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Xie et al. present an ML approach for performing XCO2 retrievals based on OCO-2 mea-

surements. Their work follows the publications of David and Bréon who have before shown

the general success of this type of method, applied to the same instrument. This work of Xie

et al. implements a similar technique. The added novelty then seems to be the training on

simulated data (via the ACOS forward model) that is covering a wider range of XCO2, in

order to mitigate the issue of the MLP not being able to follow the growth of atmospheric

CO2. There are some more general issues that the authors did not mention, such as quality

assessment - how does a science data user know an ML-based retrieval is considered “good”

and should be used in a study (or what the uncertainty on the estimate is)? Should people

use the ACOS averaging kernels, since the ML-based method does not provide any?

Thank you for raising this important point. Estimating uncertainty is important for

ensuring the reliability of machine learning models for satellite-based XCO2 retrieval. While

our current MLP-XCO2 model does not provide direct uncertainty estimates, we recognize

this as an area for future improvement.

A number of techniques exist for quantifying uncertainty in deep neural networks [1, 2].

However, generating robust uncertainty estimates requires a substantial volume of matched

input and target data. The ideal dataset would contain numerous examples of OCO-2 obser-

vations paired with corresponding TCCON XCO2 measurements across diverse conditions.

This would enable sampling to assess the variance in our model’s predictions across the full

distribution. Unfortunately, the limited availability of matched OCO-2 and TCCON data,

especially for TCCON sites in “nadir” mode, means the current sample size is insufficient for

comprehensive uncertainty quantification in the presented study.

Our primary contribution in the current study is demonstrating that simulated training

data can complement real OCO-2 data to enable stable and accurate XCO2 retrieval on future

observations. While we do not currently provide uncertainty bounds, estimating prediction

intervals is an important next step.

These have been clarified in the updated manuscript.

The manuscript is very well written and contains useful figures for the most part. In some
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places, minor re-wording or additional explanation would be appropriate and helpful, I have

listed those below. My major comments would be the following:

[1] In Bréon et al. 2022, it is revealed that their ML approach inadvertently resulted in the

NN “using” the weak CO2 band as a proxy for geographical location and time. They

thus removed the weak CO2 band from the training process. However, the authors of

this manuscript do indeed use the weak CO2 band and have not explained as to how

they overcome this issue. That would be important information, especially since they

are following the general layout of Bréon et al. 2022. Maybe the issue does not manifest

itself due to the much smaller region of interest, but the authors must show that.

[2] Related to (1), the “glitch” discovered in Bréon et al. 2022 was only found after they

investigated specific features present in the original ACOS OCO-2 retrievals which

were missing in the ML-based retrievals (specifically, strong plumes). The authors here

only look at broad bulk-type statistics by comparing to TCCON and to ACOS OCO-2

via simple scatter plots. The strengths and weaknesses of the proposed ML-approach

should be investigated more thoroughly by analyzing the results more carefully. Do

the same biases appear in the derived retrievals, compared to the training data? Are

global-scale features retained just like regional and small-scale ones? Are new biases

introduced? There is possibly more to learn from the data than is shown in Figures

10 and 11. While the approach is promising, the authors should attempt to show an

assessment of the quality of the ML-retrievals beyond the simple scatter plots.

My suggestion to the authors would be to (1) demonstrate that their approach, while using

the weak CO2 band, does not result in a loss of local features, such as plumes (analogous

to Bréon et al. 2022, Figure 4). Further (2) they should demonstrate that their ML-based

retrievals retains other characteristics of the training set (regional-scale, or local-scale; observe

differences on maps etc.)

Thank you for your valuable suggestions and concerns. After incorporating feedback from

you and other reviewers, we conducted an analysis using Explainable AI (XAI) on our original

MLP-XCO2 model and optimized the input parameters for the new MLP-XCO2 model. While

we did include the weak CO2 band as an input in our model, our training results with
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simulated data did not show a significant impact of including or excluding the WCO2 band

on the detection of plume features. Instead, we found that the use of retrieved pressure was a

crucial determinant in our training process. Thus, in addition to prior surface pressure input,

we implemented a compact MLP-P model. Trained on historical OCO-2 data, this model

infers surface pressure from spectral and angular information. Unlike MLP-XCO2, MLP-P is

expected to maintain relative stability and broad reliability in its surface pressure retrieval

results in the future, according to our tests.

One possible explanation for this finding could be the idealized nature of the spectral data

in our simulations, which differs from real-world spectra and is not affected by noise. This

idealization might enable the ML model to more accurately capture the underlying relation-

ship between spectral absorption and XCO2. Conversely, using only OCO-2 product data,

potential noise may mask weak absorption band characteristics, leading the ML model to

focus on training better plume detection capabilities in strong absorption bands, as explained

in Bréon et al. 2022.

Regarding the updates made:

• Plume Detection: Following your suggestions, we included tests for plume detection at

potential high emissions sites, such as thermal power plants, using the updated MLP-

XCO2. Figs 12 and 13 in the revised manuscript demonstrate that our updated model

detects sudden increases in XCO2 in areas with plume emissions from OCO-2 spectra,

providing substantial evidence of genuine atmospheric CO2 retrieval from spectral data.

• Error Analysis: In the updated manuscript, we conducted an in-depth analysis of error

metrics across different subregions within East Asia, as shown in Table 4 in the updated

manuscript. These subregions, including Northeast, Northwest, Southwest, and South-

east, exhibit distinct geographical characteristics. Results show consistent predictive

performance across these subregions, indicating uniform inversion effectiveness without

introducing regional biases or instability. This indicates the model’s robustness and

its ability to handle diverse geographic and environmental conditions without sacrific-

ing accuracy or performance consistency, despite variations in regional representation

within the training dataset.
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Minor suggestions:

[1] Line 4: ”low retrieval efficiency” and ”insufficient retrieval accuracy” are somewhat

diffuse terms; I would simply mention challenges regarding computational efficiency.

Thanks for your suggestions. The sentence has been rephrased to “However, the next

generation of greenhouse gas monitoring satellites is expected to face challenges, partic-

ularly in terms of computational efficiency in atmospheric CO2 retrieving and analysis.”

[2] Line 38: ”not limited spatially or temporally” is not quite true - space-based platforms

have observational coverage in space and time as a result of their orbital characteristics

and other instrument parameters.

You are correct and my original description was indeed not accurate and has been

changed to “satellite remote sensing offers broader spatial coverage and more flexible

temporal observation.”

[3] Line 62: The interpolation of absorption coefficients for the calculation of optical prop-

erty inputs for RT calculations are generally quite fast and can be done in less than a

second typically, if the code is optimized enough (amongst other things). The compu-

tational effort is mostly driven by the RT calculations.

Yes, it is true that the majority of the computational cost in the overall forward model is

devoted to solving the radiative transfer equation. This has been changed to “However,

executing these complex optimizations requires computationally expensive interpola-

tion of high-spectral-resolution gas absorption reference data and solving the radiative

transfer equations in each iteration.”

[4] Figure 5: It is not fully clear to me what these represent. Did the authors take

the outputs of the ACOS retrieval L2STD products and use them as input in their

ReFRACtor-driven set-up? Please clarify.

Yes, you’ve got it right, and we apologize for any confusion arising from our unclear

explanation. In Figs 5 and 6, we’re comparing the simulated spectra generated by the

modified ReFRACtor model with the actual observed spectra from the OCO-2 satellite.
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The information required to set up the ReFRACtor model is taken from the OCO-2

L2std v10r product. This has been explained more clearly in the updated manuscript.

[5] Line 338: When discussing the computational effort, it is mentioned that the forward

model takes 12.16s to process two bands; but in forward-model “mode”, Jacobians are

presumably not calculated, so the actual retrieval set-up would be even slower than

the mentioned 36.48s. It would also be very interesting to learn how long the training

process took!

Thank you for your concerns. Calculating Jacobians layer-by-layer does require sig-

nificant computational cost in traditional retrieval models. The mentioned processing

time of 12.16 seconds for two CO2 bands includes rapid Jacobian calculations within

the ReFRACtor model. In a test with ”max_iteration” set to 1, the total time for

computing all three bands and completing one fully optimized iteration was 23.13 sec-

onds on an Intel 13700K CPU. The breakdown is: 8.85 seconds for Band 1 (O2-A), 5.49

seconds for Band 2 (WCO2), 6.54 seconds for Band 3 (SCO2), totaling 20.88 seconds

for the full radiative transfer (RT) computation.

The training process for machine learning models, which includes both generating simu-

lated data and tuning the hyperparameters of the network, can be very time-consuming,

requiring up to hundreds of CPU hours. The most computationally expensive parts -

generating training data and training the model - are done beforehand. So while the

upfront costs of developing a machine learning model can be high, once the model is

trained, making predictions is extremely fast.
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