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Abstract. Satellites have been providing spaceborne observations of the total column of CO2 (noted 𝑋!"!) for over two decades 

now and, with the need for independent verification of Paris Agreement objectives, many new satellite concepts are currently 10 

planned or being studied to complement or extend the already existing instruments. Depending on whether they are targeting 

natural and/or anthropogenic fluxes of CO2, the design of these future concepts vary greatly. The characteristics of their 

shortwave infrared (SWIR) observations notably explore several orders of magnitude in spectral resolution (from 𝜆 Δ𝜆⁄ ~400 

for Carbon Mapper to 𝜆 Δ𝜆⁄ ~25000 for MicroCarb) and include different selections of spectral bands (from one to four bands, 

among which the CO2-sensitive 1.6 µm and/or 2.05 µm bands). Besides, the very nature of the spaceborne measurements is 15 

also explored: for instance, the NanoCarb imaging concept proposes to measure CO2-sensitive truncated interferograms, 

instead of infrared spectra as other concepts, in order to significantly reduce the instrument size. This study synthetically 

explores the impact of three different design parameters on 𝑋!"!  retrieval performance, as obtained through Optimal 

Estimation: (1) the spectral resolution; (2) the signal-to-noise ratio (SNR) and (3) the spectral band selection. Similar 

performance assessments are completed for the exactly-defined OCO-2, MicroCarb, Copernicus CO2 Monitoring (CO2M) and 20 

NanoCarb concepts. We show that improving SNR is more efficient than improving spectral resolution to increase 𝑋!"! 

precision when perturbing these parameters across two orders of magnitude, and that low-SNR and/or low spectral resolution 

yield 𝑋!"! with vertical sensitivities giving more weight to atmospheric layers close to the surface. The exploration of various 

spectral band combinations illustrates, especially for lower spectral resolutions, how including an O2-sensitive band helps to 

increase optical path length information, and how the 2.05 µm CO2-sensitive band contains more geophysical information than 25 

the 1.6 µm band. With very different characteristics, MicroCarb shows a CO2 information content only slightly higher than 

CO2M, which translates into lower 𝑋!"! random errors, by a factor ranging from 1.1 to 1.9 depending on the observational 

situation. The NanoCarb performance for a single pixel of its imager compares to concepts that measure spectra at low-SNR 

and low-spectral resolution but, as this novel concept would observe a given target several times during a single overpass, its 

performance improves when combining all the observations. Overall, the broad range of results obtained through this synthetic 30 
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𝑋!"! performance mapping hints at the future intercomparison challenges that the wide variety of upcoming CO2-observing 

concepts will pose. 

1 Introduction 

Anthropogenic emissions of carbon dioxide (CO2) are the main driver of climate of change (IPCC, 2021). The current 35 

understanding of the global carbon cycle is based on comparisons of results from bottom-up methods, that explicitly model 

CO2-emitting and absorbing mechanisms, with those from top-down approaches, that rely on a set of CO2 atmospheric 

concentration observations to find the CO2 fluxes that best fit those observations (Friedlingstein et al., 2022). This last 

approach, called inverse atmospheric transport (Ciais et al., 2010), can ingest in-situ observations and/or space-borne remote 

estimations of CO2 atmospheric concentration. The latter are produced through inverse radiative transfer that enables to find 40 

the atmospheric states (among which the CO2 concentration) that best fit infrared satellite measurements made from space.  

 

Shortwave infrared (SWIR) satellite measurements, which are sensitive – among others – to CO2 concentration close to the 

surface, where fluxes take place, have now been exploited for two decades to retrieve the column-averaged dry-air mole 

fraction of CO2 (also called ‘total column’ and noted 𝑋!"!). The pioneering ESA Scanning Imaging Absorption Spectrometer 45 

for Atmospheric Chartography (SCIAMACHY) instrument (Bovensmann et al., 1999) was the first to provide a global 𝑋!"! 

dataset. Its mission ended in 2012, and it was followed by the – still flying – JAXA/NIES Greenhouse gases Observing 

SATellites (GOSAT, Inoue et al., 2016; Noël et al., 2021; Taylor et al., 2022), NASA Orbiting Carbon Observatory-2 and -3 

(OCO-2 and -3, Taylor et al., 2023) and the Chinese TanSat (Yang et al., 2020). The global 𝑋!"! datasets produced by these 

missions have found applications for the study of natural carbon fluxes at global scale (e.g. Chevallier et al., 2019; Peiro et al., 50 

2022) and also, even if it was not their primary ambition, for the monitoring of point-source anthropogenic emissions (Nassar 

et al., 2021; Reuter et al., 2019; Zheng et al., 2020).  

  

These different missions will be followed by various concepts that are already planned or still being studied. First, the planned 

CNES MicroCarb mission (Bertaux et al., 2020; Pascal et al., 2017) is quite similar to OCO-2 regarding its observation strategy 55 

(spatial and spectral resolution, see Table 1, it includes an extra O2-sensitive band) and mainly aims to provide information on 

natural CO2 fluxes. The 2015 Paris Agreement and the five-year global stocktake system it set up have put in motion a global 

ambition for spaceborne monitoring of anthropogenic greenhouse gas emissions (mainly for CO2 and methane, but the latter 

is not the focus of this work). Indeed, urban areas, that account for 0.5% of the ice-free continental surface (Liu et al., 2020; 

Lwasa et al., 2022), are responsible for 70% fossil fuel-related emissions (Duren and Miller, 2012). For favourable 60 

meteorological conditions, CO2 plumes arise from either hotspots, such as megacities, or point sources, such as coal-fired 

power plants (Kuhlmann et al., 2019). Those may then be observed with SWIR spaceborne imagers, depending on their 

precision and spatial resolution, and the emission rate associated with the imaged plume can then be inferred either with plume 
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analysis/mass-balance approaches (Bovensmann et al., 2010; Varon et al., 2018) or within more usual atmospheric inversion 

schemes (Broquet et al., 2018; Pillai et al., 2016). Because an infrared detector has a limited number of pixels, future - planned 

or studied - CO2 imaging concepts explore various trade-offs between spatial and spectral resolution, spectral band selection, 70 

and even compromise with the very nature of the measurements made by the instrument, when other constraints such as size 

and thus costs are taken into consideration. These concepts – not exclusively – include the European Copernicus CO2 

Monitoring (CO2M Meijer, 2020) mission, the Japanese Global Observing SATellite for Greenhouse gases and Water cycle 

(GOSAT-GW, Matsunaga and Tanimoto, 2022), the American non-profit Carbon Mapper initiative 

(https://carbonmapper.org/) based on the Next-Generation of NASA Airborne Visible/Infrared Imaging Spectrometer 75 

(Cusworth et al., 2021; Hamlin et al., 2011), the German CO2image concept (Strandgren et al., 2020; Wilzewski et al., 2020) 

or the European Space CARBon Observatory (SCARBO) H2020 concept, that does not measure spectra but only truncated 

interferograms (Brooker, 2018; Dogniaux et al., 2022; Gousset et al., 2019). Table 1 gathers the characteristics of upcoming 

or studied SWIR CO2 observing satellite concepts, provided either in scientific articles (in this case citations are provided), in 

conference presentations (just the conference name and dates are given), or websites (just the hyperlink is given), as some of 80 

these concepts are quite recent.  

 
Table 1. Measurement characteristics for some of the upcoming or studied SWIR CO2 observing satellite concepts 

Concept Spatial 

resolution/swath 

Spectral bands Resolving power 

(𝜆 Δ𝜆⁄ ) 

Reference 

OCO-2 1.3x2.3 km2/10 km O2: 0.76 µm 

CO2: 1.6 µm 

CO2: 2.05 µm 

~18000 

~19800 

~19800 

(Crisp et al., 2017) 

MicroCarb 4.5x8.9 km2/13.5 km O2: 0.76 µm 

CO2: 1.6 µm 

CO2: 2.05 µm 

O2: 1.27 µm 

~25400 

~25750 

~25800 

~25800 

(Bertaux et al., 2020) 

CO2M 2x2 km2/>250 km O2: 0.76 µm 

CO2, CH4: 1.6 µm 

CO2: 2.05 µm 

~6300 

~5400 

~5800 

(Meijer, 2020) 

GOSAT-GW 3x3 km2/90 km and 

10x10 km2/920 km 

O2: 0.76 µm 

CO2, CH4: 1.6 µm 

>14000 

>8000 

IWGGMS-17, 14th – 17th of 

June, 2021 

CO2image 50x50 m2/50 km CO2: 2.05 µm ~1600 (Strandgren et al., 2020) 

Carbon Mapper 30x30 m2/18 km 0.4 – 2.5 µm ~400 around 2.05 

µm 

https://carbonmapper.org/our-

mission/technology/ 
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SCARBO 2.3x2.3 km2/195.5 

km 

Truncated interferograms sensitive to: 

O2: 0.76 µm 

CO2, CH4: 1.6 µm 

CO2: 2.05 µm 

(Brooker, 2018; Dogniaux et 

al., 2022; Gousset et al., 2019) 

 85 

The characteristics of an observing concept (nature of measurement, spectral resolution, spectral band selection, signal-to-

noise ratio) translate into an 𝑋!"! retrieval performance that comprises (1) random error, (2) systematic error, and (3) vertical 

sensitivity. First, 𝑋!"! random error (or precision) impacts the a posteriori uncertainties of fluxes estimated in usual inverse 

atmospheric schemes (Rayner and O’Brien, 2001), and the detectability of CO2 plumes for imaging concepts (Kuhlmann et 

al., 2019). In addition to random errors, systematic errors can hamper 𝑋!"! retrievals. Those can for example be due to forward 90 

radiative transfer modelling errors, like aerosol misknowledge (Houweling et al., 2005; Reuter et al., 2010), or a priori 

misknowledge of atmospheric state parameters (Connor et al., 2008). Spatially correlated systematic errors are especially 

detrimental in inverse atmospheric schemes (Broquet et al., 2018; Chevallier et al., 2007), whereas scene-wide systematic 

errors that do not correlate with the plume shape can cancel out when applying plume analysis techniques. Finally, the retrieved 

CO2 total columns must be characterized by their vertical sensitivity, which illustrates to which atmospheric levels retrievals 95 

are sensitive (Boesch et al., 2011; Buchwitz et al., 2005). 

 

The impact of SWIR measurement characteristics on 𝑋!"! retrieval performance have been partially examined in previous 

studies that relied on real measurements. For instance, Galli et al. (2014) assessed the performance of 𝑋!"! retrievals from 

GOSAT measurements which spectral resolution was degraded up to 6 times (𝜆 Δ𝜆⁄ ~	3000 − 20000), or Wu et al. (2020) 100 

performed a similar exercise with OCO-2 measurements degraded at CO2M spectral resolution. Spectral band selection has 

also been studied: Wu et al. (2019) performed retrievals only using the 2.05 µm band of OCO-2 measurements and Wilzewski 

et al., (2020) considered single-band observations, from spectrally degraded 1.6 µm / 2.05 µm GOSAT band measurements 

(𝜆 Δ𝜆⁄ ~	700 − 8100/6150, respectively). 

 105 

In this work, we perform a systematic survey that synthetically explores the impact of spectral resolution, signal-to-noise ratio 

(SNR) and spectral band selection, three design parameters for SWIR CO2 observing satellite concepts, on 𝑋!"!  retrieval 

performance (SNR-related precision, degrees of freedom, vertical sensitivity and smoothing error, excluding accuracy). These 

choices are motivated by the characteristics gathered in Table 1. Indeed, two orders of magnitude in resolving power (𝜆/Δ𝜆) 

separate Carbon Mapper (AVIRIS-NG) from MicroCarb. Exploring a wide range of SNR values on the top of different 110 

resolving powers will help to encompass all possible performance results from a wide variety of concepts that measure SWIR 

spectra. Finally, because CO2image is planned to only measure the 2.05 µm band, and GOSAT-GW the 0.76 µm and 1.6 µm 

bands, we will also study the impact of choosing different combinations of spectral bands. Synthetic calculations performed 
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for a fictious concept with varying design parameters will help to map a large space of possible 𝑋!"! retrieval performances, 

to which those of the peculiar SCARBO concept will be compared, along with those of the current OCO-2 and upcoming 

MicroCarb and CO2M missions.  

 

This article is structured as follows: Section 2 describes the observing concepts considered in this work, and Section 3 details 130 

the materials and methods. Section 4 describes the results obtained for a fictious concept with varying design parameters and 

discusses them. It first focuses on the impact of spectral resolution and SNR, then on the impact of spectral resolution and 

spectral band selection, for which it also explores geophysical information entanglements. Finally, Section 5 discusses the 

performance results obtained for the exactly defined OCO-2, MicroCarb and CO2M concepts, along with those of the peculiar 

NanoCarb concept, and how they compare to those of the fictious concept with varying design parameters. Section 6 highlights 135 

the conclusions of this work. 

2 SWIR CO2 observing satellite concepts 

In this section, we provide the measurement characteristics that are used to model the different upcoming – real or fictitious – 

SWIR CO2 observing satellite concepts. In order to reduce the number of dimensions to explore, we consider, for the purpose 

of this study, that the spectra-measuring concepts have an identical resolving power 𝜆/Δ𝜆 over all their spectral bands, as well 140 

as a constant spectral sampling ratio of 3 (which is the case for both MicroCarb and CO2M, and is a design hypothesis for 

CO2image). All Instrument Spectral Response Functions (ISRFs) are treated as Gaussian functions with a Full Width at Half-

Maximum (FWHM, Δ𝜆) calculated from the resolving power	𝜆/Δ𝜆, with 𝜆 being the average spectral band wavelength. 

2.1 OCO-2, MicroCarb and CO2M 

We consider three explicitly described upcoming concepts that measure and will measure SWIR spectra: OCO-2, MicroCarb 145 

and the Copernicus CO2 Monitoring (CO2M) concept. The left panel of Fig. 1 illustrates MicroCarb and CO2M observations. 

 

The Orbiting Carbon Observatory-2 (OCO-2) has been providing 𝑋!"! observations from SWIR measurements for close to a 

decade (Taylor et al., 2023). We include this instrument in order to assess how the synthetic results obtained here relate to 

results obtained from real data. We model OCO-2 observations relying on instrument functions and noise models provided in 150 

OCO-2 L1b Science and Standard L2 products of Atmospheric Carbon Observation from Space algorithm version 8 (ACOS, 

O’Dell et al., 2018). These files are not from the latest v10 version of OCO-2 data, but the v8 to v10 major reprocessing did 

not include significant changes on instrument parameters (Taylor et al., 2023), so we assess that our input data are acceptable 

for this synthetic study. 

 155 

Deleted: upcoming 

Deleted: two 

Deleted: their 

Formatted: Subscript

Deleted: ¶

Deleted: (Taylor et al., 2023)160 



6 
 

MicroCarb (Bertaux et al., 2020; Pascal et al., 2017) is the upcoming CNES CO2 observing mission that will acquire SWIR 

spectra at high spectral resolution, thus following the steps of the currently flying OCO-2. Besides the increase in spectral 

resolution, its main novelty is the addition of the O2 1.27 µm band that will provide additional optical path length information 

at wavelengths closer to those that contain CO2 sensitivity, which may help to reduce aerosol-related errors. MicroCarb aims 

at retrieving 𝑋!"! with a precision below 1 ppm, and with the lowest possible systematic errors. In this work, we use the 165 

measurement characteristics presented in Table 2 to model the MicroCarb concept. In Sect. 5, where MicroCarb results are 

presented, the impact on performance of using both or just one of the O2-sensitive will be discussed. 

 
Table 2. MicroCarb measurement characteristics used in this work. 

Spectral band 1 (O2 A-band) 2 (CO2 weak band) 3 (CO2 strong band) 4 (O2 1.27 µm band) 

Wavelenghts (µm) 0.758 – 0.769 1.597 – 1.619 2.023 – 2.051 1.265 – 1.282 

Resolving power (𝜆/

Δ𝜆) 

25000 25000 25000 25000 

Spectral sampling 

ratio 

3 3  3 3 

Reference radiance  

𝑳ref (W/m2cm-1sr) 

4.38 x 10-3 2.69 x 10-3 9.95 x 10-4 2.97 x 10-3 

Reference SNR 

𝑺𝑵𝑹ref 

480 579 249 503 

  170 
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Figure 1. Example of CO2M (blue) and MicroCarb (red) transmissions (left) and NanoCarb truncated interferogram (right) for a 
vegetation-like albedo with a Solar Zenith Angle of 50º. Arrows link NanoCarb bands to their respective narrow-band filters (the 
horizontal coloured lines denoting their FWHMs), shown over CO2M and MicroCarb transmissions. 175 

The Copernicus CO2 Monitoring (CO2M) mission (Meijer, 2020) is the upcoming space component of the operational 

European anthropogenic CO2 emissions Monitoring and Verification Support (CO2MVS) capacity (Janssens-Maenhout et al., 

2020). Its design compromises between spatial and spectral resolutions, swath and spectral band width, aiming to provide an 

imaging of 𝑋!"! with a random error lower than 0.7 ppm and systematic errors as low as possible (Meijer, 2020). In this work, 
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we use the spectrometer measurement characteristics presented in Table 3 to model the CO2M concept. Besides the 180 

spectrometer, the CO2M mission will also include a Multi-Angle Polarimeter, which is an instrument dedicated to the 

observation of aerosols. Its results are expected to help better constrain their interfering effect on 𝑋!"! retrievals, and improve 

their precision and accuracy (Rusli et al., 2021). Here, we only study the CO2M spectrometer alone, thus the results that we 

obtain do not reflect the comprehensive theoretical CO2M mission performance.   

 185 
Table 3. CO2M spectrometer measurement characteristics used in this work. 

Spectral band 1 (O2 A-band) 2 (CO2 weak band) 3 (CO2 strong band) 

Wavelenghts (µm) 0.747 – 0.773 1.590 – 1.675 1.990 – 2.095 

Resolving power (𝜆/

Δ𝜆) 

5870 5870 5870 

Spectral sampling 

ratio 

3 3  3 

Reference radiance 

𝑳ref (W/m2cm-1sr) 

9.66 x 10-4 6.81 x 10-4 7.30 x 10-4 

Reference SNR 

𝑺𝑵𝑹ref 

330 400 400 

 

2.2 Fictitiously Varying CO2M concept (CVAR) 

In order to grasp the full extent of upcoming or studied SWIR CO2 observing satellite concepts, we also consider a fictitious 

concept that has the same characteristics as CO2M, apart from its resolving power 𝜆/Δ𝜆, SNR and spectral band selection. 190 

This varying concept will be hereafter referred to as “CVAR”. 

 

First, we consider resolving power values ranging from 200 to 30000 (the list of exact resolving power values that are 

considered is given in the Supplementary Table S1). Figure 2 illustrates the impact of spectral resolution on the CO2 absorption 

band around 1.6 µm. For the lowest resolving power 𝜆/Δ𝜆 = 200, the “two-lobed” P-R branch structure of this CO2 absorption 195 

band (Liou, 2002) is not visible. It fully appears from 𝜆/Δ𝜆	 = 1000 upwards. Individual absorption lines become visible, but 

are not fully resolved for 𝜆/Δ𝜆 comprised between about 1000 and 10000. Only for 𝜆/Δ𝜆 > 10000 does the whole P-R band 

structure and individual absorption lines fully appear. Given that the fixed CO2M spectral band intervals are quite large, 

compared to those of MicroCarb, the choice of using CO2M band intervals for exploring the impact of the resolving power on 

𝑋!"! retrieval performance is a reasonable compromise between high resolution instruments that measure narrow spectral 200 

bands (e.g MicroCarb or OCO-2), and low resolution instruments that measure continuous spectra (e.g. Carbon Mapper from 
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0.4 to 2.5 µm). Thus, this compromise yields fictitiously large spectral bands for CVAR cases with high resolving power 205 

values, and corresponds to a window selection approach for observations with low spectral resolution, similar to what is 

actually done to process AVIRIS-NG measurements (Cusworth et al., 2021). 

 
Figure 2. CO2-sensitive 1.6 µm band observed with a resolving power 𝝀/𝚫𝝀 ranging from 200 to 30000. 

 210 

In addition to spectral resolution, we also consider the impact of SNR in this study. This will help to explore the performance 

of a wider range of SWIR CO2 observing satellite concepts. We will cover two orders of magnitude in noise level by applying 

a spectral-band-wise factor ranging from 0.1 to 10 on CO2M SNR values given in Table 3. The impacts of both spectral 

resolution and SNR on 𝑋!"!retrieval performance results are presented and discussed in Sect. 4.1. 

 215 

Finally, in addition to spectral resolution but separately from SNR, we consider the impact of spectral band selection. This will 

help to encompass upcoming or studied single- or dual-band observing concepts such as CO2image or GOSAT-GW, 

respectively. All CO2M spectral band combinations containing at least one CO2-sensitive band will be explored: B2, B12, B3, 

B13, B23 and B123 (with B denoting “band” followed by the CO2M spectral band numbers considered in the combination). 

The impacts of both spectral resolution and spectral band selection on 𝑋!"!retrieval performance results and geophysical 220 

information entanglement are presented and discussed in Sect. 4.2 and 4.3. 
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2.3 The SCARBO concept and NanoCarb  

The Space CARBon Observatory (SCARBO) concept (Brooker, 2018) is quite different from all the other concepts mentioned 

in this article. Indeed, it relies on a miniaturized static Fabry-Perot interferometer, named NanoCarb, that measures truncated 

interferograms at Optical Path Differences (OPDs) which are optimally sensitive to CO2, and to some other interfering 225 

geophysical variables (Gousset et al., 2019). Because of their very nature, these truncated interferograms are sensitive to the 

periodic signature of CO2 in the infrared spectrum. As in Dogniaux et al. (2022), we use here the latest design of the NanoCarb 

instrument, currently considered with a ~200 km swath and a 2.3 x 2.3 km2 spatial resolution. The optimal OPD selection 

accounts for CO2 information entanglements with H2O and aerosols, neglects atmospheric temperature and assumes that albedo 

is band-wise constant (Gousset et al., 2019). It measures truncated interferograms that are sensitive to four spectral bands, as 230 

shown in Fig. 1 right panel, which are associated to narrow-band filters shown in Fig. 1 left panel (follow the arrows). Their 

FWHMs are 35 cm-1, 24 cm-1, 69 cm-1 and 18 cm-1 for band 1 to 4, respectively. NanoCarb has a two-dimensional field-of-

view (FOV, 170 across-track x 102 along-track pixels, in the current design) that observes a fixed location on the ground with 

different viewing angles, as it flies over it. The up to 102 𝑋!"! retrievals that can be done for a same location on the ground 

are then combined to yield only one unique retrieval result, with reduced random error (assuming independent observations). 235 

Dogniaux et al. (2022) details the NanoCarb concept performance results and its current shortcomings. One of the main results 

is that NanoCarb performance decreases close to the FOV edges, so we will only focus here on the central FOV pixel, and 

central along-track row of pixels. Besides, it also explains that CO2 and interfering geophysical variable information contents 

are entangled in NanoCarb truncated interferograms. This specific shortcoming will be further detailed in this article. 

3 Materials and methods 240 

3.1 Atmospheric and observational situations 

As this study focuses on the impact of instrument design parameters on 𝑋!"! retrieval performance, we purposefully limit the 

number of atmospheric conditions that we include. We consider 12 atmospheric and observational situations that explore three 

surface albedo models (soil, vegetation and desert, denoted SOL, VEG and DES, respectively – their average values over the 

SWIR spectral bands are given in the Supplementary Table S2), generated from the ASTER spectral library (Baldridge et al., 245 

2009), and 4 Solar Zenith Angles (hereafter SZA, 0°, 25°, 50° and 70°). A given situation will be referred to with its albedo 

model short name followed by the SZA, e.g. VEG-50º, for the situation with an albedo representative of vegetation, lit with 

an SZA equal to 50º. 

 

For these 12 situations, the measurements are made at nadir (viewing zenith angle equal to 0°). We use a typically European 250 

atmospheric situation (vertical temperature and water vapour profiles), taken as the average of the mid-latitude temperate 

atmospheric profiles included in the Thermodynamic Initial Guess Retrieval (TIGR) climatology library (Chedin et al., 1985; 
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Chevallier et al., 1998). For this synthetic performance study, we consider a constant vertical CO2 concentration profile of 

394.95 ppm. The surface pressure is constant and set at 1013 hPa. To mimic possible pollution over the European continent 

we include fine-mode aerosols, representative of soot, between 0 and 2 km of altitude, and coarse mode aerosols, representative 

of minerals, between 2 and 4 km of altitude (this choice is supported by transported desert dust layers over Europe described 265 

by Papayannis et al. (2008). 

3.2 Performance evaluation with Optimal Estimation 

3.2.1 General aspects 

Optimal Estimation (Rodgers, 2000) offers an ideal framework for the evaluation of 𝑋!"! retrieval performance. It has been 

extensively described in other publications (e.g. Connor et al., 2008), so only its essential aspects are reminded in this article. 270 

Given a state vector 𝑥 that contains parameters that describe the atmospheric and surface state, and a measurement vector 𝑦 

that contains the infrared observation made from space by a studied concept, OE enables to provide the geophysical state that 

best fits the measurement made from space, thus giving a satisfying solution to the following equation:  

𝑦 = 𝐹(𝑥) + 𝜀            (1) 

with 𝐹, the forward radiative transfer model that allows to simulate spaceborne infrared observations from geophysical state 275 

parameters, and 𝜀, the spaceborne measurement uncertainty. Because this inverse problem is ill-posed, OE brings in a priori 

information that helps to better constrain the estimation. This a priori information can be seen as the knowledge of the 

geophysical state one would have before using the information contained in the spaceborne measurement (e.g. taken from 

climatologies).  It is given in the form of an a priori state vector 𝑥&, characterized by its uncertainty given in the a priori state 

covariance matrix 𝑆&.  280 

 

The retrieved geophysical state that best fits the measurement made from space and the a priori information is called the 

maximum-likelihood a posteriori state and is noted 𝑥>. Its a posteriori covariance matrix, which describes the uncertainty of the 

retrieved state, is noted 𝑆? and computed using the following equation: 

𝑆? = [𝑆&'( +𝐾)𝑆*'(𝐾]'(           (2) 285 

with 𝑆*, the a priori covariance matrix of the measurement vector describing measurement/forward modelling uncertainties, 

and 𝐾, the Jacobian matrix containing the partial derivatives of the measurement with respect to the state vector parameters. 

Its elements are illustrated in the Supplements (see Fig. S1 and S2), for a usual SWIR spectrum and corresponding NanoCarb 

truncated interferogram.  

 290 

Another useful OE result is the averaging kernel matrix, denoted 𝐴, which describes how the retrieved state 𝑥> relate to the true 

– but unknown – geophysical state: 

𝐴 = +,-
+,
= 𝑆?𝐾)𝑆*'(𝐾           (3) 
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The diagonal elements of 𝐴 are the state vector elements’ degrees of freedom, which provide a measure of the geophysical 

information obtained from the measurement through the OE process. Degrees of freedom close to 1 highlight a high 

contribution of the measurement in the estimation of a given state vector parameter, whereas degrees of freedom close to 0 

denote a low contribution of the measurement and a high contribution of the a priori information. Finally, 𝐴 also enables the 305 

computation of 𝑋!"! averaging kernel that describes its vertical sensitivity (Connor et al., 2008). It shows the atmospheric 

layers to which the retrieval is the most sensitive to and it is essential to characterize and correctly exploit the retrieved 𝑋!"!. 

3.2.2 Forward and inverse setups for performance evaluation 

We use the 5AI inverse model (Dogniaux et al., 2021) that relies on 4A/OP radiative transfer model (Scott and Chédin, 1981) 

to build the Jacobian matrix 𝐾. These forward radiative transfer simulations rely on GEISA 2015 spectroscopic database 310 

(Jacquinet-Husson et al., 2016) with line-mixing effects for CO2 (Lamouroux et al., 2015) and collision induced absorption in 

the O2 0.76 µm band (Tran and Hartmann, 2008). Multiple scattering is taken into account through 4A/OP coupling with 

LIDORT (Spurr, 2002) and the aerosol optical properties are taken from the OPAC library, which uses lognormal size 

distributions (Hess et al., 1998). For the performance study performed here, we assume that these optical properties are 

perfectly known, including their spectral dependence, thus allowing the transfer of information when combining different 315 

spectral bands. Finally, the atmospheric model is discretized in 20 atmospheric layers that bound 19 layers, as done by the 

ACOS algorithm (O’Dell et al., 2018). Airglow emission which impacts MicroCarb 1.27 µm band (Bertaux et al., 2020) is not 

included here in 4A/OP simulations. 

 

We include in the state vector all the main geophysical variables necessary to model SWIR spaceborne measurements. Those 320 

are listed in Table 4, along with their a priori values and uncertainties. This selection of state vector parameters is used for all 

exactly-defined concepts (with a small exception on albedo slope for NanoCarb) and CVAR experiment cases because the 

goal of this study is to explore the impact of design parameters on performance. Using a similar estimation scheme across all 

resolving power helps us achieve this goal. However, we do realise that, in practice, less geophysical elements are fitted for 

low resolving power observations (e.g. Cusworth et al., 2021). Finally, the measurement noise model that fills the diagonal of 325 

𝑆* is calculated, as in Buchwitz et al. (2013), with a reference radiance 𝐿ref and a reference signal-to-noise ratio 𝑆𝑁𝑅ref: 

𝜎* = H
𝐿ref 𝑆𝑁𝑅ref,	if	𝐿 < 𝐿ref⁄ 	

𝐿/M𝑆𝑁𝑅refN𝐿 𝐿ref⁄ O,	if	𝐿 ≥ 𝐿ref
         (4) 

with 𝜎*, the noise model for a given spectral sample, and 𝐿, the radiance for a given spectral sample. Here, the 𝑆* matrix only 

includes measurement noise, so the uncertainty (or precision) results obtained from the 𝑆?  matrix will only be related to 

measurement noise. In practice smoothing errors from CO2 and non-CO2 state vector parameters add up to the uncertainty 330 

(Connor et al., 2008). Finally, uncertainty evaluated on real data is typically larger than the uncertainty obtained from Optimal 

Estimation calculations, as model-related errors (uncertainty in albedo spectral dependence, spectroscopy errors, etc.) are also 
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encompassed in such evaluations. For example, at low resolving powers, the complexity of spectral dependence in surface 

reflectance can lead to significant errors (e.g. for methane, Ayasse et al., 2018) that will not be accounted for here or, at high 

resolving power, real-data uncertainties are evaluated to be twice as large as theoretical uncertainty for OCO-2 (Eldering et 345 

al., 2017). 

 
Table 4. State vector used for performance evaluation 

Variable name  Length A priori value A priori uncertainty (1σ) Notes 

H2O scaling factor 1 1.0 0.5 - 

CO2 profile 19 layers 394.95 ppm Same matrix as ACOS 

(O’Dell et al., 2018) 

- 

Surface Pressure 1 1013.0 hPa 4.0 hPa - 

Temperature Profile 

Shift 

1 0 K 5 K - 

Surface albedo (order 

0 of albedo model) 

1-4 bands true synthetic 

value 

1.0 4 bands in MicroCarb B1234 

and NanoCarb cases 

Surface albedo (order 

1 of albedo model) 

1-4 bands true synthetic 

value 

1.0 4 bands in MicroCarb B1234.  

Not included in the state vector 

for NanoCarb case, see Sect. 

2.3. 

Coarse mode aerosol 

Optical Depth (COD) 

1 layer 0.02 0.1 - 

Fine mode aerosol 

Optical Depth (COD) 

1 layer 0.05 0.1 - 

  

4 Results and discussion for CVAR 350 

4.1 Impact of spectral resolution and signal-to-noise ratio 

This subsection explores the combined impact of spectral resolution and signal-to-noise ratio on 𝑋!"! retrieval performance. 

First, we discuss how 𝑋!"! precision and CO2-related degrees of freedom evolve with spectral resolution and signal-to-noise 

ratio, and then we examine 𝑋!"! vertical sensitivities. 
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4.1.1 𝑿𝑪𝑶𝟐 precision and degrees of freedom 

Here, we assess the impact of varying spectral resolution and signal-to-noise ratio. For the atmospheric situation VEG-50º, 

Figure 3 shows the 𝑋!"!  precision (or random error) and degrees of freedom (hereafter DOFs) as a function of both the 360 

resolving power 𝜆/Δ𝜆 and the signal-to-noise ratio (SNR) for CVAR, and for the exact OCO-2, CO2M, MicroCarb and 

NanoCarb concepts (results for exactly-defined concepts are discussed in Sect. 5). The random error is computed from the a 

posteriori covariance matrix 𝑆? given in Eq. (2), and the DOFs correspond to the sum of CO2-related diagonal elements of 

matrix 𝐴, given in Eq. (3). As results change in values but conclusions do not for other albedo models and SZAs, figures that 

include all 12 atmospheric situations are shown in the Supplements. 365 

 
Figure 3. 𝑿𝑪𝑶𝟐  precision (left) and corresponding degrees of freedom for CO2 (right), for the fictitious CVAR instrument for 
resolving power 𝝀/𝚫𝝀 evolving from 200 to 30000 (horizontal axis), and for SNR evolving from 0.1 to 10 times CO2M reference SNR 
(colour scale), for the situation VEG-50º. Symbols give the same quantities for NanoCarb (NC, squares), MicroCarb (MC, triangles 
for various band combinations), CO2M (circle) and OCO-2 (grey circle). It should be noted that NanoCarb does not have a spectral 370 
resolution per se, the resolving powers used to plot its performance have been solely chosen for the sake of comparing NanoCarb 
and CVAR performance.  

 

Results for the reference CO2M SNR are given by the black line. 𝑋!"! precision evolves from 1.96 ppm for 𝜆/Δ𝜆=200 to 0.16 

ppm for 𝜆/Δ𝜆=30000. These values are consistent with those reported by previous studies: Galli et al. (2014) showed that 375 

degrading spectral resolution increased 𝑋!"!  random errors (values cannot be compared because no real measurement is 

processed here) and Wu et al. (2020) reported an increase of mean 𝑋!"! retrieval noise from 0.25 ppm to 0.59 ppm (0.21 to 

0.56 ppm in this work, respectively), when degrading OCO-2 measurements (𝜆/Δ𝜆 ~ 20000) to CO2M-like resolving powers 

(𝜆/Δ𝜆 ~ 6000). This improvement in precision with increasing resolving power is correlated to DOFs values that also increase 

with resolving power, from 1.02 to 2.45, respectively. Indeed, the more information a measurement can bring, the lower the 380 
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𝑋!"! random error. Changing the SNR has similar effects: the less noisy a measurement is, the more information it can carry, 

thus increasing SNR increases DOFs and reduces 𝑋!"! random error. For example, for 𝜆/Δ𝜆=6000 (close to CO2M resolution), 

𝑋!"! precision evolves from 2.34 ppm to 0.11 ppm when multiplying SNR by 100. Overall, increasing the SNR by 2 orders 

of magnitudes improves the 𝑋!"!  precision by a factor ranging from 16 to 37 (for increasing resolving powers), whereas 390 

increasing the resolving power by 2.2 orders of magnitude (from 𝜆/Δ𝜆=200 to 𝜆/Δ𝜆=30000) only improves 𝑋!"!  precision 

by a factor ranging from 10 to 23 (for increasing SNR values). Hence, it appears that 𝑋!"! precision is more sensitive to SNR 

improvements rather than to resolving power improvements, for large improvements of two orders of magnitude centred on 

CO2M instrument characteristics. However, as it can be seen in Fig. 3 (and in Supplementary Fig. S3), this conclusion does 

not hold for smaller local improvements, that generally result in better 𝑋!"!  precision gains through resolving power 395 

improvements than through SNR improvements (see Supplementary Fig. S3).  

 

Furthermore, 𝑋!"! precision and DOFs grossly show two slope changes (in logarithmic scale) as the resolving power 𝜆/Δ𝜆 

increases. Depending on SNR, the first one occurs around 𝜆/Δ𝜆 ~ 400 – 1000. It corresponds to the complete P-R spectral 

band structure becoming visible, as previously commented for Fig. 2. Then, the second slope change occurs around 𝜆/Δ𝜆 ~ 400 

4000 – 10000, it corresponds to the individual spectral lines of CO2 becoming clearly visible in spectral band branches, as also 

commented for Fig. 2. Between these two slope changes (𝜆/Δ𝜆 ~ 1000 – 4000), improvements in resolving power are less 

efficient in improving 𝑋!"! precision than elsewhere along the resolving power dimension (see Supplementary Fig. S3). This 

explains why, across the large two order of magnitude improvements in resolving power and SNR explored in this study, SNR 

has a larger impact on precision than resolving power. This result also underlines the critical importance of resolving new 405 

spectral features (the P-R band structure below 𝜆/Δ𝜆 ~ 1000 or the individual spectral lines above 𝜆/Δ𝜆 ~ 4000) to gain 𝑋!"! 

precision efficiently.  

 

In addition, we can note that these slope changes do not exactly occur for the same resolving power for different SNR values, 

and are more or less sharp. Indeed, the observation of band structures or individual spectral lines must be significant with 410 

respect to noise level to be actually able to bring information and improve 𝑋!"! precision. We note that these slope changes 

occur for smaller resolving powers as SNR increases, and that DOFs and 𝑋!"! precision results for high SNR and low resolving 

powers correspond to results for low SNR and high resolving powers. Thus, a broad symmetry appears in the impact of SNR 

and resolving power on 𝑋!"! retrieval performance. 

4.1.2 Vertical sensitivity: column averaging kernels 415 

In addition to information content (given by DOFs and, symmetrically, by precision), the vertical sensitivity (or column 

averaging kernels, hereafter denoted AKs) of 𝑋!"! retrievals must be examined (see Sect. 3.2.1). Taking into account the 
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vertical sensitivity of total columns is especially important when exploiting local column enhancements of vertically-

inhomogeneous concentration increases. Indeed, any deviation from unity in the vertical sensitivity wrongfully scales 430 

differences between the unknown truth and the prior into the retrieved column enhancement, thus calling for a posteriori 

corrections, as presented by Krings et al. (2011) and also included by Borchardt et al. (2021) for aircraft observation processing. 

Figure 4 shows AKs for CVAR with a resolving power varying from 𝜆/Δ𝜆 = 200 to 30000, and for three different scaling 

factors of CO2M noise model (top row) and, conversely, shows AKs for scaling factors of CO2M noise model varying from 

0.1 to 10, and for three different resolving powers (bottom row). Figure 4 only includes results for the situation VEG-50º. 435 

Results for the other situations are shown in the Supplements. For low SNR and resolving power values, AKs reach their 

maximum in the atmospheric layer closest to the ground, and have near-zeros values at the top of the atmosphere. As SNR or 

resolving power (or both) increase, sensitivities for layers close to the ground improve, and become higher than one. For noise 

levels and a resolving power of about 6000 and above, the vertical sensitivity values are close to 1 from the ground surface up 

to approximately 300 hPa, and then decrease. For SNR and resolving power values even higher, AKs converge towards 1 for 440 

all atmospheric layers. Thus, as for their impact on 𝑋!"! precision or DOFs, the resolving power and noise level of an observing 

concept also have very similar impacts on AK shape for CVAR. 
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 450 
Figure 4. Vertical sensitivities (AKs) as a function of resolving power 𝝀/𝚫𝝀 for three different SNR scaling factors (top), and as a 
function of SNR for three different resolving powers 𝝀/𝚫𝝀 values (bottom), for the observational situation VEG-50º. Black lines with 
symbols give vertical sensitivities for CO2M (circles), MicroCarb (triangles),  NanoCarb (squares) and OCO-2 (grey circles). 

4.2 Impact of spectral resolution and spectral band selection 

This subsection explores the combined impact of spectral resolution and band selection on 𝑋!"! retrieval performance. First, 455 

we discuss how 𝑋!"! precision and CO2 and non-CO2 related degrees of freedom evolve with spectral resolution and band 

selection, and then we examine 𝑋!"! vertical sensitivities. Finally, we explore 𝑋!"! sensitivities to a priori misknowledge of 

interfering geophysical variables, with an eventual focus on aerosol-related parameters. 

4.2.1 𝑿𝑪𝑶𝟐 precision and degrees of freedom for CO2 and interfering geophysical variables 

Here, we assess the impact of varying the spectral resolution and band selection. For the atmospheric situation VEG-50º (results 460 

for other situations are given in the Supplements), Figure 5 shows the 𝑋!"! precision and DOFs as a function of both the 
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resolving power 𝜆/Δ𝜆 and spectral band selection for CVAR (with SNR fixed at its reference value), and for the exact OCO-

2, CO2M, MicroCarb and NanoCarb concepts (results for exactly-defined concepts are discussed in Sect. 5). We can first note 

that including the O2 0.76 µm band (denoted B1 in Fig. 5) increases CO2 DOFs for CVAR cases, compared to cases where it 465 

is not included (denoted B2, B3 and B23 in Fig. 5). This spectral band is indeed sensitive to surface pressure, temperature and 

aerosols, and can thus bring independent constraint on these geophysical parameters, that show sensitivities that correlate with 

CO2 sensitivity in 1.6 and 2.05 µm bands. For resolving powers above 1000, adding the O2 0.76 µm band has less impact on 

𝑋!"! precision for B2 than for B3 cases. This may be explained by the fact that spectral lines are more saturated in B3, thus 

providing less information regarding the length of the optical path than in B2. Besides, we can also notice that CO2 DOFs for 470 

B3/B13 are always higher than for B2/B12 cases. This may be explained by the fact that CO2M 2.05 µm band includes two 

full sets of CO2 P-R absorption branches (out of the three present near 2.05 µm, with one more saturated than the other, see 

Fig. 1), whereas there is only one set of CO2 branches in B2 near 1.6 µm, for identical SNR values between B2 and B3. Thus, 

B3 carries more CO2 information than B2. Interestingly, we can also notice that band configurations with the higher DOFs do 

not systematically translate into better 𝑋!"! precision: for example B3/B13 always shows higher DOFs than B2/B12, but very 475 

similar 𝑋!"! precisions from 𝜆/Δ𝜆=3000 and upwards. This is due to the covariance between CO2 elements in the state vector 

that vary between band selection cases (see Supplementary Figure S18), which shows that different spectral bands carry 

different CO2 information.  

 
Figure 5. 𝑿𝑪𝑶𝟐  precision (left), and corresponding degrees of freedom for CO2 (right), for the fictitious CVAR instrument for 480 
resolving power 𝝀/𝚫𝝀 evolving from 200 to 30000 (horizontal axis), and for different spectral band selections: with and without O2 
0.76 µm band (B1, full and dashed-lines, respectively), with both CO2 1.6 and 2.05 µm bands (B23, black), with only the 1.6 µm band 
(B2, red) and with only the 2.05 µm band (B3, yellow), for the situation VEG-50º. Symbols give the same quantities for NanoCarb 
(NC, squares), MicroCarb (MC, triangles for various band combinations), CO2M (circle) and OCO-2 (grey circle). It should be 
noted that NanoCarb does not have a spectral resolution per se, the resolving powers used to plot its performance have been solely 485 
chosen for the sake of comparing NanoCarb and CVAR performance. 
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Figure 6. Degrees of freedom for H2O scaling factor (top, left), Surface pressure (top, center), Temperature profile shift (top, right), 
Coarse mode aerosol optical depth (bottom, left) and Fine mode aerosol optical depth (bottom, center), for the fictitious CVAR 
instrument for resolving power 𝝀/𝚫𝝀 evolving from 200 to 30000 (horizontal axis), and for different spectral band selections: with 495 
and without O2 0.76 µm band (B1, full and dashed-lines, respectively), with both CO2 1.6 and 2.05 µm bands (B23, black), with only 
the 1.6 µm band (B2, red) and with only the 2.05 µm band (B3, yellow), for the situation VEG-50º. Symbols give the same quantities 
for NanoCarb (NC, squares), MicroCarb (MC, triangles for various band combinations), CO2M (circle) and OCO-2 (grey circle). It 
should be noted that NanoCarb does not have a spectral resolution per se, the resolving powers used to plot its performance have 
been solely chosen for the sake of comparing NanoCarb and CVAR performance. 500 

 

For the atmospheric situation VEG-50º (results for other situations are given in the Supplements), Figure 6 completes Fig. 5 

by showing DOFs for interfering geophysical variables (H2O profile scaling factor, surface pressure, temperature profile shift 

and aerosol optical depths; albedo-related parameters are not included because they are all very close or equal to 1) as a function 

of both the resolving power 𝜆/Δ𝜆 and spectral band selection for CVAR (with SNR fixed at its reference value), and for the 505 

exact OCO-2, CO2M, MicroCarb and NanoCarb concepts (see Sect. 5). For all five variables, DOFs increase with resolving 

powers and tend towards 1. H2O profile scaling factor and temperature profile shift exhibit high close-to-one DOFs for almost 

all resolving powers and spectral band selection cases in the configuration used here. Surface pressure and aerosol optical 
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depths, variables that influence the length of the optical path, have more sensitivity to resolving power, and also especially to 510 

the inclusion – or not – of the O2 0.76 µm band (B1) in the spectral band selection. Cases that do not include B1 show much 

lower DOFs for these variables, illustrating once again, how useful this band is to constrain interfering geophysical variables. 

This result is made possible by the usual (see OCO-2 processing algorithm ACOS for example, O’Dell et al., 2018) hypothesis 

of fixed aerosol optical properties, which enables sharing optical path information across spectral bands. Overall, we can also 

note that, for all geophysical variables, DOFs for B13 are more or less significantly closer to those of B123, compared to DOFs 515 

of B12. This shows that the CO2 1.6 µm band only brings little complementary interfering variable information on the top of 

the one already carried by the 2.05 µm band. 

 

Previous studies that have explored the impact of spectral band selection and/or spectral resolution on 𝑋!"!  performance 

provide conclusions in broad agreement with the previously presented results. Wilzewski et al. (2020) studied the performance 520 

of 𝑋!"!  retrievals from spectrally-degraded GOSAT measurements only using the 1.6 or 2.05 µm spectral bands. While 

methodologies are hardly comparable (because this study is only based on synthetic simulations), both works agree that the 

𝑋!"! precision and resolving power relationship has a change of characteristic around 𝜆/Δ𝜆 = 1000 – 2000, when solely using 

the 1.6 or 2.05 µm CO2 bands (see Supplementary Fig. S11 for Fig. 5 plotted in linear scale). Building on Wilzewski et al. 

(2020), Strandgren et al. (2020) select the 2.05 µm CO2 band for the design of a moderate resolution instrument, partly because 525 

it shows scattering particle sensitivity. Results presented here are consistent with this conclusion: using the sole 2.05 µm band 

yields higher (or equal for surface pressure at low resolving powers) DOFs for all geophysical variables, compared to using 

the sole 1.6 µm CO2 band. 

4.2.2 Vertical sensitivity: column averaging kernels 

Figure 7 gives the column averaging kernel – which describes 𝑋!"! vertical sensitivity – for all CVAR spectral band selection 530 

cases, and for three different resolving power values (200, 6000 and 30000). For lower resolving powers, spectral band 

selection cases that include the CO2 2.05 µm band (B3) show a greater sensitivity to atmospheric levels close to the surface. 

This may be explained by the fact that this spectral band includes saturated spectral lines which are more sensitive to CO2 

concentration variations in atmospheric layers close to the surface, as it can be seen for example in Fig. 2 in Roche et al. (2021). 

As for Fig. 4, AKs tend to converge towards unity when resolving power increases, and this difference between bands 535 

disappears. Besides, it can be noted that, comparing AKs between B23 and B123 spectral band selection cases, including or 

not an O2 sensitive band does not have a strong impact on 𝑋!"! vertical sensitivity. 
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 555 
Figure 7. Vertical sensitivities (AKs) for different spectral band selections (colours and line styles, see legend), and three different 
resolving powers 𝝀/𝚫𝝀 values, for the observational situation VEG-50º. 

4.2.3 Geophysical information entanglements 

Geophysical information is more or less entangled in SWIR measurements (as illustrated for example by a posteriori correlation 

matrices shown in the Supplements S18 or in Fig. 10), depending on the measurement nature (spectra or truncated 560 

interferogram), and also on its characteristics (spectral band selection, spectral resolution, SNR, etc.). One consequence of 

these entanglements is that possible a priori misknowledge of the atmospheric state can impact retrieved 𝑋!"! and cause biases: 

this is called smoothing error (Connor et al., 2008; Rodgers, 2000). In this section, we use the averaging kernel matrix 𝐴 to 

propagate a priori misknowledge of the synthetic true state of the atmosphere for non-CO2 interfering variables in order to 

evaluate its impact on retrieved 𝑋!"!. Figure 8 shows, for the 12 atmospheric and observational situations considered in this 565 

work, the 𝑋!"! impact of a priori misknowledge for several state vector variables for all CVAR spectral band selection cases, 

for resolving power values ranging from 200 to 30000, as well as for the exact MicroCarb, CO2M and NanoCarb concepts (see 

Sect. 5 for exactly-defined concepts). These a priori perturbations include: (1) +10% to H2O profile scaling factor; (2) + 1 hPa 

to surface pressure; (3) + 1 K to the temperature profile shift; and (4) +0.05 to the albedo in 1.6 µm band. All situations and 
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perturbations are sorted along a unique axis, and the top three panels in Fig. 8 describe both the situations (albedo and SZA) 

and perturbations considered. 

 
Figure 8. 𝑿𝑪𝑶𝟐 sensitivities (noted D𝑿𝑪𝑶𝟐) to prior misknowledge of water vapor, surface pressure, temperature profile shift and 1.6 
µm band albedo value (described in the top panel), for 12 observational situations (described in the 2nd and 3rd panels), for 6 different 575 
CVAR spectral band selections (lines in the 6 bottom panels) and resolving power values ranging from 200 to 30000 (color scale). 
Black lines with symbols give the same sensitivities for CO2M (circles), MicroCarb (triangles) and NanoCarb (squares) in the bottom 
panel. 

 

First, regarding water vapour, 𝑋!"! sensitivities are very small for all CVAR band selection configurations (consistently with 580 

results in Fig. 6), spectral resolutions and exactly described concept: for VEG-70º in CVAR B3 case, for the lowest resolving 

power, it amounts to a maximum of 0.12 ppm, in absolute value. This means that if a water vapor plume is correlated with a 

CO2 emission plume, in the exhaust fumes of a coal-fired power plant for instance, a small bias in retrieved 𝑋!"! enhancement 

could then hamper estimations from a low resolving power (but potentially high spatial resolution) instrument. However, 
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considering that emission rates computed from enhancements with mass-balance approaches may have uncertainties up to 65% 585 

(mainly due to wind-speed errors, Varon et al., 2018), this sensitivity of retrieved 𝑋!"! to water vapour appears insignificant.  

 

Regarding surface pressure, 𝑋!"! sensitivities are close to zero for all resolving powers above 10000, and increase differently 

depending on spectral band selection case for lower resolving powers. They reach up to 0.47 ppm for CVAR B3 case at the 

lowest resolving power value tested. Overall, 𝑋!"! sensitivities to prior surface pressure misknowledge is reduced when the 590 

O2 0.76 µm band is included in the measurement, consistently with results shown in Fig. 6. These sensitivities can be expected 

to impact the full-swath of an imaging instrument with lower resolving powers, and thus can be removed when computing an 

enhancement. However, they would blindly impact observations without emissions plumes to detect, thus making these 

observations hard to exploit for other purposes than anthropogenic point source monitoring. 

 595 

Regarding temperature global shift, consistently with high DOFs shown in Fig. 6, 𝑋!"! sensitivities are overall very small for 

spectral resolving power above 1000 and all CVAR spectral band selection cases. For resolving powers lower than 1000, they 

can reach up to 0.23 ppm in absolute value, for the CVAR B2 case for instance (see lower DOFs in Fig. 7). 

 

Finally, all cases and concepts exhibit near-zero (or even, by construction, exactly-zero for B3 and B13 CVAR cases) 𝑋!"! 600 

sensitivities when perturbating the 1.6 µm CO2 band albedo by 0.05. This reflects the albedo DOFs very close or equal to 1 

that we obtain with this inverse setup configuration, as well as the low posterior correlations between albedo and CO2 

parameters in the state vector. 

4.2.4 Focus on sensitivities to prior aerosol misknowledge 

We follow the approach used for NanoCarb performance assessement (Dogniaux et al., 2022), that was first introduced by 605 

Buchwitz et al. (2013) for the performance assessment of CarbonSat. Considering the previously described 12 atmospheric 

and observational situations that span three different albedo models and four SZA values, we explore the 𝑋!"! sensitivities for 

synthetic coarse mode aerosol optical depths spanning 0.001 – 0.15 (with a fixed prior of 0.02) and fine mode aerosol optical 

depths spanning 0.001 – 0.22 (with a fixed prior of 0.05), thus yielding 192 situations in total. This a priori misknowledge of 

aerosol optical depths is propagated through the averaging kernel matrix 𝐴 to evaluate its impact on retrieved 𝑋!"! values. 610 
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Figure 9. 𝑿𝑪𝑶𝟐 sensitivities (noted D𝑿𝑪𝑶𝟐) to prior misknowledge of aerosol optical depths (described in the 3rd and 4th top panels), 615 
for 12 observational situations (described in the 1st and 2nd panels), for 6 different CVAR spectral band selections (lines in the 6 
bottom panels) and resolving power values ranging from 200 to 30000 (color scale). Black lines with symbols give the same 
sensitivities for NanoCarb (squares) in the bottom panel. 

 

Figure 9 shows for the 192 considered situations, the 𝑋!"! impact of a priori aerosol optical depth misknowledge for all CVAR 620 

spectral band selection cases, for resolving power values ranging from 200 to 30000, as well as for the exact NanoCarb concept 

(results for NanoCarb are discussed in Sect. 5). All situations are sorted along a unique axis, and the top four panels in Fig. 9 

describe a given situation (albedo and SZA, coarse and fine mode optical depths).  

 

For CVAR B2 and B12 cases, 𝑋!"! sensitivities at low resolving powers reach up to about ~5 ppm. They mostly correlate with 625 

a priori misknowledge of coarse mode aerosol optical depth, and secondarily to fine mode aerosol optical depth, and diminish 
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as spectral resolving power increases. Sensitivities are also different depending on albedo model and SZA values, thus 

reflecting that the information content carried by a given measurement also depends on the scene (see DOFs for all situations 

in the Supplements). Including the O2 0.76 µm band in addition to the CO2 1.6 µm band reduces 𝑋!"! sensitivities to a priori 

aerosol misknowledge at low SZA values for low resolving powers, but show low or even detrimental impacts at higher SZAs. 630 

 

Unlike CO2 1.6 µm band, the CO2 2.05 µm band carries more aerosol information and thus results for CVAR B3 and B13 

selection cases show lower impacts of these variables on 𝑋!"! retrievals, with a maximum of ~2 ppm in absolute value. For 

CVAR B3 case, 𝑋!"! sensitivities to a priori aerosol misknowledge are mostly correlated to coarse mode misknowledge for 

low resolving powers and to fine mode misknowledge for higher resolving powers, converging towards near-zero values for 635 

the highest resolving powers. Interestingly, including the O2 0.76 µm band changes this correlation pattern and 𝑋!"! 

sensitivities appear to be mostly correlated to fine mode aerosol misknowledge for B13 case, with slightly higher 𝑋!"! 

sensitivities compared to B3 case for some situations, such as those with soil or desert-like albedo. 

 

Results for B23 and B123 mostly follow the patterns showed by B3 and B13 cases (as B3 brings most of the aerosol information 640 

compared to B2), only with slightly lower 𝑋!"! sensitivity values, reflecting the little complementary information brought by 

B2 on the top of B3. 

5 Results and discussion for exactly-defined concepts: OCO-2, CO2M, MicroCarb and NanoCarb 

5.1 𝑿𝑪𝑶𝟐 precision and degrees of freedom 

Besides results for CVAR, Fig. 3 also includes the performance computed for four explicit concepts: the currently-flying OCO-645 

2 and upcoming CO2M and MicroCarb missions, as well as the NanoCarb concept that is currently being studied. First, OCO-

2 shows a noise-only related precision of 0.32 ppm corresponding to DOFs for CO2-related parameters of 1.97. The OCO-2 

results that we obtain are overall consistent with ACOS results for soundings with close band-wise albedo values (see 

Supplementary Figure S6). Besides, land nadir OCO-2 𝑋!"! retrievals show an overall 0.77 ppm standard deviation compared 

to the Total Carbon Column Observing Network (TCCON) validation reference (Taylor et al., 2023). This difference with 650 

respect to the theoretical uncertainty computed from Optimal Estimation stems from all the forward and inverse modelling 

errors that are not accounted for in the retrieval scheme. Thus, this illustrates that the results provided in this study are a lower 

bound to the actual precisions that these upcoming concepts will have. CO2M shows an 𝑋!"! precision of 0.56 ppm, which is 

consistent with the 0.7 ppm precision requirement for a vegetation scene with SZA=50º given in (Meijer, 2020). For MicroCarb 

(MC1234, when including the 4 spectral bands), we find an 𝑋!"! precision of 0.31 ppm that satisfactorily compares to the 655 

median 0.35 ppm contribution of SNR to the mission error budget (with the full range of possible contribution being 0.15 – 

0.94 ppm, personal communication). Besides, we can notice that removing one of the two O2-sensitive spectral band from 
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MicroCarb measurement slightly decreases precision (MC123 for 0.76-1.6-2.05 µm bands, and MC234 for 1.6-2.05-1.27 µm 

bands). Indeed, less geophysical information is available to help constrain interfering variables. Finally, MicroCarb (MC1234) 

shows only slightly higher CO2 DOFs compared to CO2M despite having a spectral resolution 5 times higher: this may be 

explained by the fact that their respective spectral bands are not covering the same wavelength intervals, as it can be seen in 

Fig. 1. 665 

 

Two different 𝑋!"! precision results are included for NanoCarb in Fig 3.: one given for a unique pixel located at the FOV 

centre (filled square), and another one obtained after combining results acquired from different viewing angles as the two-

dimensional FOV of NanoCarb flies over a scene (see Sect 2.3, or the extensive description in Dogniaux et al., 2022). For a 

unique observation of a given scene, performed by the FOV central pixel, NanoCarb yields a precision of 5.6 ppm. However, 670 

after combining the maximum 102 observations (over different viewing angles) of the same scene, NanoCarb random error is 

reduced to 0.60 ppm, which is close to CO2M performance. It must be noted that, because of its very nature, NanoCarb does 

not have a spectral resolution per se. Thus, we arbitrarily attributed a resolving power of 𝜆/Δ𝜆 = 300 to plot NanoCarb pixel-

wise performance, and a resolving power 𝜆/Δ𝜆 = 6000 to plot NanoCarb performance for combined pixels. This choice enables 

to highlight that NanoCarb pixel-wise performance compares to concepts measuring spectra at low spectral resolution and low 675 

SNR, whereas once retrieval results from observations that are assumed independent are combined, the 𝑋!"!  precision 

compares to CO2M. 

 

However, despite similar precisions, further comparisons enable to exhibit how their respective 𝑋!"! observations are not 

equivalent. Indeed, we can first notice that their respective DOFs are not comparable at all: CO2M shows 1.83 DOFs for CO2, 680 

whereas NanoCarb pixel-wise CO2 DOFs amount to 0.85 (no averaging kernel matrix is computed for NanoCarb combined-

pixel results, as performance is evaluated per pixel and the combination then assumes that they are independent). These low 

CO2 DOFs for NanoCarb are explained by the low CO2 information content of NanoCarb measurement (compared to concepts 

that measure spectra), and its entanglement with other geophysical variable information, as mentioned in Dogniaux et al. 

(2022). One can indeed notice that CO2 and other variables’ partial derivatives are correlated (see Fig S1 in the Supplements): 685 

this makes it harder for OE to yield independent estimates for CO2 and other parameters.  

 

Another way to look at this issue is to consider a posteriori correlations between state vector parameters, as given by the a 

posteriori covariance matrix 𝑆?. Pearson correlation coefficient matrices computed from 𝑆? are shown for CO2M, MicroCarb 

(MC1234) and NanoCarb in Fig. 10. First, regarding CO2 profile, we notice the very high positive correlation between different 690 

atmospheric layers for NanoCarb, compared to CO2M and MicroCarb cases. This is a result of the low CO2 information content 

in NanoCarb measurements, compared to CO2M and MicroCarb. Besides, in this state vector configuration, NanoCarb a 

posteriori covariance matrix shows stronger correlation between CO2 atmospheric layers and temperature profile shift than for 
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CO2M and MicroCarb. A slight positive correlation between CO2 atmospheric layers and albedo parameters can also be noted 

for NanoCarb, unlike CO2M and MicroCarb that show small negative correlations. The close-to-1.0 correlation between albedo 

parameters of different bands are due to the presence of aerosol optical depth parameters in the state vector (assuming fixed 

aerosol optical properties). When aerosol optical depths are removed from the state vector, these correlations between albedo 

parameters of different bands decrease (see Supplements S19). Interestingly, in that case, correlations between CO2 705 

atmospheric layers and albedo parameters reach up to 0.6 for NanoCarb, whereas they reach 0.2 and 0.1 for CO2M and 

MicroCarb, respectively (see Supplements). Thus, all things considered, NanoCarb contains less geophysical information than 

other concepts that measure spectra, and such a comparison helps pave the way for future improvement of the NanoCarb 

concept. 

 710 
Figure 10. A posteriori correlation matrices for CO2M (left), MicroCarb (center) and NanoCarb (right), for the VEG-50º situation.  

5.2 Vertical sensitivity: column averaging kernels 

Besides results for CVAR, Fig. 4 also includes the vertical sensitivities of OCO-2, CO2M, MicroCarb and NanoCarb. Thanks 

to their spectral resolution and SNR, CO2M and MicroCarb show vertical sensitivities that are close to 1 from the surface to 

about 300 hPa, and that then decrease. Interestingly, NanoCarb AKs do not exactly share the shape of CVAR, CO2M or 715 

MicroCarb AKs. For the atmospheric layers closest to the ground, NanoCarb AK follows the AK shape of an instrument with 

low resolving power and SNR (consistently with how NanoCarb single-pixel performance compares to CVAR in Fig. 3). For 

higher up atmospheric layers, it follows the AK shape of an instrument with medium resolving power and low SNR, or vice 

versa. 

5.3 Non-CO2 degrees of freedom 720 

Besides results for CVAR, Fig. 6 also gives interfering variable DOFs for the exact OCO-2, CO2M, MicroCarb and NanoCarb 

concepts. For MicroCarb and OCO-2, CO2M, DOFs for H2O profile scaling factor, surface pressure, temperature global shift 

and coarse mode aerosol optical depth are all nearly equal to 1. Only for fine mode aerosol optical depth do DOFs appear to 
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be – slightly – lower than 1, with the exception of MicroCarb B234 configuration test, where fine mode DOF is close to 0.4. 

This shows that different optical path length information is carried depending on whether the O2 0.76 µm or 1.27 µm bands 

are used. NanoCarb exhibits near-zero DOFs for surface pressure and fine mode optical depth in this retrieval configuration, 

as well as non-zero yet rather low DOF values for H2O profile scaling factor, temperature global shift and coarse mode aerosol 

optical depth (0.93, 0.36 and 0.55, respectively). Given how little some of these DOF values are, we also conclude that the 730 

state vector used to process NanoCarb measurement should be adjusted to only include the most essential geophysical 

variables. For example, aerosol optical depths could be removed. 

5.4 Geophysical information entanglements 

Besides results for CVAR, Fig. 8 also gives CO2M, MicroCarb and NanoCarb 𝑋!"! sensitivities to a priori misknowledge of 

water vapour, surface pressure, temperature profile, and 1.6 µm albedo. These 𝑋!"!  sensitivities are close to zero for 735 

MicroCarb and CO2M, for the four tested geophysical variables.  

 

Prior misknowledge of surface pressure reach up to 0.39 ppm for NanoCarb, showing again results comparable to low spectral 

resolution instruments. Sensitivities for NanoCarb central pixel (filled squares) and NanoCarb combined results for the central 

row of pixels (empty squares) slightly differ because information entanglement evolves depending on the pixel location in the 740 

NanoCarb FOV. NanoCarb also shows significant 𝑋!"! sensitivities to a priori temperature misknowledge that reach -0.76 

ppm, consistently with the strong correlation shown between the temperature profile shift and CO2 related parameters in the 

state vector (see Fig. 10). This result is not surprising as the version of the NanoCarb concept used in this work did not consider 

the possible impact of entanglements between CO2 and temperature (see Sect 2.3 or Dogniaux et al., 2022, Gousset et al., 

2019). This paves the way for future improvements of this very compact instrumental concept. 745 

 

Regarding the sensitivity to prior aerosol misknowledge, Fig. 9 also shows results for the exact NanoCarb concept, for both 

the central FOV pixel and the combination of the central along-track row of pixels. For SZA values lower or equal to 50º (in 

soil and vegetation albedo situations) and for all SZAs in desert albedo situations, those mostly correlate with coarse mode 

aerosol misknowledge, and reach absolute values up to 1.7 ppm. For SZA=70º in soil and vegetation albedo situations, 750 

NanoCarb aerosol DOFs not only increase (see Fig. S16-17 in Supplements), but correlations between CO2 and aerosol state 

variables also increase by a lot (see Fig. S20 in Supplements), thus leading to the larger sensitivities shown in Fig. 9 (or Fig. 

11). This illustrates that different surface types and SZA must be explored for thorough performance assessments. 

 

Figure 11 is similar to Fig. 9, but focuses on the exact concepts studied of CO2M and MicroCarb. Their 𝑋!"! sensitivities to 755 

prior aerosol optical depth misknowledge is overly correlated to the one of fine mode optical depth. It can be explained by the 

fact that their coarse mode optical depth DOFs are very close to 1, thus enabling a correct estimation (in this synthetic 
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simulation set up) of this geophysical parameter, which results in a very low impact of coarse mode optical depth 

misknowledge on 𝑋!"! retrievals. However, their fine mode DOFs are below 1, thus leading to estimation errors that impact 765 

𝑋!"! retrievals through a posteriori correlations (see Fig. 10 or Supplements S19). Overall, CO2M shows sensitivities up to 

0.2 ppm, with maximums reached for the SOL-25º situation. These values are well below the 0.5 ppm systematic error 

requirement (Meijer, 2020), and are expected to be even more reduced by using the aerosol observations provided by the Multi-

Angle Polarimeter that will fly along CO2M spectrometers (Rusli et al., 2021). As for MicroCarb, its 𝑋!"! sensitivities to 

aerosol optical depth misknowledge measurement peak for soil-albedo situations up to about 0.6 ppm when just including the 770 

0.76 µm O2 band (B123), and up to 0.1 ppm when both 0.76 and 1.27 µm O2 bands are included (B1234), whereas it peaks up 

to -0.2 ppm for vegetation-albedo situations when only the 1.27 µm O2 band is available (B234). Interestingly, sensitivities for 

MicroCarb B123 and B1234 are positively correlated to fine mode aerosol optical depth values, whereas MicroCarb B234 are 

negatively correlated. This illustrates that the O2 1.27 µm band carries complementary optical path length information 

compared to the O2 0.76 µm band (see also a posteriori correlation matrices in Supplements S21). 775 

 
Figure 11. Same as Fig. 10, but containing only results for CO2M, MicroCarb and NanoCarb. 
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6 Conclusions 

In this work, we have carried out a synthetic survey that describes the impact of measurement design choices on 𝑋!"! retrieval 

performance, for shortwave infrared (SWIR) satellite observations. In order to be representative of the large extent of upcoming 

concept designs, it explored – for a fictitiously-varying CO2M-like instrument – the impact of three different parameters: (1) 785 

spectral resolution; (2) signal-to-noise ratio, for values spanning two orders of magnitude, and (3) spectral band selection 

within the measurement. In addition, four exactly-defined concepts have been consistently studied: CO2M, MicroCarb and 

NanoCarb. 

 

First, 𝑋!"! precision and CO2 information content of SWIR measurements improve when increasing either or both resolving 790 

power and signal-to-noise ratio. For CO2M-like SNR values, increasing the resolving power by 2.2 orders of magnitude enables 

to improve precision by a factor of about 12. For a resolving power of 6000, multiplying SNR by 100 enables to improve 

precision by a factor of about 21. Overall, for these large changes of about two orders of magnitude, precision is more sensitive 

to SNR improvement than to spectral resolution improvements. However, small magnitude improvements in resolving power 

generally yield more 𝑋!"! precision improvements than SNR improvements, especially when CO2 spectral lines are resolved. 795 

The separate impacts of these two parameters show a broad symmetry in precision, as well as in vertical sensitivities: 

measurements with lower SNR and/or spectral resolution give more weight to atmospheric layers close to the surface for the 

retrieved total columns. 

 

The comparison of different spectral band selections included in a SWIR measurement provided two main conclusions. First, 800 

including the O2 0.76 µm band strongly increases information content for parameters impacting the optical path length (for all 

resolving powers), and helps to noticeably reduce the impact of a priori misknowledge of these parameters on retrieved 𝑋!"! 

values. Secondly, the CO2 2.05 µm band (and especially for coarse aerosol mode) carries overall more information than the 

1.6 µm band, and thus seems more appropriate for concepts that measure a single CO2-sensitive spectral band, especially at 

low to mid-spectral resolution values. These results also highlight how the precise (and accurate to some extent) retrieval of 805 

𝑋!"! from SWIR observations relies on the amount of information carried by these observations. Reducing spectral resolution 

and/or the number of spectral bands to improve spatial resolution increases errors. If those are constant over a full-image, they 

may be removed when calculating local enhancements of 𝑋!"!. However, they may still hamper absolute 𝑋!"! retrievals in 

plume-free scenes, thus potentially making these observations hardly useful for anything but anthropogenic emission imaging. 

 810 

The exact CO2M, MicroCarb and NanoCarb concepts were also studied in addition to the fictitiously-varying ones. With an 

about 5-times higher spectral resolution but shorter spectral band intervals, MicroCarb shows slightly higher CO2 DOFs 

compared to CO2M, and its 𝑋!"! precision is lower by a factor ranging from about 1.1 to 1.9, depending on observational 

situations. Their vertical sensitivities are very similar, and their DOFs for other interfering variables are mostly very close to 
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1, with the exception of fine aerosol mode, where they show slightly lower values. Besides, MicroCarb exhibits varying 

information content on optical path length related variables, depending on whether the 0.76 µm and/or the 1.27 µm O2 sensitive 

bands are included in the calculations. Regarding NanoCarb, that only measures truncated interferograms and not full spectra, 835 

its pixel-wise 𝑋!"!  performance compares on many aspects to the performance of low spectral resolution and low-SNR 

spectra-observing concepts. However, the 𝑋!"! precision obtained after combining several observations of the same location 

is close to CO2M 𝑋!"!  precision. The comparison between NanoCarb DOFs and those of spectra-measuring concepts 

(regardless of its characteristics) highlights that further improvements of the concept are needed, to increase its information 

content for interfering geophysical variables. 840 

 

Given its scope focused on exploring the impact of concept design parameters on 𝑋!"! retrieval performance, this study could 

not include all the dimensions of a comprehensive mission performance assessment. For example, the accuracy of 𝑋!"! 

retrieval has not been studied, and a greater variability of possible atmospheric conditions (different aerosol types, layers, 

contents, etc., different thermodynamical profiles and CO2 concentration vertical profiles) could be encompassed, as is usually 845 

performed in comprehensive Observing System Simulation Experiments. Besides, this work could not also obviously explore 

the whole extent of possible design parameters (e.g. band-wise variations of spectral sampling ratios, varying wavelength 

interval for spectral bands, combination of different instruments, etc.) that impact 𝑋!"!  retrieval performance, and its 

implication for anthropogenic plume imaging. These limitations warrant further studies. 

 850 

This new opening decade will see a large increase in spaceborne monitoring of 𝑋!"! from a wide variety of SWIR-observing 

concepts. This work enabled to explore three of the most critical parameters, and it already shows how different we can expect 

upcoming  𝑋!"! products will be, in their respective performance and sensitivities to interfering variables. This hints at the 

extent of work that will be required to compare, reconcile and cross-calibrate the results produced by so many different 

satellites concepts, especially if their purpose is to support independent evaluation of mitigation efforts aiming at Paris 855 

Agreement objectives.   
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