in Fig.

8 (only the transverse component x is shown). The uncertainty of the transverse component (x) is reduced for all data sets

and for averaging lengths up to 9 data points. The z-component shows similar behavior. The longitudinal component (y) is
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Figure 8. The uncertainty propagation model gives similar results when either synthetic data or experimental data is used. The plots show

the measurement uncertainty of the transverse component (x) of experimental (bold lines) and synthetic wind data (dotted lines) with similar

turbulence characteristics for varying post-processing window lengths. (a) Experimental wind data from an ultrasonic anemometer mounted

on the MPCK as well as synthetic wind data with similar turbulence characteristics is used as input data for the uncertainty propagation model.

The synthetic wind data is generated based on the characterization of the experimental data. Figure (b) shows the comparison between data

from a ground-based ultrasonic anemometer (Bertens, 2021) and respective synthetic data sets with similar turbulence characteristics. The

figure shows good consistency of the results of both data sets. Both figures use assumptions on the detector system geometry and the detector

uncertainty as summarized in Table 2.

increasing for all averaging lengths, which is not shown in the figures. It is possible to approximately halve the measurement

uncertainty of the transverse components. In this case, the uncertainty of the longitudinal component is increasing but stays315

below the uncertainty of the transverse component. In conclusion, by using experimental wind data from MPCK measurement

campaigns as raw measurement data, it could be shown that for typical conditions in an MPCK measurement campaign, it

should be possible to achieve measurement uncertainties of around σ = 0.15 ms−1.

5.2 Comparison of results with experimental and synthetic wind data

For the comparison of the uncertainty propagation model with experimental and synthetic wind data, a value for the variance320

and correlation time of the turbulence was determined for each experimental data set. The method of characterizing the tur-

bulence of experimental data was explained in Sect. 3.2. The turbulence characteristics were used as defining parameters for

the generation of synthetic data, which allows to compare the results of the uncertainty analysis with experimental and syn-

thetic data of similar turbulence characteristics. The analysis presented in this paper uses experimental data from an ultrasonic

anemometer mounted either on the MPCK (Stevens et al, 2020) or on a ground-based measurement platform (Bertens, 2021).325

In the case of the ground-based wind velocity data, we expect a better prediction of the turbulence characteristics since the
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data includes no oscillations due to movements of the measurement platform. Figure 8b shows the results of the uncertainty

analysis with ground-based experimental wind data compared to the results based on a synthetic wind data set, generated with

the turbulence characteristics of the experimental data set as input parameter. The curves are very similar. This result validates

the approach of using synthetic data sets for the uncertainty analysis and shows again the possibility of reducing the measure-330

ment uncertainty for the transverse components in an actual experiment. Figure 8a shows the comparison between the results

of the uncertainty analysis with MPCK data and the respective synthetic data set with the same turbulence characteristics. All

curves show similar behavior for averaging lengths of up to 5 data points. For larger averaging lengths, the differences between

the experimental data sets are in the same range as the differences between an experimental curve and its respective synthetic

counterpart (same color). In the case of one data set (Flight 6), the curves deviate significantly.335

6 Discussion

Due to the geometric constraints of the setup, the transverse components of the reconstructed wind vector initially suffer from

rather high uncertainties. We discuss the mechanism of uncertainty reduction and how to decide on the best post-processing

parameters in an actual experiment.

The results of the uncertainty analysis with synthetic wind data show that a reduction of the transverse uncertainty is possible340

when applying a post-processing low-pass filter (see Fig. 5 and Fig. 7). The minimum of uncertainty depends, besides some

fixed system assumptions (see Table 2), mainly on the post-processing filter length and the characteristics of the measured wind

fluctuations. The increase in averaging time has multiple effects on the measurement uncertainty. On the one hand, a longer

averaging time can increase the uncertainty due to the loss of information about the dynamics of the data in the averaging time.

On the other hand, it can decrease the uncertainty since every single detector adds random statistically independent errors to345

the data. By averaging over multiple data points these statistically independent errors can be reduced to some extent. If the

filter window is too small the errors introduced by the detectors do not average out. If the filter window is too large, wind

fluctuations get smoothed out and we lose information, see Fig. 9. For small time scales, the fluctuation of the data is small

compared to the uncertainty. Here, an uncertainty reduction is possible since averaging mainly impacts the errors and not the

data itself. For longer averaging times, the averaging is smoothing wind fluctuations and the uncertainty increases again.350

In Sect. 4.5 it could be shown that the ability to reduce uncertainties also depends on the sampling rate. Increasing the

sampling rate reduces the minimum of uncertainty achievable by post-processing averaging. The random errors that define the

intrinsic detector uncertainty are added to each data point. The error fluctuation is therefore on the time scale of the sampling

rate. On the other hand, the time scale of the wind fluctuation does not change for different sampling times. At higher sampling

rates, it is therefore possible to average over more data points before smoothing the wind fluctuations of interest.355

In an actual experiment, the system parameters like sampling rate, geometry and detector uncertainty, etc. are known, respec-

tively predicted, on a profound knowledge basis. However, we could show that for determining the post-processing parameters

to minimize the measurement uncertainty, the knowledge of the time scales and size of fluctuations of the measured wind data,

i.e. the turbulence characteristics, is additionally required.
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Figure 9. The mechanism behind the uncertainty reduction is based on the interplay between the time scales and magnitudes of detector

errors and wind fluctuations. A synthetic wind data set in the default configuration (see Table 2) is used and post-processed with a simple

moving average (box filter) with varying window lengths, i.e. time scales. The analysis is done for the transverse x-component. The blue

curve (“Transverse uncertainty”) shows the measurement uncertainties of this data set for different window lengths, calculated with the

uncertainty propagation model. The orange curve (“Error size”) shows the influence of the averaging on the errors introduced by the LiDAR

detectors. For this, the standard deviation σ of the distribution of the error size is plotted when applying a simple moving average with

varying window length n. The green curve (“Fluctuation”) is calculated as follows: each data point of the initial wind data is subtracted

from the mean around this data point, calculated with a given window length n. The standard deviation of these values is a measure of the

fluctuations.

The challenge in finding the turbulence characteristics of the measured wind to determine post-processing parameters is that360

the contribution of the statistical errors is mostly dominating the data fluctuations for the transverse components (x,z), which

is illustrated in Fig. 10. Here, the size of the fluctuations of an initial data set and a reconstructed data set are shown. The latter

suffers from errors introduced by the detector, which are geometrically “amplified" for the transverse components (x and z).

Thus, the turbulence characteristics of the transverse components cannot be directly derived by analyzing the reconstructed

data set. However, this is possible with sufficient accuracy for the longitudinal component. We could therefore use the turbu-365

lence characteristics of the longitudinal component (y-component) to determine the best n (post-processing filter length) for

all components if we assume that the fluctuations in all three spatial components are similar. We could then run the uncertainty

analysis with a synthetic data set defined by the assumed turbulence characteristics. The best n can than be found by deter-

mining the minimum in uncertainty like we did in Fig. 5 or by determining the intersection of the fluctuation of the wind data

with the curve of the error fluctuation, as plotted in Fig. 9. It needs to be validated whether the approach of using the turbu-370

lence characteristics of the longitudinal component to determine the post-processing parameters of the transverse components

is generally valid, i.e. for all data sets and typical atmospheric conditions. This will be addressed in upcoming measurement

campaigns with the CTL.
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Figure 10. The longitudinal component (y) of the measured wind data can be used for determining optimal post-processing parameters.

This figure shows the fluctuation of an initial wind data set ("initial", bold lines) and the fluctuation of the data set reconstructed from

the “erroneous” detector data ("reconstructed", dotted lines) for all three spatial components. The fluctuations are defined as the standard

deviation of the distribution of the deviations of a data point from the mean of several data points. The x-axis denotes the averaging length

for calculating the mean. The reconstructed data set is calculated as explained in section 3.3. The initial data set is the experimental MPCK

data set “Flight 3” (3D sonic anemometer, see Sect. 3.2).

In section 5 we presented the results of the uncertainty analysis with experimental data and concluded that the accuracy of

the characterization is mostly sufficient for a correct prediction of the reduction of uncertainty due to post-processing. However,375

the determination of the correlation time, especially in the case of airborne wind data, should be interpreted with caution. The

correlation time is determined based on the auto-correlation function of the wind data, calculated as explained in section 3.2.

We saw that in the characterization procedure, the auto-correlation function does not completely decay to zero, even when using

the entire data set as input values. The function still oscillates around zero, even for long lag times. Thus, the determination

of a value for the correlation time can only be vaguely estimated. For a more precise determination of the correlation time, a380

profound post-processing is needed to filter out oscillations from the measurement platform and choose segments for which

the correlation time can be regarded as constant. Nevertheless, it could be shown that the quality of the determination of the

correlation time is mostly sufficient for a good match of results between experimental and synthetic data, especially when using

wind data from a ground-based sonic anemometer, which does not suffer from platform-induced oscillations.

Another approach to determine the best n, i.e. the best post-processing filter length, is also possible without the character-385

ization of the measured data. The theoretical analysis of the measurement uncertainties (Sect. 4) shows which n leads to an

uncertainty reduction for typical atmospheric conditions. In Figure 7 we showed that for a wide range of turbulence charac-

teristics, the uncertainty of the transverse component can be reduced. The minimum is reached for the most data sets when

using a filter length of n = 3− 9. Also the experimental results (Sect. 5) show that a post-processing with a filter length in

this range reduces the uncertainty of all experimental data used. Thus, choosing a post-processing filter length of n = 5 is a390
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Figure 11. Uncertainty of transverse component (x) by applying a post-processing Gaussian filter with a window length of 5 data points

(n = 5). The uncertainty is reduced for nearly all values of variance and correlation time used. The white color indicates uncertainties larger

than the uncertainty without averaging (0.28 ms−1). The red cross indicates the turbulence characteristics of the synthetic data set used for all

plots in this paper (default configuration, see Table 2), unless otherwise stated. The red dots indicate the results of the characterization of the

MPCK field wind data. The red triangles indicate the characterization of the ground-based sonic anemometer wind data sets. The white lines

show the values at which the uncertainty is reduced by 30 %, 40 %, and 50 % of the uncertainty without post-processing (σ = 0.28 ms−1).

reasonable choice for the CTL or similar multi-beam LiDARs with the assumptions defined in Table 2. Fig. 11 shows that the

transverse uncertainty is reduced by at least 30 % for all experimental data given. In an experiment with unknown wind charac-

teristics a reduction of 30 – 50 % can thus be expected. The uncertainty of the longitudinal component will always increase but

stays below the uncertainty of the transverse component. It is also possible to apply the post-processing only on the transverse

component if differentiated data processing of the components does not cause problems for further use.395

7 Conclusions

In this work, the measurement uncertainty of the CTL or similar multi-beam wind LiDAR systems was analyzed. The CTL

has three optical heads which are spatially separated and focused on one point in a defined distance (< 50 m). The LiDAR is

designed for mounting on airborne platforms like the MPCK. To derive a 3D wind vector from the data of the three spatially

separated LiDAR telescopes a reconstruction algorithm is needed which is presented in this paper. An uncertainty propagation400

model is introduced which reveals the dependencies of the measurement uncertainty on system design and wind characteristics.

The model was tested with synthetic wind data generated based on an Ornstein-Uhlenbeck process, as well as with experimental

wind data from an MPCK measurement campaign and from a ground-based sonic anemometer. The spatial components of the
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reconstructed 3D wind vector in the transverse directions (x, z) to the main LiDAR direction have a high uncertainty due to

the geometric amplification of detector-introduced statistical errors in the reconstruction process.405

A post-processing approach was introduced that consists of applying a Gaussian low-pass filter to reduce the statistically

independent errors of the individual detectors, which can be considered as averaging over multiple data points. This post-

processing filters out statistically independent errors but at the same time smoothes out wind fluctuations on a certain time

scale. Nevertheless, the uncertainty of the 3D wind measurement can be reduced for typical wind conditions (correlation time

values ranging from 1 – 10 s and variance values of 0 – 5 m2s−2) and for the assumptions on the system design (sampling410

time, detector uncertainty, etc.) and geometry (telescope separation and focus distance).

It could be shown that the characterization of the measured data to determine the best post-processing parameter can be

challenging in an actual experiment. However, even without precise knowledge of the turbulence characteristics, it turned out

that a reduction by around 30 – 50 % of the measurement uncertainty of the transverse wind component can be expected when

averaging over 5 data points. The resulting measurement uncertainties for the CTL are < 0.2 ms−1 for all spatial components.415

These results are valid for a multi-beam wind LiDAR with parameters comparable to the CTL (telescope separation, focus

distance, sampling time, detector accuracy, etc.) and for a wide range of turbulence characteristics, thus for typical wind

conditions.

Highly-resolved 3D wind measurements with the CloudKite Turbulence LiDAR or other multi-beam, airborne-mounted

wind-LiDARs are thus possible and useful for turbulence research.420

Appendix A: Consideration of other sources of the measurement uncertainty

In this section, we present the estimation of potential error sources other than the detector error that we focus on in the main

text.

Geometric tolerances

We expect this to be a negligible source of error since the precise geometric dimensions of the measurement frame can be425

measured before mounting of the device to the CloudKite balloon. This includes the distances between the telescopes (side

length), but also the distance and lateral position of the focus.

Influence of wind on the detector geometry

The spatial resolution, i.e. the measurement volume, is assumed to be 1 m3. This results from the foci being significantly longer

(about 1 m) than their lateral dimensions. During alignment of the setup, before mounting, all three foci are superimposed onto430

one point by the use of deflection mirrors in the telescope heads.

The change in angular orientation of one single telescope required for its focus to move by 0.5 m, i.e. half the spatial resolu-

tion, can be estimated. As illustrated in figure A1, the change in angular orientation can be approximated by γ = arctan(∆x
df

),

where ∆x is the change in lateral position of the focus and df =15 m is the distance of the focus. For ∆x =0.5 m, this yields
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Figure A1. 2D schematic for the estimation of the change in lateral focus position (∆x) depending on the change in angular orientation (γ)

of one telescope head (blue circle).

γ = 1.9◦. Considering the stiffness of two connected carbon tubes (see Figure 1) and the very small attack surface for the435

wind, 1.9◦ seems like an unrealistically high value for bending due to wind which is why we think this error is also of minor

importance.

Influence of temperature on the detector geometry

Concerning the effect of temperature, we assume operating temperatures between 0 ◦C - 40 ◦C, and alignment of the setup

under lab conditions at 20 ◦C. Thus, a maximal change in temperature of 20 ◦C must be considered. The temperature extension440

coefficient of carbon is 2 · 10−6 K−1. Considering the longest dimension, i.e. the 3 m bars between the telescopes, this results

in a maximal change in length of merely 0.12 mm, which is negligible.

Dynamic tolerance due to platform motion

With dynamic tolerance we refer to the fact that the CloudKite and the attached measurement device are moving during the

actual measurement. There are several points to consider here: First, it should be mentioned that the absolute location (in world445

coordinates) of the point of measurement does not have to be known precisely for these types of measurement.

Second, the influence of the motion during the acquisition of a single data point, i.e. during 100 ms, must be considered.

It is known from previous measurement campaigns that the CloudKite platform motion has its main frequencies around 1 Hz

(Schröder, 2023). This is one order of magnitude slower than the acquisition of a single data point. However, there might still

be some movement within 100 ms. This can be regarded as an increase of the actual measurement volume.450
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Third, there is the platform motion during the whole measurement run, which might last up to many hours. This leads to

a motion of the focus, i.e. the point of measurement. This motion can be tracked using inertial measurement units (IMUs).

For this reason, two IMUs in each telescope head are integrated in the measurement device. Whether this also allows for the

correction of the tracked movement depends on the parameter of interest in the post-processing. For example, the mean wind

velocity could be corrected for the platform motion. For other parameters it can be more intricate or even impossible. However,455

this is an error source that influences the analysis of the measured data but hardly the individual measurement data points.

Therefore, a detailed analysis of the consequences of this platform motion is beyond the scope of this paper.

Appendix B: Comparison of averaging implementations
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Figure B1. Figure shows the comparison of different post-processing implementations. A synthetic input data set is used as the input data

set for the uncertainty propagation model explained in Sect. 3.3. The results with different post-processing algorithms, i.e. different filtering

implementations are plotted. Only the transverse component (x) of the reconstructed 3D wind vector is shown. The black dot indicates the

measurement uncertainty without averaging.

Figure B1 shows the comparison of four low-pass filter implementations, which correspond to an averaging over data points.

The data set is convolved with a certain filter function. The function can be either a window function of a given length and with460

defined weights (uniform and triangular) or a function with a given shape, e.g. Gaussian. Here we compare a uniform window,

which corresponds to a simple moving averaging, a triangular window, a Gaussian filter, and a so-called Butterworth filter. The

Butterworth filter is implemented as a low-pass filter in frequency space and applied forwards and backwards to reduce phase

delays and have a pass-band as flat as possible. The Gaussian filter is defined as explained in Sect. 3.4 with a standard deviation

of σfilt = n
4 and truncated to a window length of n.465

One can observe in Fig. B1 that, in the case of filtering with a window function, the uncertainty is lower for odd number

of averaging lengths than even numbers. Comparing the processed data set with the initial data set requires assigning the data
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points to each other point by point. The result of an averaging over a segment has to be assigned to the data point in the

middle of this segment. In the case of even numbers, the resulting data set is shifted compared to the initial data set, due to the

abundance of an index in the middle of the averaging segment. This behavior introduces an additional error. This error has no470

physical origin but for better interpretation of the results, the Gaussian filter is used for the results in the present analysis which

doesn’t suffer from these errors.

Appendix C: Optimizing mounting geometry

One goal of this work is to optimize the data quality of an airborne-mountable 3D wind-LiDAR. To this end, it is also worth

investigating the geometrical configuration which yields the highest measurement accuracy. The uncertainty depends on the475

angle between the line-of-sight directions of the three telescopes and the spatial component of interest. This angle is determined

by the telescope distance dt and the focus distance df (see Sect. 2.2). Figure C1 shows the transversal measurement uncertainty

in terms of the standard deviation depending on the focus distance and the telescope distance, respectively. One can observe a

nearly linear relation between the focus distance and the measurement uncertainty of a reconstructed spatial wind speed com-

ponent. The dependence of the measurement uncertainty on the telescope distance follows an exponential decay. To optimize480

the measurement uncertainty, the telescope distance should be maximized and the focus distance should be minimized within

the given limitations. Furthermore, the result shows that due to the exponential behavior of the uncertainty dependency on the

telescope distance, the value of 3 m for the telescope distance is a good compromise since for larger distances the uncertainty

decreases only slowly (second decimal place).
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Figure C1. The measurement uncertainty of the transverse component (x-component) of the reconstructed wind vector as a function of

geometrical parameters of the CTL. The telescope distance is set to 3 m for changes in the focus distance (orange). The focus distance is set

to 15 m for changes in the telescope distance (blue). The same input data and parameters were used as defined in Sect. 4.1. The results of

this plot are based on the uncertainty propagation model based on synthetic wind data and include a post-processing Gaussian filter with a

window length of six data points (n = 6).
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