
AMT-2023-224 Response to Reviewer

Reviewer-1

The authors propose a machine learning based retrieval of XCO2 for an OCO-2 like sensor

using a neural network. The overall research direction is important for our field and a

promising avenue to deal with the ever-higher data rates of future space borne instruments

for trace gas retrievals. However, the study present requires major revisions to be considered

for AMT. Most importantly I am concerned that the model might get the right result for

the wrong reasons and uses some of the parameters like solar zenith and azimuth angle

to estimate the location of a given OCO-2 observation, rather than using the information

contained in the measured spectrum. In essence, the model might simply interpolate XCO2

spatially and temporally instead of retrieving it from the observations.

Thank you for your valuable comments here and below. We have addressed all concerns

by refining the methodology. Our approach aims to contribute to the field by providing

an efficient retrieval solution for future space-borne instruments. We believe these revisions

make our manuscript suitable for publication in AMT. We sincerely appreciate your help in

improving our paper.

General Comments:

[1] Please make explicit what the innovation of this work is compared to state of the art.

A major innovation is using accurate radiative transfer simulations to generate the

training data, rather than relying solely on experimental data products. This simulation-

based training approach could help overcome limitations in existing experimental data.

Additionally, our neural network model achieves XCO2 retrieval speeds orders of magni-

tude faster than traditional methods, reducing computation time from multiple seconds

to less than 1 millisecond. This dramatic improvement in retrieval efficiency could en-

able real-time processing of the massive data volumes expected from next-generation

greenhouse gas monitoring satellites.

Importantly, our model achieves a precision of around 2 ppm, competitive with the cur-

rent state-of-the-art in retrieval accuracy. We also demonstrate the ability to accurately

capture temporal variations and trends in XCO2 by validating against reliable TCCON

ground-based data. This level of verifiable performance is an important capability.
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These have been made explicitly in the updated manuscript.

[2] I am concerned that the model might get the right solution for the wrong reason

and uses some of the parameters like solar zenith and azimuth angle to estimate the

location. Please probe for that. E.g. remove spectral information and repeat your

model training. How much does your RMSE increase? Remove spatial information

(sun-satellite geometry) and repeat your experiment. Use XAI methods to look at

feature importance, etc.

Thank you for your valuable suggestions. In response to your concerns, we utilized

widely recognized eXplainable Artificial Intelligence (XAI) methods, specifically SHAP

(SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic Ex-

planations), to analyze the input elements of our MLP-XCO2 model:

• SHAP Analysis: We categorized input nodes into groups such as WCO2, SCO2,

various geographical parameters, vapor profile, and temperature profile. Fig. 1

shows the detailed view of feature contributions across these categories.

Figure 1: SHAP analysis illustrating the impact of feature categories on the MLP-
XCO2 model

• LIME Analysis: Complementing global insights from SHAP, LIME allowed us
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Figure 2: LIME feature weights for the MLP-XCO2 model

to explore specific contributions of individual input sources on a localized scale

(Fig. 2)

While surface pressure and solar zenith consistently contributed most to model predic-

tions, our analysis also highlighted the significant impact of WCO2 and SCO2 spectral

data. Notably, spectral features aligned with CO2 absorption peaks played a critical

role in accurate XCO2 prediction.

We refined the model by focusing on contributory non-prior data (solar zenith and

azimuth) and excluding less impactful features like relative velocity and the Sun-Earth

distance. The revised model now includes the angular information, the spectral infor-

mation, surface pressure, and the corresponding year.

However, the surface pressure, a critical parameter, is not directly available and is

typically retrieved based on the O2-A band. Therefore, in our updated manuscript, we

first retrieve the surface pressure from the L2MET file using another compact machine

learning model, referred to as MLP-P, before inputting it into the MLP-XCO2 model.

The MLP-P model, trained on historical OCO-2 product data, provides stable future

predictions of surface pressure. We have revised the manuscript to include a detailed

description of the MLP-P model.

We added the corresponding year as one of the input parameters because an over-

looked aspect in our initial manuscript is the gradual degradation and the need for

Page 3



AMT-2023-224 Response to Reviewer

adjustments in the OCO-2 instrument response parameters over time. These parame-

ters include the instrument line shape function, bad pixel list, and spectral dispersion

coefficients. While these parameters may remain consistent over short periods, they

exhibit significant variations over the years, which can affect the long-term reliability

of the model.

Therefore, in our updated manuscript, the network has four key components as input:

spectral information, angular information, the MLP-P predicted surface pressure, and

the corresponding year (e.g., 2016 or 2017, etc.).

Another suggestion you made was to “remove spectral information and repeat your

model training.” Following this advice, we conducted experiments with a model trained

solely on non-spectral information. As depicted in Fig 3, the results generally aligned

with the XCO2 range but failed to provide accurate predictions within the same year.

Figure 3: Comparison of XCO2 results predicted by the MLP-XCO2 model using
solely non-spectral data inputs, with results retrieved from the OCO-2 v10r product
spanning from 2017 to 2020. Panels (a) through (d) display the MLP-XCO2 model
predictions for the years 2017 to 2020, respectively
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Many samples under identical angular and yearly conditions remained indistinguish-

able. However, when spectral data were reintroduced to the input layer, as shown

in Fig. 11 of the updated manuscript, the MLP-XCO2 model exhibited a significant

performance improvement. Spectral information effectively addressed the inaccura-

cies in XCO2 retrievals under identical observational conditions. Furthermore, the

revised manuscript includes enhanced testing focused on plume detection, as presented

in Figs. 12 and 13. These additions provide substantial evidence of the MLP-XCO2

model’s ability to extract critical information from spectral data for future predic-

tions, going beyond simple interpolation of XCO2 predictions using non-spectral input

parameters.

[3] How would we get an uncertainty estimate from your approach? How do you know

when your model fails.

Thank you for raising this important point. Estimating uncertainty is important for

ensuring the reliability of machine learning models for satellite-based XCO2 retrieval.

While our current MLP-XCO2 model does not provide direct uncertainty estimates, we

recognize this as an area for future improvement.

A number of techniques exist for quantifying uncertainty in deep neural networks [1,2].

However, generating robust uncertainty estimates requires a substantial volume of

matched input and target data. The ideal dataset would contain numerous exam-

ples of OCO-2 observations paired with corresponding TCCON XCO2 measurements

across diverse conditions. This would enable sampling to assess the variance in our

model’s predictions across the full distribution. Unfortunately, the limited availability

of matched OCO-2 and TCCON data, especially for TCCON sites in “nadir” mode,

means the current sample size is insufficient for comprehensive uncertainty quantifica-

tion in the presented study.

Our primary contribution in the current study is demonstrating that simulated training

data can complement real OCO-2 data to enable stable and accurate XCO2 retrieval on

future observations. While we do not currently provide uncertainty bounds, estimating

prediction intervals is an important next step.
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These have been clarified in the updated manuscript.

[4] What is your RMSE compared to TCCON when you apply your final model to OCO-2

data. How does that compare to the current operational retrieval of OCO-2?

The current study applies the MLP-XCO2 model specifically to the “Nadir” mode

observations of the OCO-2 satellite. This mode represents a temporary limitation in

our validation process using the TCCON data. The “Nadir” mode focuses on the land

areas directly underneath the satellite’s path (the satellite zenith is close to zero), unlike

the “Target” mode that directly corresponds to the TCCON sites. Therefore, the valid

TCCON samples were selected based on the OCO-2 observation time and geographic

coordinates, approximating the TCCON location closely. The criteria for this selection

and the data sources used are detailed in Table 3 of the original manuscript.

The updated ME and RMSE results for each year and site are presented in Fig 4 here.

The RMSE values show our MLP-XCO2 model has comparable, though slightly higher,

errors compared to the current operational OCO-2 retrieval when validated against

TCCON data. While errors are slightly higher presently, as more matched OCO-2 and

TCCON data becomes available, particularly from targeted observations, we expect to

improve RMSE further. Overall, these initial results demonstrate the potential of our

methodology to enhance XCO2 retrieval speed without sacrificing much of the accuracy.

[5] What do you see as important future work items?

The progression of satellite-based XCO2 retrieval is an important ongoing process.

The current greenhouse gas monitoring satellites could provide invaluable global carbon

source/sink data, but have inherent individual limitations in spatio-temporal resolution

and coverage.

The current and planned satellite missions, including OCO-2/3, GOSAT/2, Tansat,

and upcoming missions, signify a growing integration and collaboration of multiple

satellite products. This will help address individual satellite limitations. However, it

imposes greater demands on the efficiency and effectiveness of inversion algorithms.

In this context, the role of machine learning methods becomes increasingly significant,
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Figure 4: Comparisons of the ME and RMSE for the retrieved XCO2 results from
2017 to 2020 across the five TCCON sites.

driven by their efficiency, despite current challenges in interpretability, accuracy, and

feature extraction. The primary focus is on refining machine learning to meet the es-

calating computational demands while integrating advancements within multi-satellite

analysis frameworks.

In summary, we see the future direction as progressively integrating improved ma-

chine learning methodologies into collaborative multi-satellite data analysis. This will

maximize spatio-temporal capabilities and derive accurate XCO2 distributions through

efficient inversions.
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[6] How would you resolve any step changes from two adjacent retrieval models if you

would train one model for each region (as you suggested)?

Thank you for raising this question, which aligns with the issues we have contemplated

for future enhancements of our current model. In addressing the potential step changes

that might arise from different models for multiple regions, we propose the following

strategies:

(1) The most straightforward method to mitigate step changes is to employ a single

model capable of robust and smooth application over the largest possible area. However,

adopting this approach poses significant challenges, including increased training costs

and a greater demand for higher generalization capabilities from the network.

(2) Another strategy involves setting overlapping areas at the boundaries of different

models. In regions where models converge, we suggest predesignating overlapping re-

gions. These boundary areas would fall within the applicability range of models from

both adjacent regions. As a result, XCO2 values retrieved in these areas would be

collectively determined based on the results from multiple models.

These strategies are designed to ensure a smoother transition between different models

at regional borders, thus addressing the concerns regarding step changes in satellite

remote sensing algorithms.

Specific Comments:

We sincerely thank the reviewer for the thorough and meticulous review of our manuscript.

We have categorized those specific comments into different aspects to provide clear responses.

[1] Clarity/Wording:

• Line 4: not clear what ‘retrieval efficiency’ means

• Line 4: ‘enhancing the retrieval’ could mean many things. Please be more con-

crete.

• Line 7: retrieval -> retrievals
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• Line 8: inversion of traditional optimization models -> inversion of the operational

optimization model

• Line 11: specify ‘the observed region’

• Line 13: ‘high precision’. We care about accuracy not precision. Don’t agree with

2ppm being ‘high’

• Line 38: remote sensing is not limited spatially or temporally: can’t observe at

night!

• Line 39: vital for future greenhouse gas

• Line 46: ‘Enhancing satellite sensor performance alone cannot produce datasets

sufficient for monitoring carbon sources and sinks’: Why?

• Line 47: Need to explain why ‘efficiency’ is important.

• Line 53: full physics model

• Line 54: atmospheric-surface -> atmospheric and surface

• Line 58: why is ‘cost function’ in quotes?

• Line 61: optimizations requires

• Line 74: ‘GOSAT instrument mode,’ : what does ‘mode’ mean here?

• Line 84: ‘In the present paper, a proof-of-concept study demonstrates a novel

machine learning strategy ‘: How is this work new compared to the literature?

• Line 90: What does ‘multiple sources’ refer to?

• Figure 1: Remove: ‘The map was plotted …’

• Figure 2: Add more info to figure description

• Line 147: ‘The other angles are provided in radians.’ Does this mean the SZA is

given as the cosine? Please make explicit if that is the case.

• Line 173: this in-sample data -> these in-sample data

• Line 175: ‘depicts out-of-sample test results on 5% of the training data that was

excluded from model fitting’. Training data that was not used for training is not

training data.
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• Line 207: Remove sentence: ‘These spectra are detected by the OCO-2 satel-

lite detectors after downwelling absorption, surface reflection, and upwelling re-

absorption in the atmosphere.’

• Line 209: you already introduced abbreviation for WCO2 etc. before.

• Line 243: why is an 1% error impressive?

• Figure 5: ‘proposed’ forward calculation model: that sounds like you are proposing

that model in this paper

• Line 266: ‘uncertainty’-> variability

• Line 269: repetition of text in line 262

• Figure 8: add similar plot for XCO2

We sincerely thank the reviewer again for the thorough and meticulous review of our

manuscript, which has provided many valuable suggestions to help improve the clarity

and wording of the paper. Based on the reviewer’s recommendations, we have carefully

checked through the entire manuscript and made modifications accordingly.

[2] Methodology:

• Line 63: how much time do the two processes in the retrieval take up? Are they

equally time consuming? How much time do they take up compared to any other

calculations that are part of the retrieval?

The qualitative statements here only focused on explaining why the mainstream

inversion algorithm is generally slow. However, we did not perform specific cal-

culations to determine the exact time taken by the two processes in the retrieval.

The time required for these processes depends on various factors and can vary.

While we acknowledge the importance of understanding the specific time alloca-

tion, providing precise figures involves complexities due to numerous influencing

factors. Essentially, the emphasis here is only on the qualitative assessment of

the slowness of the mainstream inversion algorithm rather than quantitative time

measurements.
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• Line 65: ‘While rigorous, standard nonlinear optimization retrievals lack the speed

and scalability required for high-precision satellite-based greenhouse gas mapping.’

That is not true. We have OCO-2, GOSAT, ...

This has been changed to “While rigorous, standard nonlinear optimization re-

trievals lack the speed and scalability required for high-precision real-time or near-

real-time greenhouse gas mapping satellite-based greenhouse gas mapping.”

• Line 76: please expand on the work by Zhao et al (2022). What was their ap-

proach, what accuracy do they get.

In the study conducted by Zhao et al., a two-step machine learning approach was

developed for retrieving atmospheric XCO2 using spectral data from the GOSAT

weak-CO2 band. They established a direct one-dimensional line-by-line forward

model to simulate GOSAT’s observed spectra within the 6180-6280 cm−1 spectral

interval, forming the foundation for training their machine learning model. The

retrieval model operates by initially obtaining the atmospheric spectral optical

thickness, followed by extracting XCO2 from this optical thickness spectra. As a

proof-of-concept, the method was tested in Australia under clear sky conditions

using GOSAT’s spectra, demonstrating an accuracy of approximately 3 ppm for

XCO2 retrieval. The study also discussed potential enhancements to further refine

the accuracy of this retrieval method.

• Line 96: why is the study limited to East Asia? and Line 163: Why use this

subset of months?

The choice to focus on East Asia and use a subset of months in this work is pri-

marily driven by limitations related to our hardware capabilities during both the

training and testing phases. As we delved into the global spectral data observed

by the OCO-2 satellite, along with its corresponding Level 2 data, we encountered

significant challenges in terms of storage capacity and training memory required to

process this extensive dataset. Given these hardware limitations, our strategy was

to target a region where we could manage the data effectively while still achieving

meaningful results. East Asia, selected as the target area for this study, became
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our primary choice. This choice also allowed us to include as many TCCON sites

as possible within our limited hardware setup, which was important for validating

our model.

• Line 109: Could that lead to step changes at the boarders of two models? If yes,

how would you deal with those? What limits you to use one model for all the

data? Have you tried that? If Yes, what were the results?

This issue has been addressed in our response to General Comment [6]. As men-

tioned there, while step changes are a common concern in machine learning models

applied to different training regions, our current research has not specifically ex-

perimented with partitioned parallel modeling for the MLP-XCO2. Our focus

has been on achieving satisfactory results within the East Asian region, and the

suggestions for larger areas are more of a prospective outlook.

• Line 128: If you normalize each spectrum why do you need the sun-earth-distance

as a feature?

Your question regarding Line 128 is indeed reasonable. After conducting addi-

tional analysis of the original MLP-XCO2 network using the XAI methods, we

concluded that the Sun-Earth distance feature was providing the network with

insignificant information. Therefore, it has been removed from our updated model.

• Line 138: Did not understand the following sentence: ‘Although the key retrieval

information for surface pressure comes from the O2-A band, machine learning

models based on simulated data essentially predict XCO2 by fitting the “correct

solutions.”’

Sorry for any confusion. We have clarified this in the revised manuscript, ex-

plicitly addressing the utilization of surface pressure as the input feature for the

machine learning model. “The surface pressure, a critical parameter, is not di-

rectly available and is typically retrieved based on the O2-A band. Therefore, in

our updated manuscript, we first retrieve the surface pressure from the L2MET

file using another compact machine learning model, referred to as MLP-P, before

inputting it into the MLP-XCO2 model. The MLP-P model, trained on historical
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OCO-2 product data, provides stable future predictions of surface pressure.”

• Line 148: ‘velocity of the satellite relative to the Earth’s surface are input into

the model.’: Should that number not be constant and therefore provide not infor-

mation?

Regarding the question about the “relative velocity” mentioned in our manuscript,

I would like to clarify that there was an inaccuracy in our description. The term

was intended to refer to the velocity of the spacecraft along the Line of Sight

(LOS), which is a variable quantity. This LOS velocity can lead to shifts in the

wavenumber of spectral signals due to the Doppler effect. However, as addressed

in our response to General Comment [2], we found that the contribution of this

LOS velocity to the XCO2 measurement is minimal. Consequently, in the updated

version of our model, this parameter has been removed.

• Line 179: ‘This discrepancy indicates the MLP-XCO2 model fails to fully capture

the underlying upward trend in atmospheric CO2.’ Please run an additional ex-

periment to confirm your hypothesis. Hold out 2018 and use 2016,2017,2019,2020

for training.

Thank you for your valuable suggestion. Following your advice, we conducted

additional experiments, the results of which are now included in the updated

manuscript and are specifically illustrated in Figs 4 and 5. Previously, our model,

trained exclusively on data from 2016 to 2018, exhibited annual biases in the test

results for 2019 and 2020. To substantiate our viewpoint, we trained a new model

using OCO-2 product data from 2016, 2018, and 2020. Testing this revised model

on data from 2017 and 2019 demonstrated significantly improved performance

without large bias. These results provide additional evidence supporting our hy-

pothesis regarding the model’s previous limitations in capturing the upward trend

in future atmospheric CO2.

• Figure 3: Why do you show ± 1% and not any other value?

The choice to display the range of ± 1% was intended to create a visually distinct

reference within the graph. There was no specific reasoning behind choosing this

Page 13



AMT-2023-224 Response to Reviewer

particular value; instead, it was selected to provide readers with a clear and easily

comprehensible point of comparison.

• Line 183: Please add more figures and analysis and show how the biases look like

spatially and temporally.

This aligns with your valuable suggestion regarding Line 179. Following your

advice, we conducted additional experiments, the results of which are now included

in the updated manuscript and are specifically illustrated in Figs 4 and 5.

• Figure 5: How did you choose the spectra?

We ensured that each of the four examples originated from different OCO-2 files,

each corresponding to distinct observation times and locations. It’s important

to clarify that these four examples were not specifically chosen to validate the

accuracy of the forward model. Instead, they were randomly selected from the

OCO-2 files we collected.

• Line 275: need more details on how the CO2 profiles are generated

The generation of the vertical CO2 profile is especially critical among all input

parameters. This dataset theoretically determines the generalization domain of

the MLP-XCO2 model. In the forward model based on the ReFRACtor model,

the atmospheric CO2 profile is segmented into 20 sub-layers by pressure. By sta-

tistically analyzing the OCO-2 retrieved CO2 profiles in the target East Asia area

from 2016-2018, the box plots for atmospheric CO2 concentration in each sub-layer

are shown in Fig. 8. From the upper atmosphere down to the ground surface, the

variability of CO2 concentrations gradually increases. This challenges the abil-

ity for the standardization of atmospheric CO2 profiles, particularly closer to the

Earth’s surface. Fortunately, a consistent year-on-year rise in CO2 concentrations

in each sub-layer has been observed over time. Consequently, in our research,

we have proposed a method for generating subsequent CO2 atmospheric profiles.

We incrementally increase the CO2 concentration by 2.5 ppm annually, starting

from the 2016 OCO-2 retrieved CO2 vertical profile. This approach ensures that

we encompass a range of plausible atmospheric CO2 distributions with realistic
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shapes, enabling the generation of simulated spectra for the designated training

years.

Based on 60,000 uniformly sampled observation data points exclusively from the

OCO-2 satellite throughout 2016, we randomly separated it into six sets of 10,000

data points each. Each set represents CO2 profiles from 2016 to the end of 2021,

with a yearly increase of 2.5 ppm added to the original data, reflecting projected

future profiles.

• Line 287: Why did you restrict yourself to 2016 data?

Our research aimed to develop a robust model for future prediction. Here is a

specific scenario: assuming only the data from the year 2016 is available, Can

we utilize the benefits of simulated data to train an MLP-XCO2 model that not

only accurately performs with the available data but also exhibits generalizability

for future predictions, potentially eliminating unstable systematic biases? By

restricting our dataset to a single year, we could better see how well the model

learns and predicts from a limited dataset.

[3] Code/Data:

• Code availability: Please upload the code to train the model, the trained model,

and the training/testing data to a public repository.

The codes and models used in this study have been uploaded to GitHub and can

be accessed at: https://github.com/TaoRen-Rad/XCO2_retrieval.

• Author contributions: FX developed the forward model: The Refractor model

was already developed.

Thanks for pointing this out. It has been rephrased to “FX made updates and

modifications for the Refractor forward model”
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Reviewer-2

Xie et al. present an ML approach for performing XCO2 retrievals based on OCO-2 mea-

surements. Their work follows the publications of David and Bréon who have before shown

the general success of this type of method, applied to the same instrument. This work of Xie

et al. implements a similar technique. The added novelty then seems to be the training on

simulated data (via the ACOS forward model) that is covering a wider range of XCO2, in

order to mitigate the issue of the MLP not being able to follow the growth of atmospheric

CO2. There are some more general issues that the authors did not mention, such as quality

assessment - how does a science data user know an ML-based retrieval is considered “good”

and should be used in a study (or what the uncertainty on the estimate is)? Should people

use the ACOS averaging kernels, since the ML-based method does not provide any?

Thank you for raising this important point. Estimating uncertainty is important for

ensuring the reliability of machine learning models for satellite-based XCO2 retrieval. While

our current MLP-XCO2 model does not provide direct uncertainty estimates, we recognize

this as an area for future improvement.

A number of techniques exist for quantifying uncertainty in deep neural networks [1, 2].

However, generating robust uncertainty estimates requires a substantial volume of matched

input and target data. The ideal dataset would contain numerous examples of OCO-2 obser-

vations paired with corresponding TCCON XCO2 measurements across diverse conditions.

This would enable sampling to assess the variance in our model’s predictions across the full

distribution. Unfortunately, the limited availability of matched OCO-2 and TCCON data,

especially for TCCON sites in “nadir” mode, means the current sample size is insufficient for

comprehensive uncertainty quantification in the presented study.

Our primary contribution in the current study is demonstrating that simulated training

data can complement real OCO-2 data to enable stable and accurate XCO2 retrieval on future

observations. While we do not currently provide uncertainty bounds, estimating prediction

intervals is an important next step.

These have been clarified in the updated manuscript.

The manuscript is very well written and contains useful figures for the most part. In some
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places, minor re-wording or additional explanation would be appropriate and helpful, I have

listed those below. My major comments would be the following:

[1] In Bréon et al. 2022, it is revealed that their ML approach inadvertently resulted in the

NN “using” the weak CO2 band as a proxy for geographical location and time. They

thus removed the weak CO2 band from the training process. However, the authors of

this manuscript do indeed use the weak CO2 band and have not explained as to how

they overcome this issue. That would be important information, especially since they

are following the general layout of Bréon et al. 2022. Maybe the issue does not manifest

itself due to the much smaller region of interest, but the authors must show that.

[2] Related to (1), the “glitch” discovered in Bréon et al. 2022 was only found after they

investigated specific features present in the original ACOS OCO-2 retrievals which

were missing in the ML-based retrievals (specifically, strong plumes). The authors here

only look at broad bulk-type statistics by comparing to TCCON and to ACOS OCO-2

via simple scatter plots. The strengths and weaknesses of the proposed ML-approach

should be investigated more thoroughly by analyzing the results more carefully. Do

the same biases appear in the derived retrievals, compared to the training data? Are

global-scale features retained just like regional and small-scale ones? Are new biases

introduced? There is possibly more to learn from the data than is shown in Figures

10 and 11. While the approach is promising, the authors should attempt to show an

assessment of the quality of the ML-retrievals beyond the simple scatter plots.

My suggestion to the authors would be to (1) demonstrate that their approach, while using

the weak CO2 band, does not result in a loss of local features, such as plumes (analogous

to Bréon et al. 2022, Figure 4). Further (2) they should demonstrate that their ML-based

retrievals retains other characteristics of the training set (regional-scale, or local-scale; observe

differences on maps etc.)

Thank you for your valuable suggestions and concerns. After incorporating feedback from

you and other reviewers, we conducted an analysis using Explainable AI (XAI) on our original

MLP-XCO2 model and optimized the input parameters for the new MLP-XCO2 model. While

we did include the weak CO2 band as an input in our model, our training results with
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simulated data did not show a significant impact of including or excluding the WCO2 band

on the detection of plume features. Instead, we found that the use of retrieved pressure was a

crucial determinant in our training process. Thus, in addition to prior surface pressure input,

we implemented a compact MLP-P model. Trained on historical OCO-2 data, this model

infers surface pressure from spectral and angular information. Unlike MLP-XCO2, MLP-P is

expected to maintain relative stability and broad reliability in its surface pressure retrieval

results in the future, according to our tests.

One possible explanation for this finding could be the idealized nature of the spectral data

in our simulations, which differs from real-world spectra and is not affected by noise. This

idealization might enable the ML model to more accurately capture the underlying relation-

ship between spectral absorption and XCO2. Conversely, using only OCO-2 product data,

potential noise may mask weak absorption band characteristics, leading the ML model to

focus on training better plume detection capabilities in strong absorption bands, as explained

in Bréon et al. 2022.

Regarding the updates made:

• Plume Detection: Following your suggestions, we included tests for plume detection at

potential high emissions sites, such as thermal power plants, using the updated MLP-

XCO2. Figs 12 and 13 in the revised manuscript demonstrate that our updated model

detects sudden increases in XCO2 in areas with plume emissions from OCO-2 spectra,

providing substantial evidence of genuine atmospheric CO2 retrieval from spectral data.

• Error Analysis: In the updated manuscript, we conducted an in-depth analysis of error

metrics across different subregions within East Asia, as shown in Table 4 in the updated

manuscript. These subregions, including Northeast, Northwest, Southwest, and South-

east, exhibit distinct geographical characteristics. Results show consistent predictive

performance across these subregions, indicating uniform inversion effectiveness without

introducing regional biases or instability. This indicates the model’s robustness and

its ability to handle diverse geographic and environmental conditions without sacrific-

ing accuracy or performance consistency, despite variations in regional representation

within the training dataset.
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Minor suggestions:

[1] Line 4: ”low retrieval efficiency” and ”insufficient retrieval accuracy” are somewhat

diffuse terms; I would simply mention challenges regarding computational efficiency.

Thanks for your suggestions. The sentence has been rephrased to “However, the next

generation of greenhouse gas monitoring satellites is expected to face challenges, partic-

ularly in terms of computational efficiency in atmospheric CO2 retrieving and analysis.”

[2] Line 38: ”not limited spatially or temporally” is not quite true - space-based platforms

have observational coverage in space and time as a result of their orbital characteristics

and other instrument parameters.

You are correct and my original description was indeed not accurate and has been

changed to “satellite remote sensing offers broader spatial coverage and more flexible

temporal observation.”

[3] Line 62: The interpolation of absorption coefficients for the calculation of optical prop-

erty inputs for RT calculations are generally quite fast and can be done in less than a

second typically, if the code is optimized enough (amongst other things). The compu-

tational effort is mostly driven by the RT calculations.

Yes, it is true that the majority of the computational cost in the overall forward model is

devoted to solving the radiative transfer equation. This has been changed to “However,

executing these complex optimizations requires computationally expensive interpola-

tion of high-spectral-resolution gas absorption reference data and solving the radiative

transfer equations in each iteration.”

[4] Figure 5: It is not fully clear to me what these represent. Did the authors take

the outputs of the ACOS retrieval L2STD products and use them as input in their

ReFRACtor-driven set-up? Please clarify.

Yes, you’ve got it right, and we apologize for any confusion arising from our unclear

explanation. In Figs 5 and 6, we’re comparing the simulated spectra generated by the

modified ReFRACtor model with the actual observed spectra from the OCO-2 satellite.
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AMT-2023-224 Response to Reviewer

The information required to set up the ReFRACtor model is taken from the OCO-2

L2std v10r product. This has been explained more clearly in the updated manuscript.

[5] Line 338: When discussing the computational effort, it is mentioned that the forward

model takes 12.16s to process two bands; but in forward-model “mode”, Jacobians are

presumably not calculated, so the actual retrieval set-up would be even slower than

the mentioned 36.48s. It would also be very interesting to learn how long the training

process took!

Thank you for your concerns. Calculating Jacobians layer-by-layer does require sig-

nificant computational cost in traditional retrieval models. The mentioned processing

time of 12.16 seconds for two CO2 bands includes rapid Jacobian calculations within

the ReFRACtor model. In a test with ”max_iteration” set to 1, the total time for

computing all three bands and completing one fully optimized iteration was 23.13 sec-

onds on an Intel 13700K CPU. The breakdown is: 8.85 seconds for Band 1 (O2-A), 5.49

seconds for Band 2 (WCO2), 6.54 seconds for Band 3 (SCO2), totaling 20.88 seconds

for the full radiative transfer (RT) computation.

The training process for machine learning models, which includes both generating simu-

lated data and tuning the hyperparameters of the network, can be very time-consuming,

requiring up to hundreds of CPU hours. The most computationally expensive parts -

generating training data and training the model - are done beforehand. So while the

upfront costs of developing a machine learning model can be high, once the model is

trained, making predictions is extremely fast.
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