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S1 Supply power for Light Source and BHK lamps

For the UV lamps from Light Source Inc., the supply power (8.9 W) was calculated as 185 mA/425 mA X 21 W, where 185
mA is the measured current controlled by the ballast at 10 VAC (full) output; 425 mA and 21 W are the manufacturer specified
current and power. For BHK lamps, the supply power (6.3 W) was measured directly with a Kill-A-Watt sensor on the outlet

of the lamp controller box at full AC output.

S2 Calculation of the heating energy in OFR

For the temperature measured for a lamp control voltage of 10 V (full AC power) and flow rate of 5 L min (Fig. 4), we
calculated the fraction of heating energy transferred from the UV lamps to the gas inside the OFR (f), the N2 purge gas (fy, ),
and the OFR tube wall (f;). Results were estimated on the assumption that all the electrical input power of the lamps was
finally converted into heat, which led to the rise in temperature. We did not consider the heat exchange between the gas inside
the OFR, N, purge gas, and OFR surface. The energy of gas inside the OFR (or N inside the lamp sleeves) would be lost due
to the gas (or N2) entering and leaving the OFR (or lamps sleeve), depending on the flow rate and the temperature of the
ambient gas (or N2,0.2 and 20 L min). Also, the OFR surface dissipate heat to the ambient air. Based on the timeseries of

measured temperature in Fig. 4, the f,, f;, and fy, could be calculated as follows:

f — Qg _ CgXMgXATi_(i_1)+CgXmgXATi_a (1)
9 Qrotal QTotal
f _ Qs _ CSXMSXATj_(j_l)+F><A><ATj_a (2)
s Qrotal QTotal
f _ QNZ _ CNZXMNZ XATk—(k—1)+CN2><mN2 XATk—q (3)
N, = =
2 Qrotal QTotal

Where Qg4, @5, and Qy, were the energy in 1 second of lamps allocated to the gas inside OFR, surface of OFR and N purge
gas, respectively; Qrocq is the total energy from 4 lamps in 1 s (35.6 J, 8.9 W for each lamp at full VAC). C,, Cs and Cy, were
the specific heat capacity of gas (1.005 kJ kg™ K at 300 K), OFR surface (aaluminum, 0.879 kJ kg K at 293 K) and N,
(1.038 ki kg* K*at 298 K); My, Mg and My, were the mass of gas inside OFR, OFR surface, and N2 in lamp sleeves; AT;_(;_)
was the temperature difference between i™ and (i-1)™ second for gas inside OFR. AT;_(j—1y and ATy _ 1y were similar, for the
temperature of OFR surface and N2 purge gas; m, was the mass of gas entered or left OFR in one second; AT;_, was the

temperature difference between the gas left OFR at i second and ambient air; F was the Heat dissipation area for OFR surface;

A was the heat transfer coefficient (3.48 Jm2 s K*) and AT;_, was the temperature difference between the OFR surface at j"
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second and ambient air; my, was the mass entered or left lamps sleeve in one second; AT, was the temperature difference

between the N left lamps sleeve at k™ second and ambient air. Results were shown in Fig. S8.

S3 Calculation of the Richardson number

The Richardson number, a dimensionless number that represents the ratio of buoyancy term to flow shear term, can be
calculated as follow (Holman, 2010; Huang et al., 2017):

_ gBD3AT /v? gD
! (PUang/li)Z TU:%.vg

AT (4)

where g is the gravitational acceleration (9.78 m s2), 8 is the thermal expansion coefficient of air (T for ideal gases), D is the
diameter of the flow tube (202 mm), T is the temperature at centerline (39 <C), AT is the temperature difference between the
centerline and tube wall (4 <C), v is the kinematic viscosity of air (m? s2), p is the density of air (kg m), Uqvg IS the average
velocity on the cross-section of the flow tube (m s2), calculated based on the flow rate (5 L min) and D, u is the dynamic
viscosity (N s m?). When Ri<0.1, the natural convection is negligible; when Ri>10, the forced convection is negligible, and

the buoyancy forces may lead to flow bifurcation and recirculation (Huang et al., 2017).

Table S1: Temperature sensors used in temperature measurement.

Temperature sensors Model Manufacturer
OFR RH/T sensor Sensirion SHT21 Sensirion AG
Vaisala HMT130 Vaisala Inc.

Shenzhen APUHUA Electronic
Technology CO. LTD
Shenzhen EVERBEST machinery
industry, CO, LTD.

Thermocouple TM-902C, type K

CEM DT-83
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Table S2: Detailed parameters of OFR temperature experiments.

Lamps !
Ex Flow rate Control (num. of Mesh screen OFR sensor Position of Probe Temp. of Temp. of
- (Lmin)  Voltage (V) lampsxlamp 2 Position 3 within OFR 4 surface exhaust
type)
Vertical and horizontal 5
1 5 5 4 %185 covered Back In backplate at different depth / /
2 5 10/6/5/4/2 4 =185 covered Back In backplate ~ Different depth from / /
the inlet in the center
3 3/5/7 5 4 %185 covered Back In backplate Dlﬁferen'g depth from / /
the inlet in the center
4 5 10 4 %185 covered Back In backplate 300 mm from the inlet Measured /
in the center
5 5 10—6—5;—4—2—0 4 <185 covered Back In backplate 300 mm from theinlet ;o ¢ ved Measured
in the center
6 5 10-6-5-4-2-0 2 %185 covered Back In backplate 300 mm from the inlet Measured /
in the center
7 5 10-6-5-4-2-0 2 <185 covered / 300 mm from 300 mm from the inlet Measured Measured
inlet in the center
8 5 10-6-5-4-2-0 4 x185 Back In backplate 300 MM from the inlet / /
in the center
300 mm from the inlet
9 5 10-6-5-4-2-0 2 %254 Back In backplate in the center / /
10 5 10-6-5-4-2-0 4 <185 covered Front 300 rirs]rgtfrom / Measured Measured
11 5 10-6-5-4-2-0 2 <185 covered Front 300 rirs]rgtfrom / Measured Measured
12 5 10-2-6-3-5-0 4 <185 covered Back In backplate 300 mm from the inlet / /

in the center

1 Three types of lamps were used (Figure S2). ‘185 covered’ transmits both 185 and 254 nm radiation, with 80% surface covered with heat-shrink
tubes. Lamps of ‘185’ are the same type as ‘185 covered’, but without covering. The lamp of ‘254’ transmits only 254 nm radiation and is not

covered.

2 Two mesh screens are set inside OFR, one near the inlet (Front) and one near the outlet (Back).

3 The OFR sensor is set in the backplate by default, as shown in Fig. S1.

4 Extending the external temperature sensor into OFR from the inlet (so the ‘Front’ mesh screen must be removed). 4 depths were measured for
Exp.1-3 (100, 200, 300, and 400 mm from the inlet, respectively)
% ¢/’ means no installation or no measurement.
6 Each voltage was set to last for 16 min.



Table S3: SOM parameters used in this study.

precursor su?’/r(ggilte NOXx Mfrqq ALVP P1 P2 P3 Pa ;(e)lg/ll reference
dodecane  dodecane low 2 1.83 0.999 0.001 0.001 0.001 Cappa et al. (2013)
high 0.2627 1.4629 0.9657 0.0010  0.0020 0.0314 Loza et al. (2014)
a-pinene a-pinene low 0.305 1.97 0.419 0.426 0.140 0.014 0.44% Chhabra et al. (2011)
high 0.1312 1.9139 0.5991 0.2923  0.1079 0.0007 0.44% Chhabra et al. (2011)
toluene toluene low 1.31 1.77 0.185 0.001 0.002 0.812 0.1% Zhang et al. (2014)
high 1.3064  1.4169 05634  0.3413 0.0016  0.0937  0.1% Zhang et al. (2014)
m-xylene m-Xxylene low 1.08 2.05 0.102 0.001 0.878 0.019 1.7% Ng et al. (2007)
high 0.0736 1.4601 0.1418 0.2971  0.4571 0.1040 1.7% Ng et al. (2007)

! Values are obtained in Bianchi et al. (2019).



90 Table S4: The modeled variation of SOA yield per temperature (K). The concentration of organic aerosol is 15 pg m™

for all cases. The range of model temperature is 20-40 <C.

precursors NOXx

H;*" evaporation enthalpy (kJ mol)

Equation? 50 100 150
dodecane high 0.0041-0.0052 0.0019-0.0022 0.0036-0.0050 0.0053-0.0095
low 0.0062-0.0074 0.0026-0.0029 0.0053-0.0070 0.0078-0.010
a-pinene high 0.0087-0.0089 0.0037-0.0039 0.0077-0.0088 0.011-0.015
low 0.011-0.013 0.0041-0.0053 0.0091-0.013 0.01-0.011
toluene high 0.0060-0.0068 0.0023-0.0026 0.0050-0.0063 0.0075-0.010
low 0.0083-0.023 0.0044-0.0068 0.0077-0.018 0.0095-0.030
m-xylene high 0.0049-0.099 0.0025-0.0039 0.0045-0.0094 0.0064-0.016
low 0.0078-0.018 0.0043-0.0063 0.0073-0.015 0.0091-0.023

! The equation is taken from Epstein et al. (2010), H

vap __

= —11 X log C{ep + 131.

1
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(1) Mesh screen

(2) Center inletand
hexagon nut

(3) Aerosol outlet

(4) Irradiance sensor

[/ (5) Primary Temp&RH
' J) sensor

“"‘&\

D= (6)Ring flow manifold
and gas outlet

Figure S1: Schematic diagram of (a) OFR and UV lamps and photographs of (b) mesh screen near the inlet, (c) inlet

and hexagon nut and (d) outlets and sensors of OFR.

100
Figure S2: Four types of lamps used in this research. Type (1) transmits both 185 and 254 nm radiation, with 80%
surface covered with heat shrink tubes (GPH436T5VH/4, Light Sources, Inc.). Type (2) is the same as type (1) but not
covered. Type (3) transmits only 254 nm radiation and is not covered (GPH436T5L/4, Light Sources, Inc.). Type (4)
transmits both 185 and 254 nm radiation (model no. 82-9304-03, BHK Inc.).

105
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Figure S3: Comparison between different temperature measurements used in this research. The measured
temperatures from the CEM sensor, which was used to measure the room temperature, are shown on the x-axis. The

110 Vaisala sensor is used to measure the temperature inside the OFR. Thermocouple 1 and Thermocouple 2 are used to
measure the temperature of the OFR exhaust and outside surface. Detailed information about different sensors can be
found in Table S1.
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Figure S4: Temperature variation for (a) four lamps and (b) two lamps. In this case, the front plate with a hexagon nut
115 and mesh screen was installed, and the OFR sensor set in the backplate was extended into the center of OFR (probing

depth: 300 mm). The mesh screen near the back plate was removed.
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Figure S5: The correlation between OH exposures (right axis) and equivalent aging time (left axis) vs light settings at
120 each lamp. A sigmoidal function was used to fit the scatter plots. The OH exposures under low NOx condition in panel
(a) and (b) is estimated based on the empirical parameterization in Hu et al. (2022), while OH exposures in panel (c)
under high NOx conditions is estimated based on the parameterization reported in Peng et al. (2018). A water mixing
ratio of around 1.88% (60% RH at 25 <C) under low NOx conditions was assumed in the laboratory studies (Panel (a)).
The mixing ratio in field studies (Panel (b) and (c)) was measured directly by RH&T sensor. The input flow rate is 5 L

125 mint, which corresponds to a residence time of 167 s.
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Figure S7: Temperature measured by an external temperature sensor for an OFR with BHK lamps (a) in the vertical
direction at different depths inside OFR, with the driving voltage set to 0.95 V for two lamps; (b) the measured
temperature at different depths inside the OFR under different driving voltages; the “upper” indicates the position of
100 mm in the vertical direction and the “center” indicated the position measured at centerline. Flow through the

OFR was 4.5 L min™.

Ambient air

UV lamps

Tube wall

Loss of energy through: m) Exhaust purged N,
m) Exhaustair ®P Dissipation to the ambient air

{=>Unconsidered heat transfer within OFR

Figure S8: Schematic plot for the transfer of the heating energy (orange arrows) inside the OFR from the UV lamps
and the loss of energy (red arrows) to the ambient air. The fraction of energy from the UV lamps is obtained from Fig.
S9. Note that only the power leading to the temperature increase (51% of total power, which is 35.6 W based on the

calculation in Sec S1 and S2) of the OFR has been considered for these three pathways.
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Energy from lamps to
B Gas inside OFR
m Surface of OFR

Energy from lamps to
B Gas inside OFR
m Surface of OFR

m N, purge gas, 0.2 L min”’ m N, purge gas, 20 L min’’
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Figure S9: (a) Energy from UV lamps (51% (based on calculation in Sect. S2) of total power (35.6 W), 8.9 W for each
lamp, 4 lamps in total) to gas inside OFR, surface of OFR and N2 purge gas (0.2 L min™) as a function of time, with 4
lamps set to 10 V. The start time is when the lamps are turned on. The flow rate is 5 L min. (b) Same as Fig. S9a, with

the flow rate of N2 purge gas increased to 20 L min™. Details of the energy calculation are presented in Sect. S2.

13



150

Figure S10: CFD simulation of the gases in OFR (a) without and (b) with the heating of lamps. In panel (b), the scenario

of four lamps at 5 V was simulated.

14
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155 Figure S11: Simulated concentration of oxidant species from 25 to 40 <C in OFR as a function of OH exposure. In this
scenario, the 800 ppb of initial SOz, 2.2% water vapor mixing ratio (25 <C, 70% RH), and different photon flux at 185
nm and 254 nm (photon flux ratio of 254/185 nm= 0.05) were used. The simulated oxidant concentrations with measured
RTD in OFR were also shown.
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Figure S12: Simulated SOA yield of a-pinene as a function of mass concentration of organic aerosol and temperature
inside of the OFR for (a) high NOx and (c) low NOx conditions, respectively. The simulated results using measured
RTD obtained at 40 <T are shown as black dashed lines. The ratio of SOA yield of a-pinene from different temperatures
compared to that of 25 <T under (b) high NOx and (d) low NOx conditions. The equivalent aging time is 0.5 days by
assuming the OH concentration is equivalent to 1.5>10% molecule cm™= (Mao et al., 2009).
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Figure S13: Simulated SOA vyield of toluene as a function of mass concentration of organic aerosol and temperature
inside of the OFR for (a) high NOx and (c) low NOx conditions, respectively. The simulated results using measured
RTD obtained at 40 <C are shown as black dashed lines. The ratio of SOA yield of toluene from different temperatures
compared to that of 25 T under (b) high NOx and (d) low NOx conditions. The equivalent aging time is 1 day by

assuming the OH concentration is equivalent to 1.5>10% molecule cm™= (Mao et al., 2009).
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Figure S14: Simulated SOA vyield of xylene as a function of mass concentration of organic aerosol and temperature
inside of the OFR for (a) high NOx and (c) low NOx conditions, respectively. The simulated results using measured
RTD obtained at 40 <T are shown as black dashed lines. The ratio of SOA yield of xylene from different temperatures
compared to that of 25 <C under (b) high NOx and (d) low NOx conditions. The equivalent aging time is 1 day by

assuming the OH concentration is equivalent to 1.5x<108 molecule cm™ (Mao et al., 2009).
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Figure S15. Simulated size distribution of a-pinene as a function of temperature by assuming the mass concentration

of OA is 30 ng m for (a) high NOx and (c) low NOx conditions, respectively. Simulated O: C ratio of a-pinene under

different temperatures and organic aerosol concentrations under (b) high NOx and (d) low NOx conditions. The

equivalent aging time is 0.5 days by assuming the OH concentration is equivalent to 1.5>10% molec cm™ (Mao et al.,
185 2009).
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Figure S16: Simulated size distribution of toluene as a function of temperature by assuming the mass concentration of
OA is 30 pg m? for (a) high NOx and (c) low NOx conditions, respectively. Simulated O:C ratio of toluene under
190 different temperature and organic aerosol concentration under (b) high NOx and (d) low NOx conditions. The
equivalent aging time is 1 day by assuming the OH concentration is equivalent to 1.5x<10% molecule cm™ (Mao et al.,

2009).
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Figure S17: Simulated size distribution of m-xylene as a function of temperature by assuming the mass concentration

195 of OA is 30 pg m™ for (a) high NOx and (c) low NOx conditions, respectively. Simulated O:C ratio of m-xylene under
different temperatures and organic aerosol concentration under (b) high NOx and (d) low NOx conditions. The
equivalent aging time is 1 day by assuming the OH concentration is equivalent to 1.5x<10% molecule cm™ (Mao et al.,
2009).
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Figure S18: Simulated SOA yield of (a-b) a-pinene, (c-d) Toluene, (e-f) m-xylene as a function of temperature under
different H:.’“p values. The mass concentration of organic aerosol is assumed to be 15 pg m?3. The equivalent aging time

is 1 day assuming the OH concentration is equivalent to 1.5x<10% molecule cm™ (Mao et al., 2009).
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Figure S19. Simulated ratio of SOA vyield with measured temperature vs that under 25 <C under varied lamp settings.
A 10-ppb toluene with OA mass concentration of 30 pg m was assumed. The equivalent aging time is calculated by

assuming the OH concentration is equivalent to 1.5x10% molecule cm™ (Mao et al., 2009).
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