

A clustering-based method for identifying and tracking squall linelines

5 Zhao Shi^{1,2}, Yuxiang Wen^{1,2}, Jianxin He^{1,2}

¹College of Atmospheric Sounding, Chengdu University of Information Technology, Chengdu 610225, China

²Key Laboratory of Atmospheric Sounding, China Meteorological Administration, Chengdu 610225, China

Correspondence to: Yuxiang Wen (3220305009@stu.cuit.edu.cn)

Abstract.— The squall line is a type of convective system that is characterized by storm cells arranged in a line or band pattern

10 and, which is usually associated with disastrous weather. The identification and tracking of squall lines thus plays an play important roles in early warning of systems for meteorological disasters. Based on weather radar data Here, a clustering-based identifying identification and tracking algorithm for squall lines is presented based on weather radar data.

15 Clustering analysis is designed to distinguish the strong echo area and estimate the feature value, including the reflectivity value, length, width, area, endpoints, central axes, and centroid. The linearly arranged clusters in the linearly arranged form output are merged

15 to improve the identification performance in of the squall line development stage of squall lines. The three-dimensional

structure and movement tracking of the squall line are obtained using the centroid and velocity of the squall lines identified in each layer. It is The results demonstrated that the method can effectively identify and track one or more squall lines over across the radar surveillance area. The result shows results also show that the recognition accuracy rate in for the single scan elevation

20 of this method is 95.06%, as well as a and the false-positive false-positive rate of is 3.17%. This method improves the accuracy of squall line identification in the development stage of squall lines and still works efficiently even when high interference contaminates contamination occurs.

1 Introduction

The squall line is a prevalent convective weather commonly occurring in mid-latitude regions during spring and summer.

25 Squall lines are arranged by storm cells in a linear structure, which can extend over one hundred or even hundreds of kilometre kilometers. The typical life cycle of a squall line is about approximately 6-12 hours (Rotunno et al., 1988; Wanghong

et al., 2009). The squall lines occurring in coastal areas can bring large amounts of precipitation inland from coastal areas (Oliveira and Oyama, 2020). Squall lines are also associated with severe disastrous weather events, including rainstorm rainstorms, lightning, hail, downbursts, and even tornadoes (Trapp et al., 2005; Xiaohong et al., 2021). Therefore,

30 identifying and tracking squall lines are crucial for early warning of meteorological disasters.

The ~~weather~~Weather radar is an effective meteorological remote sensing instrument with high spatiotemporal resolution and has been widely used in monitoring and nowcasting ~~of~~ mesoscale convection. To enhance the understanding of radar meteorology ~~understanding~~ on squall lines, the NOAA since the 1980s, the National Oceanic and Atmospheric Administration (NOAA) has conducted many studies on squall lines using Doppler weather radar data ~~since the 1980s~~ (Smull and Houze, 1985; Srivastava et al., 1986; Smull and Houze, 1987; Bluestein et al., 1987). The evolution mechanism of the squall line is ~~analysed~~analyzed with radar ~~observation~~. Combining the observations. By combining Vertical Integrated Liquid ~~water~~Water (VIL), Echo Top (ET), Composite Reflectivity (CR) and Velocity–Azimuth Processing (VAP) calculated wind field data and ~~auto~~auto weather station observation data, the ~~relationship~~relationships between squall lines and rainstorms, strong winds, hail, and other disastrous weather processes ~~is~~are revealed. The occurrence of squall lines may lead to clockwise vertical wind shear at low altitudes and counterclockwise vertical wind shear at high altitudes. This shear ~~favour~~favored the generation and strengthening of unstable weather and provided a ~~favour~~favorable environment for the development of convection. At the same time~~Simultaneously~~, the dramatically changing VIL and high ET often heralded hail and strong ~~wind~~winds (Wanghong et al., 2009).

One of the characteristics of squall lines in weather radar data is the formation of a strong echo band on the radar reflectivity image (Ma, 2022), making ~~it~~these ~~lines~~ visually identifiable. However, their suddenness, and wide-ranging impact make it ~~hard~~difficult to improve real-time forecasting capabilities ~~by~~via manual identification. Meanwhile~~Moreover~~, the automatic identification of squall lines is a complex task (Chengling et al., 2017). Over the past few decades, numerous researchers have conducted studies ~~in~~on the automatic identification of squall lines and have employed various algorithms, such as the two-dimensional Fourier transform (Kelly, 2003), wavelet transform, Hu moment theory (Chengling et al., 2017), Hough transform (Wang et al., 2021; Chengling et al., 2017), and machine learning (Ziqi et al., 2021).

Rinehart and Garvey developed ~~a~~ pattern recognition schemes of correlation coefficient techniques, Fourier analysis, and ~~gaussian~~Gaussian curve fitting to detect the movement, merging and splitting of ~~the storm~~storms (Rinehart and Garvey, 1978). Johnson et al. proposed the Storm Cell Identification and Tracking Algorithm (SCIT) (Johnson et al., 1998), which develops ~~centroids technique~~centroid techniques to identify and track individual storms (including isolated storms, clustered storms, supercells, and squall lines). The SCIT algorithm has been ~~proved~~proven to have an accuracy of more than 90% in identifying storms and ~~has been~~ applied to the WSR88d radar operational system. Dixon and Wiener developed ~~the~~ 'TITAN' algorithm (Dixon and Wiener, 1993), ~~they define~~which defines a "storm" as a continuous area that exceeds the reflectivity and size thresholds (adjacent areas with a reflectivity exceeding ~~35dbz~~35 dbz and a volume exceeding ~~50km³~~50 km³). Storms are tracked using the results of the comparison of the previous scan data with subsequent scans with the storm's movement characteristics and maximum horizontal movement speed. Morphological methods were used to identify the merging and splitting of storms. Kelly et al. proposed a method using ~~Two~~a two-dimensional Fourier transform and morphological algorithm to identify the characteristics of disaster weather radar images (Kelly, 2003).

The above methods identify ~~the~~-squall lines as ~~a kind of~~ storm ~~cells~~ cells. However, due to the length and ~~the~~-large area of the squall line, as well as the special arrangement (especially when the squall lines are arranged in a shape ~~like~~such as 'L'),
65 identifying the squall line using ~~the~~-methods similar to storm cells will result in inadequate lower identification accuracy (Gangqiang et al., 2021).

Promoting the technological development of automatic identification, tracking and prediction of severe weather is a long-pursued research topic. In recent years, weather radar networks have been widely deployed in densely populated areas around the world for severe weather monitoring and early warning, and the use of radar meteorological data has ~~explosively~~explosively increased
70 ~~explosively~~. With the development of digital image processing, big data mining, artificial intelligence, and other technologies, the squall line recognition algorithm has ~~also been~~ improved. The maximal margin detection method based on wavelet transform patterns and the Hu moment principle can extract the echo characteristics of squall lines(Chengling et al., 2017); ~~However; however,~~ using a limited number of thresholds may result in ~~false-positive~~false positives and ~~false-negative~~false negatives. ~~Convolutional~~A convolutional neural network (CNN) ~~is was also~~ used ~~in for~~ squall line ~~identifying~~identification
75 (Ziqi et al., 2021). The proposed model effectively identifies the presence of squall lines during the early development stage and the mature ~~stage of~~ convective ~~stage~~, even when the reflectivity ~~value~~ is lower than ~~that in~~ the exuberant stage. However, the ~~amount~~size of ~~the~~ dataset of ~~the~~-atypical squall lines used for training the model is limited, which may lead to ~~false-positive~~false positives and ~~false-negative~~false negatives.

~~While the~~When machine learning techniques ~~appear, the are used,~~ physical and morphological features and characteristics ~~can not to~~can not be ~~ignored~~neglected in ~~the~~identify ~~method~~identification ~~methods~~.

The clustering algorithm is a ~~kind type~~ of unsupervised learning algorithm ~~that is~~ commonly used in machine learning and data mining (Gower, 1967),~~and it is also a kind of an unsupervised learning algorithm.~~ ~~In the algorithm of~~When using supervised machine learning to identify squall lines, it is necessary to label the existing data in advance. However, the appearance of squall lines is random in time and space, making ~~the~~ data ~~labelling~~labeling a complicated project. The clustering
85 algorithm can classify the data points by using some characteristics of the data points without ~~pre~~-setting the labels, which is very effective for the squall line process with strong randomness. The clustering algorithm can thus be used to classify the points in the radar scan results, and the data points can be classified based on certain characteristics (such as distance or density). Each individual scan result of the radar sample can correspond to the Euclidean space. ~~The clustering~~Clustering classifies these points into multiple irrelevant sets ~~marks them~~ according to certain information, and uses other features of the set to identify
90 the weather system. When used in conjunction with squall line features, the clustering algorithm can identify clusters that meet certain criteria in the radar reflectivity factor data; and extract data points that are associated with squall lines.

2 Materials and Methods

The squall line carries a large number of precipitation particles, so its reflectivity factor ~~value will be is~~ significantly ~~higher~~greater than that of the surrounding area. The spatial characteristics of the squall line are that the convective system is linearly distributed and covers a large area, which makes it appear in the radar image as a high reflectivity echo band with a large area and long length. This algorithm uses the spatial and temporal evolution characteristics of squall line echoes to extract points with ~~reflectivity~~reflectivities ~~that are~~ significantly ~~higher~~greater than those in the surrounding area, and through the distribution of points, ~~filters out~~ the noise ~~and divides~~is filtered out, and the points are divided into clusters. ~~Filter out the area~~The areas that ~~meets~~met the spatial structural characteristics of squall lines, ~~and ultimately marks were filtered out, and~~ the results of squall line identification were ultimately obtained.

~~The~~This method mainly comprises the following steps: ~~Data~~data preprocessing, ~~Threshold~~threshold calculation, ~~Clustering~~clustering analysis, ~~Target identifying~~and target identification and tracking.

The ~~Data~~data preprocessing step aims ~~at~~to correspond the radar data to a real geographic location so that the radar data ~~reflects~~reflect the real weather conditions, and the following steps are based on the preprocessed data. Four thresholds are set to ~~make~~ensure that the algorithm can accurately identify the squall lines during operation. The ~~Clustering~~clustering analysis step separates the points with high reflectivity extracted by threshold 1 into multiple regions and removes noise and isolated points, and the regions' features are calculated after being separated. The regions' features (including area, length, maximum value of the reflectivity, centroid, and moving speed) are compared with the threshold of 2-4 to identify the squall lines. The squall lines are ~~trucked~~transported by the centroid and moving speed of the squall lines, based on their moving speed.

110 2.1 Data sources

China and the United States ~~are both countries that are two of many countries that are~~ significantly impacted by natural meteorological disasters. It is crucial for both nations to undertake meteorological observation, and weather prediction, and ~~to~~ facilitate scientific assistance in disaster prevention, mitigation, and response to climate change. Both China and the US boast expansive land areas, ~~and~~ comprehensive weather radar networks, ~~therefor both country; therefore, both countries~~ have rich weather radar data, ~~including~~ squall line observation results. The method is based on volume scan data from NEXRAD and CINRAD, ~~and~~ these radars have already been ~~taken into operational use~~used for operation. These radars were well calibrated, and the data obtained by these radars were preliminarily quality ~~controlled~~controlled, including ground clutter suppression, velocity ~~de-aliasing~~dealiasing, attenuation correction, and so on. These data have been in use for years and have proven to be reliable most of the time.

120 2.2 Data Preprocessing

Radar volume scan data ~~is~~are stored in ~~the form of~~ polar coordinates (azimuth and radial distance). To facilitate ~~the~~ spatial correspondence and further processing, the data ~~needs~~need to be converted to ~~cartesian~~Cartesian coordinates and interpolated

into a regular spatial grid. The distribution of radar echo information in real space is calculated using the elevation((El)), azimuth(Az) and radial distance(r).

$$x = \sin(Az) \sin(El)r; y = \cos(Az) \sin(El)r \quad (1)$$

125 Finally, the nearest-neighbor interpolation is applied to interpolate the spatial points into the corresponding grid, enabling the gridded data to reflect the actual weather conditions from weather radar scanning.

2.3 Threshold calculation

In previous studies, one of the approach es to extract these points is usingused a threshold valueto extract these points, for which various threshold settings have been proposed by previous researchers, as listed in Table 1.

Num	Threshold settings
1	The length of echo bands with reflectivity greater than <u>12 dB</u> <u>24 dB</u> Z should be no less than 150 km, and the length-to-width ratio of bands with reflectivity greater than <u>36 dB</u> <u>6 dB</u> Z should be no less than 3:1 (Chen and Chou, 1993).
2	The length of echo bands with reflectivity greater than <u>20 dB</u> <u>0 dB</u> Z should be no less than 100 km, and the length-to-width ratio of bands with reflectivity greater than <u>40 dB</u> <u>0 dB</u> Z should be no less than 5:1 (Geerts, 1998)
3	The length of echo bands with reflectivity greater than <u>40 dB</u> <u>0 dB</u> Z should be no less than 100 km (Parker and Johnson, 2000)

130 **Table 1. Threshold settings of the previous studies**

However, different threshold settings will lead to different identifyingidentification results. Without proper threshold settings, the method may output wrong identifyingincorrect identification results. SoTherefore, a reasonable selection of thresholds is necessary. The thresholds in previousPrevious studies are mainlyhave focused on the following parts: The thresholds: the reflectivity value threshold used to extract storms from weather radar data; and the length and width threshold used to identify the stormstorms as squall lines.

135 Combined with the study on South China, which used raindrop spectra combined with polarimetric radar (Wang et al., 2019), the following thresholds arewere set as follows infor this method, as listed in Table 2.

Table 2. Threshold settings of this research

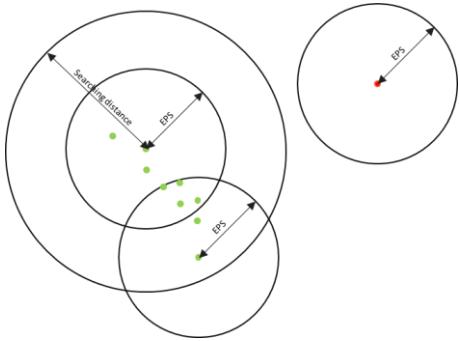
Num	Threshold settings
Threshold 1	The minimum values of the reflectivity in the region are not less than <u>40 dB</u> <u>0 dB</u> Z.

Threshold 2	The maximum values of the reflectivity in the region are not less than 5 ² <u>dB2dBZ</u> .
Threshold 3	The length of the region is not less than 100 kilometres.
Threshold 4	Length to width ratio of the region not less than 3:1

Table 2. Threshold settings of this research

140 **2.4 Clustering analysis**

The data points that satisfy threshold 1 are extracted through the minimum reflectivity threshold, but it should be noted that the regions extracted using this threshold contain points that do not belong to squall lines, such as storm cells, ~~noises~~noise, and clutter points. Therefore, further analysis of these points is required to differentiate points of the convective system ~~and from~~ other points and identify the squall lines. The main steps of the Cluster analysis process include ~~Region~~region clustering, 145 ~~Region~~region characterization, and ~~Region~~region combination.


2.4.1 Region clustering

The area of the convective system that is considered in this method is ~~considered as~~ the high-density ~~clustered points~~cluster point with high reflectivity, ~~and where~~ the density ~~here~~ is defined as the number of points in a certain area. In this step, a clustering method based on point coordinates, density, and searching distance features is proposed to classify the points

150 extracted by threshold 1. Three parameters are needed in region clustering (shown in Figure 1~~Figure 1~~, the distances mentioned in this method are referred to as the Euclidean distance): the radius of the field (Eps), ~~and~~ the minimum number of points required to judge the core points (MinPts), and the search condition to form clusters (Searching~~the searching~~ distance). In this method, points in radar data are categorized into core points and noise points byaccording to whether ~~or not~~ the core conditions are met. The core condition means that there are at least MinPts points within the Eps distance of the point itself. Points that

155 satisfy the core condition are core points, ~~and vice versa; otherwise, they~~ are noise points. If there is a series of core points, and the distance between each core point is within the searching distance, these core points are assigned to the same cluster.

The method iterates over all the points in the extracted region above. A set of clusters and a composition of unclassified noise points are finally obtained. This method improves the classification ability of the method, especially ~~in when~~ the ~~condition that~~ the squall line identification process and the line-arranged convective cells are not fully merged or when there is occlusion or 160 interference in the radar data itself.

Figure 1 Region clustering parameters

DetailedThe detailed steps to realize the Regionregion clustering are as follows:

Parameter Selection: Determine the three parameters: Eps, MinPts, and Searching Distancethe searching distance. According to Orlanski's classification of convective scales(Orlanski, 1975), squall lines are β -size convective systems;; however, in the development stage, squall lines consist of several smaller scale convective systems (γ -size convective systems with a range of 2-20 km) in a linear and tightly packed formation. When searching the points using the Eps range, the presence of γ -scale convection cannot be ignoredneglected, so Eps should be in the range of 1-10 km in this algorithm (Eps is insensitive to the threshold in this range). Missing radar data usually occursoccur in 1-2 radial data points, and the Searching Distancesearching distance and EPS take the value as follows: following values:

$$\text{Searching Distance} = \text{EPS} + 2 \times \text{RadialGate} \quad (2)$$

Where thewhere RadialGate is isthe length of the weather radar radial gate. The MinPts is set to the maximum area of the isolated point or noise to be detected. In thea previous study (Wang et al., 2021), which usesthe number of valid points present in a rectangular box of n^*n -(the number of valid points threshold is $0.25 \times$ number of the point) was usedto determine the presence of isolated points, so herethe MinPts wasapproximately the0.25 \timeswhich isthe area of the circle with Searching Distanceas the searching distance as the radius (Roundround towardsdsd negative infinity and retainretaining one valid digit).

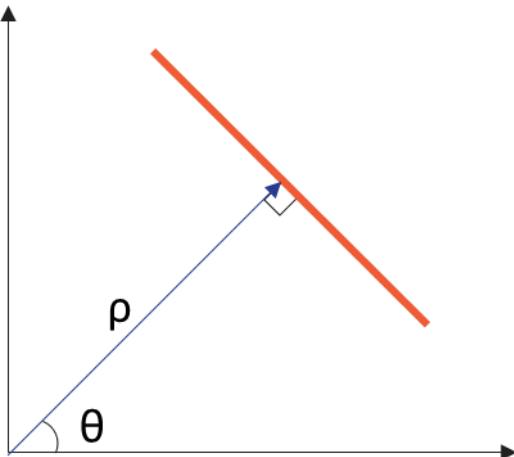
Initialization of labels: Initialize the clustering labels by assigning labels to all points as 'not labelledlabeled'.

Core point identification: For thea point labelledlabelledlabeled as 'not labelledlabeled', determine whether it meets the core condition;; and if it meets the core point condition, mark it as a core point, and classify it into the cluster of the current label;; and vice versa are marked as noise points; otherwise, mark it as a noise point.

Cluster formation: For other points within the searching distance of the current core point, determine whether they meet the core condition, and if so, mark them as the core point, and classify them into the current clustering;; and vice versa; otherwise, they are marked as noise points. Repeat thisThis step isrepeated until all points within the searching distance are labelledlabeled.

185 **Clustering iteration:** When there is no core point in the searching distance assigned as 'not labelledlabeled', update the label to traverse the 'not labelledlabeled' points without the searching distance, and repeat the above steps until all points are labelledlabeled.

Output results: output point coordinates and corresponding labels.


2.4.2 Region characterization

190 Region clustering divides the extracted points into clusters. To determine whether squall lines exist in these clusters-, further analysis of the features of the clusters is neededrequired.—The features of the elustesclusters include the central axis, the endpoints, thearea, theintensity (maximum reflectivity value), thevelocity, and theposition of the centroid.

195 The elusters' velocity, intensity, and area of the clusters can be easily obtained byvia spatial transformation and correspondence. However, determining the central axis and endpoints of theclusters is difficult because theconvective systems are unstable, and thiswhich results in anclusters with irregular shape of the clustersshapes. Therefore, it is necessary to finddetermine an efficient and accurate method to estimate the central axis of the clusters. The Hough transform is an image processing algorithm published by Hough et al. in 1959 (Hough, 1959),whichthat has been widely used to recognize lines or circles in complex images (Duda and Hart, 1972), and it has also been used infor squall line identifyingidentification in previous research (Wang et al., 2021). The Hough transform is a method that utilizes a voting-based approach to transform a collection of lines into a 200 collection of points. ItThismethod transforms the point space (X, Y) into parameter space (ρ, θ) to form a series of voting accumulations. The resulting parameter space consists of two parameters: ρ and θ . The point coordinates X and Y are converted to (ρ, θ) by the following equation:

$$\rho = X * \cos(\theta) + Y * \sin(\theta) \quad (3)$$

205 The Hough peak is the partial maximum in the point set voting results. These partial peaks correspond to the most voted (ρ, θ) and represent potential lines in the original data. The (ρ, θ) values of the Hough peak are associated with a straight line in the gridded radar data. The (ρ, θ) obtained at this point corresponds to straight lines in the gridded radar data (as shown in Figure Figure 2), and thisthese straight line islines are considered as central axes for clustering.

Figure 2 Correspondence between straight line and parameter (ρ, θ)

Meanwhile **Figure Correspondence between straight lines and parameters**

210 **Moreover**, the straight line intersects with the edge of the clusters, and these intersection points are considered to be the endpoints of the clusters. Thus, and the length of the central axis can be estimated using the endpoints. The clusters associated with the storms are approximately considered as ellipses, and the widths of the clusters are calculated using the area and the length of the central axes obtained from the above steps:

$$\text{width} = \frac{4 * \text{area}}{\pi * \text{length}} \quad (4)$$

215 In this formula where, the area is the area of the cluster, and length is the estimated length of the cluster.

2.4.3 Region combination

220 In order to To enable the algorithm to identify the squall lines when they are fully formed (Convective system—convective systems that are not fully merged but are linearly arranged in the development stage of the squall line), in this step, the linearly arranged clusters will be are merged. The traditional methods use the centroid distance to determine whether to merge the storms. However, for the squall line, due to the special characteristics of its linear arrangement and large length-to-width ratio, the judgingdetermination method that searchingof simply bydetermining the distance between centroids in accordance with the distance circle has someseveral drawbacks, when. When the distance is taken to be a large value, the non linearly nonlinearly arranged clusters onin the 'width' direction (which does not line up with other clusters but within the distance) may be merged, and when the value is taken to be a small value, the clusters onin the 'Length' direction are unable tocannot be searched.

This algorithm determines whether to merge two clusters by the distances between the obtained endpoints above. If the two clusters' nearest endpoints are within ~~10km~~^{10 km}, then the two clusters are combined into the same cluster. After the two clusters are merged, the features ~~will~~ change, so the ~~re-calculation~~^{recalculation} of the features is needed. The length and area of the clusters are added together as the area and length of the newly merged clusters, ~~and~~ the maximum reflectivity factor, and ~~the~~ width are taken ~~to as be~~ the larger ~~value~~^{values} of the two clusters. The coordinates of the centroid in the horizontal direction are calculated as follows:

$$X = \frac{\sum j * Zh(i, j)}{\sum Zh(i, j)}, Y = \frac{\sum i * Zh(i, j)}{\sum Zh(i, j)} \quad (5)$$

2.5 Target ~~identifying~~^{identification}

The results obtained from the cluster analysis step are compared with the threshold ~~Conditions~~^{conditions}-2-4 in Table 2. ~~If~~ If there is a cluster that ~~meets~~^{satisfies} the threshold, ~~it means that~~ at least one squall line exists in this layer of the current volume scanning data, and this cluster is considered to be an identified squall line.

2.6 Target Tracking

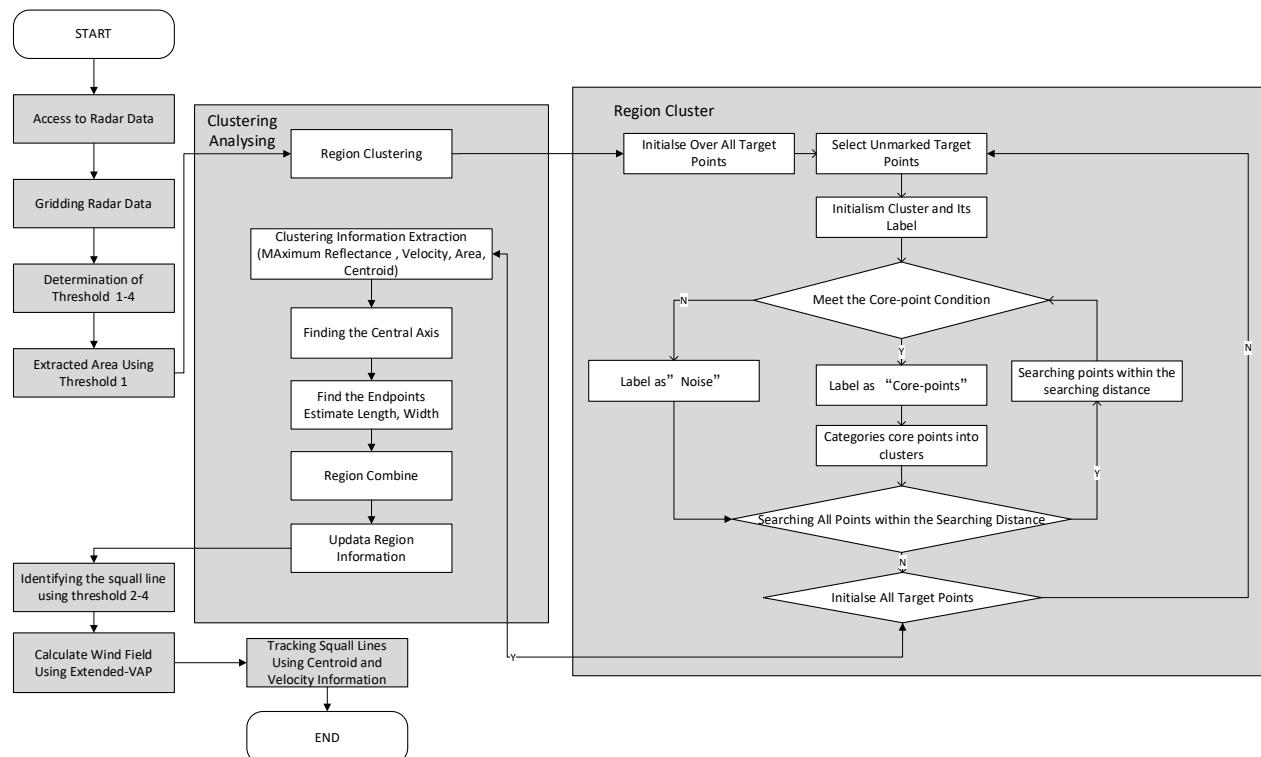
The above steps enable the ~~method to identify the squall lines and obtain the locations~~^{squall lines to be identified and the locations} of squall lines ~~to be obtained~~ in a single layer of volume-scan data. However, in practice, the vertical structure plays a more important role than the horizontal structure during strong convective weather ~~that, which~~ is prone to cause major meteorological disasters (Ma, 2022). Therefore, it is necessary to obtain the three-dimensional structure of the ~~squall lines'~~ radar-scanned information. ~~At the same time of squall lines. Moreover,~~ convective storms are characterized by rapid structural evolution and movement. Over the life cycle of the squall line, it may undergo multiple splits, regenerations, and reorganizations (Ye-Qing et al., 2008). ~~So~~ Therefore, it is also necessary to track the changes in the ~~squall lines'~~ shape and location ~~of squall lines~~ in practical applications.

The wind field and velocity information are calculated by the VAP method from radar radial velocity data. The traditional VAP method assumes that the wind field is uniform in the region, and the ~~calculating~~^{calculation} ability is good in the case of a uniform wind field, but the error is larger in the case of a ~~non-uniform~~^{nonuniform} wind field, so the extended-VAP (EVAP) (Zhouzhenbo et al., 2006) is used to calculate the wind field. The EVAP inversion method is as follows:

$$\cos(\Delta\theta + \Delta\beta) = \frac{V_{r1} + V_{r2}}{V_r} \quad (6)$$

$$\tan \beta = \left(\frac{V_{r1} - V_{r2}}{V_{r1} + V_{r2}} \right) \cot(\Delta\theta + \Delta\beta) \quad (7)$$

$$V = \left| \frac{V_r}{\cos \beta} \right| \quad (8)$$


where V_{r1}, V_{r2} are the radial velocities in the azimuthal angle adjacent to V_r on the equidistant circle. Combining the The position of the centroid of the squall line, using is combined with the velocity data obtained beforehand, and the maximum wind field velocity is considered to be the maximum moving speed of the squall line. The squall lines in different layers of the scanning data whose centroid converges within a distance (R) are considered to be the same squall line. (The process of calculating R takes into account the fact that the squall line's shape shape of the squall line might change in the process of moving and evolution process evolving, which results in the centroid shifting, so the calculate calculation method introduces the width of the squall line to improve the searching ability):

$$R = V_{max} * \Delta time + width/2 \quad (9)$$

where V_{max} is the maximum wind field velocity obtained by inversion in the squall line region, $\Delta time$ is the scanning data time interval, and $width$ is the squall line width estimated above.

Applying By applying the above method to data with different elevation angles from the same volume-scanning process, the three-dimensional structure of the squall line can be obtained. Applying it this method to data from different volume-scanning processes allows enables the squall line to be tracked.

The overall resulting flowchart of the algorithm is as follows:

Figure 3 Overall flowchart of the proposed algorithm

3 Results

265 3.1 Experimental design

The proposed method is based on NEXRAD and CINRAD; thus, in order to test the efficacy of this method, radar data from both weather radar networks are employed for the experiment. A typical squall line was observed by the CINRAD Z9762 weather radar in He Yuan, Guangdong Province, on June 4, 2016. Partial thunderstorms and gusty weather occurred that day. The radar recorded the developmental stage and exuberant stage process of the squall line. Through visual observation by meteorologists, a strong echo band with a length of about 200kmapproximately 200 km was found in the radar echo image. The volume-scan data of the radar on that day is are selected to demonstrate the algorithm identifying identification process and to show the results of each step in detail. Meanwhile, the demonstration of theMoreover, three-dimensional structure merging and dynamic tracking is shown are demonstrated. Based on this example, the anti-interference ability is verified by adding artificial noise interference as well.

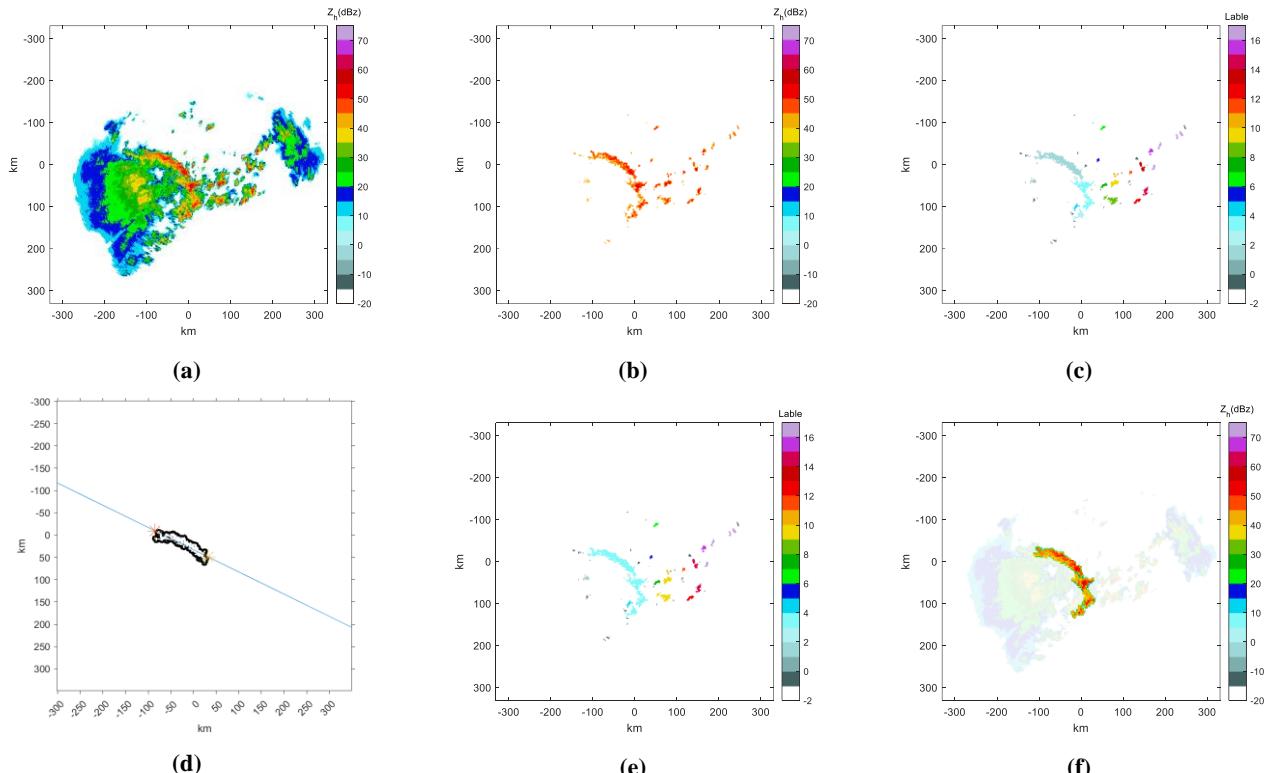
270 275 In order toTo ensure the performance of the algorithm in atypical situations, the ability to simultaneously identify more than one squall line at the same time needs to be taken into accountconsidered. A special squall line process was observed in the United States on July 1, 2014. The hurricane caused a large areaHurricanes cause large areas of severe wind damage. Two squall lines were sounded in the same volume-scan data. Observations from the Chicago-based KLOT radar were chosen to validate the algorithm's ability to identify, 3D merge, and track multiple storm lines in the presence of multiple squall lines at 280 the same moment in the volumetric scan data.

In order to be closer toTo better simulate the actual situation, and to verify the performance of the method objectively, the radar volume scanning data related to tornadoes are selected to verify the algorithm's performance in the identification process by comparing the algorithm identification results with the manual identification results and TITAN identification results.

3.2 Example from Z9762 in HeYuan, Guangdong, China

285 3.2.1. Static identifyingidentification

Static identifyingmeansidentification refers to the process of identifying in-single layerlayers of radar volume scan data. The third layer (data with an elevation angle of 1.36) of the volume scan data of the Z9762 radar in Heyuan Citycity, Guangdong Province, China, in 2016, at 7:00:00 UTC, is selected as a typical example to analysesanalyzeanalyze the identifying capability of the algorithm in a single-layer of volume scan data.


290 295 FirstlyFirst, the radar data are gridded, and the nearest neighbor interpolation method is used to obtain the information of the echo data in real space (shown in Figure 4Figure 4 (a)).

Using a threshold of 1, the points with a reflectivity factor that areis significantly highergreater than that of the surrounding area are extracted, as shown in Figure 4Figure 4 (b). A a squall line can be visually foundobserved in the image, but it should be noticednoted that there are also some points that do not correspond to the squall lines, further. Further analysis is needed to extract the squall line from these points.

The above data points can be classified based on the point's density and searching distance by via the clustering method. In the clustering method, the density clustering parameters are set as follows: Eps = 5, MinPts = 30, Searching Distance = 7. Meanwhile and the searching distance = 7. Moreover, the parameters are not sensitive to the threshold, and can be adjusted to suit different conditions of use. The classification results obtained in the Regionregion clustering step of the clustering analysis 300 are shown in Figure 4Figure 4 (c).

Cluster characterization is based on the clusters in the above results. Using theThe cluster labelledlabeled as 1 is used to show the detaildetails of the Regionregion characterization step. The cluster'scluster area is calculated to be 1,239 km². The central axis of the cluster obtained through the Hough transform, and the two endpoints are shown in Figure 4Figure 4 (d). The cluster is estimated to have a length of 120.7 km and a width of 15.4 km. The central intensity of the cluster is 61 dBZ/61 dBZ.

305 Iterate over allAll the clusters and merge the satisfiedare iterated, and the satisfactory clusters byare merged according to their endpoints' distance. Get the resultendpoint distances. The results shown in Figure 4Figure 4 (e) Re calculateare obtained by recalculating the clusters' features, and verifyverifying whether they meet the thresholdthresholds 2-4 (mentioned in Table 2Table 2). The clusterclusters that meetsmeetssatisfy the thresholds isare considered to be thesquall lines (Figure 4Figure 4(f)).

310 **Figure 4** (a) The weather system detected by at Z9762 at 7:00:00 UTC Junon June 04, 2016, with a squall line that can be seen in the figure. (b) The For the points extracted using the threshold, the reflectivityreflectivities of these points isare significantly highergreater than those of the surrounding pointpoints. (c) The results of region clustering; the colorbarindicatecoloucolor bar

315 indicates different clusters. (d) An example of obtaining the central axis. The edge of the cluster and the identified central axis, and the endpoints of the obtained cluster central axis are marked as ‘*’, and the length of the cluster can be calculated using these two points. (e) The results of region combination. (f) Shows theThe result of squall line identification (Areasareas with a hundredth of white opacities are identified as squall lines).

320 The above results show that the algorithm is effective in identifying typical squall lines in single-layer radar data, and can effectively identify the existence of squall lines and mark the location of squall lines, as well as can differentiate squall lines between convective cells and clutter points.

3.2.2. Anti-interference capability

325 This The proposed algorithm uses quality-controlled weather radar data in principle. However, as mentioned in thea prior study (Wang et al., 2021), for in the case of some interference that is not eliminated in during quality control. There will be interference (with a small probability of occurrence) that may not be eliminated in the quality-control process, the traditional algorithms is are unusable not able to overcome this interference (The prior method would recognize the interference as squall lines). However, in the actual use of theproposed method, there will be interference (with a small probability of occurrence) that may not be eliminated in the quality control process with a small probability of occurrence. Compared to the traditional methodmethods, this the proposed method has a higher greater degree of interference resistance. Co-channelCochannel interference data are added to the reflectivity data by random replacement or addition to test the anti-interference performance 330 of the algorithm, and the simulated interference and the identification of the results are shown.

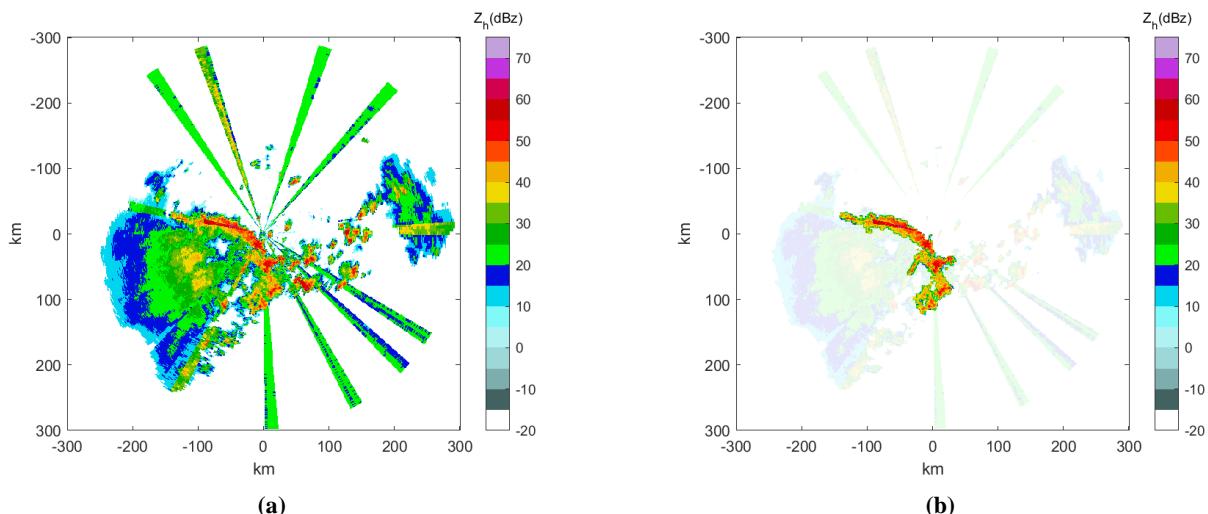
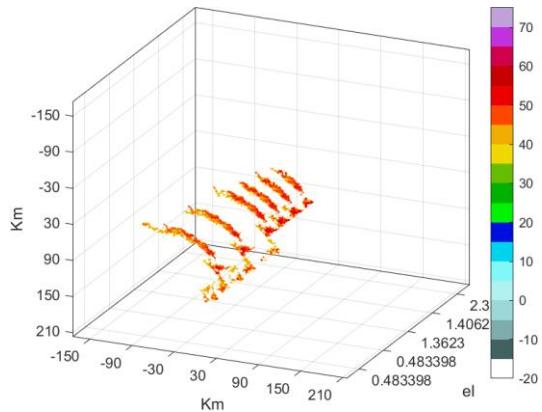
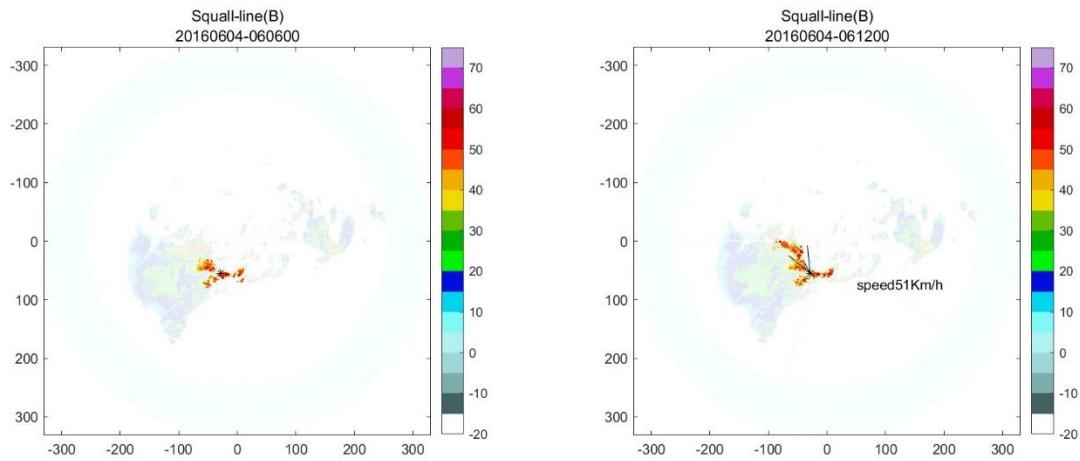


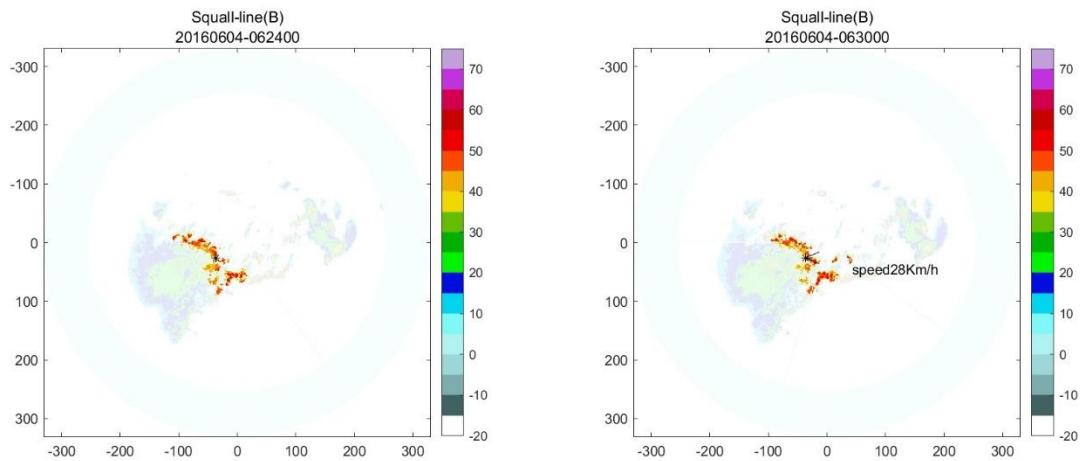
Figure 5 The radar data with random co-channel noise added (a) and the result of the squall line identifying the squall line (b)

335 The results show that this method is more robust than the traditional method in the process of static identification when encountering interference. The method can identify the squall line in the data with ~~eo-channel~~cochannel interference if the interference ~~doesn't~~does not cover the weather information, while the method in the prior study is impossible to ~~effectively identify~~use for effective identification.

3.2.3 Three-dimensional structures

340 The 3D structure of the squall line obtained by merging the different layers of volume-scan data using centroid and EVAP is shown in [Figure 6](#)Figure 6:


Figure 6 The ~~squall line's~~ 3D strut of the ~~squall line from~~of the reflectivity data.

3.2.4 Target racking

345 The results of ~~the~~ squall line tracking using the above method are as follows (the third layer of volume-scan data for the period 05:54:00-07:00:00 is chosen to demonstrate the tracking effect).

(a)

(b)

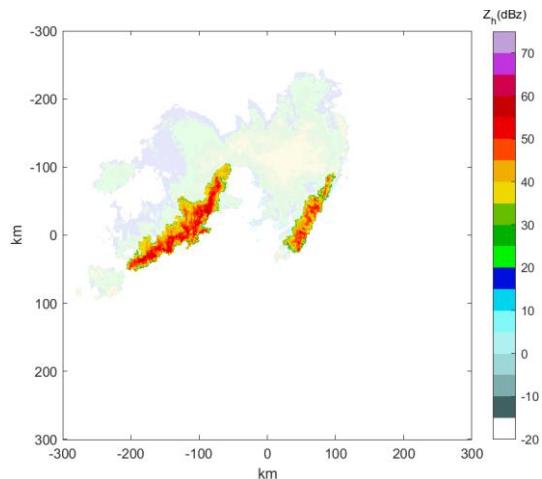
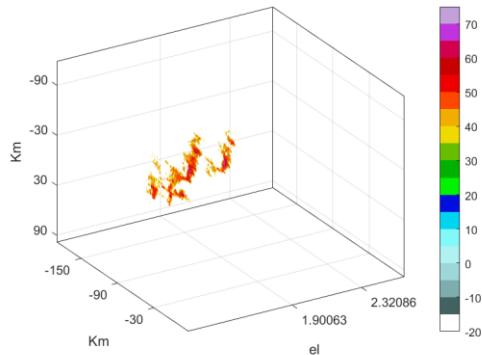
350 Figure 7 The resultResults of squall line tracking ofat 6:06:00 UTC Junon June 04, 2016 (a), and6and at 6:1824:00 UTC Junon June 04, 2016 (b). The figure shows the squall lines' movement of the latter moment relative to the former moment. The "*" shows the location of the centroid of the squall lines, and the arrows show the moving-direction of movement of the squall lines. The moving speed of the squall lines is given on the right side of the arrow.

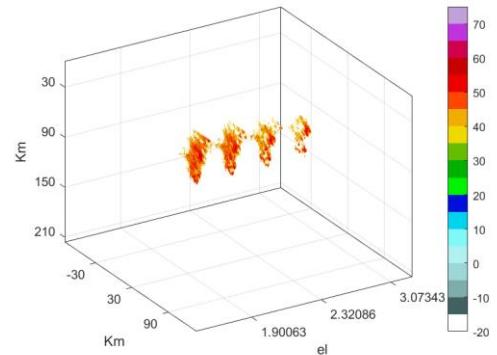
The results show that the method can be used to effectively track squall lines in the development and exuberant stages of the squall linedevelopment.

3.3 Example from KLOT in the US

3.3.1. Static identifyingidentification

355 The static identification result of the KLOT's lowest elevation level III data observed at 01:13:00 UTC Jul 01, 2017, is shown in Figure 8Figure 8. Two squall lines have beenare identified by the algorithm.

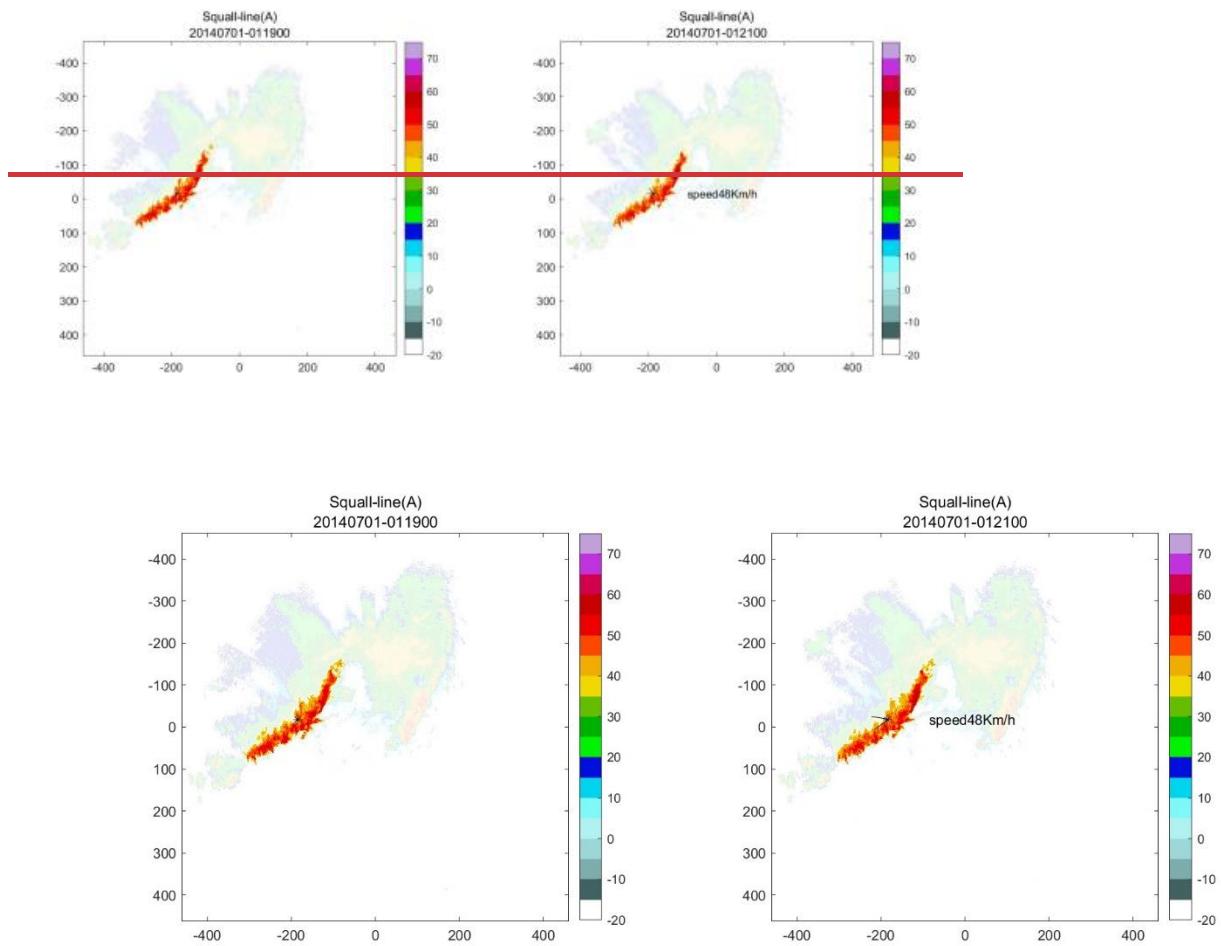




Figure 8 The result of squall line identification on KLOT at 01:13:00 UTC July 01, 2014. (Areas with a hundredth of-white opacity are identified as squall lines.)

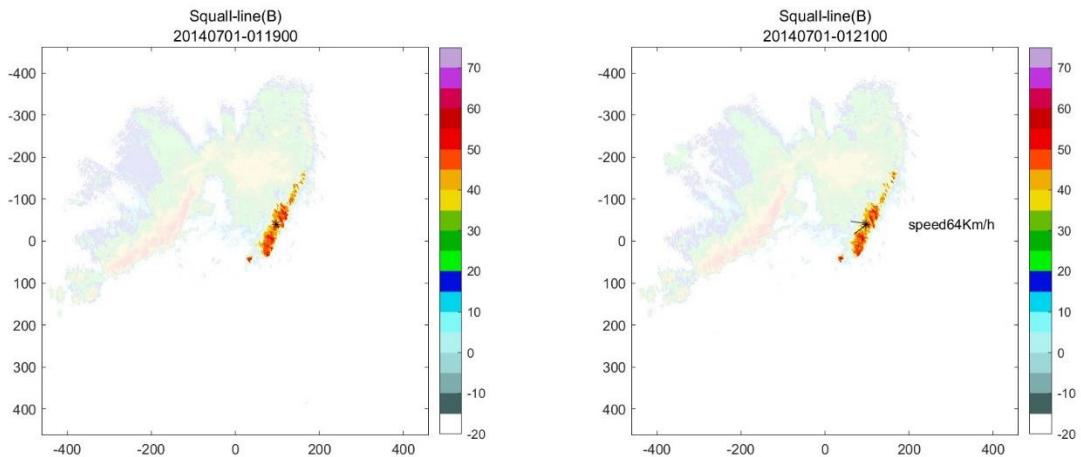
360 3.3.2. Three-dimensional structures

The volume scan data from KLOT on 01:16:55 UTC Jul 01, 2017, level II data waswere selected for the validation of the radar data 3D merging capability of the double squall line process, and the 3D structure is shown in Figure 9Figure 9.

(a)


(b)

365 **Figure 9** The 3D strut of the reflectivity data of the squall line on the left in the radar image (a) and the squall line on the right (b).


3.3.3 Target racking

The two squall lines appearing in the above examples are tracked separately, and the tracking results are respectively shown in [Figure 10](#)[Figure 10](#)

370 The above results show that when two squall lines appear in the volume scanning process of the same radar, the algorithm is able tocan track the two squall lines separately. At the same time, the method can giveprovide the direction and the speed of movement.

(a)

(b)

Figure 10 The result of tracking results for the two squall lines at 01:13:00 UTC Jul 01, 2017, are shown separately in (a) and (b); the figure shows the squall lines' movement of the squall lines in the latter moment relative to those in the former moment. The '*' shows the location of the centroid of the squall lines, and the arrows show the moving direction of movement of the squall lines. The moving speed of the squall lines is given on the right side of the arrow.

395

3.4 Quantitative analysis

In order to better represent the actual situation physical scenarios and to obtain a more objective verification of the performance of the algorithm, a significant amount of verifying number of verification experiments are needed. Due to the limited observational range of a single radar, the appearance of squall lines is characterized by randomness. The number amount of available radar data is limited in finding data containing squall lines. There is a certain connection between the existence of squall lines and the occurrence of tornadoes. The weather Weather radar data associated with tornadoes observed in the Jiangsu province (The data Province (the selected data) are shown in Table 3 Table 3) are selected as the dataset for quantitative analysis. Additionally, precipitation data from 2022/11 to 2023/05 obtained from the RXM25 radar in Chengdu were also selected. The performance of the algorithm was verified using two approaches, one is using manually identifying data to compare for comparison with the algorithm results and the other is using the TITAN algorithm identifying results.

Comparing By comparing the results of manual identification or TITAN with those of algorithmic identification, the confusion matrix is obtained as follows. The corresponding results are shown in Table 4 Table 4 and Table 5 Table 5. In manual identification, primarily utilize the computers computers are primarily utilized to search out the data to meet the following request: The highest reflectivity is greater than 50 dBZ 50 dBZ, and the number of points greater than 40 dBZ 40 dBZ is not

410 less than 1,000. Then manually select, the reflectivity data and are manually selected to meet the following request: There there is a region in the radar-girded data with a reflectivity of not less than 40dBZ40 dBZ, the area of this region is not less than 2000Km²and 2000 km², the length is not less than 100Km100 km, and the maximum reflectivity of the region is more than 50dBZ50 dBZ. The data thus selected is considered to be manually identified squall lines.

415 The following events are defined by taking the manual (or TITAN) identifying result as the true result of the sample (If a squall line is manually (or using TITAN) observed in the radar echo image, the squall line is considered to actually exist within the radar observation range) in the quantitative analysis process: True Positivetrue positive (TP): the true result of the sample is positive, and the algorithm predicts that the result is positive. True Negative (TN): the true result of the sample is negative, and the algorithm predicts that the result is negative. False-positiveFalse Positivepositive (FP): the true result of the sample is negative, and the algorithm predicts that the result is positive. False-negativeFalse Negativenegative (FN): the true result of the sample is positive, and the algorithm predicts that the result is negative. Based on the above samples, the following parameters are defined to reflect the algorithm performance::

Radar Name	Observation time	Radar Name	Observation time
Z9250	2007/07/03	Z9517	2016/06/23
	2011/07/12		2017/08/01
Z9513	2009/08/27	Z9518	2008/07/04
	2011/07/13		2006/07/03
	2016/07/06		2008/07/29
Z9515	2006/07/03	Z9516	2008/07/30
	2008/07/29		2008/08/17
	2008/07/30		2011/07/11
	2008/08/17		2012/08/10
	2011/07/11		2011/08/02
	2012/08/10		2016/07/06
Z9523	2013/07/07	Z9519	2017/08/01
	2015/07/24		2018/08/18
	2017/07/02		

Table 3 The dataData source information

Algorithm	Manual	Y	N
Y	1040	99	
N	54	7409	

'Y' meansindicates that there are squall lines identified, 'N' meansindicates that there are no squall lines identified

Table 4 The manual identifyingidentification and algorithmic results

Algorithm	TITAN		N
	Y	953	
	Y	186	
	N	46	7417

'Y' means indicates that there are squall lines identified, 'N' means indicates that there are no squall lines identified

425 **Table 5 The TITAN identifyingidentification and algorithmic results**

Accuracy of algorithmic recognition:

$$ACC = \frac{TP + TN}{TP + FP + TN + FN} \quad (10)$$

Successful squall line identifyingidentification rate of the algorithm:

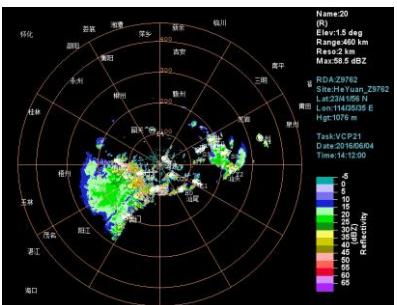
$$PRE = \frac{TP}{TP + FP} \quad (11)$$

430 False identifyingidentification rate of the algorithm:

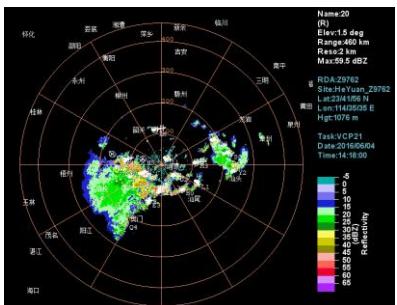
$$FAR = \frac{FN}{TN + FN} \quad (12)$$

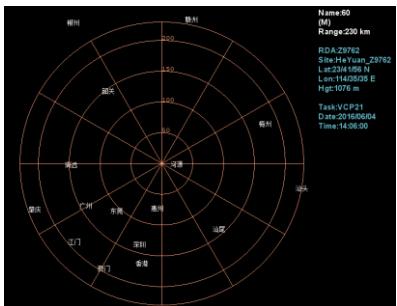
Missed identifying rate of the algorithm:

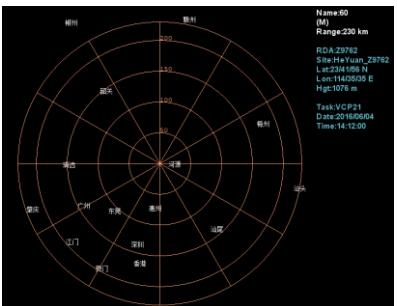
$$NAR = \frac{FP}{TP + FP} \quad (13)$$

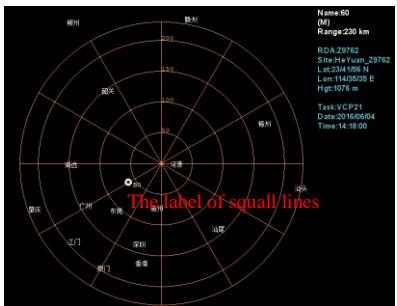

In this the proposed method, take the manual identifyingmanually identified result is taken as the true result, and the calculated result is that: $ACC = 98.25\%$, $PRE = 95.06\%$, $FAR = 3.17\%$, $NAR = 4.93\%$. Meanwhile, taking the TITAN identifyingidentification result as the true result, the calculated result is that: $ACC = 97.31\%$, $PRE = 95.40\%$, $FAR = 16.33\%$, $NAR = 4.84\%$.

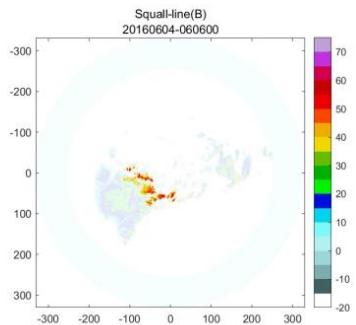
435 The above tests show that the accuracy and recognition rate of this method is higherare greater than 95%. Using the manual identifyingmanually identified results as a benchmark, the FAR and NAR were greater than 5%. However, the FAR is evergreater than 15% when using the TITAN result as a benchmark. ComparingBy comparing the TITAN results with the manual identifying resultidentification results, we found observe that TITAN identified the liner arrangedlinear storm cells as multiple independent cells during the squall line development stage.

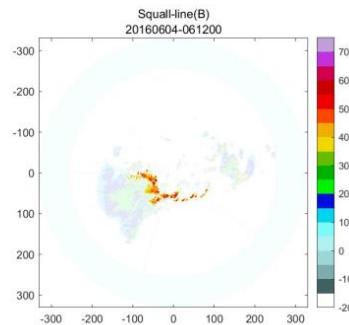

440 The TITAN has been utilized in operations, following Figure 11Figure 11 shows the products generated by the TITAN algorithm in the operations of the CINRADSA radar network. The product shows the squall line identifying the result of Z9762 from 6:06:00 to 6:24 UTC on JunJune 04, 2016 (Figure 11Figure 11(a)-(f)). The product shows the storm cells' location by the centroid and uses an arrow to show the movement of the cells. The squall lines also can also be displayed separately in as an independent product. The identifyingidentification results during this time period of the method designed in this experiment are shown in Figure 11Figure 11 (g) –(i).

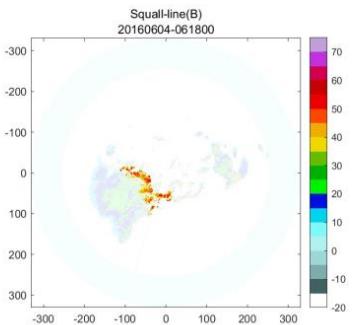

(a)


(b)


(c)


(d)


(e)


(f)

(g)

(h)

(i)

Figure 11 (a)-(f) The products generated by the TITAN algorithm. **(g)-(i)** The identifying results of the method in this study. The figures (a)-(c) show TITAN's identifying results of the identification results of TITAN for all storm cells on 6:06:00 UTC Junon June 04, 2016 UTC 2016 UTC (a), 6:12:00 UTC Junon June 04, 2016 UTC 2016 UTC (b), 6:18:00 UTC Jun 04, 2016 UTC on June 04, and 2016 UTC (c). The TITAN's mesoscale convection identifying results of TITAN or the corresponding moments of (a), (b), and (c) are specifically labelled in (d)-(f), and the label is near the text in (f). The bottom three figures (g)-(i) show the identifying results for the corresponding moments of the method designed in this study. The time shown in the (a)-(f) refers to Beijing time (UTC +8).

As the result shown in Figure 11, the proposed method in this study first identifies the squall line at 6:06:00 UTC, while the TITAN identifies the squall line at 6:18:00 UTC. Through According to the above figures, it is easy to find that when the cells are not fully merged, TITAN identifies them as independent cells. The method of this study identifies squall lines before they are fully merged. It is demonstrated that the squall warning can be improved compared to

the TITAN algorithm. By statistically analysinganalyzing the results with manual identification, the algorithm is able tocan advance the squall line warning time by aboutapproximately 15 minutes. This suggestsresult indicates that the combination of storm cells in a linear arrangement does allow the method toearly identify theallows early identification of squall lines. Overall, thisthe proposed method can be used to effectively identify the squall linelines in the selected weather radar data. This method can also canbe used to effectively identify the squall linelines in both the development stage and the exuberant stage. ThemethodIt can also provide the three-dimensional structure of the squall line and track the squall line before it is fully merged. The proposed algorithm can improve the timeliness of the weather forecasting process bythrough the above advantages.

4 Conclusion and discussion

In this paper, an automatic squall line identification and tracking method for weather radar echo data is proposedpresented. Ittakes the-Doppler weather radar data areused as the data source. The points that are significantly higher than the surrounding area are extracted by threshold from the preprocessedpreprocessed radar data. The points are distinguished into clusters by the clustering method. The elusters'cluster features, including the reflectivity value, length, width, area, endpoints, central axis, and centroid, are obtained bythe byclusteringviaclustering characterization. The elusters linearly arranged clusters are merged to improve the identifyingidentification ability in the developmentstageofsqualllinenesssqualllinedevelopmentstage. The movement tracking and three-dimensional structure of the squall line are obtained using the centroid and velocity of the squall lines identified in a single layer.

By analysingAnalysing the weather processes from two different radars, it was provedprovenproved that the proposed method can identify one or more squall lines in the radar data effectively. In the process of quantitative analysis of the algorithms, the manual identification or TITAN identification results were identified as true samples. Both analyses show that the method has ahigh accuracy. The analysis of the TITAN results shows that the method in this study can advance the early warning of squall lines. However, the manual identification process is still somewhat subjective; therefore, further optimization experiments using other polarizationpolarisation parameters, datafromweather stationsstationdata, etc., etc., are neededrequired. Compared with thetraditional methodmethods, this method does not rely on manual observation, so the identification and tracking process can be automated through thecomputercomputers to improve the accuracy and timeliness of weather warning operations. Thismethodcanidentifythesqualllinesearlierthanthetraditionalmethod. Thesqualllinesareoftenassociatedwithtornadoes,downburststorms,andothercatastrophicweatherevents,andtheearlieridentificationofsqualllinesintheearlywarningsystemcanbeusedtosendoutwarninginformationoftherelatedmeteorologicalevents. Meanwhile, in the usageofthecollaborativeradarsystem,combinedwiththeidentificationofsqualllines,refinedstructuraldetectionresultswillbecarriedoutandmoreaccurateanalysisresultswillbederived,leadingtomoreprecisewarningresults.

490 The identification of the squall line in this method is mainly based on the radar reflectivity data, which may not be very accurate for the edge marking of the squall lines. Therefore, other radar parameters will be used in combination with machine learning algorithms to obtain accurate edges of the squall lines in subsequent studies. Another limitation is that the identification and tracking process of this method only works in the scanning results of a single radar, which requires the radar to scan the complete squall lines, and in the subsequent research, the identification of squall lines in a larger coverage will be realized by the girded data of multiple radars.

495 Using this algorithm together with other convective identification and tracking algorithms, the information of squall lines, storm cells, supercells, and other targets ~~is can be~~ used simultaneously, and the ~~prediction~~-ability ~~for to predict~~ catastrophic weather, including tornadoes ~~will, can~~ be greatly improved, ~~and combined~~In combination with ~~the~~ traditional weather warning algorithms, ~~it this approach~~ can further improve the reliability of catastrophic weather warning work. A finer vertical structure of squall may be obtained with ~~the~~ deep-learning technology, and ~~the~~a 3D structure ~~can be~~ obtained ~~in via~~ this method.

500 *Author Contributions:* Conceptualization, Y.W., Z.S., and J.H.; methodology, Z.S. and Y.W.; software, J.H., and Z.S.; formal analysis, Z.S., Y.W. and J.H.; writing—original draft preparation, Y.W.; writing—review and editing, J.H., Y.W.; visualization, Y.W. All authors have read and agreed to the published version of the manuscript.

505 *Funding:* This work was supported by the National Key R&D Program of China (2021YFC3090203), the Key Laboratory of Atmospheric Sounding Program of China Meteorological Administration (U2021Z01, U2021Z09), and ~~the~~ CMA Meteorological Observation Centre (CMAJBGGS202203).

510 *Data Availability Statement*~~availability statement~~: Not applicable.

Acknowledgement~~Acknowledgments~~: The authors would like to express their sincere thanks to ~~the~~ Guangdong Meteorological Network and Equipment Support Centre for supplying the data used in this manuscript and their viewers for their constructive comments and editorial suggestions ~~that, which~~ considerably helped improve the quality of the manuscript.

510 *Conflicts of Interest:* The authors declare no ~~conflict~~conflicts of interest.

References

515 Bluestein, H. B., Marx, G. T., and Jain, M. H.: Formation of Mesoscale Lines of Precipitation: Nonsevere Squall Lines in Oklahoma during the Spring, Monthly Weather Review, 115, 2719-2727, [https://doi.org/10.1175/1520-0493\(1987\)115<2719:FOMLOP>2.0.CO;2](https://doi.org/10.1175/1520-0493(1987)115<2719:FOMLOP>2.0.CO;2), 1987.

Chen, G. T. J. and Chou, H. C.: General Characteristics of Squall Lines Observed in TAMEX, Monthly Weather Review, 121, 726-733, [https://doi.org/10.1175/1520-0493\(1993\)121<0726:GCOSLO>2.0.CO;2](https://doi.org/10.1175/1520-0493(1993)121<0726:GCOSLO>2.0.CO;2), 1993.

520 CHENGLing, z., HEJian, x., and ZENG, X.-j.: Radar Echo Recognition of Squall Line based on Waveletand Hu Moment, JOURNAL OF CHENGDU UNIVERSITY OF INFORMATION TECHNOLOGY, 32, 369-374, 10.16836/j.cnki.jcuit.2017.04.005, 2017.

525 Dixon, M. and Wiener, G.: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology, *Journal of Atmospheric and Oceanic Technology*, 10, 785-797, [https://doi.org/10.1175/1520-0426\(1993\)010<0785:TTITAA>2.0.CO;2](https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2), 1993.

Duda, R. O. and Hart, P. E.: Use of the Hough transformation to detect lines and curves in pictures, *Commun. ACM*, 15, 11–15, 10.1145/361237.361242, 1972.

Gangqiang, N. A. N., Mingxuan, C., Rui, Q. I. N., Lei, H. A. N., and Weihua, C. A. O.: Identification, tracking and classification method of mesoscale convective system based on radar composite reflectivity mosaic and deep learning, *Acta Meteorologica Sinica*, 79, 1002-1021, 10.11676/qxb2021.062, 2021.

530 Geerts, B.: Mesoscale Convective Systems in the Southeast United States during 1994–95: A Survey, *Weather and Forecasting*, 13, 860-869, [https://doi.org/10.1175/1520-0434\(1998\)013<0860:MCSITS>2.0.CO;2](https://doi.org/10.1175/1520-0434(1998)013<0860:MCSITS>2.0.CO;2), 1998.

Gower, J. C.: A Comparison of Some Methods of Cluster Analysis, *Biometrics*, 23, 623-637, 10.2307/2528417, 1967.

Hough, P. V. C.: Machine Analysis of Bubble Chamber Pictures,

535 Johnson, J. T., MacKeen, P. L., Witt, A., Mitchell, E. D. W., Stumpf, G. J., Eilts, M. D., and Thomas, K. W.: The Storm Cell Identification and Tracking Algorithm: An Enhanced WSR-88D Algorithm, *Weather and Forecasting*, 13, 263-276, [https://doi.org/10.1175/1520-0434\(1998\)013<0263:TSCIAT>2.0.CO;2](https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2), 1998.

Kelly, W. E.: IMAGE PROCESSING FOR HAZARD RECOGNITION IN ON-BOARD WEATHER RADAR, 2003.

540 MA, J. Z. A. M. W. A. S. G. A. H. H. A. L.: The scattering mechanism of squall lines with C-Band dual polarization radar. Part I:echo characteristics and particles phase recognition, *Front. Earth Sci.*, 16, 2022.

Oliveira, F. P. and Oyama, M. D.: Squall-line initiation over the northern coast of Brazil in March: Observational features, *Meteorological Applications*, 27, 10.1002/met.1799, 2020.

Orlanski, I.: A rational subdivision of scales for atmospheric processes, *Bulletin of the American Meteorological Society*, 56, 527-530, 1975.

545 Parker, M. D. and Johnson, R. H.: Organizational Modes of Midlatitude Mesoscale Convective Systems, *Monthly Weather Review*, 128, 3413-3436, [https://doi.org/10.1175/1520-0493\(2001\)129<3413:OMOMMC>2.0.CO;2](https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2), 2000.

Rinehart, R. E. and Garvey, E. T.: Three-dimensional storm motion detection by conventional weather radar, *Nature*, 273, 287-289, 10.1038/273287a0, 1978.

550 Rotunno, R., Klemp, J. B., and Weisman, M. L.: A Theory for Strong, Long-Lived Squall Lines, *Journal of the Atmospheric Sciences*, 45, 463-485, 10.1175/1520-0469(1988)045<0463:atsll>2.0.co;2, 1988.

Smull, B. F. and Houze, R. A.: A Midlatitude Squall Line with a Trailing Region of Stratiform Rain: Radar and Satellite Observations, *Monthly Weather Review*, 113, 117-133, [https://doi.org/10.1175/1520-0493\(1985\)113<0117:AMSLWA>2.0.CO;2](https://doi.org/10.1175/1520-0493(1985)113<0117:AMSLWA>2.0.CO;2), 1985.

555 Smull, B. F. and Houze, R. A.: Dual-Doppler Radar Analysis of a Midlatitude Squall Line with a Trailing Region of Stratiform Rain, *Journal of Atmospheric Sciences*, 44, 2128-2149, [https://doi.org/10.1175/1520-0469\(1987\)044<2128:DDRAOA>2.0.CO;2](https://doi.org/10.1175/1520-0469(1987)044<2128:DDRAOA>2.0.CO;2), 1987.

Srivastava, R. C., Matejka, T. J., and Lorello, T. J.: Doppler Radar Study of the Trailing Anvil Region Associated with a Squall Line, *Journal of Atmospheric Sciences*, 43, 356-377, [https://doi.org/10.1175/1520-0469\(1986\)043<0356:DRSOTT>2.0.CO;2](https://doi.org/10.1175/1520-0469(1986)043<0356:DRSOTT>2.0.CO;2), 1986.

560 Trapp, R. J., Tessendorf, S. A., Godfrey, E. S., and Brooks, H. E.: Tornadoes from Squall Lines and Bow Echoes. Part I: Climatological Distribution, *Weather and Forecasting*, 20, 23-34, 10.1175/waf-835.1, 2005.

Wang, H., Kong, F., Wu, N., Lan, H., and Yin, J.: An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer, *Atmospheric Research*, 2019.

565 Wang, X., Bian, H.-X., Qian, D.-L., Miao, C.-S., and Zhan, S.-W.: An automatic identifying method of the squall line based on Hough transform, *Multimedia Tools and Applications*, 80, 18993-19009, 10.1007/s11042-021-10689-3, 2021.

WangHong, MaFeng-lian, and WangWan-jun: Doppler Radar Data Analysis of a SquallLine Process, *Desert and Oasis Meteorology*, 3, 39-43, 2009.

Xiaohong, L., Wenjuan, Z., and Nengzhu, , A. F.: Lightning Activity in the Pre_TC Squall Line of Typhoon Lekima (2019) Observed by FY4A LMI and Its Relationship with Convective Evolution, *Remote Serivsing Technology and Application*, 36, 570 2021.

Ye-qing, Y., Xiao-ding, Y., Yijun, Z., Hua, C., Ming, W., and Jin, L.: Analysis on a Typical Squall Line Case with Doppler Weather Radar Data, Plateau Meteorology, 27, 373-381, 2008.

ZHOUZhenbo, MINJinzhong, and PENGXiayun: Extended—VAP Method for Retrieving Wind Field from Single-DopplerRadar.(I):Methods and Contrast Exprement, PLATEAU METEOROLOGY, 516-524, 2006.

575 Ziqi, J., Xinmin, W., Yansong, B., Han, L., Ming, W., and Mingyue', L.: Squall Line Identification Method Based on Convolution Neural Network, JOURNAL OF APPLIED METEOROLOGICAL SCIENCE, 32, 580-591, 2021.