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Abstract. The increase in greenhouse gas concentrations, particularly CO2, has significant implications for global climate pat-

terns and various aspects of human life. Spaceborne remote sensing satellites play a crucial role in high-resolution monitoring

of atmospheric CO2. However, the next generation of greenhouse gas monitoring satellites is expected to face challenges such

as low retrieval efficiency and insufficient retrieval accuracy. To address these challenges, this study focuses on enhancing the

retrieval of column-averaged dry air mole fraction of carbon dioxide (XCO2) using spectral data from the OCO-2 satellite. A5

novel approach based on neural network (NN) models is proposed to tackle the nonlinear inversion problems associated with

XCO2 retrieval. The study employs a data-driven supervised learning method and explores two distinct training strategies.

Firstly, training is conducted using experimental data obtained from the inversion of traditional optimization models, which are

released as the OCO-2 satellite products. Secondly, training is performed using a simulated dataset generated by an accurate

forward calculation model. The inversion and prediction performance of the machine learning model for XCO2 is compared,10

analyzed, and discussed for the observed region. The results demonstrate that the model trained on simulated data accurately

predicts XCO2 in the target area. Furthermore, when compared to OCO-2 satellite product data, the developed XCO2 retrieval

model achieves rapid predictions (<1 ms) with high precision (2 ppm or approximately 0.5%). The accuracy of the machine

learning model’s retrieval results is validated against reliable data from TCCON sites, demonstrating its capability to capture

CO2 seasonal variations and annual growth trends effectively.15

1 Introduction

Since the industrial revolution, human activities have released large amounts of greenhouse gases, primarily carbon dioxide,

into the atmosphere. This continual increase in emissions has led to global warming and disrupted human societies and ecosys-

tems (Zehr, 2015). Accurately estimating atmospheric carbon fluxes is critical for implementing effective emission reduction

strategies at national and regional levels. However, precise carbon flux estimates require assimilating carbon dioxide con-20
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centration data across regions, using measurements of atmospheric column-averaged dry air mole fraction of carbon dioxide

(XCO2) (Jin et al., 2021). Direct measurement methods like balloons or aircraft have challenges obtaining global-scale data.

Currently, the main monitoring approach uses spectrometers to record spectra in CO2 absorption bands, followed by inversion

algorithms to derive XCO2. The two primary monitoring methods are ground-based monitoring stations and satellite remote

sensing.25

The Total Carbon Column Observing Network (TCCON) provides ground-based monitoring of atmospheric carbon dioxide

through a global network of high-precision Fourier transform spectrometers (Wunch et al., 2011, 2015). However, TCCON

sites are sparsely distributed and cannot be deployed in regions with unfavorable geography or harsh climate. Consequently, the

network lacks the extensive spatial coverage required for comprehensive global carbon monitoring and carbon cycle analysis.

Nevertheless, the ultra-high spectral resolution of TCCON spectrometers enables highly accurate retrievals of XCO2. Under30

clear sky conditions, TCCON precision can reach 0.1% (<0.4 ppm). Under relatively clear conditions with minimal clouds and

aerosols, precision remains within 0.25% (<1 ppm) (Messerschmidt et al., 2011). Due to such high precision and accuracy,

TCCON data are invaluable for validating satellite-based XCO2 products (Cogan et al., 2012; Wunch et al., 2017; Liang et al.,

2017) and comparing them to carbon cycle models. However, the spatial limitations of the network underscore the need for

satellite remote sensing to provide regular global measurements of atmospheric carbon dioxide.35

High-spectral-resolution greenhouse gas monitoring satellites employ spectrometers on orbit to measure solar radiation spec-

tra after interaction with the Earth’s atmosphere and ground surface (Meng et al., 2022). Unlike ground monitoring, satellite

remote sensing is not limited spatially or temporally, offering potential for high-resolution dynamic global and regional concen-

tration monitoring. Consequently, satellite remote sensing has become vital for future greenhouse gas monitoring worldwide.

Notable ongoing passive CO2 observation missions include China’s TanSat (Liu et al., 2018), Japan’s GOSAT (2009) and40

GOSAT-2 (2018) (Hamazaki et al., 2005; Kuze et al., 2009; Imasu et al., 2023), and the United States’ OCO-2 (2014) and

OCO-3 (2018) (Crisp et al., 2017; Eldering et al., 2019). Upcoming missions are France’s MicroCarb by CNES (Cansot et al.,

2023), ESA’s CO2M (Sierk et al., 2021) and GOSAT-GW (Matsunaga and Tanimoto, 2022). The next-generation greenhouse

gases monitoring satellites mainly address the challenge of improving the spatial and temporal resolutions of observations.

However, single satellites still have resolution, coverage, and meteorological limitations for regional emission monitoring.45

Enhancing satellite sensor performance alone cannot produce datasets sufficient for monitoring carbon sources and sinks. Im-

proving the accuracy and efficiency of satellite data inversion is also crucial. Integrating data from multiple satellites into a

coordinated system is necessary to fully capture dynamic changes in regional carbon sources and sinks. Developing new high-

precision, high-throughput inversion methods to efficiently derive accurate greenhouse gas concentration distributions from

satellite data is a key challenge needing attention.50

The mainstream inversion algorithms (O’Dell et al., 2012; Crisp et al., 2012; Yoshida et al., 2013) for retrieving green-

house gas concentrations from high-spectral-resolution satellite measurements are based on nonlinear Bayesian optimization

theory (Rodgers, 2000) and full physical models. In essence, these algorithms operate by iteratively adjusting estimated gas

concentration profiles and other atmospheric-surface parameters in a radiative forward model to minimize the mismatch be-

tween simulated and observed spectra. More specifically, the inversion process starts with an initial atmospheric state guess,55
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including trace gas concentration profiles as functions of pressure/altitude. Radiative transfer equations are then solved to sim-

ulate the top-of-atmosphere radiance spectrum observed by the satellite for this atmospheric state. The simulated spectrum is

compared to the actual observed spectrum, calculating the difference, covariance and “cost function". The input gas profiles

and model parameters are iteratively adjusted to reduce the cost function over multiple rounds of radiative transfer simu-

lations. Once simulated spectra closely match observations, the model state is output as the retrieved concentration profile.60

However, executing these complex optimizations requires computationally expensive interpolation of high-spectral-resolution

gas absorption reference data in each iteration. Running the radiative forward model repeatedly for every adjusted atmospheric

state also leads to slow overall inversion. Consequently, optimization-based retrievals struggle to match increasing satellite

observation volumes and throughput needs. This inherent inefficiency has become a major obstacle to operational greenhouse

gas monitoring using current and planned high-resolution spectrometers. While rigorous, standard nonlinear optimization re-65

trievals lack the speed and scalability required for high-precision satellite-based greenhouse gas mapping. Overcoming this

bottleneck necessitates new inversion approaches that can ingest high-resolution spectral data and retrieve concentrations with

both accuracy and computational efficiency.

In recent years, machine learning has demonstrated exceptional performance across various research fields, with the dis-

covery of potential nonlinear relationships between data being one of its fundamental and crucial applications. Regarding the70

important applications of carbon dioxide (CO2) retrieving, Carvalho et al. (2010) attempted to retrieve the vertical CO2 profiles

using spectral data from SCIAMACHY’s 6 channels (1000-1700 nm). The overall precision and bias of the retrieved results

were estimated to be approximately 1.0% and less than 3.0%, respectively. Gribanov et al. (2010) developed a two-hidden-

layer multilayer perceptron (MLP) model to retrieve CO2 vertical concentrations for the GOSAT instrument mode, achieving

an inversion accuracy better than 1 ppm for CO2 column-averaged values and better than 4 ppm for surface CO2 concentrations75

for the test samples. Zhao et al. (2022) proposed a two-step machine learning model, utilizing simulated training samples, to

predict XCO2 from GOSAT observations in Australia from 2010 to 2016. David et al. (2021) and Bréon et al. (2022) attempted

to establish correlations between XCO2 in the European Centre for Medium-Range Weather Forecasts’ CAMS (Copernicus

Atmosphere Monitoring Service) database and OCO-2 satellite monitoring spectra using multilayer perceptron artificial neural

network models. However, their recent research (Bacour et al., 2023) indicates that when the test dataset extends beyond the80

time range covered by the training dataset, the predicted results show a slight bias, approximately 2.5 ppm per year. Practical

deployment of machine learning techniques for remote sensing demands additional research into the generalization perfor-

mance of models on new observational data distributions beyond those encountered during training.

In the present paper, a proof-of-concept study demonstrates a novel machine learning strategy to accurately and efficiently

retrieve atmospheric XCO2 value from OCO-2 satellite spectral measurements. The model rapidly retrieves XCO2 directly85

from OCO-2 spectral data, eliminating the need for repetitive radiative transfer simulations required by traditional nonlinear

optimization retrieval algorithms. Additionally, the model enables prediction of future XCO2 values. The method was validated

by comparing the retrieved XCO2 against OCO-2 satellite version-10r products and ground-based TCCON measurements,

confirming the accuracy of our efficient spectral inversion approach. This provides an effective solution for rapid inversion of

large-scale, high-spectral-resolution remote sensing data from multiple sources in the future.90
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2 The machine learning based XCO2 retrieval model

2.1 Targeted area and data screening

This proof-of-concept study aims to develop and validate an accurate and efficient machine learning-based XCO2 retrieval

model applied to the long OCO-2 time series for the East Asian region. Currently, similar global XCO2 retrieval models rely

on computationally intensive physical models. Our goal is to demonstrate a more efficient data-driven approach using MLP95

neural networks.

Before developing the machine learning based fast retrieval model, we implemented several preprocessing steps on the

OCO-2 observational dataset (OCO-2 Science Team et al., 2020a) for the target East Asian area spanning between 20°N-

45°N and 110°E-145°E, as shown in Fig. 1. Specifically, we filtered the data both spatially and temporally to focus only on

observations within this geographic region and time period of interest (2016-2021). Additionally, we filtered the data to only100

include “Nadir" mode observations marked as “Good" based on the quality flag indicator (“xco2_quality_flag” = 0 in OCO-2

Lite v10r files (OCO-2 Science Team et al., 2020b)), as these represent the highest quality OCO-2 measurements.

Several TCCON ground stations located in this region (e.g. Hefei, Saga, Tsukuba, Xianghe, Anmyeondo and Rikubetsu),

as shown in Fig. 1, provide valuable ground-truth XCO2 data for validating the MLP model predictions. If the model can

accurately reproduce the TCCON observations from corresponding OCO-2 measurements, it suggests the model has learned105

meaningful relationships between the satellite data and underlying CO2 concentrations.

Furthermore, successful demonstration of accurate XCO2 retrieval over East Asia is a first step toward expanding this ap-

proach globally. The model could be retrained or supplemented with additional regional data to extend coverage. By combining

reliable regional MLP models, global XCO2 maps could be retrieved. This “jigsaw puzzle" strategy would further validate the

feasibility of global-scale machine learning-based XCO2 retrievals from satellite observations.110

Figure 1. The target area for the East Asia region, distribution of observation points (from OCO-2 L2std v10r files) of OCO-2 Nadir mode

in January 2016, and the distribution of TCCON sites in this area. The map was plotted by Python-Basemap 1.3.4 version.
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2.2 The artificial neural network architecture

This study introduces a multilayer perceptron (MLP) neural network model for estimating XCO2 from OCO-2 satellite obser-

vations. Inspired by David et al. (2021) and Bréon et al. (2022), the “MLP-XCO2” model input layer is designed based on the

measurement principles of OCO-2 and atmospheric radiative transfer effects on the observed spectra, the artificial neural net-

works architect is shown in Fig. 2. Specifically, the MLP model input layer consists of spectral information, prior atmospheric115

data, and geographical observation information as summarized in Table 1 and explained below.

Figure 2. Schematic diagram of the MLP model.

Table 1. Detailed lists of the input layer of the MLP-XCO2 model

Input elements Variables Number

Spectral information WCO2 525

SCO2 755

Prior data Water vapor profile 20

Temperature profile 20

Surface pressure 1

Geographical information Solar zenith 1

Solar azimuth 1

Satellite zenith 1

Satellite azimuth 1

Sun-Earth distance 1

Relative velocity 1

Total 1327

5

https://doi.org/10.5194/amt-2023-224
Preprint. Discussion started: 20 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 2. Wavelength spacing of the input spectra

Band Spectral range [µm] Spectral points [µm]

WCO2 1.5990-1.6151 λ1 = 1.5990, λi+1 = λi +10−4 (6.10− 3.60λi), i = 1-524

SCO2 2.0478-2.0779 λ1 = 2.0478, λi+1 = λi +10−4 (7.58− 3.48λi), i = 1-754

Spectral Information: The OCO-2 satellite instrument measures high-resolution spectra in three spectral bands centered

around 0.76, 1.6, and 2.0 µm, referred to as the O2-A, weak CO2 (WCO2), and strong CO2 (SCO2) bands, respectively (OCO-2

Science Team et al., 2019a). However, only the WCO2 and SCO2 bands are used as inputs for current XCO2 retrievals. The O2-

A band is excluded as it lacks significant information needed to directly estimate XCO2, based on radiative transfer principles.120

Instead, the O2-A band is primarily used in OCO-2’s operational full-physics algorithm for rapid cloud and aerosol screening

prior to CO2 retrieval (O’Dell et al., 2012), saving substantial computational costs. Each OCO-2 spectral band is sampled

by 1024 detector pixels. However, over time some detectors have degraded or become unstable in the space environment,

resulting in pixels being flagged as “bad samples" in quality filters (Marchetti et al., 2019). To maximize high-quality training

data, additional preprocessing is performed on the WCO2 and SCO2 bands. Specifically, the beginning and ending spectral125

ranges corresponding to the most degraded detectors are removed. The remaining good quality spectra are re-sampled into

525 and 755 wavelength points for the WCO2 and SCO2 bands, respectively (spectral points in wavelength are detailed in

Table 2). To enhance the CO2 absorption line information, each input spectrum is normalized by dividing the mean radiance

within a nearby spectrally transparent window lacking absorption features (1.6056-1.6059 µm using 10 points for WCO2;

2.0602-2.0607 µm using 15 points for SCO2).130

Prior Data: The traditional inversion algorithm utilized in the OCO-2 satellite retrieves atmospheric temperature and water

vapor profiles by optimizing a single parameter for each. However, accurate retrievals of XCO2 require complete water vapor

profile information to compute the layer weighting functions. Furthermore, variations in temperature between atmospheric lay-

ers directly impact the spectral absorption of greenhouse gases like carbon dioxide and water vapor, altering the propagation of

solar radiation signals through the atmosphere. This ultimately affects the intensity of radiation signals received by the satel-135

lite sensor. Therefore, this study incorporates prior temperature and water vapor data (from OCO-2 MET v10r files (OCO-2

Science Team et al., 2019b)) for all defined atmospheric layers as inputs into the deep neural network model to improve repre-

sentation of the true atmospheric state. Additionally, surface pressure is another input. Although the key retrieval information

for surface pressure comes from the O2-A band, machine learning models based on simulated data essentially predict XCO2

by fitting the “correct solutions." As long as any input surface pressure is provided, the forward calculation model can simulate140

the corresponding correct spectrum. Whether the O2-A band is required to provide the necessary surface pressure information

is irrelevant. Therefore, in the input data of our model, O2-A information was not added to increase the complexity and training

difficulty of the neural network.

Geographical Information: The model is designed to accept four key observation geometry angles that are determined

by the relative positions of the Sun, satellite, and ground observation point. These include the satellite zenith angle, satellite145
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azimuth angle, solar zenith angle, and solar azimuth angle. The solar zenith angle features prominently as a cosine term

in the radiative transfer equation that defines the atmospheric radiative processes. The other angles are provided in radians.

Additionally, time-dependent satellite measurements including the Earth-Sun distance and the velocity of the satellite relative

to the Earth’s surface are input into the model. The Earth-Sun distance has a direct scaling effect on the upper limit of the solar

spectral intensity distribution. The relative velocity impacts the spectral mapping between the OCO-2 spectrometer grating150

points and wavelengths. Both factors directly influence the intensity distribution of the measured high-resolution radiance

spectra.

3 Satellite product data based machine learning model

In this section, we first developed the MLP-XCO2 model using the OCO-2 v10r product dataset. The primary goal was to

optimize the hyperparameters of the MLP-XCO2 network. On one hand, we aimed to confirm whether the “slow bias", as155

shown in Bacour et al. (2023) is a universal issue across machine learning models with similar architectures. On the other

hand, by fixing the hyperparameters of the MLP-XCO2 network structure, we sought to develop a comparable model using

simulated data in later sections. In theory, MLP models using identical hyperparameters should possess the same fitting and

generalization abilities. By first presenting results from a model trained solely on satellite product data, we can demonstrate

the limitations of these satellite data-based models. This then motivates the development of new machine learning strategies to160

overcome these limitations, as discussed in later sections.

Following the target areas and data screening methods discussed previously, we collected observational data from the OCO-2

v10r L1B database and XCO2 results from the L2Lite database. Specifically, we obtained data from March, June, September

and December of 2016-2018 to serve as the training set. Data from the same corresponding months in 2019-2020 were reserved

as the test set to evaluate the predictive capability of the MLP-XCO2 model on future cases. Robust future prediction is essential165

for the model to satisfy requirements for large-scale, high-precision greenhouse gas distribution retrieval. In total, the training

set contained 86613 samples from 2016-2018, the 2019 test set has 24204 samples, and the 2020 test set contains 32292

samples.

To balance model complexity and performance, the MLP-XCO2 architecture (Fig. 2) comprises five hidden layers, with

1000, 500, 300, 100 and 20 nodes, respectively. All hidden layers use ReLU activation functions. The output layer contains a170

single node to predict XCO2 values, with a linear activation function.

Figure 3 presents results for the MLP-XCO2 model on two different test sets. The first subplot shows predicted XCO2

values on the 2016-2018 training data. The model achieves high accuracy on this in-sample data, with Root Mean Square Error

(RMSE) below 1 ppm. This demonstrates its strong interpolation capability within the training time range. The second subplot

depicts out-of-sample test results on 5% of the training data that was excluded from model fitting. Performance remains highly175

accurate on these held-out points, further validating the model’s robustness for XCO2 prediction within the 2016-2018 period.

Figure 4 evaluates model generalization to the 2019 and 2020 test sets, which are outside the training time range. Here, we

observed a noticeable positive bias in the predictions. Furthermore, this offset increases from 2019 to 2020. The 2.5-3 ppm
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growth in bias aligns with the observed rise in global average XCO2 of approximately 2.5-3 ppm/year over this period. This

discrepancy indicates the MLP-XCO2 model fails to fully capture the underlying upward trend in atmospheric CO2. While180

prediction is excellent within the training period, the model does not extrapolate well to future years experiencing CO2 growth.

This highlights limitations of models trained solely on historical satellite data, motivating the development of new techniques

to incorporate external information about temporal CO2 dynamics.

Figure 3. Comparison of XCO2 results predicted by the MLP-XCO2 model versus results retrieved by OCO-2 v10r product from 2016-2018.

Panel (a) is for the 95% training data, while (b) is for the 5% test data (not involved in training). The solid red lines in the figure correspond

to perfect agreement, where shadow areas around the solid red lines represent ±1% of XCO2 deviations.

4 Simulation data based machine learning model

In the previous section, the MLP-XCO2 model showed excellent interpolation within the training data range but exhibited185

bias when predicting outside this period. To eliminate this bias, we propose using an accurate forward model to simulate

representative training data that covers future atmospheric conditions. If we can pre-generate atmospheric profiles that capture

possible future states, and simulate their corresponding spectral radiance using a accurate forward model, the MLP-XCO2

model can pre-learn future satellite observations. This could prevent the incremental annual bias and enable accurate XCO2

prediction. The effectiveness of this approach depends on the forward model accuracy and representativeness of the simulated190

atmospheres (Zhao et al., 2022).

It is therefore critical to select an appropriate radiative transfer forward model with proven reliability in simulating spectral

radiance under varying atmospheric conditions. The model must precisely capture the relationship between trace gas concen-

trations, meteorological states, and resulting spectral signatures. With accurate simulations, the machine learning model can

generalize robustly to future atmospheric scenarios. The representative training data should span the expected range of atmo-195

spheric variability in XCO2 and interfering species like water vapor. Broad sampling of the state space is key for the model
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Figure 4. Comparison of XCO2 results predicted by the MLP-XCO2 model versus results retrieved by OCO-2 v10r product from 2019-2020.

Panel (a) is for 2019, while (b) is for 2020. The solid red lines in the figure correspond to perfect agreement, where shadow areas around the

solid red lines represent ±1% of XCO2 deviations.

to learn a robust mapping to XCO2 across multiple atmospheric regimes. The following sections describe our approach for

accurate spectral radiative transfer simulations and possible (realistic) atmospheric profiles generations.

4.1 Forward model

In this study, we developed a forward radiative transfer calculation model using the ReFRACtor (Reusable Framework for200

Retrieval of Atmospheric Composition) software (McDuffie et al., 2018). ReFRACtor is an extensible framework for multi-

instrument atmospheric radiative transfer and retrieval, originally derived from the operational OCO-2 retrieval program. Al-

though ReFRACtor contains both radiative transfer and retrieval capabilities, we only utilized the radiative transfer component.

Specifically, we configured ReFRACtor to simulate top-of-atmosphere radiance spectra that would be observed by OCO-2.

These simulated observations were then used to generate a large training dataset for our machine learning model, MLP-XCO2.205

The OCO-2 satellite primarily observes the radiative spectra in the short-wave infrared (SWIR) band. Over the range of

SWIR, the impact of thermal emission can be ignored when simulating the spectra (Crisp et al., 2021). These spectra are

detected by the OCO-2 satellite detectors after downwelling absorption, surface reflection, and upwelling re-absorption in

the atmosphere. To simulate OCO-2’s observed spectra in the weak CO2 band (WCO2) around 1.6 µm and strong CO2 band

(SCO2) around 2.06 µm, the ReFRACtor model numerically solves the Eq. (1) of the radiative transfer equation (RTE) (Modest210

and Mazumder, 2021):

µ
dI(τ,µ,ϕ)

dτ
=−I(τ,µ,ϕ) +J(τ,µ,ϕ) (1)

where Iη is the observed spectra, µ is the cosine of the observation zenith angle (e.g., µ = cosθ), τ is the vertical optical depth

which can be column-integrated from the molecular absorption coefficients and optical path, ϕ is the azimuthal angle relative
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to the observation point for the satellite and the sun, and J represents the scattering components and inhomogeneous source215

term, describing both single scattering and multiple scattering contributions. The term J in RTE can be expressed as Eq. (2):

J(τ,µ,ϕ) =
ω

4π

1∫

−1

2π∫

0

P (τ,µ,ϕ;µ′,ϕ′)I (τ,µ′,ϕ′)dµ′dϕ′+
ω

4π
P (τ,µ,ϕ;µ′,ϕ′)I0 exp(−τ/µ0) (2)

where ω is the single scattering albedo, P is the scattering phase function, µ′ and ϕ′ are the cosine and azimuth angle of

the incident direction angle in each direction, µ0 is the cosine of the solar zenith, and I0 is the solar intensity in the top of

atmosphere.220

The ReFRACtor model uses a hybrid model to solve RTE. Specifically, the radiative transfer software LIDORT (Spurr, 2008)

is applied for the scalar and Jacobian computation. Concurrently, the two-order scattering model (Natraj and Spurr, 2007)

is utilized for the additional radiance correction. Within this framework, the ReFRACtor model comprehensively considers

five types of scatter particles for each sounding: two types of clouds, two types of tropospheric aerosols, and one type of

stratospheric aerosol. The single scattering optical properties for each cloud and aerosol particle, including cross-section,225

single scattering albedo, and scattering phase matrix, have been pre-computed and tabulated for the forward calculations.

Furthermore, the model determines surface reflectance as a quadratic spectral albedo for each band which is derived from the

bidirectional reflectance distribution function (BRDF).

An essential step for developing the forward calculation model is referencing the pre-computed look-up table of H2O and

CO2 to obtain the required spectral absorption coefficients. In this study, the ABSCO v5.1 database (Absorption Coefficient230

Table (Payne et al., 2020)) was applied for this purpose. Additionally, we identified and corrected an overestimation of the

solar continuum in ReFRACtor compared to the OCO-2 Level 2 algorithm (Crisp et al., 2021). Without this correction, there

would have been approximately 3 % overestimation in the 1.6 µm band and 6.5 % in the 2.06 µm band. By reducing the solar

continuum, our forward model aligned better with the OCO-2 spectral measurements. These configurations of the absorption

coefficients and solar continuum were essential to accurately simulate OCO-2 spectra for generating training data across a235

variety of observing conditions.

To assess the performance of the forward model, we selected four distinct global locations in the year of 2017. The goal was

to replicate the OCO-2 observed spectra for both the WCO2 1.6 µm absorption band and the SCO2 2.06 µm absorption band

at the four locations. By accessing the OCO-2 L2std database, we acquired atmospheric conditions and pertinent geographical

data (including spectral albedo, surface pressure, and observation angles) specific to these chosen locations. The outcomes240

of our simulations for these four locations are visually depicted in Fig. 5 and Fig. 6, respectively for the two bands, with

accompanying residual plots displayed in the lower panels. It is worth noting that the simulated results exhibit a high level of

agreement with the observed OCO-2 spectra. Impressively, the relative error remains under 1%, underlining the robustness of

the established forward model. The remarkable agreements between the observed and simulated spectra indicates the excellent

performance of the forward radiative transfer model. This performance is particularly evident in accurately replicating the245

satellite observations from OCO-2. As a result, this forward model serves as a reliable tool for the development of machine

learning models trained using simulated spectral data.
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Figure 5. Comparisons of the OCO-2 observed spectra with the simulated ones from the proposed forward calculation model in WCO2 band.

The lower panel shows the relative error between the spectrum observed by the OCO-2 satellite and that simulated by the forward calculation

model. Subplots (a)-(d) correspond to test samples from four different regions.

4.2 Training data generation

To optimize the training of the MLP-XCO2 model, it is essential that the input training vectors cover a wide range of realistic

variations. Although the idea of randomizing all input parameters to enhance diversity might appear attractive, simulating250

satellite spectra involves managing a multitude of interdependent variables. In addition to the CO2 vertical profile, factors

such as surface pressure, temperature profile, water vapor, aerosols, and observation geometry must be accurately represented.

Randomizing all of these parameters would require an impractical amount of data and could result in combinations that have

no real-world relevance. For example, the four viewing angles determined by the sun, observation point, and the OCO-2

satellite have fixed combinations during the satellite’s regular operation. Therefore, randomly selecting angle combinations255

lacks practical significance. To ensure that the training data covers valid variations, we conducted an analysis of historical
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Figure 6. Comparisons of the OCO-2 observed spectra with the simulated ones from the proposed forward calculation model in SCO2 band.

The lower panel shows the relative error between the spectrum observed by the OCO-2 satellite and that simulated by the forward calculation

model. Subplots (a)-(d) correspond to test samples from four different regions.

OCO-2 retrievals. This analysis revealed consistent seasonal patterns and year-to-year trends in most parameters. This supports

the idea of selecting representative samples from statistical distributions rather than relying on complete randomization. By

carefully considering the relationships between parameters and the realities of satellite observations, we can create a reasonably

sized training dataset that effectively captures the range of expected predictions.260

Among all the input parameters, the generation of the vertical CO2 profile holds special significance. This dataset essentially

defines the MLP-XCO2 model’s range of applicability. In the context of the ReFRACtor model, which serves as the basis

for our forward model, the atmospheric CO2 profile is divided into 20 sub-layers based on pressure. To gain insights into the

atmospheric CO2 concentration in each of these sub-layers, we conducted a statistical analysis using OCO-2 retrieved CO2

profiles in the East Asia region from 2016 to 2018. The resulting box plots, as depicted in Fig. 7, reveal a gradual increase265
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Figure 7. Box plots of the vertical distribution of CO2 profiles (from OCO-2 L2std files) retrieved by the OCO-2 satellite over East Asia in

Nadir mode from 2016 to 2018. The horizontal-axis represents the atmospheric layers from layer 1 (top of atmosphere) to layer 20 (near-

surface). The upper and lower bounds of each box show the maximum and minimum CO2 concentrations recorded within that layer for each

year.

in CO2 concentration uncertainty as we move from the upper atmosphere to the surface. This presents a particular challenge

when dealing with standardized atmospheric CO2 profiles,

The generation of the vertical CO2 profile is especially critical among all input parameters. This dataset theoretically deter-

mines the generalization domain of the MLP-XCO2 model. In the forward model based on the ReFRACtor model, atmospheric

CO2 profile is segmented into 20 sub-layers by pressure. By statistically analyzing the OCO-2 retrieved CO2 profiles in target270

East Asia area from 2016-2018, the box plots for atmospheric CO2 concentration in each sub-layer are shown in Fig. 7. From

the upper atmosphere down to the ground surface, the uncertainty of CO2 concentrations gradually increases. This challenges

the ability for the standardization of atmospheric CO2 profiles, particularly closer to the Earth’s surface. Fortunately, a consis-

tent year-on-year rise in CO2 concentrations in each sub-layer has been observed over time. Consequently, in our research, we

have proposed a method for generating subsequent CO2 atmospheric profiles. We incrementally increase the CO2 concentration275

by 2.5 ppm annually, starting from the 2016 OCO-2 retrieved CO2 vertical profile. This approach ensures that we encompass

a range of plausible atmospheric CO2 distributions with realistic shapes, enabling the generation of simulated spectra for the

designated training years.

In addition to the CO2 profile, Fig. 8 illustrates the year-to-year trends of various observed parameters essential for the

forward calculation model in the East Asian region. These parameters, although they display seasonal variations, consistently280

exhibit annually cyclic patterns. Given that the OCO-2 satellite conducts global observations in cycles of approximately half a

month (15-16 days), this study employed observation parameters and priori data for atmospheric profiles, except for CO2, from

the year 2016 as a reference. These reference data were repetitively utilized for generating simulations in subsequent years.

Regarding the quadratic spectral albedo, the constant term in the training data samples is uniformly set to 1 (to be normalized

before being processed by the neural network). The slope and the quadratic coefficient are stochastically sampled within the285

range of values corresponding to the retrieval results based on the OCO-2 L2 products.
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Figure 8. Scatter plots of atmospheric parameters required for forward calculation models (excluding CO2 profiles) from 2016 to 2020,

sourced from the OCO-2 L2 product. Panel (a) is the surface pressure, (b) is the surface temperature, (c) is the near-surface water vapor

concentration, (d) is the solar zenith, (e) is the Sun-Earth distance, and (f) is the Earth-satellite relative velocity.

In summary, based on 10000 uniformly sampled observation data from the OCO-2 satellite throughout the year 2016, we

created a total of 50000 sets of new data and the forward model was used to generate the corresponding simulated spectra for

14

https://doi.org/10.5194/amt-2023-224
Preprint. Discussion started: 20 November 2023
c© Author(s) 2023. CC BY 4.0 License.



each set. These simulated samples serve as the foundational dataset for training the new MLP-XCO2 machine learning model.

It’s important to note that this new model relies solely on the data recorded by the OCO-2 satellite in 2016 as its reference.290

Through data augmentation techniques, we have enabled the model to accurately and efficiently perform XCO2 retrieval for

the “future" years from 2017 to 2021.

5 Results and discussions

5.1 Comparison with the OCO-2 satellite product data

To evaluate the retrieval capability of the MLP-XCO2 model trained on simulated data, the neural network architecture and295

hyperparameters were intentionally kept identical to the previous model trained on actual OCO-2 satellite product data. Keeping

these factors constant isolates the training data source as the only major difference between the models. This enables a direct,

apples-to-apples comparison of how the training data affects model performance.

Figure 9 (a) shows the retrieval results on 5% of the training data that was excluded from model training. Setting aside this

test subset is a standard technique for evaluating model performance on new examples. The accurate predictions of the MLP-300

XCO2 model on the test data suggest the model has learned generalizable patterns not overfit to the training data. Figure 9 (b)

shows the comparison of the retrieval results of the MLP-XCO2 model on real OCO-2 satellite spectral observations in 2016.

Figure 10 displays XCO2 predictions from 2017 to 2020 using test data consistent with Fig. 3 and Fig. 4. As the simulated

training data was generated based on 2016 OCO-2 measurements, testing on 2017-2020 data evaluates the model’s ability to

make predictions beyond the time frame of the training data.305

The scatter plots demonstrate the MLP-XCO2 model trained on simulated data can accurately and stably predict the annual

XCO2 growth trend, maintaining an Mean Error (ME) within 0.1 ppm and RMSE around 2 ppm (0.5%), respectively. Com-

pared to models trained relying solely on historical satellite product data, the key advantage is the ability to make reasonable

forecasts of future atmospheric XCO2 levels. By generating possible realistic future prior information for the atmospheric

conditions and using an accurate forward model to simulate the corresponding spectra, the approach avoids inherent biases310

when extrapolating beyond the distribution of the training data. Rather than simply extending trends, the model is constrained

by fundamental physical relationships to interpolate within realistic bounds. This transforms the prediction task into a well-

posed interpolation problem versus an unconstrained extrapolation. The simulated data provides a physical regularization that

makes the model’s outputs to be scientifically sound. By training on synthetic data spanning potential future scenarios, the

model learns robust representations not tightly coupled to specifics of the training data time period. This enables high-fidelity315

inversion and prediction of XCO2 even for future time periods beyond available measurements.

5.2 Comparison with the TCCON data

A comparison of the retrieved results from the OCO-2 satellite showed that the RMSE of our developed MLP-XCO2 model

was around 2 ppm. In other words, our results could be worse or better than OCO-2 satellite, requiring further comparison with
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Figure 9. Panel (a) is the comparison of XCO2 results predicted by the MLP-XCO2 model from 5% test data (not involved in training). Panel

(b) is the comparison of XCO2 results predicted by the MLP-XCO2 model versus results retrieved by OCO-2 v10r product from 2016 test

data.

ground-based measurements. To further validate the accuracy of the MLP-XCO2 model, we compared the XCO2 retrievals320

from the OCO-2 v10r Nadir mode products, the MLP-XCO2 model outputs, and ground-based measurements from 5 TCCON

sites within the study region (Fig. 1). As summarized in Table 3, spatiotemporal screening was applied to the TCCON and OCO-

2 data to obtain comparable observations. The 5 TCCON sites included were: Tsukuba (Morino et al., 2022b), Saga (Shiomi

et al., 2022), Hefei (Liu et al., 2022), Xianghe (Zhou et al., 2022) and Rikubetsu (Morino et al., 2022a). The Anmyeondo site

was excluded from this analysis as the XCO2 data was not updated in the TCCON GGG2020 database, and was only available325

until early 2018 in the GGG2014 database.

Figure 11-1 presents time series comparisons of XCO2 retrievals from the different TCCON sites, MLP-XCO2 model, and

OCO-2 Nadir observations. Figure 11-2 displays the box plots of the differences between the MLP-XCO2 model results, OCO-

2 products, and TCCON site data. The plots at each of the five TCCON sites demonstrate the simulated data-trained MLP-

XCO2 model accurately predicts XCO2 from the OCO-2 spectra. The model successfully captures seasonal variations and the330

long-term XCO2 growth trend over the 4-year study period. The reliable performance over time and across multiple TCCON

sites further validates the model has learned generalizable representations of carbon cycle processes rather than overfitting

to specifics of the simulated training data. By using realistic future simulations for training, the model provides robust and

unbiased XCO2 retrievals across a range of atmospheric conditions.

5.3 Retrieval efficiency335

In this study, the ReFRACtor forward model required 12.16 seconds per simulation case (two absorption bands) using an AMD

Ryzen-7 5800X computer. The OCO-2 retrieval based on Bayesian optimization typically needs over three iterations to con-

16

https://doi.org/10.5194/amt-2023-224
Preprint. Discussion started: 20 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 10. Comparison of XCO2 results predicted by the MLP-XCO2 model versus results retrieved by OCO-2 v10r product from 2017-

2020. Panel (a), (b), (c), and (d) display the predictions of the MLP-XCO2 model from 2017 to 2020, respectively.

Table 3. Spatio-temporal screening conditions for TCCON sites and OCO-2 satellite Nadir mode observations

TCCON site Local time Observed location Test sample Reference

Tsukuba 12 : 48− 12 : 58 36.05◦N± 0.2◦,140.12◦E± 0.2◦ 520 Morino et al. (2022b)

Saga 13 : 30− 13 : 40 33.24◦N± 0.2◦,130.29◦E± 0.2◦ 60 Shiomi et al. (2022)

Hefei 13 : 20− 13 : 30 31.90◦N± 0.2◦,117.17◦E± 0.2◦ 763 Liu et al. (2022)

Xianghe 13 : 15− 13 : 25 39.80◦N± 0.2◦,116.96◦E± 0.2◦ 1082 Zhou et al. (2022)

Rikubetsu 13 : 20− 13 : 30 43.46◦N± 0.2◦,143.77◦E± 0.2◦ 254 Morino et al. (2022a)
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Figure 11. Comparisons of XCO2 results from 2017 to 2020 across five TCCON sites. Panel (a-1)-(e-1) show the time series comparisons

of XCO2 retrievals from the different TCCON sites, MLP-XCO2 model, and OCO-2 L2Lite Nadir observations for the Tsukuba, Saga,

Hefei, Xianghe and Rikubetsu site, respectively, with data screening conditions as defined in Table 3. Panel (a-2)-(e-2) present the boxplots

depicting the differences (∆XCO2) between the MLP-XCO2 model and OCO-2 products in comparison to the TCCON results for each year.

The boxes showing the middle half of the data, from the 25% to the 75% percentiles. The median (50%) is represented by the line within

each box. The whiskers encompass the central 90% of the data, extending from the 5% to the 95% percentiles.

verge, indicating at least 36.48 seconds per retrieval. In contrast, the MLP-XCO2 model demonstrated remarkable efficiency

on the same hardware. It required just 0.71 seconds total to retrieve XCO2 from 1846 OCO-2 test spectra across first three

TCCON sites (Tsukuba, Saga and Hefei site), averaging 0.38 milliseconds per sample. This rapid inversion drastically reduces340
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processing times compared to traditional methods. While machine learning models need significant upfront time for training

data generation and hyperparameter tuning, the prediction is extremely fast once deployed. This enables near real-time pro-

cessing ideal for operational satellite data streams. Furthermore, the precision and efficiency of neural networks makes them

well-suited to meet future demands of high-resolution global greenhouse gas monitoring, enabling millisecond-scale XCO2

retrievals suitable for large-scale satellite analysis.345

6 Conclusions

This proof-of-concept study aims to use the efficient regression inversion capability of machine learning method to develop

machine learning models based on simulated atmospheric radiative transfer data for efficient inversion of satellite observed

spectra to retrieve XCO2. This helps overcome the low efficiency in traditional optimization-based iterative algorithms for

XCO2 retrievals. In the presented study, XCO2 inversion models using both satellite product based and simulation based data350

were developed, trained and tested. Long time series inversion and prediction of OCO-2 observations over East Asia were

also performed using the developed models. The results were compared with OCO-2 and TCCON retrievals, showing the

simulation data based machine learning models can effectively eliminate lagging biases while achieving millisecond-level

(<1 ms) inversion efficiency, high accuracy (around 2 ppm), and long-term prediction stability.

Code availability. The ReFRACtor model and its OCO retrieval implementation can be accessed from the Github ReFRACtor repository355
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