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Abstract. The increase in greenhouse gas concentrations, particularly CO2, has significant implications for global climate

patterns and various aspects of human life. Spaceborne remote sensing satellites play a crucial role in high-resolution monitor-

ing of atmospheric CO2. However, the next generation of greenhouse gas monitoring satellites is expected to face challenges,

particularly in terms of computational efficiency in atmospheric CO2 retrieving and analysis. To address these challenges, this

study focuses on improving the speed of retrieving the column-averaged dry air mole fraction of carbon dioxide (XCO2) using5

spectral data from the OCO-2 satellite, while still maintaining retrieval accuracy. A novel approach based on neural network

(NN) models is proposed to tackle the nonlinear inversion problems associated with XCO2 retrievals. The study employs a

data-driven supervised learning method and explores two distinct training strategies. Firstly, training is conducted using ex-

perimental data obtained from the inversion of the operational optimization model, which is released as the OCO-2 satellite

products. Secondly, training is performed using a simulated dataset generated by an accurate forward calculation model. The10

inversion and prediction performance of the machine learning model for XCO2 are compared, analyzed, and discussed for the

observed region over East Asia. The results demonstrate that the model trained on simulated data accurately predicts XCO2 in

the target area. Furthermore, when compared to OCO-2 satellite product data, the developed XCO2 retrieval model not only

achieves rapid predictions (<1 ms) with good accuracy (1.8 ppm or approximately 0.45%), but also effectively captures sudden

increases of XCO2 plumes near industrial emission sources. The accuracy of the machine learning model’s retrieval results is15

validated against reliable data from TCCON sites, demonstrating its capability to capture CO2 seasonal variations and annual

growth trends effectively.

1 Introduction

Since the Industrial Revolution, human activities have released large amounts of greenhouse gases, primarily carbon dioxide,

into the atmosphere. This continual increase in emissions has led to global warming and disrupted human societies and ecosys-20
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tems (Zehr, 2015). Accurately estimating atmospheric carbon fluxes is critical for implementing effective emission reduction

strategies at national and regional levels. However, precise carbon flux estimates require assimilating carbon dioxide con-

centration data across regions, using measurements of atmospheric column-averaged dry air mole fraction of carbon dioxide

(XCO2) (Jin et al., 2021). Direct measurement methods like balloons or aircraft have challenges in obtaining global-scale data.

Currently, the main monitoring approach uses spectrometers to record spectra in CO2 absorption bands, followed by inversion25

algorithms to derive XCO2. The two primary monitoring methods are ground-based monitoring stations and satellite remote

sensing.

The Total Carbon Column Observing Network (TCCON) provides ground-based monitoring of atmospheric carbon dioxide

through a global network of high-precision Fourier transform spectrometers (Wunch et al., 2011, 2015). However, TCCON sites

are sparsely distributed and cannot be deployed in regions with unfavorable geography or harsh climates. Consequently, the30

network lacks the extensive spatial coverage required for comprehensive global carbon monitoring and carbon cycle analysis.

Nevertheless, the ultra-high spectral resolution of TCCON spectrometers enables highly accurate retrievals of XCO2. Under

clear sky conditions, TCCON precision can reach 0.1% (<0.4 ppm). Under relatively clear conditions with minimal clouds and

aerosols, precision remains within 0.25% (<1 ppm) (Messerschmidt et al., 2011). Due to such high precision and accuracy,

TCCON data are invaluable for validating satellite-based XCO2 products (Cogan et al., 2012; Wunch et al., 2017; Liang et al.,35

2017) and comparing them to carbon cycle models. However, the spatial limitations of the network underscore the need for

satellite remote sensing to provide regular global measurements of atmospheric carbon dioxide.

High-spectral-resolution greenhouse gas monitoring satellites employ spectrometers on orbit to measure solar radiation

spectra after interaction with the Earth’s atmosphere and ground surface (Meng et al., 2022). Unlike ground monitoring, satel-

lite remote sensing offers broader spatial coverage and more flexible temporal observation globally. Consequently, satellite40

remote sensing has become vital for greenhouse gas monitoring worldwide. Notable ongoing passive CO2 observation mis-

sions include China’s TanSat (Liu et al., 2018), Japan’s GOSAT (2009) and GOSAT-2 (2018) (Hamazaki et al., 2005; Kuze

et al., 2009; Imasu et al., 2023), and the United States’ OCO-2 (2014) and OCO-3 (2018) (Crisp et al., 2017; Eldering et al.,

2019). Upcoming missions are France’s MicroCarb by CNES (Cansot et al., 2023), ESA’s CO2M (Sierk et al., 2021) and

GOSAT-GW (Matsunaga and Tanimoto, 2022). The next-generation greenhouse gases monitoring satellites mainly address45

the challenge of improving the spatial and temporal resolutions of observations. However, single satellites still have resolu-

tion, coverage, and meteorological limitations for regional emission monitoring. Enhancing satellite sensor performance alone

cannot produce datasets sufficient for monitoring carbon sources and sinks. Improving the accuracy and efficiency of satellite

data inversion is also crucial. Integrating data from multiple satellites into a coordinated system is necessary to fully capture

dynamic changes in regional carbon sources and sinks. Developing new high-precision, high-throughput inversion methods to50

efficiently derive accurate greenhouse gas concentration distributions from satellite data is a key challenge needing attention.

The mainstream inversion algorithms (O’Dell et al., 2012; Crisp et al., 2012; Yoshida et al., 2013) for retrieving green-

house gas concentrations from high-spectral-resolution satellite measurements are based on nonlinear Bayesian optimization

theory (Rodgers, 2000) and full physics models. In essence, these algorithms operate by iteratively adjusting estimated gas

concentration profiles and other atmospheric and surface parameters in a radiative forward model to minimize the mismatch55
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between simulated and observed spectra. More specifically, the inversion process starts with an initial atmospheric state guess,

including trace gas concentration profiles as functions of pressure/altitude. Radiative transfer equations are then solved to sim-

ulate the top-of-atmosphere radiance spectrum observed by the satellite for this atmospheric state. The simulated spectrum is

compared to the actual observed spectrum, calculating the difference, covariance and cost function. The input gas profiles and

model parameters are iteratively adjusted to reduce the cost function over multiple rounds of radiative transfer simulations.60

Once simulated spectra closely match observations, the model state is output as the retrieved concentration profile. How-

ever, executing these complex optimizations requires computationally expensive interpolation of high-spectral-resolution gas

absorption reference data and solving the radiative transfer equations in each iteration. Running the radiative forward model re-

peatedly for every adjusted atmospheric state also leads to slow overall inversion. Consequently, optimization-based retrievals

struggle to match increasing satellite observation volumes and throughput needs. This inherent inefficiency has become a major65

obstacle to operational greenhouse gas monitoring using current and planned high-resolution spectrometers. While rigorous,

standard nonlinear optimization retrievals lack the speed and scalability required for high-precision real-time or near-real-

time greenhouse gas mapping satellite-based greenhouse gas mapping. Overcoming this bottleneck necessitates new inversion

approaches that can ingest high-resolution spectral data and retrieve concentrations with both accuracy and computational

efficiency.70

In recent years, machine learning has demonstrated exceptional performance across various research fields, with the dis-

covery of potential nonlinear relationships between data as one of its fundamental and crucial applications. Regarding the

important applications of carbon dioxide (CO2) retrieving, Carvalho et al. (2010) attempted to retrieve the vertical CO2 pro-

files using spectral data from SCIAMACHY’s 6 channels (1000-1700 nm). The overall precision and bias of the retrieved

results were estimated to be approximately 1.0% and less than 3.0%, respectively. Gribanov et al. (2010) developed a two-75

hidden-layer multilayer perceptron (MLP) model to retrieve CO2 vertical concentrations by reflected solar radiation measured

by the GOSAT TANSO-FTS sensor, achieving an inversion accuracy better than 1 ppm for CO2 column-averaged values and

better than 4 ppm for surface CO2 concentrations for the test samples. In the study conducted by Zhao et al. (2022), a two-step

machine learning approach was developed for retrieving atmospheric XCO2 using spectral data from the GOSAT weak-CO2

band. They established a direct one-dimensional line-by-line forward model to simulate GOSAT’s observed spectra within the80

6180-6280 cm−1 spectral interval, forming the foundation for training their machine learning model. The retrieval model oper-

ates by initially obtaining the atmospheric spectral optical thickness, followed by extracting XCO2 from this optical thickness

spectra. As a proof-of-concept, the method was tested in Australia under clear sky conditions using GOSAT’s spectra, demon-

strating an accuracy of approximately 3 ppm for XCO2 retrieval. The study also discussed potential enhancements to further

refine the accuracy of this retrieval method. Keely et al. (2023) employed the machine learning method of Extreme Gradient85

Boosting (Chen and Guestrin, 2016) to develop a nonlinear bias correction approach for OCO-2 version 10 product, signifi-

cantly reducing systematic errors in CO2 measurements and improving data quality, with an increase in sounding throughput

by 14%. David et al. (2021) and Bréon et al. (2022) attempted to establish correlations between XCO2 in the European Centre

for Medium-Range Weather Forecasts’ CAMS (Copernicus Atmosphere Monitoring Service) database and OCO-2 satellite

monitoring spectra using multilayer perceptron artificial neural network models. However, their recent research (Bacour et al.,90

3



2023) indicates that when the test dataset extends beyond the time range covered by the training dataset, the predicted results

show a slight bias, approximately 2.5 ppm per year. Practical deployment of machine learning techniques for remote sensing

demands additional research into the generalization performance of models on new observational data distributions beyond

those encountered during training.

In the present paper, a proof-of-concept study demonstrates a novel machine learning strategy to accurately and efficiently95

retrieve atmospheric XCO2 value from OCO-2 satellite spectral measurements. The model rapidly retrieves XCO2 directly

from OCO-2 spectral data, eliminating the need for repetitive radiative transfer simulations required by traditional nonlinear

optimization retrieval algorithms. Additionally, the model enables the prediction of future XCO2 values. The method was

validated by comparing the retrieved XCO2 against OCO-2 satellite version-10r products and ground-based TCCON mea-

surements, confirming the accuracy of our efficient spectral inversion approach. The model also successfully demonstrated its100

capability to detect local plume features, indicating its potential utility in monitoring and analyzing specific emission sources.

A major innovation in the present study is using accurate radiative transfer simulations to generate the training data, rather

than relying solely on experimental data products. This simulation-based training approach could help overcome limitations

in existing experimental data. Additionally, our neural network model achieves XCO2 retrieval speeds orders of magnitude

faster than traditional methods, reducing computation time from multiple seconds to less than 1 millisecond. This dramatic im-105

provement in retrieval efficiency could enable real-time processing of the massive data volumes expected from next-generation

greenhouse gas monitoring satellites. Importantly, our model achieves a precision of less than 1.8 ppm, competitive with the

current state-of-the-art in retrieval accuracy. We also demonstrate the ability to accurately capture temporal variations and

trends in XCO2 by validating against reliable TCCON ground-based data. This level of verifiable performance is an important

capability. This provides an effective solution for rapid inversion of large-scale, high-spectral-resolution remote sensing data110

in the future.

2 The machine learning based XCO2 retrieval model

2.1 Targeted area and data screening

This proof-of-concept study aims to develop and validate an accurate and efficient machine learning-based XCO2 retrieval

model applied to the long OCO-2 time series for the East Asian region. Currently, similar global XCO2 retrieval models rely115

on computationally intensive physical models. Our goal is to demonstrate a more efficient data-driven approach using MLP

neural networks.

Before developing the machine learning based fast retrieval model, we implemented several preprocessing steps on the

OCO-2 observational dataset (OCO-2 Science Team et al., 2020a) for the target East Asian area spanning between 20°N-

45°N and 110°E-145°E, as shown in Fig. 1. Specifically, we filtered the data both spatially and temporally to focus only on120

observations within this geographic region and time period of interest (2016-2021). Additionally, we filtered the data to only

include Nadir mode observations marked as “Good" based on the quality flag indicator (“xco2_quality_flag” = 0 in OCO-2

Lite v10r files (OCO-2 Science Team et al., 2020b)), as these represent the highest quality OCO-2 measurements.
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Several TCCON ground stations located in this region (e.g. Hefei, Saga, Tsukuba, Xianghe, Anmyeondo and Rikubetsu),

as shown in Fig. 1, provide valuable ground-truth XCO2 data for validating the MLP model predictions. If the model can125

accurately reproduce the TCCON observations from corresponding OCO-2 measurements, it suggests the model has learned

meaningful relationships between the satellite data and underlying CO2 concentrations.

Furthermore, the successful demonstration of accurate XCO2 retrieval over East Asia is a first step toward expanding this

approach globally. The model could be retrained or supplemented with additional regional data to extend coverage. By combin-

ing reliable regional MLP models, global XCO2 maps could be retrieved. This “jigsaw puzzle" strategy would further validate130

the feasibility of global-scale machine learning-based XCO2 retrievals from satellite observations.

2.2 The artificial neural network architecture

This study introduces a multilayer perceptron (MLP) neural network model for estimating XCO2 from OCO-2 satellite obser-

vations. Inspired by David et al. (2021) and Bréon et al. (2022), the “MLP-XCO2” model input layer is designed based on the

measurement principles of OCO-2 and atmospheric radiative transfer effects on the observed spectra, the artificial neural net-135

works architect is shown in Fig. 2. Specifically, the MLP model input layer consists of spectral information, surface pressure,

the corresponding year, and geographical observation information as summarized in Table 1 and explained below.

Spectral Information: The OCO-2 satellite instrument measures high-resolution spectra in three spectral bands centered

around 0.76, 1.6, and 2.0 µm, referred to as the O2-A, weak CO2 (WCO2), and strong CO2 (SCO2) bands, respectively (OCO-2

Science Team et al., 2019). However, only the WCO2 and SCO2 bands are used as inputs for current XCO2 retrievals. The O2-140

A band is excluded as it lacks significant information needed to directly estimate XCO2, based on radiative transfer principles.

Instead, the O2-A band is primarily used in OCO-2’s operational full-physics algorithm for rapid cloud and aerosol screening

prior to CO2 retrieval (O’Dell et al., 2012), effectively excluding observational cases that potentially lead to poor retrieval

quality, thus saving substantial computational costs. Each OCO-2 spectral band is sampled by 1024 detector pixels. However,

Figure 1. The target area for the East Asia region, distribution of observation points (from OCO-2 L2std v10r files) of OCO-2 Nadir mode

in January 2016, and the distribution of TCCON sites in this area.
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Figure 2. Schematic diagram of the MLP-XCO2 model. The input layer includes two interpolated radiance of WCO2 and SCO2 band filtered

through a bad pixel filter, geographical observation information, surface pressure, and the corresponding year. A dropout layer with a 0.1

dropout rate is added between the input layer and the first hidden layer.

Figure 3. Visualization of the OCO-2 satellite data quality across wavelength grid indices. The map illustrates the bad sample list extracted

from OCO-2 Level 1B files for all test cases. On the horizontal axis, sample numbers range from 0 to 194,150, while the vertical axis

represents various wavelength grid indices, ranging from 0 to 1,280. Red coloration indicates problematic data pixels.

over time some detectors have degraded or become unstable in the space environment, resulting in pixels being flagged as145

“bad samples" in quality filters (Marchetti et al., 2019). To maximize high-quality training data, additional preprocessing is

performed on the WCO2 and SCO2 bands. Initially, the beginning and ending spectral ranges corresponding to the most

degraded detectors are removed. The remaining good quality spectra are re-sampled into 525 and 755 wavelength points for the

WCO2 and SCO2 bands, respectively (spectral points in wavelength are detailed in Table 2). To enhance the CO2 absorption
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Table 1. Detailed lists of the input parameters for the MLP-XCO2 model

Input elements Variables Number

Spectral information WCO2 525

SCO2 755

Bad pixel mask 1280

Geographical information Solar zenith 1

Relative azimuth 1

Others Year 1

Pressure 1

Total 2564

Table 2. Wavelength spacing of the input spectra

Band Spectral range [µm] Spectral points [µm]

WCO2 1.5990-1.6151 λ1 = 1.5990, λi+1 = λi +10−4 (6.10− 3.60λi), i = 1-524

SCO2 2.0478-2.0779 λ1 = 2.0478, λi+1 = λi +10−4 (7.58− 3.48λi), i = 1-754

line information, each input spectrum is normalized by dividing the mean radiance within a nearby spectrally transparent150

window lacking absorption features (1.6056-1.6059 µm using 10 points for WCO2; 2.0602-2.0607 µm using 15 points for

SCO2). Additionally, as shown in Fig. 3, it’s noticed that some isolated pixels within the main CO2 absorption bands still

consistently exhibit poor radiance quality. To address this issue, a ’bad sample filter’ has been implemented, which utilizes a

binary record from the OCO-2 L1B database (0 indicates spectra derived from good quality pixels, and 1 indicates pixels with

defects or derived from poor quality interpolations). The settings of this filter are determined solely by the historic records and155

the version of the bad pixel map, ensuring refined data quality and consistency across different versions of the map. To further

address bad samples resulting from natural degradation, we’ve implemented a dropout layer between the initial and the first

intermediate MLP layer, thus enhancing the model’s generalizability with the remaining spectral inputs.

Geographical Information: The model is designed to accept two key observation geometry angles that are determined by

the relative positions of the Sun, satellite, and ground observation point. These include solar zenith angle and relative azimuth160

angle. The solar zenith angle (SZA) features prominently as a cosine term in the radiative transfer equation that defines the

atmospheric radiative processes. Thus, SZA is pre-converted to its cosine form for model input. The relative azimuth angle is a

comprehensive angle that jointly combines the solar azimuth angle and the satellite azimuth angle. It is important to emphasize

that the satellite zenith angle is not utilized in this study. Our current research is based on the Nadir mode of the OCO-2 satellite

observation. In the Nadir observing mode, the satellite zenith angle is assumed to be nearly perpendicular to the Earth’s surface,165

theoretically approaching zero degrees.
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Other parameters: In addition to the primary inputs, two other parameters play critical roles in the MLP-XCO2 model:

the surface pressure, and the corresponding year (e.g., 2016 or 2017, etc.). In traditional retrieval algorithms based on iterative

optimization, accurate surface pressure and a reliable prior CO2 profile are crucial. The importance of this has been highlighted

by the averaging kernel utilized in the OCO-2 retrieval algorithm (Braverman et al., 2015), which indicates a higher sensitivity170

near the surface compared to the stratosphere. To prevent the retrieval of unrealistic CO2 profiles, the prior covariance matrix

imposes significantly stricter constraints in the stratosphere than in the troposphere (O’Dell et al., 2012). In cases where the

prior CO2 profile is inadequate, it can lead to poor results, with minimal or even opposite updates in the stratospheric CO2

profile during the inversion process (Iwasaki et al., 2019). Additionally, in order to achieve the best agreement between observed

and estimated spectra, the retrieval process may inaccurately estimate tropospheric CO2 profiles. To tackle these challenges,175

our investigation suggests that incorporating additional information such as the “year" can offer valuable context for XCO2

retrieval. This conservative approach provides a simple means to enhance prior CO2 information without directly specifying

XCO2 prior values.

3 Satellite product data based machine learning model

In this section, we first developed the MLP-XCO2 model using the OCO-2 v10r product dataset. The primary goal was to180

optimize the hyperparameters of the MLP-XCO2 network. On one hand, we aimed to confirm whether the “slow bias", as

shown in Bacour et al. (2023) is a universal issue across machine learning models with similar architectures. On the other

hand, by fixing the hyperparameters of the MLP-XCO2 network structure, we sought to develop a comparable model using

simulated data in later sections. In theory, MLP models using identical hyperparameters should possess the same fitting and

generalization abilities. By first presenting results from a model trained solely on satellite product data, we can demonstrate185

the limitations of these satellite data-based models. This then motivates the development of new machine learning strategies to

overcome these limitations, as discussed in later sections.

Following the target areas and data screening methods discussed previously, observational data and lists of bad pixels from

the OCO-2 v10r L1B database. Additionally, retrieved surface pressure and XCO2 data were obtained from the L2std database.

Specifically, we obtained data from March, June, September and December spanning the years 2016 to 2020. This timeframe190

was chosen to provide a comprehensive training and testing set for our analysis. In total, the dataset encompassed 194150

samples collected over this five-year period. The year-wise distribution of the samples is as follows: 38626 samples from 2016,

39850 from 2017, 35945 from 2018, 36452 from 2019, and 43277 from 2020.

Before training the MLP-XCO2 model, we should first focus on the development and training of the MLP-P model, which

is crucial for accurate surface pressure retrieval and subsequent input into the MLP-XCO2 model. The MLP-P model, with195

only {500, 200, 50} hidden layer nodes and the same input layer composition as the MLP-XCO2. All hidden layers use ReLU

activation functions. Trained on historical OCO-2 product data from 2016 to 2018, the MLP-P model has demonstrated the

ability to provide stable predictions of surface pressure for the years 2019 to 2020, as illustrated in Fig. ??.
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After completing the data collection, we proceeded to construct the MLP-XCO2 model. To balance model complexity and

performance, the MLP-XCO2 architecture (Fig. 2) comprises five hidden layers, with 1000, 500, 300, 100 and 20 nodes,200

respectively. All hidden layers also use ReLU activation functions. The output layer contains a single node to predict XCO2

values, with a linear activation function. Upon developing the MLP-XCO2 model architecture, in this section, we independently

trained two versions of the MLP-XCO2 model, each based on the aforementioned model structure but with different training

and testing datasets.

Historical Data Training: The first MLP-XCO2 model based on OCO-2 product data was trained using historical XCO2205

collected from 2016 to 2018. The test set for this model comprised product data from the years 2019 and 2020. This setup

allows us to assess the model’s predictive performance using a straightforward historical data approach.

Skipped-Year Training: The second version of the model was trained using data from the years 2016, 2018, and 2020. The

test set for this MLP-XCO2 model included the skipped years, 2017 and 2019. This unique approach enables a clearer and

more direct comparison of the potential limitations of relying solely on historical data for future predictions.210

Figure 4 presents the results for the two trained MLP-XCO2 models on their respective 10% out-of-sample testing datasets.

The first subplot illustrates the predictions of the historical data training model from the 2016-2018 data, and the second subplot

shows similar predictions for the skipped-year training model. Both models achieve high accuracy on these testing datasets,

with a Root Mean Square Error (RMSE) close to 1 ppm and an R-squared score (R2) larger than 0.9. These results demonstrate

the robust interpolation capabilities of both models within their respective training periods, indicating their effectiveness in215

handling known observed scenarios.

Figure 4. Comparison of 10% out-of-sample XCO2 testing cases predicted by the MLP-XCO2 model versus results retrieved by OCO-2

v10r product. Panel (a) is for the historical data training model, while (b) is for the skipped-year training model. The solid red lines in the

figure correspond to the perfect agreement, where shadow areas around the solid red lines represent ±1% of XCO2 deviations.
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Figure 5. Comparison of XCO2 results predicted by the MLP-XCO2 model versus results retrieved by OCO-2 v10r product on test sets

consisting of years not included in the training periods. Panels (a-1) and (a-2) are for the historical data training model on the 2019 and

2020 test sets, respectively. Panels (b-1) and (b-2) are for the skipped-year training model on the 2017 and 2019 test sets, respectively. The

solid red lines in the figure correspond to the perfect agreement, where shadow areas around the solid red lines represent ±1% of XCO2

deviations.

Figure 5 evaluates the generalization capabilities of each MLP-XCO2 model on testing sets comprising years not included in

their respective training datasets. These test sets represent periods outside the range of years used for training. Here, we solely

observed a noticeable positive bias in the predictions from the historical data training model. In contrast, the skipped-year

training model did not exhibit this bias. Performance remains highly accurate on these out-of-range points, further validating220

the model’s robustness for XCO2 prediction within skipped years.

Globally, the average XCO2 in the atmosphere shows a stable annual increase, with an observed rise of approximately 2-3

ppm per year. However, despite the inclusion of the corresponding year in the input layer as a high-correlation parameter,
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there remains a limitation in capturing the atmospheric CO2’s potential rising trend. This highlights the limitations of models

trained solely on historical satellite data, motivating the development of new techniques to incorporate external information225

about temporal CO2 dynamics.

4 Simulation data based machine learning model

In the previous section, the MLP-XCO2 model showed excellent interpolation within the training data range but exhibited

bias when predicting outside this period. To eliminate this bias, we propose using an accurate forward model to simulate

representative training data that covers future atmospheric conditions. If we can pre-generate atmospheric profiles that capture230

possible future states, and simulate their corresponding spectral radiance using an accurate forward model, the MLP-XCO2

model can pre-learn future satellite observations. This could prevent the incremental annual bias and enable accurate XCO2

prediction. The effectiveness of this approach depends on the forward model accuracy and representativeness of the simulated

atmospheres (Zhao et al., 2022).

It is therefore critical to select an appropriate radiative transfer forward model with proven reliability in simulating spectral235

radiance under varying atmospheric conditions. The model must precisely capture the relationship between trace gas concen-

trations, meteorological states, and resulting spectral signatures. With accurate simulations, the machine learning model can

generalize robustly to future atmospheric scenarios. The representative training data should span the expected range of atmo-

spheric variability in XCO2 and interfering species like water vapor. A broad sampling of the state space is key for the model

to learn a robust mapping to XCO2 across multiple atmospheric regimes. The following sections describe our approach for240

accurate spectral radiative transfer simulations and possible (realistic) atmospheric profile generations.

4.1 Forward model

In this study, we developed a forward radiative transfer calculation model using the ReFRACtor (Reusable Framework for

Retrieval of Atmospheric Composition) software (McDuffie et al., 2018). ReFRACtor is an extensible framework for multi-

instrument atmospheric radiative transfer and retrieval, originally derived from the operational OCO-2 retrieval program. Al-245

though ReFRACtor contains both radiative transfer and retrieval capabilities, we only utilized the radiative transfer component.

Specifically, we configured ReFRACtor to simulate top-of-atmosphere radiance spectra that would be observed by OCO-2.

These simulated observations were then used to generate a large training dataset for our machine learning model, MLP-XCO2.

The OCO-2 satellite primarily observes the radiative spectra in the short-wave infrared (SWIR) band. Over the range of

SWIR, the impact of thermal emission can be ignored when simulating the spectra (Crisp et al., 2021). To simulate OCO-2’s250

observed spectra in the WCO2 band around 1.6 µm and the SCO2 band around 2.06 µm, the ReFRACtor model numerically

solves the Eq. (1) of the radiative transfer equation (RTE) (Modest and Mazumder, 2021):

µ
dI(τ,µ,ϕ)

dτ
=−I(τ,µ,ϕ)+J(τ,µ,ϕ) (1)
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where Iη is the observed spectra, µ is the cosine of the observation zenith angle (e.g., µ= cosθ), τ is the vertical optical depth

which can be column-integrated from the molecular absorption coefficients and optical path, ϕ is the azimuthal angle relative255

to the observation point for the satellite and the sun, and J represents the scattering components and inhomogeneous source

term, describing both single scattering and multiple scattering contributions. The term J in RTE can be expressed as Eq. (2):

J(τ,µ,ϕ) =
ω

4π

1∫
−1

2π∫
0

P (τ,µ,ϕ;µ′,ϕ′)I (τ,µ′,ϕ′)dµ′dϕ′ +
ω

4π
P (τ,µ,ϕ;µ′,ϕ′)I0 exp(−τ/µ0) (2)

where ω is the single scattering albedo, P is the scattering phase function, µ′ and ϕ′ are the cosine and azimuth angle of the

incident direction angle in each direction, µ0 is the cosine of the solar zenith, and I0 is the solar intensity in the top of the260

atmosphere.

The ReFRACtor model uses a hybrid model to solve RTE. Specifically, the radiative transfer software LIDORT (Spurr, 2008)

is applied for the scalar and Jacobian computation. Concurrently, the two-order scattering model (Natraj and Spurr, 2007)

is utilized for the additional radiance correction. Within this framework, the ReFRACtor model comprehensively considers

five types of scatter particles for each sounding: two types of clouds, two types of tropospheric aerosols, and one type of265

stratospheric aerosol. The single scattering optical properties for each cloud and aerosol particle, including cross-section,

single scattering albedo, and scattering phase matrix, have been pre-computed and tabulated for the forward calculations.

Furthermore, the model determines surface reflectance as a quadratic spectral albedo for each band which is derived from the

bidirectional reflectance distribution function (BRDF).

An essential step for developing the forward calculation model is referencing the pre-computed look-up table of H2O and270

CO2 to obtain the required spectral absorption coefficients. In this study, the ABSCO v5.1 database (Absorption Coefficient

Table (Payne et al., 2020)) was applied for this purpose. Additionally, we identified and corrected an overestimation of the

solar continuum in ReFRACtor compared to the OCO-2 Level 2 algorithm (Crisp et al., 2021). Without this correction, there

would have been approximately 3 % overestimation in the 1.6 µm band and 6.5 % in the 2.06 µm band. By reducing the solar

continuum, our forward model aligned better with the OCO-2 spectral measurements. These configurations of the absorption275

coefficients and solar continuum were essential to accurately simulate OCO-2 spectra for generating training data across a

variety of observing conditions.

To assess the performance of the forward model, we selected four distinct global locations in the year of 2017. The goal was

to replicate the OCO-2 observed spectra for both the WCO2 1.6 µm absorption band and the SCO2 2.06 µm absorption band

at the four locations. By accessing the OCO-2 L2std database, we acquired atmospheric conditions and pertinent geographical280

data (including spectral albedo, surface pressure, and observation angles) specific to these chosen locations. The outcomes

of our simulations for these four locations are visually depicted in Fig. 6 and Fig. 7, respectively for the two bands, with

accompanying residual plots displayed in the lower panels. It is worth noting that the simulated results exhibit a high level of

agreement with the observed OCO-2 spectra; the relative error remains under 1%, underlining the robustness of the established

forward model. The remarkable agreement between the observed and simulated spectra indicates the excellent performance of285

the forward radiative transfer model. This performance is particularly evident in accurately replicating the satellite observations
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Figure 6. Comparisons of the OCO-2 observed spectra with the simulated ones from the modified ReFRACtor forward calculation model

in WCO2 band. The lower panel shows the relative error between the spectrum observed by the OCO-2 satellite and that simulated by the

forward calculation model. Subplots (a)-(d) correspond to test samples from four different regions. The input vectors for the ReFRACtor

model were derived from OCO-2 L2std retrieved results.

from OCO-2. As a result, this forward model serves as a reliable tool for the development of machine learning models trained

using simulated spectral data.

4.2 Training data generation

To optimize the training of the MLP-XCO2 model, it is essential that the input training vectors cover a wide range of realistic290

variations. Although the idea of randomizing all input parameters to enhance diversity might appear attractive, simulating

satellite spectra involves managing a multitude of interdependent variables. In addition to the CO2 vertical profile, factors

such as surface pressure, temperature profile, water vapor, aerosols, and observation geometry must be accurately represented.

Randomizing all of these parameters would require an impractical amount of data and could result in combinations that have
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Figure 7. Comparisons of the OCO-2 observed spectra with the simulated ones from the corrected ReFRACtor forward calculation model

in SCO2 band. The lower panel shows the relative error between the spectrum observed by the OCO-2 satellite and that simulated by the

forward calculation model. Subplots (a)-(d) correspond to test samples from four different regions. The input vectors for the ReFRACtor

model were derived from OCO-2 L2std retrieved results.

no real-world relevance. For example, the four viewing angles determined by the sun, observation point, and the OCO-2295

satellite have fixed combinations during the satellite’s regular operation. Therefore, randomly selecting angle combinations

lacks practical significance. To ensure that the training data covers valid variations, we conducted an analysis of historical

OCO-2 retrievals. This analysis revealed consistent seasonal patterns and year-to-year trends in most parameters. This supports

the idea of selecting representative samples from statistical distributions rather than relying on complete randomization. By

carefully considering the relationships between parameters and the realities of satellite observations, we can create a reasonably300

sized training dataset that effectively captures the range of expected predictions.

The generation of the vertical CO2 profile is especially critical among all input parameters. This dataset theoretically de-

termines the generalization domain of the MLP-XCO2 model. In the forward model based on the ReFRACtor model, the
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Figure 8. Panel (a) is the boxplot of the vertical distribution of CO2 profiles (from OCO-2 L2std files) retrieved by the OCO-2 satellite over

East Asia in Nadir mode from 2016 to 2018. The horizontal axis represents the atmospheric layers from layer 1 (top of the atmosphere) to

layer 20 (near-surface). The upper and lower bounds of each box show the maximum and minimum CO2 concentrations recorded within that

layer for each year. Panel (b) is the scatter plot of historic XCO2 results retrieved by the OCO-2 inversion program (from L2std files)

.

atmospheric CO2 profile is segmented into 20 sub-layers by pressure. By statistically analyzing the OCO-2 retrieved CO2

profiles in the target East Asia area from 2016-2018, the box plots for atmospheric CO2 concentration in each sub-layer are305

shown in Fig. 8(a), and the historic XCO2 results from the OCO-2 product data are showing in Fig. 8(b). From the upper atmo-

sphere down to the ground surface, the variability of CO2 concentrations gradually increases. This challenges the ability for the

standardization of atmospheric CO2 profiles, particularly closer to the Earth’s surface. Fortunately, a consistent year-on-year

rise in CO2 concentrations in each sub-layer has been observed over time. Consequently, in our research, we have proposed

a method for generating subsequent CO2 atmospheric profiles. We incrementally increase the CO2 concentration by 2.5 ppm310

annually, starting from the 2016 OCO-2 retrieved CO2 vertical profile. This approach ensures that we encompass a range of

plausible atmospheric CO2 distributions with realistic shapes, enabling the generation of simulated spectra for the designated

training years.

In addition to the CO2 profile, Fig. 9 illustrates the year-to-year trends of various observed parameters essential for the

forward calculation model in the East Asian region. These parameters, although they display seasonal variations, consistently315

exhibit annually cyclic patterns. Given that the OCO-2 satellite conducts global observations in cycles of approximately half a

month (15-16 days), this study employed observation parameters and priori data for atmospheric profiles, except for CO2, from

the year 2016 as a reference. These reference data were repetitively utilized for generating simulations in subsequent years.

Regarding the quadratic spectral albedo, the constant term in the training data samples is uniformly set to 1 (to be normalized

before being processed by the neural network). The slope and the quadratic coefficient are stochastically sampled within the320

range of values corresponding to the retrieval results based on the OCO-2 L2 products.
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Figure 9. Scatter plots of atmospheric parameters required for forward calculation models (excluding CO2 profiles) from 2016 to 2020,

sourced from the OCO-2 L2 product. Panel (a) is the surface pressure, (b) is the surface temperature, (c) is the near-surface water vapor

concentration, (d) is the solar zenith, (e) is the Sun-Earth distance, and (f) is the Earth-satellite relative velocity.

Based on 60,000 uniformly sampled observation data points exclusively from the OCO-2 satellite throughout 2016, we

randomly separated it into six sets of 10,000 data points each. Each set represents CO2 profiles from 2016 to the end of 2021,
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with a yearly increase of 2.5 ppm added to the original data, reflecting projected future profiles. The forward model was used

to generate the corresponding simulated spectra for each set. These simulated samples serve as the foundational dataset for325

training the new MLP-XCO2 machine learning model. It’s important to note that this new model relies solely on the data

recorded by the OCO-2 satellite in 2016, as its reference. However, it is essential to acknowledge that real-world observations

by the OCO-2 satellite involve parameters that are not predetermined in future simulations, such as the Empirical Orthogonal

Functions (EOF) parameters, signal-to-noise ratio (SNR), bad sample lists, and the degradation of grating pixels. Therefore,

our new model is trained not only on the 60,000 simulated datasets but also on the 2016 historical data. According to the data330

selection criteria outlined in Section 2.1, we identified a total of 38,626 sets of historical data in 2016, comprising spectral

measurements from OCO-2 and the corresponding XCO2 products. These historical experimental datasets are integrated with

the simulated data, enriching the training datasets. This dual combination and data augmentation techniques ensure that the

model is well-equipped to handle both potential future atmospheric conditions and the current realities of instrument and

spectral measurement capabilities. By doing so, we provide a more comprehensive training strategy that captures both the335

anticipated future scenarios to accurately and efficiently perform XCO2 retrieval for the “future” years from 2017 to the end of

2020.

5 Results and discussions

5.1 Comparison with the OCO-2 satellite product data

To evaluate the retrieval capability of the MLP-XCO2 model trained on a combined dataset of simulated data and historical340

2016 OCO-2 satellite data, the neural network architecture and hyperparameters were intentionally kept identical to the pre-

vious model trained solely on actual OCO-2 satellite product data. Keeping these factors constant isolates the training data

source as the only major difference between the models. This enables a direct, apples-to-apples comparison of how the training

data affects model performance.

Figure 10 (a) shows the retrieval results on 10% out-of-sample testing data that was excluded from model training. Setting345

aside this test subset is a standard technique for evaluating model performance on new examples. The accurate predictions

of the MLP-XCO2 model on the test data suggest the model has learned generalizable patterns not overfit to the training

data. Figure 10 (b) shows the comparison of the retrieval results of the MLP-XCO2 model on real OCO-2 satellite spectral

observations in 2016. Figure 11 displays XCO2 predictions from 2017 to 2020 using test data consistent with Fig. 4 and Fig. 5.

As the simulated training data was generated based on 2016 OCO-2 measurements, testing on 2017-2020 data evaluates the350

model’s ability to make predictions beyond the time frame of the training data. The scatter plots demonstrate the MLP-XCO2

model trained on simulated data can accurately and stably predict the annual XCO2 growth trend, maintaining RMSE less than

1.8 ppm (0.45%). Compared to models trained relying solely on historical satellite product data, the key advantage is the ability

to make reasonable forecasts of future atmospheric XCO2 levels.

Table 3 offers a detailed spatio-temporal comparison of the results presented in Figure 11, enhancing our understanding of the355

MLP-XCO2 model’s performance across distinct subregions within East Asia. This table specifically focuses on a finer spatial
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Figure 10. The comparison of XCO2 results predicted by the MLP-XCO2 model from 10% test data (not involved in training). Panel (a)

shows the predicted XCO2 values for the test data that are derived from the simulated dataset, and panel (b) shows the test data that are

derived from OCO-2 2016 L2 XCO2 data.

segmentation within the broad East Asian longitude and latitude range, dividing it into four subregions. These are defined

based on the geographical demarcation of 35◦N and 130◦E, categorized as Northeast (NE), Northwest (NW), Southeast (SE),

and Southwest (SW) regions, respectively. The results demonstrate that, regardless of the distribution of sample sizes across

these subregions and their varied topographical characteristics (land or ocean), the model maintains a consistent and stable360

performance in each subregion. Furthermore, the error metrics for these individual subregions align closely with the overall

regional errors, indicating a uniformity in the model’s predictive accuracy and reliability across different spatial scales within

East Asia.

Considering these results, by generating possible realistic future prior information for the atmospheric conditions and us-

ing an accurate forward model to simulate the corresponding spectra, the approach avoids inherent biases when extrapolating365

beyond the distribution of the training data. Rather than simply extending trends, the model is constrained by fundamental

physical relationships to interpolate within realistic bounds. This transforms the prediction task into a well-posed interpolation

problem versus an unconstrained extrapolation. The simulated data provides a physical regularization that makes the model’s

outputs to be scientifically sound. By training on synthetic data spanning potential future scenarios, the model learns robust rep-

resentations not tightly coupled to specifics of the training data time period. This enables high-fidelity inversion and prediction370

of XCO2 even for future time periods beyond available measurements.

5.2 Detecting plume features from the OCO-2 observation

In a further effort to deeply analyze the ability of our MLP-XCO2 model to capture key XCO2 information from spectral data,

we focused on plume detection at sites of potentially high emissions, such as thermal power plants, in our target regions from
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Figure 11. Comparison of XCO2 results predicted by the MLP-XCO2 model versus results retrieved by OCO-2 v10r product from 2017-

2020. Panel (a), (b), (c), and (d) display the predictions of the MLP-XCO2 model from 2017 to 2020, respectively.

2017 to 2020. Utilizing the data in the work of Li et al. (2023), we sourced test samples from multiple instances of XCO2375

enhancements detected by the OCO-2 satellite in Nadir mode observations. These samples were located in close proximity to

known large power plants, providing an ideal scenario for assessing retrieval accuracy in detecting localized emission sources.

Figure 12 presents a geographical map that highlights XCO2 predictions in the test samples from the MLP-XCO2 model

and compares them with results retrieved by the OCO-2 v10r product. This map clearly marks power plants with red triangles,

establishing a visual link between industrial emission sources and observed points where elevated XCO2 levels are detected.380

Figure 13 further explores this relationship by presenting a longitude-based comparison of XCO2 results. This figure plots the

same data points from Figure 12 against their corresponding longitude coordinates. This arrangement facilitates a direct and

intuitive comparison of the trends in XCO2 enhancements as captured by our model and as reported by the OCO-2 product.
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Table 3. Spatio-temporal comparison of XCO2 predicted by MLP-XCO2 model results versus results retrieved by OCO-2 across four

subregions. These subregions are delineated based on the geographical demarcation of 35◦N and 130◦E as: Northeast (NE), Northwest

(NW), Southeast (SE), and Southwest (SW) regions, respectively.

Year Full [Number / ME / RMSE] NE NW SE SW

2016 38626 / 0.043 / 0.656 2714 / -0.037 / 0.600 26111 / 0.053 / 0.664 451 / 0.010 / 0.583 9350 / 0.041 / 0.651

2017 39850 / 0.358 / 1.563 1235 / 0.752 / 1.494 30774 / 0.392 / 1.594 244 / 0.701 / 1.537 7597 / 0.147 / 1.443

2018 35945 / 0.114 / 1.497 1854 / -0.073 / 1.356 27288 / 0.145 / 1.483 745 / 0.525 / 1.398 6058 / -0.015 / 1.609

2019 36452 / -0.242 / 1.732 1777 / -0.642 / 1.552 26082 / -0.427 / 1.863 304 / 0.345 / 1.432 8289 / 0.405 / 1.296

2020 43277 / -0.268 / 1.679 1841 / 0.111 / 1.586 34971 / -0.461 / 1.696 270 / -0.413 / 1.917 6195 / 0.712 / 1.595

In both figures above, it is visually evident that observation points near power plants show sudden increases in XCO2

values, aligning with the trend from the OCO-2 v10r product. This trend is particularly pronounced when compared to points385

farther away from these emission sources. Considering that these samples are nearly identical in terms of observation angles

and times, such consistency is a powerful confirmation to our model’s capability to retrieve genuine atmospheric XCO2 from

OCO-2 spectral data.

Figure 12. Geographical map of XCO2 predictions by the MLP-XCO2 model compared with OCO-2 v10r product results. The potential

plume enhancements and the large power plants (marked by red triangles) were screened in Nadir mode OCO-2 observations as reported in

the work of Li et al. (2023).
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Figure 13. Longitude-based scatter comparison of XCO2 predicted by the MLP-XCO2 model versus results retrieved by OCO-2 v10r

product. The potential plume enhancements were screened in Nadir mode OCO-2 observations as reported in the work of Li et al. (2023).

ME represents the mean value of XCO2 within the longitude range shown in the figure.

5.3 Comparison with the TCCON data

A comparison of the retrieved results from the OCO-2 satellite showed that the RMSE of our developed MLP-XCO2 model390

was around 2 ppm. In other words, our results could be worse or better than OCO-2 satellite, requiring further comparison with

ground-based measurements. To further validate the accuracy of the MLP-XCO2 model, we compared the XCO2 retrievals

from the OCO-2 v10r Nadir mode products, the MLP-XCO2 model outputs, and ground-based measurements from five TC-

CON sites within the study region (Fig. 1). As summarized in Table 4, spatiotemporal screening was applied to the TCCON

and OCO-2 data to obtain comparable observations. The five TCCON sites included were: Tsukuba (Morino et al., 2022b),395

Saga (Shiomi et al., 2022), Hefei (Liu et al., 2022), Xianghe (Zhou et al., 2022) and Rikubetsu (Morino et al., 2022a). The

Anmyeondo site was excluded from this analysis as the XCO2 data was not updated in the TCCON GGG2020 database, and

was only available until early 2018 in the GGG2014 database.

Table 4. Spatio-temporal screening conditions for TCCON sites and OCO-2 satellite Nadir mode observations

TCCON site Local time Observed location Sample number Reference

Tsukuba 12 : 48− 12 : 58 36.05◦N± 0.5◦,140.12◦E± 0.5◦ 2078 Morino et al. (2022b)

Saga 13 : 30− 13 : 40 33.24◦N± 0.5◦,130.29◦E± 0.5◦ 87 Shiomi et al. (2022)

Hefei 13 : 20− 13 : 30 31.90◦N± 0.5◦,117.17◦E± 0.5◦ 984 Liu et al. (2022)

Xianghe 13 : 15− 13 : 25 39.80◦N± 0.2◦,116.96◦E± 0.2◦ 2770 Zhou et al. (2022)

Rikubetsu 13 : 20− 13 : 30 43.46◦N± 0.2◦,143.77◦E± 0.2◦ 723 Morino et al. (2022a)

Figure 14-1 presents time series comparisons of XCO2 retrievals from the different TCCON sites, MLP-XCO2 model, and

OCO-2 Nadir observations. Figure 14-2 displays the box plots of the differences between the MLP-XCO2 model results, OCO-400

2 products, and TCCON site data. The plots at each of the five TCCON sites demonstrate the simulated data-trained MLP-

XCO2 model accurately predicts XCO2 from the OCO-2 spectra. The model successfully captures seasonal variations and the
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long-term XCO2 growth trend over the 4-year study period. The reliable performance over time and across multiple TCCON

sites further validates the model has learned generalizable representations of carbon cycle processes rather than overfitting

to specifics of the simulated training data. By using realistic future simulations for training, the model provides robust and405

unbiased XCO2 retrievals across a range of atmospheric conditions.

5.4 Retrieval efficiency

In this study, the ReFRACtor forward model required 12.16 seconds per simulation case (two absorption bands) using an

AMD Ryzen-7 5800X computer. The OCO-2 retrieval based on Bayesian optimization typically needs over three iterations to

converge, indicating at least 36.48 seconds per retrieval. In contrast, the MLP-XCO2 model demonstrated remarkable efficiency410

on the same hardware. It required just 1.14 seconds total to retrieve XCO2 from 6642 OCO-2 test spectra across all five TCCON

sites, averaging 0.17 milliseconds per sample with GPU RTX 3080Ti. This rapid inversion drastically reduces processing times

compared to traditional methods. While machine learning models need significant upfront time for training data generation

and hyperparameter tuning, the prediction is extremely fast once deployed. This enables near real-time processing ideal for

operational satellite data streams. Furthermore, the precision and efficiency of neural networks make them well-suited to meet415

future demands of high-resolution global greenhouse gas monitoring, enabling millisecond-scale XCO2 retrievals suitable for

large-scale satellite analysis.

6 Conclusions

This proof-of-concept study aims to use the efficient regression inversion capability of the machine learning method to develop

machine learning models based on simulated atmospheric radiative transfer data for efficient inversion of satellite observed420

spectra to retrieve XCO2. This helps overcome the low efficiency in traditional optimization-based iterative algorithms for

XCO2 retrievals. In the presented study, XCO2 inversion models using both satellite product based and simulation based data

were developed, trained and tested. Long-time series inversion and prediction of OCO-2 observations over East Asia were

also performed using the developed models. The results were compared with OCO-2 and TCCON retrievals, showing the

simulation data based machine learning models can effectively eliminate lagging biases while achieving millisecond-level425

(<1 ms) inversion efficiency, good accuracy (less than 1.8 ppm), local emission source capture, and long-term prediction

stability. It should be noted that our current MLP-XCO2 model does not provide direct uncertainty estimates, estimating

prediction intervals is an important next step for future improvements. Additionally, to provide good prior information while

preventing the model from potentially focusing solely on interpolation rather than learning about actual CO2 increases within

spectra, our investigation has suggested that integrating additional contextual information, such as the “year," can offer valuable430

context for XCO2 retrieval. However, the underlying mechanisms behind this improvement may require further investigation.
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Figure 14. Comparisons of XCO2 results from 2017 to 2020 across five TCCON sites. Panel (a-1)-(e-1) show the time series comparisons

of XCO2 retrievals from the different TCCON sites, MLP-XCO2 model, and OCO-2 L2Lite Nadir observations for the Tsukuba, Saga,

Hefei, Xianghe and Rikubetsu site, respectively, with data screening conditions as defined in Table 4. Panel (a-2)-(e-2) present the boxplots

depicting the differences (∆XCO2) between the MLP-XCO2 model and OCO-2 products in comparison to the TCCON results for each year.

The boxes showing the middle half of the data, from the 25% to the 75% percentiles. The median (50%) is represented by the line within

each box. The whiskers encompass the central 90% of the data, extending from the 5% to the 95% percentiles.
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