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Abstract. Global Navigation Satellite Systems (GNSS) radio occultation (RO) is a space-based remote sensing technique 

that measures the bending angle of GNSS signals as they traverse the Earth's atmosphere. Profiles of the microwave index of 

refraction can be calculated from the bending angles. High accuracy, long-term stability, and all-weather capability make this 

technique attractive to meteorologists and climatologists. Meteorologists routinely assimilate RO observations into 

numerical weather models. RO-based climatologies, however, are complicated to construct as their sampling density is 15 

highly non-uniform and too sparse to resolve synoptic variability in the atmosphere.  

In this work, we investigate the potential of machine learning (ML) to construct RO climatologies and compare the results of 

a ML construction with Bayesian interpolation (BI), a state-of-the-art method to generate maps of RO products. We develop 

a feed-forward neural network applied to COSMIC-2 RO observations and evaluate the performance of BI and ML by 

analysis of residuals when applied to test data. We also simulate data taken from the atmospheric analyses produced by the 20 

European Centre for Medium-Range Weather Forecasts (ECMWF) in order to test the resolving power of BI and ML. 

Atmospheric temperature, pressure and water vapor are used to calculate microwave refractivity at 2, 3, 5, 8, 15, and 20 km 

geopotential height, with each level representing a different dynamical regime of the atmosphere. The simulated data are the 

values of microwave refractivity produced by ECMWF at the geolocations of the COSMIC-2 RO constellation, which fall 

equatorward of 46° latitude. The maps of refractivity produced using the neural networks better match the true maps 25 

produced by ECMWF than maps using BI. The best results are obtained when fusing BI and ML, specifically when applying 

ML to the post-fit residuals of BI. At the six iso-heights, we obtain post-fit residuals of 10.9, 9.1, 5.3, 1.6, 0.6 and 0.3 N-units 

for BI and 8.7, 6.6, 3.6, 1.1, 0.3 and 0.2 N-units for the fused BI&ML, respectively. These results are independent of season.  

The BI&ML method improves the effective horizontal resolution of the posterior longitude-latitude refractivity maps. By 

projecting the original and the inferred maps at 2 km iso-height onto spherical harmonics, we find that the BI-only technique 30 

can resolve refractivity in the horizontal up to spherical harmonic degree 8 while BI&ML can resolve maps of refractivity 

using the same input data up to spherical harmonic degree 14. 
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1 Introduction 

Earth radio occultation (RO) sounds temperature and water vapor in the Earth's atmosphere by measuring the refraction-

induced frequency-shifting of the signals of the Global Navigation Satellite Systems (GNSS) satellites as received by 35 

satellites in low-Earth orbit (LEO). The RO remote sensing technique has been thoroughly described in several previous 

works, e.g., (Kursinski, et al., 1997), (Kursinski, et al., 2000), (Melbourne, 2004), (Mannucci, et al., 2021). As an active 

limb-sounding technique, it provides highly accurate information on temperature and water vapor with 100-m vertical 

resolution from the surface to the stratopause, but with non-homogenous, non-uniform and sparse horizontal sampling. In 

order to convert the soundings to a gridded dataset, special algorithms must be devised to map the data in the horizontal. The 40 

horizontal sampling is non-homogeneous because the orbital configuration of the multiple RO spacecraft has not been 

coordinated and because of the orbits of the satellites in the GNSS satellite constellations. Consequently, local time coverage 

is generally incomplete and meridional coverage at times neglected. Because of orbital dynamics, gaps in the RO sampling 

pattern occur at specific, well-defined latitudes (Leroy, et al., 2012). The horizontal sampling distribution is also sparse 

because the density of RO soundings has never been high enough to sample every cell of synoptic variability in the 45 

atmospheric system, where a cell is approximately described by a span of several hours and the atmospheric Rossby radius 

of deformation. Mapping RO data requires statistical methods that weight the RO observations that do exist in a manner that 

minimizes the errors incurred by under-sampling the atmosphere without inducing biases.   

Two approaches have been developed to construct gridded RO climatologies. The first approach is referred to as 

“sampling-error-removal”. It uses the forecasts of a numerical weather prediction (NWP) model to estimate the sampling 50 

error associated with synoptic variability and incomplete coverage of the diurnal cycle. In this approach, the forecasts of an 

NWP system are interpolated to the locations and times of RO soundings, binned and averaged into longitude-latitude boxes 

just as the actual RO soundings are, and compared to the gridded predictions to estimate a bias associated with the binning 

and averaging. This estimate of the bias is then subtracted from the actual binned-and-averaged RO data (Foelsche, et al., 

2008), (Foelsche, et al., 2011). The other approach is Bayesian interpolation (BI) on a sphere, wherein linear combinations of 55 

spherical harmonics as basis functions are fit to RO data without overfitting the data (MacKay, 1992), (Leroy, et al., 2012). 

There have been many other applications of BI, and it has been evaluated in detailed analyses as a method for constructing 

climatologies of RO data (Leroy, et al., 2012), (Leroy, et al., 2021).  

In this work, we use machine learning (ML) to produce RO climatologies. The ability of ML to learn from large amounts 

of data has been shown in many research subjects and applications (Hassanien, 2018). Neural networks are well suited to the 60 

problem of estimating most probable values related to generalized inputs, which is the same problem that affects gridding 

RO data in the horizontal. Unlike the sampling-error-removal approach, neither BI nor ML require external datasets to form 

objective gridded climatologies of RO data. At its core BI superposes spherical harmonics, while ML is based on more 

general mathematical functions. Spherical harmonics are orthogonal on a sphere but do not necessarily represent structures 
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of atmospheric variability well. The more generalized interpolators of ML should prove to be more capable of resolving 65 

complex fine-scale horizontal structure.  

ML has already been deployed successfully on ground-based GNSS observations. For decades, parameters estimated from 

GNSS data (such as station coordinates, troposphere, ionosphere, etc.) have been routinely quantified at permanent geodetic 

stations. In addition, the size and resolution of GNSS networks have increased, following the requirements of meteorologists, 

geodesists and geophysicists. Thus, a large amount of data has been produced, which has naturally generated interest in 70 

applying ML algorithms to these datasets. (Kiani Shahvandi, et al., 2022), (Gou, et al., 2023) and (Natras, et al., 2022) 

applied ML to improve the prediction of important parameters needed in GNSS applications, such as polar motion 

prediction, ultra-rapid orbits, and ionosphere, while (Crocetti, et al., 2021) used ML to detect discontinuities in time series of 

GNSS station coordinates. 

ML algorithms have been successfully used to model meteorological products derived from GNSS observations in the 75 

past. For instance, in (Miotti, et al., 2020) and (Shehaj, 2023), ML was applied to tropospheric observations of ground-based 

GNSS to model them based on meteorological parameters. (Miotti, et al., 2020) showed that ML could model the implicit 

relation between zenith total delays (ZTDs), estimated at ground-based GNSS stations and meteorological parameters 

measured at permanent meteorological stations. While (Miotti, et al., 2020) demonstrated the applicability of ML to map 

time series of GNSS tropospheric observations, in (Shehaj, et al., 2022) ML and least-squares collocation were combined to 80 

produce high-resolution ZTD fields.  

In other work, ML has been applied to tropospheric delays estimated at GNSS ground-based stations for prediction of 

Alpine Foehn, (Aichinger-Rosenberger, et al., 2022), or to spatially map zenith wet delay at a global scale, (Crocetti, et al., 

n.d.). (Kitpracha, et al., 2019) used LSTM and a combination of singular spectrum analysis with Copula to predict zenith 

delays based on previous meteorological and delay series; errors of 2 cm and 1 cm were reported for a prediction of 24 85 

hours. In (Shamshiri, et al., 2019), a ML Gaussian Process to model tropospheric delays in InSAR based on zenith delays 

was used, reporting an improvement of 81% on the tropospheric corrections of the interferograms. In (Zhang & Yao, 2021), 

ML was applied to fuse precipitable water vapor from GNSS, MODIS (Moderate-Resolution Imaging Spectroradiometer) 

and the numerical weather model ERA5. In (Shi, et al., 2023) a method to efficiently generate zenith delays for the massive 

GNSS CORS (continuously operating reference station) network utilizing ML is developed. (Gou & Soja, 2024) use ML to 90 

enhance the global resolution of total water storage anomalies, with a spatial resolution of 0.5°. 

While in previous work ML was successfully deployed to map time series of GNSS ground-based atmospheric 

observations, in this work we apply ML for spatial and temporal mapping of GNSS RO measurements. We exploit the large 

number of RO measurements (thousands daily) and the ability of ML to learn patterns from large datasets.  

We develop a neural network for interpolating RO data in 6-hr cycles in order to create gridded climatologies and compare 95 

the results to maps generated using BI. We can only compare our ML approach to BI since it provides a-posterior 

uncertainty, but the sampling-error-removal method does not. We also estimate performance with simulation-mapping 

experiments using the output of an NWP system as a nature run. In doing so we treat the gridded model output as 'truth' 
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against which we compare the output of the various mapping methods we consider. The outcomes are estimates of the 

uncertainty and the performance of each mapping approach.  100 

Several studies have also applied ML to model residuals of observations, computed as a difference between a model not 

based on ML and target observations. The most typical cases originate from using physical models for prediction and 

training an ML model to predict the residual part. For example, (Wang, et al. 2017) showed that ML could be used to model 

the difference between a superior model which is computationally expensive and a simple model, to predict the component 

of the total stress tensor in a fluid. Similarly, (Gou, et al. 2023) applied several ML and deep learning (DL) algorithms to 105 

model the differences between GNSS final orbit products and ultra-rapid orbit products. Therefore, their ML model could 

help overcome the limitations of simplified physics-based orbit propagators by training on residuals. (Kiani Shahvandi, et al. 

2023) used a method based on NNs named ResLearner to calibrate the rapid Earth Orientation Parameters (EOPs) with 

respect to the final EOPs in a residual manner. In this work, we also propose a loosely coupled combination of ML and BI, in 

which we first apply BI to the observations, and then we train the ML model on the BI residuals. 110 

The second section of this paper describes the data that we use. The third section describes the BI and ML mapping 

algorithms.  The fourth section contains the analysis of a numerical experiment that probes the performance of BI and ML. 

Finally, the fifth section presents a summary discussion of results and future work. 

2 Data 

2.1 COSMIC-2/FORMOSAT-7 115 

The COSMIC-2/FORMOSAT-7 mission is operated by National Oceanic and Atmospheric Administration (NOAA), US 

AIR Force (USAF), Taiwan's National Space Organization (NSPO), University Consortium for Atmospheric Research 

(UCAR) and other partners (UCAR, 2022), (Ho, et al., 2020), (Schreiner, et al., 2020). At present, COSMIC-2 obtains RO 

soundings from the transmitters of the U.S. Global Positioning System (GPS) and the Russian GLONASS, providing 

approximately 6,000 high-performance profiles of refractivity daily and covering the Earth from 46°S to 46°N latitude. We 120 

use analyzed refractivity sourced from wetPf2 files from the data portal of the COSMIC project office of UCAR. The wetPf2 

NetCDF files contain geometric altitude above mean sea level, geopotential height above mean sea level, longitude, latitude, 

temperature, pressure, water vapor partial pressure, specific humidity, relative humidity, dry temperature, dry pressure and 

refractivity for each level of the atmospheric sounding. In this work, we use geometric altitude above mean sea level, 

longitude, latitude and refractivity.  125 

We interpolate the COSMIC-2 refractivity profiles to isohypsic surfaces at 2, 3, 5, 8, 15, and 20 km above mean sea level. 

These levels show a wide variety of morphologies in spatial-temporal structures because of the very different physical 

phenomena prevalent at each level:  

• 2 km (Figure 1 (a)): at this height, we notice small-scale structures related to boundary layer clouds and water vapor. 
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• 3 km (Figure 1 (b)): at this height, there is still an important contribution of the water vapor to refractivity, but it is just 130 

outside the planetary boundary layer. We expect the retrieved refractivity to have higher quality than at 2 km, since 

Abel inversion for refractivity encounters its largest errors within the boundary layer, usually associated with super-

refraction and tracking difficulties.  

• 5 km (Figure 1 (c)) and 8 km (Figure 1 (d)): synoptic, jet stream, and frontal variability dominate the dynamics of 

refractivity with a smaller contribution of water vapor than in the boundary layer.  135 

• 15 km (Figure 1 (e)): mixing across the subtropical front by baroclinic eddies in the stratospheric middle world 

dominates. In the mid-latitudes, we are in the stratosphere, while in the tropics we are in the troposphere. This is 

depicted in Figure 1, where a clear distinction – almost a step function – in refractivity is experienced between the 

tropics and mid-latitudes. 

• 20 km (Figure 1 (f)): larger structures of the atmosphere related to planetary scale waves in the lower stratosphere.  140 

 
Figure 1: COSMIC-2 RO refractivity distributions on six isohypsic surfaces for the period 1–10 January 2020, 
illustrating the very different spatial-temporal morphologies at each level. The refractivity at 2, 3, 5, 8, 15 and 20 km 
is visualized in the plots (a), (b), (c), (d), (e) and (f), respectively. The colorbar units are N-units (ppm), i.e., 
refractivity units, the x-axis is east longitude, and the y-axis is northward latitude. 145 

We utilize COSMIC-2 data representing 10-day time series of the four seasons. The measurements spanning 1–10 January 

2020 represent Boreal winter (40,000 profiles), 1–10 April 2020 represent Boreal spring (40,000 profiles), 3–12 July 2020 

represent summer (30,000 profiles), and 1–10 October 2020 represent fall (30,000 profiles). The criterion to select these 

timespans was continuity, meaning that we simply chose the first 10 continuous days with RO profiles for each season of 

2020. 150 
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2.2 ECMWF Operational Forecasts 

In order to create a “nature run” on which to test ML mapping schemes, we interpolated the forecasts of the operational 

weather prediction system of the European Centre for Medium-range Weather Forecasts (ECMWF) to the times and 

locations of COSMIC-2 RO soundings, spanning 1–10 January 2020. Specifically, we used the output of ECMWF Integrated 

Forecast System (IFS) cycles 46r1 and 47r1; see (ECMWF, 2023). By using forecast fields rather than analysis fields, 155 

complications that arise from assimilating COSMIC-2 RO data into ECMWF operational analyses are avoided. Forecasts are 

always physically consistent three-dimensional fields of the atmosphere in as much as the physics is defined by the 

prognostic model. NWP analyses, however, are physically inconsistent because the data that constrain the atmospheric state 

perturb the state in isolated regions away from physical consistency. We obtained NetCDF files of pressure, temperature, 

water vapor, and geopotential fields with a horizontal resolution of 0.5º. We used 12-hr forecast fields, which are published 160 

hourly. 

We computed refractivity profiles (and geometric altitude above mean sea level) at the times and locations of COSMIC-2 

RO soundings at the grid points in operational forecasts. Refractivity N is related to the microwave index of refraction 𝑛 and 

atmospheric properties, (Rueger, 2002): 

𝑁 = (𝑛 − 1) × 10! = (77.6890	K	hPa"#) (%"%!)
'

+ (71.2952	K	hPa"#) %!
'
+ (375463	K(	hPa"#) %!

'"
,          (1) 165 

where 𝑝, 𝑝) , 𝑇  are the atmospheric pressure, the partial pressure of water vapor, and temperature, respectively. This 

formulation of refractivity accounts for fixed and induced dipoles of nitrogen, oxygen, carbon dioxide and water vapor, but 

neglects compressibility effects. The refractivity of surface air generally falls in the interval 320 to 360 N-units, about 10% 

of which is due to water vapor, with larger values in lower latitudes where more water vapor is present. When interpolating 

the model to the times and locations of COSMIC-2 RO soundings, we took the model refractivity profile in the cell nearest 170 

to the RO sounding and interpolated linearly in altitude, the vertical dimension.  

Finally, we interpolated the refractivity for each profile to the six chosen altitudes listed in section 2.1. Using ECMWF 

data with resolutions of 0.5° in latitude/longitude and 1-hour in time, we locate the closest forecast geolocations and times of 

the COSMIC-2 RO data. 

3 Methods 175 

We introduce two RO mapping techniques in this section: Bayesian interpolation on a sphere, and machine learning via 

neural networks.  
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3.1 Bayesian interpolation (BI) 

Bayesian interpolation (BI) works by fitting irregularly gridded and noisy data by a superposition of basis functions without 

overfitting the data, (MacKay, 1992). The input to the method is a set of scalar values with associated longitudes and 180 

latitudes and possibly even local (solar) times. The output is an inference of a two-dimensional field and its uncertainty as 

the coefficients of a spherical harmonic expansion and sines and cosines in the diurnal cycle along with an associated 

uncertainty covariance matrix of those coefficients. Diagnostics of the process yield information on the effective degrees of 

freedom of signal—and hence the horizontal resolution of the map—a single value describing the “measurement” error of 

every input value, and the Bayesian evidence for the fit, otherwise known as the joint probability of the model and the data. 185 

While largely an objective method, it nevertheless does involve some tuning of the regularisation matrix, the purpose of 

which is to prevent overfitting of the data. We use a regularisation matrix that asymptotes to stable values of Bayesian 

evidence with increasingly large spherical harmonic expansions (Leroy, et al., 2012). In doing so, we assure that output 

mappings are neither penalized nor rewarded for increasing numbers of basis functions beyond some nominal expansion.  

BI is well suited to map GNSS RO data because the sampling patterns are highly irregular and synoptic variability acts as 190 

a source of noise (Leroy, 1997). On a sphere, the natural basis functions are spherical harmonics, and BI using spherical 

harmonics as basis functions has been explored in depth to generate level 3 climatologies (i.e. latitude-longitude gridded 

products) of GNSS RO data (Leroy, et al., 2012), (Leroy, et al., 2021). For this work, we use the same Python module 

developed by (Leroy, et al., 2012), (Leroy, et al., 2021). We map RO observations in latitude and longitude and use the BI 

results to compare and combine them with ML. While BI on a sphere is intended for globally distributed, nonuniformly 195 

sampled data, it also works well when the data are restricted geographically. In our application, COSMIC-2 RO sounding 

distributions are restricted to the tropics and to the oceans. An example of a BI map is shown in Figure 5, plot (b). 

3.2 Machine learning applied to RO 

We use the classical artificial neural networks algorithm Multilayer Perceptrons (MLPs) detailed in (Haykin, 2009). This 

algorithm is widely applied for large datasets. We apply a fully connected neural network, where the neurons of one layer are 200 

connected to all the neurons of the previous one. The first layer consists of the inputs and the last one of the target values. 

Each neuron is computed as follows (Haykin, 2009): 

neuron = 	𝑓(∑ neuron_previous_layer* ∗ 𝑤* + 𝑏)+
*,#                (2) 

where a weight 𝑤* is computed for each neuron of the previous layer, and a bias 𝑏 is added. The bias and weights are the 

parameters of the neural network.  205 

The inputs and outputs have complex relations. The activation function 𝑓 defines the nonlinearity. The most common 

activation function is the Rectified Linear Unit function (ReLU); it suppresses neurons with negative values, (Nwankpa, et 

al., 2018): 
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𝑓(𝑥) = max	(0, 𝑥)                   (3) 

The training process adapts all the network parameters so that the input/output relation will be accurate. The hidden layers 210 

are functions of the neurons in the previous layers. Thus, we relate the output and the input layers as follows:  

pred = 𝐹{feature#, …… feature+}                  (4) 

where feature+ represents the n-th input variable. The prediction pred can be compared to the 'true' value (label) directly. 

Therefore, a loss function can be calculated, with the typical formulation for regression purposes, the mean squared error 

(mse): 215 

mse = 	 #
+
	∑ (pred* − label*)(+

*,#                    (5) 

The parameters of the neural network, i.e., the weights and biases, describe the loss function. We aim to minimize the loss 

function, and thus the set of parameters that best satisfies this condition is defined by the network. The local minimum of the 

loss function is searched for using stochastic gradient descent. 

Another step is the standardization of the data before the training process. This is applied to avoid numerical issues. The 220 

mean (𝜇) and standard deviation (𝜎) of the training dataset are used to standardize each feature 𝑥 separately as follows: 

𝑥- = (𝑥 − 𝜇)/𝜎                     (6) 

Thus, the feature variables are scaled to a standard deviation of one and centered around zero. This mainly affects the search 

for local minima using gradient descent. Introducing features with very different values (and value variations) might result in 

a steep gradient descent, leading to a solution that is not optimal. For a deeper look into neural networks, we refer the readers 225 

to (Hastie, et al., 2009), (Stanford CS, 2023). 

Note that MLP is not necessarily the best algorithm for our research question, but it is not our ultimate goal in this research 

to find the most appropriate one. Our objective is to demonstrate that ML can be used to map RO data and that it provides 

comparable (or better) results compared to state-of-the-art methods. 

3.3 Machine learning applied to Bayesian interpolation residuals 230 

We also develop a method where we combine BI with ML, named BI&ML. In this case, we train on residuals of BI. The 

procedure is as follows: 

- Apply BI to the training dataset. We compute the spherical harmonic coefficients with the same 80% of the data 

that are used for training in ML. 

- Compute residuals of the BI applied to the training dataset.  235 

- Train the neural network using as target the BI post-fit residuals (of the training dataset), and as inputs longitude, 

latitude, and time. The tuning of the hyperparameters is done as explained in section 4. 
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- Compute error statistics by comparing BI&ML refractivities with the test dataset. 

4 Analysis 

Here we apply mapping to real and simulated COSMIC-2 data. Our application is an interpolation problem, with the goal of 240 

mapping RO data in longitude, latitude and time.  

In the first step of the analysis, we compare the post-fit residuals of the BI, ML, and BI&ML approaches based on actual 

COSMIC-2 RO data. In the second step, we evaluate the performance of BI and BI&ML approaches using the atmospheric 

analyses of the ECMWF operational products as a nature run. Initially, we compute the (gridded) residuals for simulated 

ECMWF refractivities at COSMIC RO locations and then we evaluate the effective horizontal resolution of these two 245 

approaches.  

To fit the BI and ML models, we use 10 days of COSMIC-2 data and ECMWF forecasts. A longer timespan of data does 

not affect the results of ML; however, BI is more sensitive to the length of data. Indeed, BI is only able to estimate the best 

spatial fit to an entire 10-day dataset. The atmospheric state evolves over each 10-day period, and thus BI can only estimate a 

time-average state with less horizontal structure. Ten days is a compromise to have enough data for properly training the ML 250 

models and at the same time to produce BI climatologies with little averaging over time. Unlike BI, in our tests, ML can 

produce climatologies with a very high temporal resolution. 

In the first subsection, we give the results for hyperparameter tuning for ML and BI&ML. In the second subsection, we 

compare the relative performance of all three approaches described in Section 3 at different heights in the atmosphere. In the 

third subsection, we analyze the consequences for our ability to resolve spatial and temporal variability in fields that can be 255 

measured by RO. 

4.1 Tuning hyperparameters 

One important step when working with neural networks is tuning the hyperparameters, which define the architecture or how 

the training process is performed. When defining the hyperparameters that determine the architecture of the network, such as 

the number of layers and number of neurons per layer, one option is to add layers until the error can no longer be reduced. A 260 

larger number of parameters allows for complexity in mappings; thus, adding more layers can improve the complexity of 

fitting. A larger number of parameters, however, can also lead to overfitting. If necessary, regularisation methods (such as 

dropout) can be used to prevent overfitting.  

As is customary in ML, we randomly split the nature dataset into three segments: 72% of the data for training, 8% for 

validation and 20% for testing. We point out that the training, validation, and testing datasets do not overlap. By random 265 

choice, we mean that we do not split them according to a specific parameter (such as time, geolocation, or refractivity 

values). Since we neither assume different accuracy of training and testing datasets nor teach the network any specific 

random behavior of the test dataset, we expect the accuracy of the model fitted to the training dataset to be similar for the 
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testing dataset. Therefore, a very good fit in the training dataset does not bias the testing. Indeed, we get similar post-fit 

residuals for both datasets; this is considered a successful evaluation of the model resulting from the training dataset.  270 

In addition, in one exercise, for each block of 10 days of data, we use the first 8 days for training and the last 2 days for 

testing. This makes our task a prediction problem and not an interpolation problem. We evaluate the quality of this approach 

by intentionally overfitting the training data, resulting in overly large errors when applied to the testing data as expected. We 

can explain this result by the fact that there are different structures in the refractivity field for the testing dataset that have not 

been seen by the network during the training. This exercise demonstrates overfitting in prediction, proving our ML 275 

architecture ill-suited for prediction but not for interpolation. 

4.1.1 Hyperparameter tuning for the ML approach 

After tuning, we settled upon a final architecture consisting of 5 hidden layers with the first having 512 neurons and the next 

four having 128 neurons. It is not unusual for neural networks to have different numbers of neurons in each layer leading to 

similar error statistics. The input layer consists of three variables, namely longitude, latitude, and time, and the output layer 280 

produces microwave refractivity. 

We tuned variables that determine how the training is done, where the choice of learning rate, the batch size and the 

number of epochs impacted the results the most. The final values that we chose are 0.0001, 100 and 30000, respectively. 

Note that we designed different neural networks to train refractivities at the different altitudes (shown in section 2.1). 

Although we used the same final hyperparameter values for all networks, in some cases a different choice provided similar 285 

(but not better) statistics. For instance, at 20 km altitude, for learning rate, batch size and number of epochs, using 0.0001, 

250 and 30000 or 0.001, 250 and 15000, respectively, led to similar results. An example of hyperparameter tuning is shown 

in Figure 2, where the best results are shown in more distinct colors. We also trained the number of layers, the optimizer, and 

the weight decay. However, we did not notice any significant differences when using different optimizers or weight decay. 

 290 
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Figure 2: Hyperparameter tuning in ML, visualized in weights & biases (https://wandb.ai/site). The first three 
columns contain the values tried during the tuning process for three main hyperparameters (batch size, epochs, and 
learning rate). The next columns contain statistics that we can use to evaluate the performance of candidate 
combinations of tuned hyperparameters. The column (“loss”) represents the loss function (mean squared error 
function) of the training dataset. The columns (“mae”) and (“val_mae”) represent the mean absolute error of the 295 
training and validation dataset. The columns ("Mean_error") and ("RMSE_error") represent the mean error and 
the root mean squared error of the testing dataset. The final column (“val_loss”) defines loss function for the 
validation dataset. The validation loss is the metric chosen to tune the hyperparameters and the colorbar represents 
its results. Following the curves, we can define the best set of hyperparameters. The validation dataset represents a 
randomly chosen 10% of the training dataset, utilized to tune the hyperparameters. The statistics of the validation 300 
dataset can be easily computed, and therefore, chosen as a metric to select the hyperparameters. The highlighted 
curves show the best results on the testing dataset in terms of root mean squared error for the different tunings, 
arbitrarily chosen for this visualization. 

4.1.2 Hyperparameter tuning for the BI&ML approach 

Once more, we trained different neural networks for six refractivity altitudes. The architecture of the MLP is the same as that 305 

shown in section 4.1.1, consisting of 5 hidden layers with the first having 512 neurons and the next four having 128 neurons. 

The input layer has three variables, namely longitude, latitude, and time, and the output layer delivers BI residuals of 

microwave refractivity. The learning rate is again 0.0001 for all networks. The tuned batch size and number of epochs are 25 

and 2000, respectively, for the networks of 2 km, 3 km and 5 km altitudes, 50 and 1000 for the network of 8 km altitude, and 

100 and 4000 for the networks of 15 km and 20 km altitude. Again, other possible hyperparameter choices could result in 310 

similar (but not better) results; for example, we could choose for the dataset at 5 km altitude a learning rate of 0.001, batch 

size of 250 and number of epochs of 1000. Different tunings with similar results were especially encountered when training 

data at high altitudes. One reason is that the target value variations become very small and it is possible to learn them with 

different values for learning rate, number of batch size and/or number of epochs. Training BI residuals, instead of total 

refractivity values, leads to a faster training process. One explanation is that the network can learn more quickly when the 315 

targets have smaller variations. 

4.2 Performance evaluation for real RO data 

Using the BI and ML models obtained from the training dataset, we mapped the observations of the test dataset, which is 

20% of the data, and then we computed the residuals for the six chosen heights. Figure 3 displays the residuals for the three 

methods (BI, ML, and BI&ML) and  Table 1 summarizes the statistics in terms of standard deviation (std) and mean relative 320 

error (MRE). The MRE represents the mean of the residuals scaled by the true values of the refractivity. 

• As expected, the residuals are higher at lower altitudes for each method. This is logical since the refractivity values 

are higher and more spatially variable at lower altitudes (see Figure 3), and the Abel inversion results in larger 

errors at lower altitudes. Therefore, the noise of the observations is also higher at lower altitudes.  

• The spatial distribution of the larger residuals is different for the different heights. For instance, at the lower heights, 325 

we can find most of the high residuals of BI in the tropics, while at 15 km they are located in the mid latitudes. This 
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is the case since the mapping methods miss the high jumps of the refractivity values due to approximation of RO 

data and low resolution of RO data. At 2 km and 3 km these jumps occur mainly in the tropics, related to higher 

water vapor, and in the mountainous areas, where the distribution of water vapor can highly vary on the different 

sides. At 15 km, the mapping functions fail to approximate the large refractivity jumps between the troposphere (in 330 

the tropics) and the stratosphere (in mid-latitudes). 

• We notice that when we apply ML, the refractivity jumps at 15 km from the tropics to the mid-latitudes are well 

captured.  

• From Figure 3, it might be difficult to understand the benefit of applying ML to RO residuals after applying BI. 

However, from the statistics in Table 1, we notice an improvement of about 5-10% compared to ML-only. One 335 

advantage of applying ML to RO residuals is in terms of interpretation of the dataset used to fit the ML model. For 

instance, at 15 km we expect ML to learn from the distinct pattern of BI residuals (where the large residuals occur 

at mid-latitudes), and to further improve these results. In addition, as mentioned in Section 4.1.2, ML applied to RO 

residuals is much more efficient in terms of time to train the ML models. In our experiments, the time to train the 

neural network is proportional to the number of epochs and the batch size. For example, in case of two different 340 

models, if we use the same batch size, a two times larger number of epochs increases the training time twice. 

Similarly, if we consider the same number of epochs a two times smaller batch size increases the training time 

twice. Other hyperparameters can also affect the training time such as the type of optimizer, the number of neurons 

and the learning rate (smaller learning rate requires larger number of epochs); however, these parameters are the 

same for the different neural networks that we use.  345 

The overall best configuration, which we will focus on section 4.3, is the ML approach applied to the residuals of BI. 
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Figure 3: Residuals for the test dataset of the refractivity interpolated with BI, ML and BI&ML for the six pre-
defined isohypsic surfaces, for COSMIC-2 RO data. The units are N-units (refractivity units), the x-axis is east 
longitude, and the y-axis is northward latitude. The plots (a), (d), (g), (j), (m), (p) display BI residuals at 2, 3, 5, 8, 15 350 
and 20 km, respectively. The plots (b), (e), (h), (k), (n), (q) display ML residuals at 2, 3, 5, 8, 15 and 20 km, 
respectively. The plots (c), (f), (i), (l), (o), (r) display BI&ML residuals at 2, 3, 5, 8, 15 and 20 km, respectively. 
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N unit/% 2 km 3 km 5 km 8 km 15 km 20 km 

Std BI 10.95 9.11 5.28 1.59 0.65 0.29 

Std ML 8.97 6.98 3.82 1.16 0.28 0.22 

Std BI&ML 8.71 6.65 3.57 1.09 0.26 0.22 

MRE BI 3.34 3.19 2.33 1.03 0.92 0.95 

MRE ML 2.62 2.34 1.63 0.7 0.42 0.62 

MRE BI&ML 2.57 2.23 1.50 0.66 0.39 0.62 

Table 1: Statistics of BI, ML and BI&ML mapping methods, at six predefined heights, for Winter 2020, for 

COSMIC-2 RO data.  

Figure 4 displays the increment of BI&ML over the ML-only and BI-only approaches, at 3 km altitude. The increment of 355 

BI&ML over BI-only has large values mainly in the geolocations, where we can visualize large jumps of refractivity within 

few degrees (latitude and/or longitude). The increment of BI&ML over ML-only has a more random distribution of large 

values. These values happen mainly in locations where the residuals of ML and/or BI&ML (see Figure 3) have a larger 

density. By training on BI residuals, we anticipated better results since a part of the refractivity behavior is already removed; 

however, since the spatial resolution of RO data is not very high, BI does not always capture the spatial refractivity changes 360 

very well (especially when sudden refractivity changes happen). This may lead to higher relative changes between the 

residuals compared to the total values, thus, the trained values in the ML model have larger variations. In addition, since BI 

is a screen over the 10 days, the mapped refractivity, for similar locations, can be more accurate for some epochs of the 10-

day timespan. Since we do not label the noise of each input feature differently when we train the ML models, ML will 

consider all residuals as having the same weight, which will impact its mapping accuracy. However, from the statistics in 365 

Table 1, we can see that ML applied to BI residuals results in better generalization for the entire timespan and surface. 

Indeed, it removes most of the complex atmospheric dynamics and simplifies the entire variation of the target variables.  

 
Figure 4: Difference between BI&ML and ML-only, plot (a), and difference between BI&ML and BI-only, plot (b). 
The units are N-units, refractivity units, the x-axis is east longitude, and the y-axis is north latitude, for COSMIC-2 370 
RO data. 
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We expect ML-only to be the best approach when we deal with specific atmospheric structures happening at a specific day 

of the 10-day timespan. For instance, in case of atmospheric rivers, BI would fail to capture these structures, since it will find 

the best fit of the 10-day dataset. Therefore, it will result in large variations of the residuals, making them more complex to 

train on than total refractivities. 375 

4.2.1 Results in different seasons at 2 km 

We also validated the results obtained for Winter 2020 with the other seasons of the same year. Table 2 summarizes the 

results of the three mapping methods for each season at 2 km altitude. At 2 km altitude, RO observations are noisier 

compared to the other altitudes, because of larger absolute values and larger errors resulting from the Abel inversion. In 

addition, their uncertainty and variation are higher, since it is at this height that the largest part of water vapor is located. For 380 

all the seasons, the best performance is achieved for the combined solution, resulting in a further improvement compared to 

BI-only and ML-only. Note that again each of the neural networks was tuned separately to achieve the best possible solution. 

N unit/% Winter Spring Summer Autumn 

Std BI 10.95 10.54 10.63 10.90 

Std ML 8.97 9.01 8.59 8.82 

Std BI&ML 8.71 8.39 8.31 8.70 

MRE BI 3.34 3.21 3.21 3.31 

MRE ML 2.62 2.67 2.55 2.63 

MRE BI&ML 2.57 2.48 2.45 2.59 

Table 2 Statistics of BI, ML and BI&ML mapping methods, for the four different seasons, at 2 km height, for 
COSMIC-2 RO data. 

Note that the results displayed in this section (Table 1 and Table 2), are a result of one single trained network, and not of 385 

an ensemble of networks. To further validate our results, we performed additional experiments for the refractivity at 2 km 

iso-height, where we trained multiple (10) models for ML and BI&ML. For our architecture, similar results were achieved 

on the results of the ensemble of the models, with ~0.2 N-unit worse standard deviation. In addition, for the ensemble of 

models, we noticed further improvements (mainly on the standard deviation) when we added more hidden layers. On an 

ensemble of 10 trained models, ~0.3 N-unit improvement can be achieved when using 10 hidden layers, compared to 5 390 

layers for the ML model. However, this further increases the training time, which is especially important for the ML method, 

given that we use a total of 30000 epochs. A higher number of layers is more suitable for BI&ML, where the number of 

epochs is much smaller. 

We point out that the scope of this study is to present ML as an alternative method to grid RO observations. The results 

obtained herein indicate better performance compared to BI. Considering our results and the additional tests with multiple 395 

models, BI&ML brings additional (small) improvement compared to ML methods, with an obvious advantage in terms of a 
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much shorter time to train the model. For future work related to continuous long-term RO-gridded products, an ensemble of 

models will be trained to also provide the uncertainty related to the models. 

4.3 Post-fit residuals of BI, ML and BI&ML mapping techniques applied to ECMWF 

We compare the post-fit residuals of the BI approach, the ML approach, and the combined BI&ML by applying each to the 400 

10-day nature run of ECMWF forecast products. We perform a similar evaluation for ECMWF as we did for the COSMIC-2 

data, where we split the data in training and test samples and apply the three methods. We obtain, in terms of standard 

deviation and mean relative error, 12.4 N-units and 3.8% for BI, 11.1 N-units and 3.3% for ML and, 10.7 N-units and 3.1% 

for BI&ML. We confirm that mapping ECMWF (forecast) refractivities (interpolated at COSMIC-2 geolocations) results in 

a performance similar to the mapping of COSMIC-2 refractivities. 405 

4.3.1 Structural improvement: Spatial and temporal resolution compared to ECMWF maps 

We mapped the ECMWF-based simulated refractivities with BI and BI&ML to the same locations as the ECMWF grid 

points. An example of the maps (at 2 km height) is displayed in Figure 5, where the original ECMWF N-field for one epoch 

is displayed as well. We can see the very high resolution of the original ECMWF map, compared to the interpolated ones. 

The BI-mapped field is the screen over the 10-day dataset, while that of the BI&ML represents the interpolation at only one 410 

epoch. We produced maps with a resolution of 3 hours. The ML-based maps are produced with much higher temporal 

resolution compared to those with BI (a resolution of 3 days reported in previous works, (Leroy, et al., 2021)). In addition, 

Figure 6 displays the difference between the original ECMWF and the mapped refractivity fields. There are several areas 

where the high differences between ECMWF and BI-based map are further smoothed by applying ML to the BI residuals.  

Figure 6 displays only one map of the total of 80 maps we produced for the 10-day period. To compare the results for each 415 

epoch, Figure 7 displays the statistics for every map as a function of time. There is an improvement in the interval [0.5; 2] N-

units and [0.5; 1] % in terms of standard deviation and the mean relative error, respectively. 

 
Figure 5: ECMWF refractivity grid, plot (a), BI mapped refractivity grid, plot (b), and BI&ML mapped refractivity 
grid, plot (c), for 2nd January 2020 at 03:00. The units are N-units, refractivity units, the x-axis is east longitude, and 420 
the y-axis is northward latitude. 
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Figure 6: Difference between ECMWF refractivity field and the refractivity fields mapped with BI, for 2nd January 
2020 at 03:00, plot (a). Difference between ECMWF refractivity field and the refractivity fields mapped BI&ML, for 
2nd January 2020 at 03:00, plot (b). The units are N-units, refractivity units, the x-axis is east longitude, and the y-axis 425 
is northward latitude. 

 
Figure 7: Standard deviation (left y-axis) and mean relative error (right y-axis) of the difference between the 
ECMWF refractivity field and those mapped with BI and BI& ML for all epochs. 

4.3.2 Effective horizontal resolution 430 

After fitting the BI and BI&ML models, we can produce refractivity maps with a very high spatial resolution. However, the 

interpolated resolution is not the actual resolution that the methods can capture for the spatial behavior of the refractivity. To 

evaluate what level of information BI and BI&ML can produce in terms of horizontal resolution, we use the original and 

mapped fields to compute spherical harmonic spectral coefficients up to a very high order (such as 120). We visualize the 

power (and variance of the fit dataset compared to those of ECMWF) as a function of degree (or horizontal resolution).  435 

Each of the datasets can be expressed as a spherical harmonic expansion, (Muir & Tkalcic, 2015):  

𝜓(𝛳, 𝜆) = ∑ ∑ 𝑌./ (𝛳, 𝜆)𝑐/,..,/
.,"/

/#$%
/,1 	                  (7) 

where 𝑌./ (𝛳, 𝜆) = 𝑁/,. 𝑃/,.(𝑠𝑖𝑛	𝛳)𝑒*.2 is the spherical harmonic of degree l and order m and the 𝑐/,. are complex spherical 

harmonics spectral coefficients. We can compute the spherical harmonics spectral coefficients by inverting Eq. (7): 
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𝑐/,. = ∑ d #
(3 ∫ 𝜓f𝛳4 , 𝜆g𝑒"*.2𝑑𝜆

(3
1 i+&

4,# 𝑃/,.(𝑠𝑖𝑛 𝛳4)	𝑔4                (8) 440 

which is computed over a defined Gaussian grid for 𝑗 = 1: 𝑛5  over the latitude 𝛳, with Gaussian weights 	𝑔4 . We can 

compute the power at each degree as (Muir & Tkalcic, 2015): 

𝑃(𝑙) = ∑ n𝑐/,.n
(/

.,1                     (9) 

In addition, we can compute the normalized power 𝑃_𝑛𝑜𝑟𝑚(𝑙) = 𝑃(𝑙)/Hor_res(𝑙), where the horizontal resolution is given 

as a function of the Earth's radius 𝑅6, 𝐻𝑜𝑟_𝑟𝑒𝑠(𝑙) = 𝑅6√4𝜋/(𝑙 + 1).	445 

We also evaluate the explained variance, defined as: 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑙) = 1 − 	 789:𝑙
;𝐹𝑖𝑡 − 𝐸𝐶𝑀𝑊𝐹<

789:𝑙;𝐸𝐶𝑀𝑊𝐹<               (10)	

Considering 𝑑. = 1 for 𝑚 = 0 and 𝑑. = 2 otherwise, the two variances can be computed: 

𝑉𝑎𝑟(𝑙; 𝐹𝑖𝑡 − 𝐸𝐶𝑀𝑊𝐹) = ∑ 𝑑.n𝑐/,.(𝐵𝐼	𝑜𝑟	𝐵𝐼&𝑀𝐿) − 𝑐/,.(𝐸𝐶𝑀𝑊𝐹)n
(/

.,1             (11) 

𝑉𝑎𝑟(𝑙; 𝐸𝐶𝑀𝑊𝐹) = ∑ 𝑑.n𝑐/,.(𝐸𝐶𝑀𝑊𝐹)n
(/

.,1                (12) 450 

To avoid non-orthogonality of spherical harmonics on non-global grids, we must consider observations covering the entire 

sphere. We randomly select values from the 10 days of the ECMWF forecast data grid, at latitudes that are not covered by 

the observations; i.e., outside the [-46°, 46°] latitude interval. The only condition we apply is to have the same spatial density 

as that in the interval [-46°, 46°] latitude. An example of the refractivity field (at 2 km), for 10 days in Winter 2020, is shown 

in Figure 8. This refractivity field is used to fit the BI and BI&ML models and therefore map the refractivity on the original 455 

ECMWF grid. 

 
Figure 8: ECMWF forecast refractivity field for 10 days in Winter 2020, at 2 km isohypsic surface. To compute 
spherical harmonics, we simulated refractivity at all latitudes. Between 46°S and 46°N the refractivity is interpolated 
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at the same times and locations as for the COSMIC-2 field. Below 46°S and above 46° N, we randomly chose 460 
refractivity values from ECMWF data, with the criteria to keep the same density as that of COSMIC-2 between 46°S 
and 46°N latitude. 

After fitting the BI and BI&ML models, we produce gridded N fields (similar to Figure 5), which are used to compute the 

spherical harmonics spectral coefficients (Eq. (8)). Figure 9 and Figure 10 display the normalized power and the explained 

variance for two of the evaluated heights, 2 km and 8 km. The power and explained variance displayed here are the average 465 

over the entire dataset of 80 maps in 10 days. From the power plots, we notice that the BI&ML curve (red dots) follows the 

ECMWF curve at a higher spherical harmonics degree (and thus horizontal resolution). We can also see that after 40 degrees 

the power of BI is zero. This is expected since the degree we chose for the BI was 40 as well.  

We evaluate the explained variance at a value of 0.5, which represents the value where the captured power from the mapping 

methods is half of the original ECMWF power. We use this value as the metric to define the horizontal resolution of each 470 

method. From the explained variance plots in Figure 9 and Figure 10, we can see that BI can capture horizontal structures up 

to degree 8 (~2500 km) at 2 km height and up to degree 4 (~4500 km) at 8 km height. BI&ML can produce maps with a 

horizontal resolution of degree 14 (~1500 km) at 2 km height and of degree 16 (~1250 km) at 8 km height. These results 

represent the average over the entire 80 maps. For both heights and the majority of the produced maps, applying ML to BI 

residuals improves the spatial resolution by greater than a factor of 2 compared to the BI-only approach.  475 

 
Figure 9: Plot (a): average (over time) normalized power for ECMWF, BI and BI&ML, at 2 km height. Plot (b): 
average (over time) explained variance for BI and BI&ML, at 2 km height. 
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Figure 10: Plot (a): average (over time) normalized power for ECMWF, BI and BI&ML at 8 km height. Plot (b): 480 
average (over time) explained variance for BI and BI&ML at 8 km height. 

5 Discussion and conclusions 

In this work, we investigated ML as an alternative approach to mapping GNSS RO observations and compared it to BI, an 

approach studied for many years to map GNSS RO data. In addition, we developed a combined solution, where we map 

residuals of BI using ML, referred to as BI&ML.  485 

Starting with 10 days of COSMIC-2 GNSS RO profiles in boreal winter 2020, we mapped microwave refractivity at six 

predefined heights: (a) 2 km where we notice small structures related to boundary layer clouds and water vapor; (b) 3 km 

where there is still a large amount of water vapor; (c) 5 km related to synoptic disturbances, pressure fields, storms and 

precipitation; (d) 8 km similar to 5 km but with smaller refractivity; (e) 15 km where the eddy mixing in the stratospheric 

“middle-world” occurs; and (f) 20 km related to larger atmospheric structures from planetary waves in the lower 490 

stratosphere.  

We used 80% of the COSMIC-2 data to train/fit the BI, ML and BI&ML models and evaluated the performance on the 

remaining 20%. The ML-only solution results in better performance than the BI-only solution. Applying ML to the residuals 

of BI results in the best performance and a larger improvement compared to the state-of-the-art BI method. The posterior 

uncertainties for BI&ML are 8.7, 6.6, 3.6, 1.1, 0.3 and 0.2 N-unit, and the mean relative errors for BI&ML are 2.57, 2.23, 495 

1.5, 0.66, 0.36 and 0.62 %, respectively, for the six altitudes. The reduction of residuals for the ML-only and BI&ML at 15 

km compared to BI-only are clearly visible (Figure 6), where the refractivity values change significantly between the tropics 

(in the troposphere layer) and the mid-latitudes (in the stratosphere layer). In addition, we fit the BI, ML and BI&ML 

mapping approaches to 10 days of COSMIC-2 data for boreal spring, summer and autumn 2020. We performed this 
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evaluation at 2 km iso-height, and we confirmed that the results obtained for the winter scenario apply to the other seasons as 500 

well.  

We used NWP forecasts from ECMWF with a 0.5° latitude/longitude resolution to interpolate ECMWF refractivities to 

the geolocations and times of the COSMIC-2 data, for 10 days for boreal winter 2020. We applied BI-only and BI&ML to 

map the simulated data at the ECMWF grid points, which we used as a nature run and then performed a closed-loop 

validation. The map produced by BI&ML shows smaller residuals with respect to the nature ECMWF map than the BI-only 505 

map. In addition, the temporal resolution of the BI&ML maps is much higher than that of the BI-only maps. We produced 

BI&ML-based maps every 3 hours (higher resolution is also possible), while BI-only needs at least 3 days of observations to 

produce a map. We investigated the spatial resolution of each method by spherical harmonic expansion, comparing the 

spectral coefficients of the BI-only and the BI&ML maps to the spectral coefficients of the nature ECMWF maps. After 

evaluating the explained variance of the coefficients, we concluded that BI-only can model refractivity variations up to 510 

spherical harmonic degree 8 and BI&ML up to spherical harmonic degree 14 at 2 km iso-height. At 8 km height, the 

improvement is more notable, with BI-only resolving only up to spherical harmonic degree 4 while BI&ML resolves up to 

spherical harmonic degree 17. 

We set out to investigate whether ML can offer an alternative to existing methods to map GNSS RO data, providing a so-

called level 3 product. Existing methods include BI, which fits data using spatial basis functions without over-fitting data, 515 

and sampling-error-removal methods, in which synoptic variability noise is estimated by subsampling the forecasts of a 

numerical weather prediction system to the times and locations of RO soundings, computing the sampling error, and 

subtracting that sampling error from binned RO data. We compared ML methods to BI and found improved performance, 

and then we compared a combined BI&ML method and found a very substantial improvement of the performance over BI. 

We are unable to compare to sampling-error-removal approaches because they support no error estimation. All indications 520 

point toward the combined BI&ML approach as the best method for producing level 3 climatologies of RO data in the 

future, with strong performance even at time-scales of 3 hours at heights ranging from the planetary boundary layer up to the 

lower stratosphere and for all seasons. 

When approaching specific atmospheric structures, the current spatial and temporal density of RO observations leads to a 

need for better coverage. (Shehaj, 2023) shows an example of using RO observations to detect atmospheric rivers (AR). ARs 525 

are long and narrow bands in the atmosphere that transport water vapor in regions beyond the tropics. Plot (a) of Figure 11 

11 shows an AR that occurred in October 2021, visualized as a blue stream using ECMWF refractivity at 2 km altitude. In 

plot (b) of Figure 11 11, ML was applied to simulated RO using ECMWF 12-hour forecast, assuming a 60-satellite LEO 

constellation tracking four GNSS constellations to generate a 2 km refractivity field. For the example in Figure 11, we can 

see that with the ML-mapped field, we can resolve the AR structure. The ML field also depicts the dry patch located in the 530 

tropics. We also notice that there are structures more difficult to resolve, such as the cyclone close to British Columbia, as 

well as the high refractivity patch close to Hawaii. 
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Figure 11: Refractivity at 2 km altitude exemplary for 24 Oct 2021 at 16:00, similar to (Shehaj, 2023). Plot (a): 
ECMWF reference field. Plot (b): the field mapped using ML (for the 60 satellites constellation). 535 

We point out that in (Shehaj, 2023) similar experiments were performed for this AR scenario using observations of the 

COSMIC-2 constellation; the number of RO observations is much smaller compared to the simulated example shown here. 

After applying the ML model to grid the COSMIC-2 refractivity (at 2 km height), we cannot properly observe the spatial and 

temporal evolution of the AR structure.  

The example in Figure 11 shows the need for higher spatial and temporal density of RO observations and the benefit of 540 

using ML as a method to further enhance the resolution of the observations. In future studies, we will further explore the 

feasibility of GNSS RO for detection and monitoring of ARs. 

Code and data availability. We provide sample routines for the readers to be able to reproduce the results for COSMIC-2 
observations at 2 km, https://doi.org/10.3929/ethz-b-000670139. These include sample data (train and test data for 
refractivity at 2 km) and code implementation (Matlab code to read the COSMIC-2 data at 2 km and Python codes to train 545 
and evaluate the ML model). Additional codes associated with this study are available from the corresponding author upon 
reasonable request. Additional datasets generated during and/or analyzed during the current study are available from the 
corresponding author upon reasonable request. The COSMIC-2/FORMOSAT-7 data is freely available from UCAR. The 
ECMWF data are a product of the European Centre for Medium-Range Weather Forecasts (ECMWF) (© ECMWF).  
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