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Authors’ Response

Reply to comments to revised version by referee 2
In the following, the original reviewer comments are given in italics, our answer in normal font.

General comments
1. The refined version improves the FOCAL-CO2M retrieval algorithm’s assessment and should be

subject to publication. The authors have enhanced the manuscript by addressing several key issues
highlighted in the review. I appreciate and thorough responses in most parts. There are just a few
minor points left to look at.

Thank you very much for your support in improving the paper.

Minor comments
1. Does the profile resulting from the fit exhibit discontinuity vertically, with jumps in concentrations

across the fitted layers? How to get from the fitted quantities to the final total column value?

The XCO2 and XCH4 profile layers are defined such that that they contain the same number of
particles. Inside a layer, all concentrations are assumed to be constant. The layers are then fitted
individually such that the shape of the profiles may change. However, the amount of change is
limited by the used a-priori covariance matrix. In the present case, we use matrices derived from
our SLIM model, which should give a reasonable variability, therefore we do not expect large non-
physical jumps between layers.

The total column XCO2 or XCH4 is then derived from the average of the corresponding sub-columns
in each layer.

We will add this information to the paper.

2. Please provide a concise explanation of the scattering layer’s terminology or setup within FOCAL,
so that the reader can understand without having to refer back to the original paper. I think this
might also enhance the understanding of why the Angstrom coefficient plays a significant role in the
bias correction.

The FOCAL scattering layer is characterised by the following quantities:

• The vertical position of the (assumed infinitely thin) layer in terms of pressure relative to the
surface pressure.

• The optical thickness of the layer.

• An Ångström exponent describing the wavelength dependence of the scattering.

Scattering at this layer is assumed to be isotropic.

All these quantities are effective, they describe the whole scattering (including e.g. Rayleigh scatter-
ing) and thus should not be interpreted as e.g. aerosol properties.

We will add this to the paper.
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Specific comments
1. 45: Consider to remove “from the top of the atmosphere” for clarity.

Will be done.

2. SC7/145/357: If the scattering layer in FOCAL is assumed to be infinitely thin, how is the scatter-
ing layer be defined—usually I use the term layer to describe something between two levels. The
determined scattering components, such as the Angstrom coefficient and layer height, accurately
represent which specific levels (everything below the infinitesimal thin scattering level?)?

The term “layer” may indeed be misleading in the infinitesimal thin case. It should not be confused
with the assumed vertical layering of the atmosphere.

We will add the information on scattering mentioned above to clarify this.

3. 375: Is it possible to incorporate external aerosol data into FOCAL (at its current development
stage)?

As described above, FOCAL uses effective scattering properties, therefore including e.g. external
aerosol data in the FOCAL forward model is not possible.

However, the inclusion of MAP Level 2 data (e.g. for post-processing) is already foreseen in the cur-
rent software, but so far we do not have MAP Level 2 data which are consistent with our simulations.

We will mention the latter in the paper.

List of changes
Changes according to the comments mentioned above have been made in the revised manuscript. The
changes are marked in a corresponding version of the revised manuscript (text only since figures are un-
changed) provided below.
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Abstract. The Anthropogenic Carbon Dioxide Monitoring (CO2M) mission is a constellation of satellites currently planned

to be launched in 2026. CO2M is planned to be a core component of a Monitoring and Verification Support (MVS) service

capacity under development as part of the Copernicus Atmosphere Monitoring Service (CAMS). The CO2M radiance mea-

surements will be used to retrieve column-averaged dry-air mole fractions of atmospheric carbon dioxide (XCO2), methane

(XCH4) and total columns of nitrogen dioxide (NO2). Using appropriate inverse modelling, the atmospheric greenhouse gas5

(GHG) observations will be used to derive United Nations Framework Convention on Climate Change (UNFCCC) COP 21

Paris Agreement relevant information on GHG sources and sinks. This challenging application requires highly accurate XCO2

and XCH4 retrievals. Three different retrieval algorithms to derive XCO2 and XCH4 are currently under development for the

operational processing system at EUMETSAT. One of these algorithms uses the heritage of the FOCAL (Fast atmOspheric

traCe gAs retrievaL) method, which has already successfully been applied to measurements from other satellites. Here, we10

show recent results generated using the CO2M version of FOCAL, called FOCAL-CO2M.

To assess the quality of the FOCAL-CO2M retrievals, a large set of representative simulated radiance spectra has been

generated using the radiative transfer model SCIATRAN. These simulations consider the planned viewing geometry of the

CO2 instrument and corresponding geophysical scene data (including different types of aerosols and varying surface properties)

which were taken from model data for the year 2015. We consider instrument noise and systematic errors caused by the retrieval15

method but have not considered additional error sources due to e.g. instrumental issues, spectroscopy, or meteorology. On the

other hand, we have also not taken advantage in this study of CO2M’s MAP (Multi Angle Polarimeter) instrument, which will

provide additional information on aerosols and cirrus clouds. By application of the FOCAL retrieval to these simulated data

confidence is gained that the FOCAL method is able to fulfil the challenging requirements on systematic errors for the CO2M

mission (spatio-temporal bias ≤ 0.5 ppm for XCO2 and ≤ 5 ppb for XCH4).20

1 Introduction

Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic atmospheric greenhouse gases. Their

atmospheric concentrations are rising as a result of anthropogenic activity. There is a scientific consensus that this is driving
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global warming and related climate change (see the recent report of the Intergovernmental Panel on Climate Change (IPCC),

2023). In November 2015, the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC)25

was adopted to limit global warming to well below 2◦C (UNFCCC, 2015). Actually, this treaty introduced a preferred limit of

1.5◦C. As part of the Paris agreement, progress of emission reduction efforts is tracked on a regular basis. In this context, the

European Commission (EC), the European Space Agency (ESA), the European Centre for Medium-Range Weather Forecasts

(ECMWF), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and international ex-

perts are developing an operational capacity for monitoring anthropogenic CO2 emissions as a new CO2 service under the EC’s30

Copernicus program (e.g. Janssens-Maenhout et al., 2020; Balsamo et al., 2021). A core component of this Monitoring and Ver-

ification Support (CO2MVS) capacity are satellite observations, in particular data from the European Anthropogenic Carbon

Dioxide Monitoring (CO2M) satellite mission (ESA, 2020; Lespinas et al., 2020; Sierk et al., 2021), which – with additional

instrumentation – builds on the heritage of the CarbonSat concept (Bovensmann et al., 2010; Velazco et al., 2011; Buchwitz

et al., 2013; Broquet et al., 2018) and the first retrievals of the column average dry-air mole fractions of CO2 (XCO2) and CH435

(XCH4) retrieved using passive remote sensing observations in the Near Infrared (NIR) and shortwave infrared (SWIR) made

by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on Envisat (Burrows et al.,

1995; Bovensmann et al., 1999; Buchwitz et al., 2005).

CO2M is planned to be a core component of a Monitoring and Verification Support (MVS) service capacity under devel-

opment as part of the Copernicus Atmosphere Monitoring Service (CAMS) (Janssens-Maenhout et al., 2020; Balsamo et al.,40

2021; Hegglin et al., 2022). The CO2M mission will consist of a constellation of 2–3 satellites which will monitor globally

XCO2 and XCH4. The satellites will be placed in a sun-synchronous polar orbit at 735 km altitude with an equator crossing

at about 11:30 local time in a descending node. The first CO2M satellite is planned to be launched in 2026. Each satellite has

a payload comprising three instruments:

– An imaging spectrometer (CO2I), which measures the upwelling radiance from the top of the atmosphere in wavelength45

ranges having atmospheric absorption, which on mathematical inversion yield the total and tropospheric columns of

nitrogen dioxide (NO2), column-averaged dry-air mole fractions of atmospheric carbon dioxide (XCO2) and methane

(XCH4), SIF (solar induced fluorescence) and additional quantities such as the column-averaged dry-air mole fractions

of water vapour (XH2O). The spatial resolution of CO2I ground scenes is about 2 × 2 km2.

– A multi-angle polarimeter (MAP), from which aerosol data products are retrieved. The spatial resolution of MAP is50

about 4 × 4 km2.

– A cloud imager (CLIM), which measures the upwelling radiance in a selection of broad band spectral channels. The

spatial resolution for CLIM is better than that of CO2I being about 0.4 × 0.4 km2.

A driving motivation for the selection of CO2M was the quantification of anthropogenic emissions of CO2. However other

important objectives of the mission include the provision of knowledge about anthropogenic CH4 emissions and on large-scale55

natural CO2 and CH4 surface fluxes.
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Three different retrieval algorithms to derive XCO2 and XCH4 are currently under development for the operational pro-

cessing system at EUMETSAT. One of the foreseen operational CO2M algorithms is based on the FOCAL (Fast atmOspheric

traCe gAs retrieval) method (Reuter et al., 2017a, b), which is the topic of this study. The other two algorithms are RemoTAP

(Remote sensing of Trace gas and Aerosol Product Lu et al., 2022) and the Flexible and Unified Spectral InversiON ALgorithm60

Platform (Fusional-P-UOL-FP) based on the retrieval algorithm as described in Cogan et al. (2012). RemoTAP is an iterative

approach to retrieve aerosol properties as well as CO2 and CH4 total columns from spectral data. The Fusional-P-UOL-FP

retrieval is based on an algorithm which was originally developed for the NASA Orbiting Carbon Observation (OCO) mission.

It is also an iterative approach to derive XCO2 and XCH4 based on optimal estimation, which takes into account aerosols and

cirrus clouds. Both RemoTAP and Fusional-P-UOL-FP consider polarisation and can use as input CO2I and MAP measure-65

ments for a joined retrieval. The requirements on data product quality for these algorithms are high (ESA, 2020), systematic

errors (spatio-temporal bias) should not exceed 0.5ppm for XCO2 (about 0.12%) and 5 ppb for XCH4 (about 0.28%). The

corresponding maximum random errors for XCO2 and XCH4 are 0.7 ppm and 10 ppb, respectively, for a specific scenario

(solar zenith angle 50◦, surface albedo in NIR, SWIR-1 and SWIR-2: 0.2, 0.1, 0.05).

In this paper we show recent results generated using the current CO2M version of FOCAL, which was applied to a set of70

simulated measurement data in order to assess the quality of the retrieved XCO2 and XCH4 data products. Special emphasis

is placed on the verification of the systematic error requirements, which are actually more challenging for the retrieval. This is

because the random errors are mainly related to the noise of the spectra which is determined by instrument design. Although

the results are obtained from the analysis of top of the atmosphere radiances simulated using a state of the art radiative model,

this study provides some first estimates of the data product quality from the FOCAL-CO2M retrieval algorithm.75

The structure of the paper is described and summarised as follows. After this introduction, we describe the input data used

in this study and how they were generated in Sect. 2. In Sect. 3 we explain the FOCAL retrieval and the methods used for

performance assessment. The results of the study are presented in Sect. 4. Finally, our conclusions are summarised in Sect. 5.

2 Input Data

The main input data used in this study are simulated radiance spectra in the near-infared (NIR) and short-wave infrared (SWIR)80

bands to be measured by CO2I (see Table 1). These have been generated using the SCIATRAN radiative transfer model

(Rozanov et al., 2017) using CO2M geolocation and viewing geometry information for the year 2015 provided by EUMETSAT

as input. The SCIATRAN calculations are more complex than the FOCAL forward model. For example, they consider surface

BRDF (bidirectional reflectance distribution function) effects, different aerosol types and distributions as well as clouds.

In the context of the current study we have generated two types of test data sets, which will be used for the performance85

assessments: (i) a full-year global data set with a reduced spatial sampling and (ii) a spatially high-resolved scene over Europe

(the so-called ‘Berlin scene‘). Both are described in the following sub-sections.
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In order to be as consistent as possible with real measurements, random noise has been added to the simulated spectra. This

noise N has been calculated for each radiance R using band-specific parameters A and B via:

N =
√
R A+B2/A (1)90

The assumed values for A and B are given in Table 2. These values were derived from a study on CO2M requirements

and performance (Buchwitz et al., 2020) and have been shown to be consistent with the measurements of the selected CO2M

detectors.

2.1 Full-year global subset

To assess the impact of large scale temporal and spatial variations on the FOCAL-CO2M results a global data set covering95

at least a full year is required. However, SCIATRAN simulations are computationally expensive. Therefore it is not currently

feasible to compute a complete CO2I full year data set for one of the CO2M satellites within a reasonable time. For the

full-year data we therefore selected a subset of CO2I measurement geometries containing every 15th out of 110 across-track

ground pixels and every 20th out of roughly 9200 along-track scanlines per orbit for solar zenith angles lower than 80◦. This

results in a subset with 300 times less data than the whole CO2M data set, but with similar spatial and temporal coverage. The100

meteorological information (pressure, temperature, water vapour) used in the SCIATRAN simulations is taken from the fifth

generation of the ECMWF re-analysis (ERA5) data (Hersbach et al., 2020) (temporal resolution 1 h, spatial resolution 0.25◦).

CO2 and CH4 profiles use the results from the CAMS model data for 2015 (spatial resolution about 2◦× 3◦), namely v20r1

for CO2 (Chevallier et al., 2005; Chevallier et al., 2010; Chevallier, 2013) and v20r1 for CH4 (Segers, 2022). The reflectiv-

ity of the surface is modelled using BRDF parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS)105

MCD43C1 Version 6.1 BRDF and albedo model parameters dataset (Schaaf and Wang, 2021). These BRDF parameters have

been interpolated spectrally to the centres of the three CO2I bands. Within one band, the BRDF is assumed to be constant

for the SCIATRAN calculations. We also tested a linear wavelength dependency of the BRDF within the bands, but this only

resulted in a change of the derived polynomial parameters for the surface albedo which – in combination with an adapted

post-processing – did not significantly change the derived XCO2 and XCH4 results. Solar induced chlorophyll fluorescence110

irradiance is simulated by scaling an irradiance spectrum obtained from the publication of Rascher et al. (2009). The scaling

factor is obtained by assuming a linear relationship between SIF irradiance at 740nm and MODIS NDVI (Didan, 2021) derived

by the Rutherford Appleton Lab (RAL, 2022). Clouds in the dataset are considered by SCIATRAN using ERA5 specific cloud

liquid water content and specific cloud ice water content as input. However, for the current study we only consider completely

cloud-free soundings. Aerosol is simulated in SCIATRAN using as input different aerosol types, phase fuctions, single scat-115

tering albedo and vertical distribution of the mass mixing ratio, considering dependencies of particle size on humidity. These

aerosol parameters are taken from the CAMS global reanalysis EAC4 (Inness et al., 2019). Land/water information is taken

from GTOPO30 (Earth Resources Observation and Science Center, U.S. Geological Survey, U.S. Department of the Interior,

1997), surface altitude / pressure is taken from ERA5. The SCIATRAN calculations have been performed in scalar mode

without consideration of inelastic scattering processes. This is expected to have only a minor impact on the retrieval results,120

4



which has been tested using simulated data from the RAL (2022) study as input. SCIATRAN (and also FOCAL) are run in

plan-parallel mode, although both SCIATRAN and FOCAL could consider sphericity; however, in case of CO2M (normally

nadir looking with a swath of about 240 km, relevant solar zenith angles less than 75◦) spherical geometry has no major impact

and is therefore neglected. We also assumed a uniform scene within each ground pixel. So far, only nadir data over land are

modelled, which results in a total of about 6 million spectra per year for each band.125

Although the SCIATRAN calculations are quite complex compared to the more simple FOCAL forward model, they do

not consider all possible physical processes like 2D/3D effects of clouds and aerosols. However, even if the radiative transfer

model would be able to consider this the required input data are usually not available. This is a general limitation of all forward

models.

Fig. 1 shows as an example for the sampling of the XCO2 subset data over part of Europe for one CO2M orbit (only data130

over land). The shown region corresponds to the range of the high-resolution scene addressed in the following sub-section.

2.2 High-resolution scene

In addition to the full-year global subset data we used SCIATRAN to model also the NIR and SWIR radiances for a full 3

minute granule of CO2I data containing about 67000 measurements of which about 37000 are over land and cloud-free. This

granule from 3 July 2015 (referred to as the ‘Berlin scene’, see Fig. 2) is one of the typical test scenes, used within the CO2M135

project, because of the availability of high-resolution model data for this scene. The calculations for the high-resolution scene

use the same SCIATRAN setup except for geolocation, geopotential, pressure, temperature, specific humidity, CO2 and CH4,

which were provided by EUMETSAT using high-spatial resolution (9 km) data from the CAMS nature run model (Agustí-

Panareda et al., 2022). As can be seen from Fig. 2, with this resolution XCO2 plumes from power plants in Eastern Germany

are clearly visible, although the increase of XCO2 in these plumes is only a few ppm above background. Fig. 3 shows the140

corresponding XCH4 data.

3 Algorithms

3.1 FOCAL-CO2M retrieval

The FOCAL retrieval method is based on optimal estimation. FOCAL models the propagation of light through the atmo-

sphere. Scattering is approximated by a
:::::::
infinitely

::::
thin

:
single scattering layer, which is characterised by the layer height145

(pressure level
::::::
vertical

:::::::
position

::
of

:::
the

:::::
layer

::::::::
(pressure

:::::::
relative

::
to

::::::
surface

:::::::
pressure), the optical thickness of the layer and the

Ångström coefficient
:::::::
exponent describing the wavelength dependence of the scattering (see e.g. Reuter et al., 2017b, for de-

tails).
::::::::
Scattering

::
at

:::
this

:::::
layer

:
is
::::::::
assumed

:
to
:::
be

::::::::
isotropic.

:::
All

::::::::
scattering

::::::::
quantities

:::
are

::::::::
effective,

:::
they

:::::::
describe

:::
the

::::::
whole

::::::::
scattering

::::::::
(including

::::
e.g.

:::::::
Rayleigh

:::::::::
scattering)

::::
and

::::
thus

::::::
should

:::
not

::
be

:::::::::
interpreted

:::
as

:::
e.g.

::::::
aerosol

::::::::::
properties.

:::
The

:::::::
FOCAL

:::::::
forward

::::::
model

::::::
divides

:::
the

:::::::::
atmosphere

::::
into

::
20

::::::
layers,

:::::
which

:::
are

::::::
defined

:::::
such

:::
that

:::
that

::::
they

:::::::
contain

::
the

:::::
same

::::::
number

:::
of

:::::::
particles.

::::::
Inside

:
a
:::::
layer,150

::
all

::::::::::
atmospheric

::::::::::
parameters

:::
are

:::::::
assumed

::
to

:::
be

:::::::
constant.

::
In

:::
the

::::::::
retrieval,

:::::::
FOCAL

:::::::::
determines

:::
the

:::::::::::::
concentrations

::::::::::::
(sub-columns)
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::
for

::::
five

::::::
output

::::::
layers,

::::
each

::::
also

:::::::::
containing

:::
the

:::::
same

:::::::
number

::
of
::::::::::

molecules.
::::
The

:::::
layers

:::
are

:::::
fitted

::::::::::
individually

:::::
such

::::
that

:::
the

:::::
shape

::
of

:::
the

::::::
profiles

::::
may

:::::::
change.

::::::::
However,

:::
the

::::::
amount

::
of
:::::::
change

:
is
:::::::
limited

::
by

:::
the

:::
use

::
of

:::
an

::::::
a-priori

:::::::::
covariance

:::::::
matrix.

::
In

:::
the

::::::
present

::::
case,

:::
we

::::
use

:::
for XCO2 :::

and
:
XCH4 ::::::

matrices
:::::::
derived

::::
from

:::
the

:::::::
Simple

:::::::::::::
cLImatological

:::::
Model

:
(SLIM, see Noël et al.,

2022),
::::::
which

::::
give

:
a
:::::::::
reasonable

:::::::::
variability.

::::
The

::::
final XCO2 :::

and
:
XCH4 :

is
::::
then

::::::
derived

:::::
from

:::
the

:::::::
average

::
of

:::
the

::::::::::::
corresponding155

::::::::::
sub-columns

::
in

::::
each

:::::
layer.

:

Applications to OCO-2, GOSAT and GOSAT-2 have shown that FOCAL is fast and produces accurate results. For example,

the spatio-temporal bias of the FOCAL XCO2 product derived from TCCON comparisons is (after bias correction) in the order

of 0.6ppm for OCO-2 (Reuter and Hilker, 2022), and 0.6 (1.1)ppm for GOSAT (GOSAT-2) (Noël et al., 2022). FOCAL is

therefore well suited for the analysis of large data sets.160

FOCAL-CO2M is an adaptation of the FOCAL method for use in the CO2M mission. FOCAL permits “full physics”

(FP) and “proxy” (PR) retrievals. FP retrievals are based on directly retrieving the quantity of interest, i.e., XCO2 or XCH4,

whereas PR retrievals are based on computing the ratio of the retrievals of the two gases and using modelled XCO2 or XCH4

for correction (see, e.g. Schepers et al., 2012, for details). The main output products of the FOCAL-CO2M retrieval are total

column FP XCO2 and XCH4, but there will also be corresponding additional PR data and SIF and water vapour (XH2O)165

products. However, in the current study we only consider the FP XCO2 and XCH4 products.

The retrieval consists of three steps: pre-processing, inversion and post-processing.

The inputs to the pre-processing include (1) the spectral data from CO2I (measured radiances and their uncertainties as well

as related measurement times and measurement geometry, geolocation etc.) and (2) related meteorological information and

a-priori profiles for the considered gases. For the current study, we use simulated data, see Sect. 2.170

The objective of pre-processing is to filter the input data to minimise the waste of computational time for unsuitable atmo-

sphere and ground scenes or soundings. For the purpose of this study, we filter out all cloudy data and data over water surfaces,

because these are not required for the verification of the systematic error requirements. However, the retrieval is also planned

to be applied to data over ocean, especially in glint mode. We also remove all data with solar zenith angles larger than 75◦ and

data for which the signal-to-noise is lower than 100 at the wavelengths, 755 nm, 1624 nm and 2036 nm, i.e. one spectral region175

in each band where absorption is low.

The inversion uses an optimal estimation retrieval approach (Rodgers, 2000). It has four fitting windows in the near-infrared

(NIR) and short-wave infrared (SWIR) spectral regions, see Table 3. The corresponding state vector elements and their a-priori

values are listed in Table 4. The assumed a-priori uncertainties for the gas profiles consider covariances and are the same

as those used in GOSAT and GOSAT-2 FOCAL retrievals, which were derived based on the SLIM (Simple cLImatological180

Model for atmospheric CO2 or CH4) climatology (see Noël et al., 2022, for details). As for OCO-2, GOSAT and GOSAT-2,

we consider an additional forward model error in the retrieval, which takes into account possible limitations of the forward

model and is determined from the simulated CO2M measurements, see e.g. Reuter et al. (2017a, b) for details. The instrument

line shape (ILS) functions are currently assumed to be Gaussian with a full-width at half maximum (FWHM) as given by the

spectral resolution in Table 1.185
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During post-processing, the output data from the inversion are filtered for e.g. outliers. Furthermore, a bias correction is

performed to remove systematic offsets arising e.g. from limitations of the forward model. The underlying data base for the

post-processing is generated using a subset of (uncorrected) retrieval results as input. Here, we use the results of the retrieval

after inversion for the April 2015 subset data. We only use one month of data instead of the whole year for the following

reasons:190

1. We want to be as close to “real” conditions as possible. During the commissioning phase we need to re-determine the

post-processing data base, and there will be most likely only a limited amount of data available at that time.

2. With the current setup it is possible to show that the post-processing is working also for data / time periods which were

not used during generation of the data base.

The retrieval results for April 2015 are then filtered for convergence and fit quality. Using these data, the current post-195

processing data base has been derived as follows.

The filtering of the data is similar to the filtering performed for OCO-2 and GOSAT(-2) data and comprises two filtering

steps (see e.g. Noël et al., 2022, for details). First, data are filtered for retrieval quality (see Reuter et al., 2017b). Second,

additional filter parameters and their limits are determined using a variance minimisation method. The idea of this second step

is that outliers largely contribute to the, scatter and the method finds thresholds for parameters which most efficiently remove200

these outliers from the final data set.

Within this second step, an iterative procedure is used to determine a set of maximal 10 parameters which have the largest

effect on the variance reduction of the bias, i.e. the difference between the retrieved value and an assumed ‘true’ value, for a

prescribed percentage of data to be filtered out. The percentage of data to be filtered out is a trade-off between the remaining

scatter of the data and the number of remaining data after filtering. For the simulated data used in the present study we205

prescribed that 15% shall be removed.

The bias correction is based on a machine learning regression, which determines the function and the 10 (or less) best

parameters to reduce the bias based on a set of training and test data (each 50% of the input data). This is similar to the method

described in Noël et al. (2022), but here we use a regression based on a gradient boosting method (currently XGBoost, Chen

and Guestrin (2016)) instead of a random forest regression. For the current test data set, XGboost performs better than random210

forest regression.

The final determination of the post-processing data bases is done in an iterative way:

1. Apply the first step basic filtering for retrieval quality.

2. Determine and apply the bias correction to the resulting basically filtered data set.

3. Determine the (final) filter settings using the variance filter method with the data from the previous step as input.215

4. Apply these filters to the basically filtered data from step 1.
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5. Determine the (final) bias correction based on the output data from the previous step.

Performing a preliminary bias correction before the determination of the filter settings has the advantage, that data which

can be sufficiently well corrected via the bias correction are not necessarily filtered out.

For simulated data, the ‘true’ XCO2 and XCH4 values are perfectly known, because they have been used for the generation220

of the simulated spectra. Therefore, the current filtering and bias correction does not consider any additional errors resulting

systematic differences between the estimated meteorological conditions and the actual atmosphere. The impact of this addi-

tional error source on the retrieval results can only quantified by comparisons of real measurements with independent data. The

retrieval results presented later therefore do not include the impact of limited knowledge of the true values.

Tables 5 and 6 show the derived filter parameters and their limits for XCO2 and XCH4, respectively. As can be seen from225

these tables, there are only filters on polynomial parameters and their errors applied, although also e.g. the derived scattering

parameters were possible candidates. This means the filtering of the simulated data is based on surface albedo properties.

Fig. 4 shows the derived bias correction parameters as a function of their importance. For both XCO2 and XCH4 the most

relevant parameter for the bias correction is the derived Ångström coefficient. This means that largest (uncorrected) biases are

related to scattering, i.e. most likely aerosol since we are using only cloud-free data here. This also indicates that there is a230

strong correlation between the derived scattering parameters and aerosol abundance.

As an example for the spatial distribution and magnitude of the bias correction, Figs. 5 and 6 show the derived values

for XCO2 and XCH4. The mean correction is small (0.1ppm XCO2 and 2.1 ppb for XCH4), but there are significant local

differences. Larger corrections occur over Northern Africa, the Arabian peninsula and India, i.e. regions with typically larger

surface albedo and aerosol load.235

Note that the quality of the post-processing may in principle be improved by extending the input data set used to determine

the post-processing data base (especially regarding the training of the bias correction). However, at the beginning of the CO2M

mission, the amount of available measurement data will be limited. In order to show that our post-processing would even work

with a minimum amount of data we use only one month of simulated data here.

3.2 Adaptations for real data240

The FOCAL-CO2M retrieval software has been designed such that it can be applied to both simulated data (as in the present

study) and to real measurement data. However, the application to actual measurements requires some adaptations.

This includes the incorporation of results from the on-ground calibration (e.g. updated ILS data) as well as updates of

filtering and bias correction parameters, which can only be determined during the commissioning phase based on the analysis

of in-flight measurements.245

In the pre-processing, e.g. cloud and signal-to-noise filters need to be adjusted. For the retrieval, the forward model error

needs to be re-determined. Furthermore, the post-processing data base needs to be re-calculated using adapted filter settings

and bias correction parameters. It also has to be checked if additional information, e.g. aerosol parameters derived by the MAP

instrument, may be used in both pre- and post-processing.
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3.3 Performance Assessments250

The primary objective of this study is to obtain a first estimate of the performance of the FOCAL-CO2M retrieval with respect

to known sources of systematic errors. As already mentioned above, the corresponding requirements on the resulting XCO2

and XCH4 are high (systematic error ≤ 0.5 ppm and 5 ppb, respectively), see ESA (2020).

However, these requirements are formulated in a general way. Therefore, there is a need for some interpretation to verify

these requirements. We consider that the requirements should be verified by using cloud-free data over land only. Furthermore,255

the interpretation of systematic errors depends on the application, i.e. the purpose for which the data shall be used. CO2M has

two main application areas:

1. Quantification of anthropogenic emissions.

2. Quantification of natural large scale fluxes.

For the quantification of anthropogenic emissions it is important that local enhancements (e.g. emission plumes) can be260

separated from the background. The background values themselves are less important. A verification therefore requires spatially

highly resolved scene data with e.g. emission plumes.

For the quantification of natural large scale fluxes local variations are less relevant. Here, it is important that large scale

structures and their variations in both time and space are correct. This requires global data covering at least a full year to

consider possible long-term / large-scale errors.265

According to the ESA (2020), CO2 plume imaging (i.e. anthropogenic emissions) is the driving application for the precision

requirements. Nevertheless, knowledge about larger scale or areal fluxes are also important for e.g. global modelling. Therefore,

we consider both applications here. The verification of the requirements thus has to take these different scales into account. In

the following sub-section we describe the verification methods for both application areas.

For the verification of the systematic error requirements for natural large scale fluxes we use the retrieval results from the270

full-year global subset measurements as these provide a good spatial and temporal coverage. We then determine a running

average of the difference between the retrieved value and the true value within a 1◦× 1◦latitude/longitude box. This results in

a low-pass filtered bias data set. For this data set we compute the standard deviation, considering the cosine of the latitude as

weights to account for different sizes of the averaging area. To fulfil the systematic error requirement, the resulting weighted

standard deviation of the low-pass filtered bias should then be ≤0.5 ppm.275

For the verification of the systematic error requirements for anthropogenic emissions we take as input the high-resolution

Berlin scene. We then apply – similar as for the large scale fluxes – a 1◦× 1◦low-pass filter to the difference between the

retrieved value and the true value, which results in a spatially smoothed bias. This smoothed bias is then subtracted from the

original data, which gives us a high-passed filtered bias data set (for this scene). The standard deviation of these high-pass

filtered bias data should then be ≤0.5 ppm to fulfil the requirement on systematic errors.280

Fig. 7 shows as an example for the different filtering procedures the unfiltered XCO2 bias (retrieved - true values) for the

high-resolution Berlin scene and the resulting low- and high-pass filtered bias.
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4 Results

4.1 Application to anthropogenic emissions

As explained above, the verification of the performance requirements for anthropogenic emissions is achieved by using the285

high-resolution ‘Berlin scene’.

Fig. 8 shows the FOCAL-CO2M XCO2 retrieval results for this scene. The retrieved XCO2 (after post-processing) is shown

in the left plot, the true XCO2 in the centre and their difference in the right plot. Some statistical information is also given in

the figure below these plots. Note that these are rounded values.

All structures of the scene shown in the true XCO2 can also be identified in the retrieved data. The mean difference between290

the retrieved and the true XCO2 is -0.2 ppm. The standard deviation of the difference is 0.6ppm. After application of the low-

and high-pass filters this reduces to 0.2ppm and 0.5 ppm. The values for the high-pass filtered data do not only contain the

systematic error component but also the noise on the data. The (rounded) mean noise error of the data in this scene is also about

0.5 ppm. This means that the high-pass standard deviation is dominated by noise; thus the real systematic error is probably

well below 0.5ppm. If we subtract the noise related variance from the high-pass variance and then take the square root, we get295

the value given in brackets after the high-pass variance in the plot, namely 0.1ppm. This can be considered as a lower estimate

for the high-pass standard deviation as it does not consider potential systematic error contributions to the a-posteriori noise

error.

The average a-posterior error of the retrieved XCO2 (including the noise and the smoothing error) is about 0.6ppm, i.e. very

close to the noise error. Compared to the assumed a-priori uncertainty for CO2 of 5ppm (see Table 4) this corresponds to an300

uncertainty reduction of about a factor of 8.

A small gradient is visible in the difference between the retrieved and the true XCO2 from north-east to south-west. This

could be related to aerosol effects. In this scene, most aerosol is located in the south-west. Differences in the handling of

surface properties by SCIATRAN and FOCAL could also play a role. However, since we are interested in the quantification

for anthropogenic emissions, these larger scale effects are less relevant.305

As mentioned in Table 4, the XCO2 a-priori values used in the retrieval are taken from the meteorological data, which where

also used in the generation of the input spectra. They are therefore identical with the true values. This is because we aim to

be as consistent as possible with the procedures to be applied to real data at a later time, and for real measurements we will

also use the (predicted) meteorological input data as truth for the post-processing corrections. However, in reality of course the

truth will deviate from the model data. To show that the sensitivity of the retrieval to the choice of the a-priori is low, we have310

performed the retrieval for the ‘Berlin scene’ also for a fixed CO2 a-priori for all measurements by assuming a constant value

of 400ppm for all altitudes. As can be seen from Fig. 9, this has hardly any impact on the retrieval results. All XCO2 features

can be reproduced even with the fixed a-priori. There is only a small mean offset of about 0.2ppm compared to the values

where the true XCO2 was used as a-priori.

Fig. 10 shows a zoom-in of Fig. 8 on the region of the power plants in Eastern Germany. Despite the noise on the data,315

the plumes from the different power plants can be clearly identified in the retrieval results. No plume structures are visible in
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the difference map. The high-pass standard deviation for this sub-scene is 0.5ppm similar to the noise error. The high-pass

standard deviation is thus also dominated by noise. Subtraction of the noise contribution results in a standard deviation of

0.1 ppm. The requirement on systematic errors is therefore fulfilled for XCO2 for this scene. Note that in reality 2D/3D effects

(vertical/horizontal distribution of the plume), which are not fully considered in our simulations, may affect the results. This320

can only be checked with real data.

The results for XCH4 using the true values as a-priori are shown in Fig. 11. For this case, also the main structures of the true

XCH4 field are re-produced in the retrieval. As for XCO2, the difference between retrieved and true XCH4 is dominated by

noise. The mean offset for this scene is -1.4ppb with a standard deviation of the (unfiltered) difference of 5.2ppb, including a

noise error of 4.8ppb. The average a-posterior error for XCH4 is 5.8ppb, compared the a-priori uncertainty for CH4 of 45ppb325

from Table 4. The uncertainty is therefore reduced as for CO2 by about a factor of 8.

The high-pass filtered mean standard deviation is 5.0 ppb with a lower (noise-corrected) estimate of 1.3ppb. The require-

ment of maximum 5ppb is therefore fulfilled. The difference map for XCH4 shows a similar gradient as for XCO2 from

north-east to south west, most likely for the same reasons.

4.2 Application to large scale fluxes330

The verification of the requirement for large scale natural fluxes is based on the full-year global subset data. As an example,

Fig. 12 shows the FOCAL-CO2M XCO2 retrieval results for April 2015. The corresponding XCH4 data are shown in Fig. 13.

As can be seen from these figures, the retrieved data reproduce all large-scale patterns present in the true/a-priori data.

The scatter in the differences between retrieved and true values is dominated by noise. Since the April 2015 data are used in

the derivation of the post-processing data bases, Figs. 12 and 13 show the best case. However, the quantitative assessments335

described in the following show that other months have a similar performance.

For these quantitative assessments of the systematic error for large scale fluxes we apply a low-pass filter to the differences

and determine the weighted standard deviation for the low-pass filtered data as described in section 3.3. This is done for each

month as well as for the whole year 2015. The results are shown in Fig. 14 and Fig. 15.

For the verification of the systematic error requirements the red line in the middle plots is relevant. It shows the weighted340

standard deviation for the low-pass filtered data for each month and the value for the complete year (i.e. not the average over

the monthly data) in the legend of each panel.

The yearly average low-pass standard deviation for XCO2 is 0.5 ppm and therefore just fulfils the systematic error require-

ment for large scale fluxes. For XCH4, the yearly average low-pass standard deviation is 3.7 ppb and therefore smaller than

the required 5 ppb.345

The lowest XCO2 and XCH4 standard deviations are achieved in April 2015. The biases at this month are also zero. This

is not surprising, because this is the month which was used for the training of the bias correction. Slightly higher standard

deviations occur in other months, but the standard deviations of the low-pass filtered data are always below 0.6 ppm for XCO2

and 4. ppb for XCH4. Largest standard deviations occur for both gases in December and January, where also the number of
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valid data is lowest. In general, it is expected that the results improve if more months (e.g. a full year subset data set)are used350

for the generation of the post-processing data base.

However, the simulated data used here do not fully represent reality because of the limitations and underlying assumptions

in the radiative transfer and the retrieval. Even under these conditions the estimated systematic errors for large scale fluxes

are especially for XCO2 very close to the requirements. This indicates that fulfilling these requirements for real data might be

possible but will be a challenge.355

4.3 Aerosol dependence

Up to the present, the FOCAL-CO2M retrieval does not use any external information about aerosols (e.g. from the MAP

instrument). The systematic error requirements are only applicable up to an aerosol optical depth of 0.5 (ESA, 2020). Therefore,

we also checked the aerosol dependence of the FOCAL-CO2M retrieval results. Figs. 16 and 17 show the (binned) differences

between the retrieved and the true XCO2 and XCH4 for the full-year 2015 subset data as a function of the aerosol optical depth360

(AOD) at 550 nm, which was assumed for the generation of the simulated spectra with SCIATRAN.

As mentioned above, the SCIATRAN calculations for the simulated data consider different aerosol types and distributions,

but the FOCAL retrieval does not explicitly consider aerosol, it assumes only one effective scattering layer. Nevertheless, as

can be seen from Fig. 16, mean systematic offsets due to aerosol for the complete year are less than about 0.2ppm for XCO2

with a mean of zero for all AODs up to 0.5. The standard deviation of the XCO2 difference is on average 0.7ppm and typically365

smaller for lower AOD. The functional dependence on AOD is similar for XCH4 (see Fig. 17). Systematic XCH4 offsets are

usually smaller than 1ppb.

These results could possibly be improved when using extended training data for the post-processing and/or additional infor-

mation from the MAP instrument.

5 Conclusions370

FOCAL is one of three retrieval algorithms under development for the operational retrieval of XCO2, XCH4 and other param-

eters from the constellation of CO2M satellites to be launched from 2026 onward. These data products contain information on

anthropogenic and natural sources and sinks of the two greenhouse gases CO2 and CH4 which will extracted using appropriate

inverse modelling to support emission monitoring in the context of the Paris Agreement on climate change. This application

requires high accuracy as even small biases can lead to significant emission errors (ESA, 2020).375

The FOCAL retrieval has been successfully adapted to simulated CO2M data. First performance tests using data simulated

with SCIATRAN as input have been performed. Based on these simulated cloud-free nadir data over land, we show that the

requirement of a maximum systematic error of 0.5 ppm for XCO2 and 5ppb for XCH4 is fulfilled by the FOCAL retrieval for

(1) anthropogenic emissions (high-pass filtered data), using a high-resolution scene containing XCO2 emission plumes from

power plants and (2) natural large scale fluxes (low-pass filtered data), based on a full year global sub-sampled data set. Good380

retrieval results are obtained up to AOD 0.5, even without using external aerosol information as input.
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All results shown here are based on simulated data. Furthermore, the calculations currently assume a perfect CO2I instrument

and do not consider any systematic errors in spectroscopy or meteorology. The SCIATRAN simulations do not (and cannot)

take into account all physical processes. On the retrieval side, information on aerosols and cirrus clouds derived from the MAP

instrument is also not considered yet.
:::::::
However,

:::
the

::::::::
inclusion

::
of

:::::
MAP

:::::
Level

:
2
::::
data

::::
(e.g.

:::
for

:::::::::::::
post-processing)

::
is
:::::::
already

:::::::
foreseen385

::
in

:::
the

::::::
current

::::::::
software. Therefore, the results of this study cannot be seen as a final verification of the CO2M requirements.

Finally, the performance of the FOCAL-CO2M retrieval (and all other retrieval methods) needs to be determined based on

real measurements. Fulfilling the requirements for XCO2 natural large scale fluxes is probably the most challenging task in

this context. However, the current results give confidence that the FOCAL-CO2M retrieval algorithm will be able to generate

products meeting the product quality requirements of the CO2M mission.390
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fig01.pdf

Figure 1. Example for the subset data: Modelled XCO2 over part of Europe for one orbit on 2015-07-03. Only cloud-free data over land

are shown because only these will be used later in the retrieval. No post-processing filters are applied. Note that only the centre points of the

ground pixels are plotted and that the size of the markers is much larger than the original ground pixel size.
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fig02.pdf

Figure 2. High-resolution scene: XCO2. Only cloud-free data over land; no post-processing filters are applied.
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fig03.pdf

Figure 3. As Fig. 2, but for XCH4.
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fig04.pdf

Figure 4. Bias correction parameters and their relative importance (normalised such that the sum of all importances is 1.). a) XCO2. b)

XCH4.
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fig05.pdf

Figure 5. Map of the derived XCO2 bias for the subset data of April 2015.
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fig06.pdf

Figure 6. As Fig. 5, but for XCH4.
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fig07.pdf

Figure 7. Example for low-/high-pass filtering (Berlin scene). a) Bias (FOCAL-CO2M retrieved - true XCO2). b) 1◦× 1◦low-pass filtered

bias. c) High-pass filtered bias = Bias - Low-pass filtered bias.
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fig08.pdf

Figure 8. FOCAL-CO2M XCO2 retrieval results for the ‘Berlin scene’ (only cloud-free data over land). a) Retrieved XCO2. b) True XCO2.

c) Difference Retrieved - True XCO2. The same post-processing filtering has been applied to all data shown in the plots. The number in

brackets after the high-pass standard deviation gives an estimate for the high-pass standard deviation without noise.
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fig09.pdf

Figure 9. As Fig. 8, but for a fixed 400ppm a-priori
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fig10.pdf

Figure 10. Zoom of Fig. 8.
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fig11.pdf

Figure 11. As Fig. 8, but for FOCAL-CO2M XCH4.
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fig12.pdf

Figure 12. FOCAL-CO2M XCO2 retrieval results for April 2015 (cloud-free subset data over land). a) Retrieved XCO2. b) True XCO2. c)

Difference Retrieved - True XCO2.
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fig13.pdf

Figure 13. As Fig. 12, but for XCH4.
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fig14.pdf

Figure 14. Monthly means and standard deviations of 2015 global subset data. a) Mean difference retrieved – true XCO2. b) Standard

deviation retrieved – true XCO2 (orange: unfiltered, red: low-pass filtered). c) Number of data after post-processing. Annual values are given

in the labels.
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fig15.pdf

Figure 15. As Fig. 14, but for XCH4.
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fig16.pdf

Figure 16. Difference between retrieved and true XCO2 as function of AOD at 550nm.
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fig17.pdf

Figure 17. As Fig. 16, but for XCH4.
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Table 1. CO2M instruments and their characteristics.

CO2I (Imaging Spectrometer)

Band Spectral range Spectral resolution

VIS 405 – 490nm 0.6nm

NIR 747 – 773nm 0.12nm

SWIR-1 1590 – 1675nm 0.3nm

SWIR-2 1990 – 2095nm 0.35nm

MAP (Multi-Angle Polarimeter)

Band Central wavelength Band width

VNIR-1 410nm 20nm

VNIR-2 443nm 20nm

VNIR-3 490nm 20nm

VNIR-4 555nm 20nm

VNIR-5 670nm 20nm

VNIR-6 753nm 9nm

VNIR-7 865nm 40nm

CLIM (Cloud Imager)

Band Band centre Band width

CLIM-1 670nm 20nm

CLIM-2 753nm 9nm

CLIM-3 1370nm 15nm
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Table 2. Parameters of instrument noise model. Unit of A is 10−7 photons−1 s nm cm2 sr.

Parameter NIR SWIR-1 SWIR-2

A 0.2 1.32 1.54

B 140 450 450
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Table 3. Definition of FOCAL-CO2M spectral fit windows. Cross sections are from HITRAN2016 (Gordon et al., 2017, downloaded on 23

March 2021).

No. Name Wavelength range (nm) Considered gases

1 SIF 747.0 – 759.0 O2, H2O

2 O2 759.2 – 773.0 O2, H2O

3 Weak CO2 1590.0 – 1670.0 CO2, H2O, CH4

4 Strong CO2 1990.0 – 2090.0 CO2, H2O, CH4
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Table 4. State vector elements and related retrieval settings. A priori values are also used as first guess. “Fit windows” lists the spectral

windows (see Table 3) from which the element is determined. “each” means that a corresponding element is fitted in each fit window.

A priori values labelled as “PP” are taken from the provided meteorological data; “est.” denotes that they have been estimated from the

background signal.

Element Fit windows A priori A priori uncertainty Comment

Gases / SIF

co2_lay 3,4 PP 5.0 CO2 profile (5 layers), in ppm

ch4_lay 3,4 PP 0.045 CH4 profile (5 layers), in ppm

h2o_lay 3,4 PP 4500. H2O profile (5 layers), in ppm

sif_fac 1 0. 5. SIF spectrum scaling factor

Scattering parameters

pre_sca 1–4 0.2 1. Layer height (rel. pressure, 0=surface, 1=infinity)

tau_sca_0 1–4 0.01 1. Optical depth

ang_sca 1–4 4.0 1. Ångström coefficient

Polynomial coefficients (surface albedo)

poly0 each est. 0.1 estimated surface albedo

poly1 each 0.0 0.01

poly2 each 0.0 0.01

poly3 each 0.0 0.01

Spectral corrections

wav_shi each 0.0 0.1 Wavelength shift

wav_squ each 0.0 0.001 Wavelength squeeze

ils_squ each 1.0 0.1 Slit function squeeze
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Table 5. Filter variables and limits for FOCAL-CO2M XCO2 (land). “–” means that no limit is applied.

Variable Valid range

min. max.

Poly. coeff. 0 win 3 8.52 10−2 –

Poly. coeff. 0 win 4 4.05 10−2 –

Poly. coeff. 0 win 1 0.11 –

Poly. coeff. 1 win 4 -8.49 10−5 –

Poly. coeff. 0 win 2 0.12 –

Poly. coeff. 1 win 4 unc. 1.40 10−5 5.97 10−5
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Table 6. Filter variables and limits for FOCAL-CO2M XCH4 (land). “–” means that no limit is applied.

Variable Valid range

min. max.

Poly. coeff. 0 win 3 9.68 10−2 –

Poly. coeff. 0 win 4 4.07 10−2 –

Poly. coeff. 1 win 4 -1.05 10−4 –
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