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Abstract 16 
The Measurements Of Pollution In The Troposphere (MOPITT) is an ideal instrument to 17 
understand the impact of (1) assimilating multispectral/joint retrievals versus single-spectral 18 
products, (2) assimilating satellite profile products versus column products, and (3) assimilating 19 
multispectral/joint retrievals versus assimilating individual products separately. We use the 20 
Community Atmosphere Model with chemistry with the Data Assimilation Research Testbed 21 
(CAM-chem+DART) to assimilate different MOPITT CO products to address these three 22 
questions. Both anthropogenic and fire CO emissions are optimized in the data assimilation 23 
experiments. The results are compared with independent CO observations from TROPOspheric 24 
Monitoring Instrument (TROPOMI), the Total Carbon Column Observing Network (TCCON), 25 
NOAA Carbon Cycle Greenhouse Gases (CCGG) sites, In-service Aircraft for a Global Observing 26 
System (IAGOS), and Western wildfire Experiment for Cloud chemistry, Aerosol absorption and 27 
Nitrogen (WE-CAN). We find that (1) assimilating the MOPITT joint (multispectral Near-IR and 28 
Thermal-IR) column product leads to better model-observation agreement at and near the surface 29 
than assimilating the MOPITT Thermal-IR-only column retrieval. (2) Assimilating column 30 
products has a larger impact and improvement for background and large-scale CO compared to 31 
assimilating profile products due to vertical localization in profile assimilation. However, profile 32 
assimilation can out-perform column assimilations in fire-impacted regions and near the 33 
surface. (3) Assimilating multispectral/joint products results in similar or slightly better agreement 34 
with observations compared to assimilating the single-spectral products separately.  35 
 36 
 37 
1 Introduction 38 

With the increasing availability of satellite remote sensing instruments measuring 39 
atmospheric composition, there is potential to produce multispectral retrievals of several species, 40 
making use of thermal-infrared (TIR) and near-infrared (NIR) radiances from collocated 41 
instruments on the same satellite such as IASI (Infrared Atmospheric Sounding Interferometer) 42 
and GOME-2 (Global Ozone Monitoring Experiment-2) on the European MetOp satellites (Cuesta 43 
et al., 2013), or flying in close formation, such as on the NASA A-train and the NOAA's JPSS 44 
(Joint Polar Satellite System), e.g., OMI (Ozone Monitoring Instrument, Levelt et al., 2018), AIRS 45 
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(Atmospheric Infrared Sounder, Fu et al., 2018), OMPS (Ozone Mapping and Profiler Suite, Flynn 46 
et al., 2014), TROPOspheric Monitoring Instrument (TROPOMI, Veefkind et al., 2012) and CrIS 47 
(Cross-track Infrared Sounder, Fu et al., 2016). TIR retrievals use thermal contrast while NIR 48 
retrievals use reflected solar radiance from the surface. Taking MOPITT as an example, the TIR 49 
retrieval can provide vertical profiles with limited sensitivity to the surface while the NIR retrieval 50 
only provide total column product with some sensitivity to the surface (Figure 1).  51 

The multispectral products have shown considerable increases in the vertical sensitivity of 52 
the retrievals for lowermost tropospheric ozone (O3) (e.g., Worden et al., 2007; Natraj et al., 2011; 53 
Fu 2018), carbon monoxide (CO) (Worden et al., 2010; Fu et al., 2016) and methane (CH4) 54 
(Schneider et al. 2022). Multispectral retrievals could be made using the co-located overpass made 55 
by low earth orbit and geostationary satellite such as, e.g., Geostationary Interferometric Infrared 56 
Sounder (GIIRS, Zeng et al., 2023), Geostationary Environment Monitoring Spectrometer 57 
(GEMS, Kim et al., 2020), Geostationary Extended Observations (GeoXO; Kopacz et al., 2023) 58 
and Tropospheric emissions: Monitoring of pollution (TEMPO, Chance et al., 2019). Table 1 59 
shows the developed and potential multispectral products. It is important to understand the value 60 
of assimilating a multispectral product versus assimilating a single-spectral range product, and the 61 
value of assimilating a multispectral product versus separately assimilating single-spectral range 62 
products that are used to retrieve the multispectral products.   63 
 64 
 65 
Table 1. Developed and potential multispectral satellite retrievals. Shown in the table are satellites, 66 
their NIR and/or TIR spectral ranges (in µm), and potential chemical species from the multispectral 67 
retrievals. 68 

Morning Overpass Afternoon Overpass Geostationary 

MOPITT (2.3 & 4.7) 
 

(CO)  

AIRS (3.75–15.4) + OMI (0.27–0.5) 
 

(O3) 

GIIRS (East Asia) (0.55–14.2) + 
TROPOMI (2.3–2.4) 

(CO, O3)  
IASI (3.6–15.5) + GOME2 (0.24–0.79) 

(O3)  
TES (8.7–10.5) + OMI (0.27–0.5) 

 
(O3) 

GEMS (East Asia) (0.3–0.5) + IASI 
(3.6–15.5) 

(O3)  
GOSAT (0.75–15) + TES (8.7–10.5) 

 
(O3) 

GEMS (East Asia) (0.3–0.5) + CrIS 
(3.9–15.4) 

(O3)  
CrIS (3.9–15.4) + GOSAT-2 (0.3–14.3) 

 
(CO, CH4) 

TEMPO (N. America) (0.29–0.74) + 
IASI (3.6–15.5) 

(O3)  
CrIS (3.9–15.4) + TROPOMI (2.3–2.4) 

 
(CO, O3, CH4) 

TEMPO (N. America) (0.29–0.74) + 
CrIS (3.9–15.4) 

(O3) 
 69 
 70 

Total column observations of O3, CO and Nitrogen Dioxide (NO2) are now routinely 71 
assimilated in operational centers such as in the European Copernicus Atmosphere Monitoring 72 
Service (CAMS) program at the European Centre for Medium-Range Weather Forecasts (Inness 73 
et al., 2019; 2022) In addition, recently launched geostationary satellites such as GEMS and 74 
TEMPO will provide column products at high temporal resolution. While the satellite profile 75 
products are in general considered to contain more vertical information, it is important to 76 
understand the impacts of assimilating column products versus assimilating profile products and 77 
to understand what information is potentially missed by only assimilating column products. For 78 
example, Jiang et al. (2017) compared emission updates following the assimilation of the 79 
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Measurements of Pollution in the Troposphere (MOPITT) lowermost surface profile, the 80 
tropospheric profile or the columns and identified errors indicative of model transport error 81 
impacts on emission estimates. 82 

The MOPITT instrument onboard the NASA Terra satellite is an ideal instrument to 83 
address these three questions. MOPITT retrieves total column amounts and vertical profiles of CO 84 
using both thermal-infrared (TIR) and near-infrared (NIR) measurements. In addition, MOPITT 85 
also provides the multispectral TIR-NIR joint product, which has enhanced the sensitivity to near-86 
surface CO (Deeter et al., 2011, 2013; Worden et al., 2010). By comparing the results of 87 
assimilating different combinations of MOPITT CO products, we will be able to address these two 88 
questions. 89 

To conduct the data assimilation experiments, we use the Community Atmosphere Model 90 
with chemistry and the Data Assimilation Research Testbed (Anderson et al., 2009). CAM-91 
chem+DART has been previously used to assimilate MOPITT profile products (Arellano et al., 92 
2007; Barré et al., 2015; Gaubert et al., 2016, 2017, 2020, 2023). Here we present the first 93 
assimilation of MOPITT column products within CAM-chem+DART. This new capability also 94 
allows us to assimilate other satellite column products of CO and other chemical species in the 95 
future. Anthropogenic and fire emissions are optimized separately in the data assimilation 96 
experiments.  97 

This paper aims to understand the impacts of (1) assimilating multispectral/joint products 98 
versus single-spectral products, (2) assimilating satellite profile products versus column products, 99 
and (3) assimilating multispectral/joint products versus assimilating individual products 100 
separately. The paper is organized as follows: Section 2 describes CAM-chem, DART, and 101 
methods, Section 3 describes datasets used for results evaluation, Section 4 presents data 102 
assimilation diagnostics, Section 5 shows comparisons between data assimilation results and 103 
independent observations, Section 6 discuss optimized emissions and CAM-chem simulations 104 
with updated emissions, Section 7 is discussion and Section 8 concludes the study. 105 
 106 
 107 
  108 
Section 2: Methods and data 109 
2.1 MOPITT products 110 

The Measurements of Pollution in the Troposphere (MOPITT) instrument on board the 111 
NASA Terra satellite provides both thermal-infrared (TIR) and near-infrared (NIR) radiance 112 
measurements since March 2000 (Deeter et al., 2003). CO total column amounts and volume 113 
mixing ratio (VMR) profiles (10 vertical layers) are retrieved from the radiance measurements. 114 
TIR is used to retrieve MOPITT TIR CO total column product and MOPITT TIR CO vertical 115 
profile product; NIR is used to retrieve MOPITT NIR CO column product. Besides the TIR-only 116 
and NIR-only products, multispectral (JNT) products are also provided by MOPITT by jointly 117 
retrieving from TIR and NIR. JNT retrievals provide both MOPITT JNT CO total column product 118 
and MOPITT JNT CO vertical profile product. JNT products have enhanced the sensitivity to near-119 
surface CO (Deeter et al., 2011, 2013; Worden et al., 2010). MOPITT products can be accessed 120 
through https://search.earthdata.nasa.gov/search. In this study, we assimilate daytime MOPITT 121 
version 9 products (Deeter et al., 2022) of TIR profile, TIR column, NIR column, JNT profile, and 122 
JNT column in our experiments.  123 

We use the error-weighted average of the MOPITT data within 1°×1° model grid and 6-124 
hourly bin (i.e., super-observations). Averaged daily numbers of daytime total super-observations 125 
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from MOPITT TIR, NIR, and JNT products during July 16th 2018 to August 14th 2018 is shown 126 
in Figure 2. The NIR product only covers the land while TIR and JNT products cover the land and 127 
ocean. Over the ocean, the JNT product is the same as the TIR product (Worden et al., 2010). 128 

Data assimilation requires observation errors associated with the quantity assimilated. 129 
MOPITT provides 3 types of uncertainties/errors: total error, measurement error, and smoothing 130 
error in the products. Total error includes both measurement error and smoothing error. Since our 131 
observation operators include the smoothing by the MOPITT averaging kernels and the prior 132 
profiles, we only use the measurement error rather than total error provided by MOPITT for both 133 
column and profile products as smoothing error is already addressed by observation operators in 134 
the system (Rodgers, 2000). Specifically, for MOPITT profile products, measurement error is 135 
provided by the variable “MeasurementErrorCovarianceMatrix” while for MOPITT column 136 
products, measurement error is provided by the variable second column of the 137 
“RetrievedCOTotalColumnDiagnosticsDay”. 138 

 139 
 140 

2.2 CAM-chem 141 
The Community Earth System Model (CESM) is a global Earth system model that includes 142 

the atmosphere, land, ocean, and ice components (Danabasoglu et al., 2020). CAM‐chem 143 
(Emmons et al., 2020; Tilmes et al., 2019) is a global chemistry-climate model as a configuration 144 
of CESM version 2.2 (https://www2.acom.ucar.edu/gcm/cam-chem). CAM-chem accounts for 145 
physical, chemical and dynamical processes with a spatial resolution of 1.25° in longitude and 146 
0.95° in latitude and 32 vertical layers with ~8 layers in boundary layer and ~10 layers in the free 147 
troposphere (Tang et al., 2023). We use the default MOZART-TS1 chemical mechanism, which 148 
includes comprehensive tropospheric and stratospheric chemistry with ~220 chemical species and 149 
528 reactions (Emmons et al., 2020). The aerosol scheme used is the four-mode version of the 150 
Modal Aerosol Module (MAM4; Liu et al., 2016). 151 

We use CAMS-GLOB-ANT v5.1 inventory (Soulie et al., 2023) for anthropogenic 152 
emissions and FINNv2.4 (Wiedinmyer et al., 2023) for fire emissions. CAMS-GLOB-ANT v5.1 153 
provide monthly emissions and we generated daily files from the interpolation of the monthly 154 
values. The FINNv2.4 inventory provide daily fire emissions and are used directly. We update CO 155 
emission input files using the relative surface flux increments at every MOPITT CO assimilation 156 
step (6-hourly). 157 
 158 
2.3 DART 159 
 DART is an open-source community facility for efficient ensemble data assimilation 160 
(https://dart.ucar.edu/). It is developed and maintained at the National Center for Atmospheric 161 
Research (NCAR). DART has been coupled with Community Atmosphere Model (CAM) for 162 
global meteorological data assimilation (CAM+DART; Raeder et al., 2012, 2021). Based on 163 
CAM+DART, the capability of chemical data assimilation using CAM-chem online chemistry and 164 
DART is developed and applied for scientific research (CAM-chem+DART; Arellano et al., 2007; 165 
Barré et al., 2015; Gaubert et al., 2016, 2017, 2020). Here, we use the Ensemble Adjustment 166 
Kalman Filter approach (EAKF; Anderson, 2001, 2003). The forecast ensemble is generated by 167 
30 CAM-chem simulations with different initial conditions and emissions. The assimilation is 168 
performed using DART and produces an ensemble of optimized initial conditions and emissions, 169 
as described in Gaubert et al. (2023). Specifically, the state vector includes CO initial conditions, 170 
and CO emission fluxes that are ascribed to fires and anthropogenic sources. We use ensemble 171 

https://www2.acom.ucar.edu/gcm/cam-chem
https://dart.ucar.edu/


 5 

mean at the forecast and the analysis step in the result sections. Ensemble mean of forecast is 172 
denoted by  173 

𝑥!"""" = "
#
∑ 𝑥$

!#
$%"      (1) 174 

 175 
where 𝑥!"""" is the ensemble mean of “forecast”, N is the ensemble size and 𝑥$

! is the forecast value 176 
of the j-th ensemble member. In our runs, DART uses EAKF, a deterministic ensemble square root 177 
filter for the analysis step. Unless noted otherwise, our setup is the same as in Gaubert et al., (2023). 178 
We slightly change the emission update to include a correction to the previous day (t-1) in order 179 
to smooth the emissions increments. Briefly, we apply multiplicative covariance inflation to the 180 
forecast ensemble before each analysis step to adjust the total error (model and observations) using 181 
the given observation error as reference (Anderson, 2007, 2009). The inflation parameter is also 182 
sequentially updated (Gharamti 2018) and varies in both space and time. Localization is commonly 183 
used in ensemble-based data assimilation to address insufficient ensemble sample size.  Since the 184 
correlation is expected to decrease as separation increases, it empirically reduces the impact of an 185 
observation on model state variable as a function of distance using the Gaspari–Cohn localization 186 
function (Gaspari and Cohn, 1999). The spatial localization horizontal half width is 600 km and 187 
the vertical half width is 1200 m. The main difference between the profile and the column 188 
assimilation resides in the vertical localization. For each MOPITT retrieval, profile products have 189 
multiple observations at different layers but their impacts are vertically localized around 100 hPa. 190 
Therefore, not all vertical layers will be impacted. For the column data assimilation, there is no 191 
vertical localization in the column data assimilation except that the stratospheric (top 5) levels are 192 
not updated, as in the CO profile and meteorological DA. All vertical levels will be impacted by a 193 
single column value. In this case, if the mismatch is due to an underestimation of surface emissions 194 
rather than weak vertical transport, updating the upper tropospheric CO might lead to erroneous 195 
adjustments in CO abundance.  196 
  197 

Forward operators (denoted as 𝐻 in DA terminology) are applied to project model field to 198 
observation space (i.e., expected observations). We use the forward operators introduced in Barré 199 
et al., (2015), consisting of i) estimating the log of a pressure weighted partial column volume 200 
mixing ratio that corresponds to the MOPITT grid and ii) applying the MOPITT averaging kernel 201 
and prior information as mentioned in section 2.1. In this study, we introduce an observation 202 
operator to assimilate the MOPITT columns in DART. That is, we estimate the retrieved column 203 
C (molecules cm-2), using the MOPITT prior column Ca and following Equation 3 of the MOPITT 204 
Version 9 Product User's Guide: 205 

𝐶 = 	𝐶& + 𝑎(𝑥'()*+,-. − 𝑥&)     (2) 206 
 207 
where 𝑥'()*+,-.and 𝑥&are the modelled and the MOPITT a priori profiles expressed as 208 
log10(VMR) and 𝑎 is the total column averaging kernel. In this study, we assimilate both MOPITT 209 
profile and column products and compare the results. 210 
 211 
2.4 Data assimilation experiments setup 212 
 There are 6 CAM-chem+DART runs (Figure 3). The first run is the spin-up/control run 213 
that starts on July 1st 2018. The spin-up/control run only assimilates meteorological observations 214 
and the state vector consists in wind, temperature, specific humidity, and surface pressure. Besides 215 
the spin-up/control run, there are 5 experiment runs that assimilate different MOPITT CO 216 
product(s) to update model CO. Note that the experiment runs not only assimilate MOPITT CO 217 
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products but also meteorological variables as in the spin-up/control run. The chemical state vector 218 
(CO and CO emissions) and the meteorological state vector do not impact each other. However, 219 
the updated meteorology due to meteorological data assimilation will impact the transport and 220 
possibly chemistry of CO during the forecast step. The 5 experiment runs are:  221 

(1) Column JNT assimilation (Exp1-CJ); 222 
(2) Profile JNT assimilation (Exp2-PJ); 223 
(3) Column TIR assimilation (Exp3-CT); 224 
(4) Column TIR and Column NIR assimilation (Exp4-CT+CN); 225 
(5) Profile TIR and Column NIR assimilation (Exp5-PT+CN).  226 

These 5 experiment runs are designed to address a few scientific questions: 227 
● The comparisons of Exp1-CJ and Exp2-PJ will show the impacts of the assimilation of 228 

satellite profile versus column products. 229 
● The comparisons of Exp1-CJ and Exp3-CT will show the difference caused by TIR-only 230 

product versus joint product. 231 
● The comparisons of Exp1-CJ and Exp4-CT+CN will show the impacts of assimilating joint 232 

products (TIR+NIR) versus assimilating them separately for column products. 233 
● The comparisons of Exp2-PJ and Exp5-PT+CN will show the impacts of assimilating joint 234 

products (TIR+NIR) versus assimilating them separately for profile products.  235 
The experiment runs start on July 16th 2018 and are initialized with the spin-up/control run. 236 

Each experiment runs for 35 days considering the cost and constrain of computational allocation. 237 
The first 20 days (July 11th to July 15th, 2018) are CO spin-up and the last 15 days (July 31st to 238 
August 14th, 2018) are used for result analyses. The 15-day period are selected based on the spin-239 
up time – as shown by fractions of observations rejected by the assimilation system (Figure 4). 240 
Quality checks are common in data assimilation as the algorithms are employed operationally for 241 
near real time forecasting. We use the standard option in DART to do such quality checks. The 242 
absolute value of the difference between the observed value and the prior ensemble mean estimate 243 
is divided by the expected value of this difference. That expected value is the square root of the 244 
sum of the specified observation error variance and the prior ensemble variance. If this ratio is 245 
greater than a threshold, the observation is not used. The threshold ratio used here is three which 246 
is commonly used for large tropospheric applications in DART (e.g., Gaubert et al., 2023). 247 
Systematic errors are larger at the beginning of the spin-up, explaining the higher rejection rate. 248 
As the assimilation proceeds and the forecast bias is reduced, the rejection rate goes down. The 249 
experiments finished spinning up around 31 July. Each CAM-chem+DART run includes 30 250 
ensemble members. These 30 ensemble members have different initial conditions and emissions 251 
to represent model uncertainties. The analysis step is done every 6 hours. Anthropogenic and fire 252 
emissions are optimized separately on a daily basis following the method described in Gaubert et 253 
al. (2020, 2023). 254 

 255 
2.5 CAM-chem simulations with updated emissions 256 

To evaluate the updated emissions from the DA experiments, we conduct CAM-chem 257 
simulations for the same period using the ensemble mean of the updated fire and anthropogenic 258 
emissions. Hourly output is used for these simulations. Specifically, we conduct 6 CAM-chem 259 
simulations: 260 

(S1) Simulation with emissions from Exp1-CJ;  261 
(S2) Simulation with emissions from Exp2-PJ;  262 
(S3) Simulation with emissions from Exp3-CT; 263 
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(S4) Simulation with emissions from Exp4-CT+CN; 264 
(S5) Simulation with emissions from Exp5-PT+CN; 265 
(SControl) Simulation with original CAMS and FINN emissions. 266 
 267 

3 Datasets used for results evaluation 268 
 269 
3.1 TROPOspheric Monitoring Instrument (TROPOMI) 270 

We use CO column retrieved from the TROPOMI instrument onboard the ESA's Sentinel-271 
5 Precursor (Veefkind et al., 2012) to evaluate model results. The spatial resolution of CO 272 
retrievals is ~5.5 km × 7 km (Veefkind et al., 2012; Borsdorff et al., 2018). TROPOMI CO data 273 
can be downloaded from https://s5phub.copernicus.eu/dhus/#/home. The TROPOMI Level 2 CO 274 
(Apituley et al., 2018) is used here. The TROPOMI data are filtered following Landgraf et al. 275 
(2018). To compare the model results with TROPOMI CO, we interpolate model outputs spatially 276 
and temporally to match the locations and times of TROPOMI CO retrievals, and then apply 277 
TROPOMI CO total column averaging kernels to the interpolated model CO profiles to obtain 278 
modeled total CO columns (Apituley et al., 2018). TROPOMI CO data were compared to MOPITT 279 
CO in Martínez-Alonso et al., (2020). TROPOMI and MOPITT data show good agreement in 280 
terms of temporal and spatial patterns with global average biases <4% between all MOPITT CO 281 
column products (TIR, NIR and JNT) and TROPOMI. TROPOMI CO values were slightly lower 282 
than MOPITT in most regional comparisons. 283 
 284 
3.2 The Total Carbon Column Observing Network (TCCON) 285 

TCCON is a network of ground-based Fourier Transform Spectrometers that records direct 286 
solar spectra in the NIR spectral region (Wunch et al., 2011; Laughner et al., 2023). TCCON data 287 
has been previously used to evaluate MOPITT products (e.g., Hedelius, et al., 2019). Column-288 
averaged mixing ratios of chemical species such as CO2, CH4, N2O, and CO are retrieved from 289 
these spectra. We use CO column data from the TCCON GGG2020 data release 290 
(https://tccondata.org/2020; TCCON Team, 2022) to evaluate model results. Data from 18 291 
TCCON sites are used (Buschmann et al., 2022; García et al., 2022; Hase et al., 2022; Iraci et al., 292 
2022; Kivi et al., 2022; Liu et al., 2022; Morino et al., 2022a, 2022b, 2022c; Notholt et al., 2022; 293 
Pollard et al., 2022; Shiomi et al., 2022; Té et al., 2022; Warneke et al., 2022; Wennberg et al., 294 
2022a, 2022b; Wunch et al., 2022). We interpolate model results to TCCON data locations and 295 
time and apply TCCON averaging kernels to model results for proper comparisons. 296 
 297 
3.3 NOAA Carbon Cycle Greenhouse Gases (CCGG) sites 298 

We use the atmospheric CO dry air mole fractions from the NOAA GML Carbon Cycle 299 
Cooperative Global Air Sampling Network 300 
(https://gml.noaa.gov/aftp/data/trace_gases/co/flask/surface/; Petron et al., 2022). Event data are 301 
used. The reference scale is WMO CO_X2014A. We interpolate model results to CCGG site 302 
locations and time for proper comparisons. Note that on average, each site only has data on ~4 303 
days and ~9 data points in total from July 16th, 2018 to August 14th, 2018. 304 
 305 
3.4 In-service Aircraft for a Global Observing System (IAGOS)  306 

IAGOS is a European research infrastructure developed for operations on commercial 307 
aircraft to monitor atmospheric composition (Petzold et al., 2015). The IAGOS instrument package 308 
1 measures CO as well as O3, air temperature, and water vapor (https://www.iagos.org/iagos-core-309 

https://s5phub.copernicus.eu/dhus/#/home
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instruments/package1/). CO is measured by infrared absorption using the gas filter correlation 310 
technique (Precision: ±5%, Accuracy: ±5 ppb). Here we use vertical profiles of CO from IAGOS 311 
for model evaluation. We use CO profiles in North and West Africa, Tropical Asia, East Asia, 312 
Europe, Eastern North America, Western North America, Central and South America, and Middle 313 
East and conduct evaluation in these regions separately. CO profiles used and regions is shown in 314 
Figure S2. Note that IAGOS profiles are divided into regions based on their locations, however 315 
the IAGOS profiles in a region are not representative of the whole region due to coverage (Figure 316 
S2). 317 
 318 
3.5 Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen 319 
(WE-CAN) 320 

The WE-CAN field campaign was conducted over the Northwestern U.S. during July–321 
September 2018 (https://data.eol.ucar.edu/project/WE-CAN). There were 16 research flights of 322 
the NCAR/NSF C-130 research aircraft during the campaign. Our experiment runs start on July 323 
16th and end on August 14th. Therefore, we compare the model results to measurements from 324 
flights on July-31, August-02, August-03, August-06, August-08, August-09, and August-13. We 325 
use 1-minute averaged CO (Picarro G2401-mc) data. Model results are interpolated to match 326 
locations and time of the observations, and then both interpolated model results and observations 327 
are averaged back to the model spatial resolution (1.25° in longitude and 0.95° in latitude), 6-328 
hourly bins, and 50 hPa vertical layers. This is because the model spatial and temporal resolution 329 
are much lower than observations and model results cannot reproduce the high variability in the 330 
raw observations. 331 
 332 
4. Diagnostics of the assimilation results 333 
4.1 Observation space diagnostics 334 
4.1.1 Fractions of observations rejected by the assimilation system 335 

In all the five experiments, the assimilation improves the agreement between model 336 
forecast and observations of not only the MOPITT products assimilated but also the MOPITT 337 
products that were not assimilated. Assimilating MOPITT CO column product(s) improves model 338 
agreement with MOPITT CO profile product(s) and vice versa. Figure 4 shows time series of the 339 
fraction of observations rejected by the assimilation system (%) when they are too far from the 340 
model ensemble mean. The decreasing fractions with time indicate more observations being 341 
accepted by the model, i.e., and observations and modeled values are getting closer in later time 342 
steps. For a MOPITT product that is not assimilated in an experiment run, it is still used in the 343 
“evaluation mode”, where the ensemble is run through the observation operator, but not 344 
assimilated. Therefore, the hypothetical fraction of observations rejected is still calculated for the 345 
MOPITT product for that experiment run, even though these observations are not assimilated. For 346 
the spin-up/control run, there is no significant trend for the fractions of rejected observations 347 
(Figure 4f). For the five experiments, the fractions of rejected observations decrease with time. 348 
Assimilating (Figures 4a-4e) any MOPITT product(s) improves model agreement with all the five 349 
MOPITT CO products regardless if they are column or profile products. When only assimilating 350 
column products (Exp1-CJ; Exp3-CT; and Exp4-CT+CN), the fraction of rejected observations 351 
decreases faster than that when assimilating both profile and column products (Exp5-PT+CN). For 352 
experiments that assimilate profiles (Exp2-PJ and Exp5-PT+CN), the fractions of rejected 353 
observations decrease slower than the other three experiments that only assimilate column 354 

https://data.eol.ucar.edu/project/WE-CAN
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products (Exp1-CJ, Exp3-CT, and Exp4-CT+CN). This is expected because profile assimilation 355 
has relatively small impact than column assimilation overall due to vertical localization. 356 
 357 
4.1.2 Reduced centered random variable (RCRV) and chi-square statistics χ2 358 
 We use the RCRV as a diagnostic of the ensemble bias (Candille et al., 2007) and has been 359 
previously used to validate assimilation results (e.g., Gaubert et al., 2014). Mean RCRV for P 360 
observations is defined by the ratio between the innovation and its associated error: 361 

𝑅𝐶𝑅𝑉 = "
/
∑ 0!

"*12#
$3333

45",!
& 65$,!

&
/
7%"      (3) 362 

Where 𝑦78 is the value of i-th observation,	𝐻𝑥9
!""""gives the expected observation from the model, 𝜎8,7;  363 

is the observation error variance, and 𝜎!,7;  is the ensemble variance. The mean of the RCRV 364 
represents the weighted bias of the forecast, and hence a value close to 0 indicates the ensemble is 365 
representative (i.e., error variances are comparable to the innovations). Figure 5 shows daily 366 
𝑅𝐶𝑅𝑉"""""""". For a given experiment, only 𝑅𝐶𝑅𝑉"""""""" of MOPITT product(s) assimilated in the experiment 367 
is shown here. In most cases 𝑅𝐶𝑅𝑉"""""""" is close to zero, indicating that the ensemble is representative. 368 
The only exceptions are NIR column product in Exp4-CT+CN and Exp5-PT+CN. 369 

Chi-square statistics (χ2) is also used to verify an effective assimilation by comparing error 370 
specifications and their balance with actual model-observation mismatch (Ménard and Chang, 371 
2000) and has been previously used to evaluate assimilation results (e.g., Gaubert et al., 2016; 372 
Sekiya et al., 2021). Mean RCRV for P observations is defined as 373 

𝜒;""" = "
/
∑ (0!

"*12!
$)&

5",!
& 65$,!

&
/
7%"       (4) 374 

A value lower than 1 indicates an overfitting of the observations while a value higher than 1 375 
suggests an underestimation of the actual model and observation mismatch. Daily 𝜒;""" are also 376 
shown in Figure 5. The 𝜒;""" values are all higher than 1 indicating an underestimation of the actual 377 
model and observation mismatch. However, 𝜒;""" decreases with time and gradually approaches 378 
towards 1, indicating the degree of such underestimation decreases with time. 379 
 380 
4.2 Model space diagnostics 381 
 We analyze the impacts of assimilating MOPITT CO products by comparing the 382 
experiment runs with control/spin-up run, which effectively isolate the signal resulting from the 383 
CO assimilation. Figure 6 show the spatial distribution of CO difference caused by assimilation 384 
(CO from forecast of experiment minus CO from the control/spin-up run) for the 5 experiments 385 
(15-day average). At the surface, the spatial distributions of CO difference are similar among the 386 
5 experiments. In line with Gaubert et al. (2023), the 5 experiments show overall higher CO in the 387 
Northern Hemisphere and lower CO in the tropics and India compared to the control/spin-up run. 388 
Exp2-PJ and Exp5-PT+CN reduce CO in California which is not the case for other experiments. 389 
Exp2-PJ and Exp5-PT+CN are the only two experiments that involves profile product assimilation. 390 
In addition, profile JNT is retrieved with profile TIR and column NIR therefore Exp2-PJ is 391 
expected to assimilate similar information as Exp5-PT+CN. In addition, when comparing Exp1-392 
CJ and Exp1-PJ, column assimilation has a larger downwind impact (e.g., the ocean between 393 
Africa and South America). At 500 hPa, the 5 experiments still show overall higher CO in the 394 
Northern Hemisphere compared to the control/spin-up run. However, the Exp2-PJ and (5) that 395 
involve profile assimilation have lower CO values than the other 3 experiments, especially in the 396 
high latitudes. At 200 hPa, the spatial distribution of the CO difference caused by assimilation is 397 
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smallest in Exp2-PJ, followed by Exp5-PT+CN. On the contrary, for the other three experiments 398 
which do not involve profile assimilations, the spatial distribution of the CO difference caused by 399 
assimilation is relatively large, i.e., assimilating MOPITT profile product(s) only slightly changes 400 
CO values at 200 hPa whereas assimilating MOPITT column product(s) changes CO values at 200 401 
hPa dramatically. This is expected as vertical distribution is often an advantage of profile DA that 402 
column DA cannot represent.  403 
 Assimilating profile products have different vertical impacts from assimilating column 404 
products (Figure 7). Overall, the two experiments that involve profile assimilation (Exp2-PJ and 405 
Exp5-PT+CN) seem to be close to each other, while the other three experiments that only involve 406 
column assimilation (Exp1-CJ, Exp3-CT, and Exp4-CT+CN) also exhibit similarities among 407 
themselves. Globally speaking, experiments that assimilate only column product(s) have a larger 408 
impact at and near the surface compared to experiments that assimilate only profile product(s) 409 
(Figures 7a and 7b). This is reasonable because profile assimilation is more localized vertically. 410 
Regional speaking, the impacts of the five experiments vary across continents.  411 

The difference caused by assimilating profile products is in general smaller than the 412 
difference caused by assimilating column products. The exceptions are Africa and South America 413 
where the two experiments that assimilate profiles have lower CO than the three experiments that 414 
only assimilate columns between 900 hPa and 600 hPa. CO over the two regions is dominated by 415 
fire emissions during the experiment period. It is known that FINN overestimates fire emissions 416 
in the tropics (Wiedinmyer et al., 2023; Gaubert et al., 2023) of CO which were transported to 417 
upper levels through fire plume rise and tropical convection. This overestimation between 900 hPa 418 
and 600 hPa is corrected by assimilating MOPITT CO products, especially profile products that 419 
captured CO plumes between 900 hPa and 600 hPa. Exp2-PJ and Exp5-PT+CN have some 420 
relatively small differences over some regions even though profile JNT is retrieved with profile 421 
TIR and column NIR. For example, over North America, Exp2-PJ has lower CO values than Exp5-422 
PT+CN. Exp1-CJ and Exp4-CT+CN are in general similar with some exceptions. For example, 423 
over Africa between 900 hPa and 600 hPa, CO profile from Exp1-CJ is closer to Exp3-CT rather 424 
than Exp4-CT+CN. 425 
 426 
5 Comparisons with independent observations 427 
5.1 TROPOMI 428 

To evaluate the results, we compare the CO from DA forecasts with independent 429 
observations. Comparisons with TROPOMI CO column retrievals are shown in Figure 8. The 430 
control run underestimates background CO in the Northern Hemisphere while overestimates CO 431 
near fire source regions in the tropics and Southern Hemisphere. Compared to the control run, all 432 
five of the experiments show improved agreement with TROPOMI CO by increasing background 433 
CO in the Northern Hemisphere and reducing CO near fire source regions in the tropics and 434 
Southern Hemisphere. The spatial distributions of the mean biases from the three experiments with 435 
only column assimilation are close while those from the two experiments with profile assimilation 436 
are close. The two experiments with profile assimilations have smaller improvement for 437 
background CO in the Northern Hemisphere. This is reasonable because profile assimilation has 438 
relatively small impact than column assimilation due to tight vertical localization. However, near 439 
the fire source regions, the two experiments with profile assimilations have lower biases than the 440 
three experiments with only column assimilation. This is the case not only in Africa, South 441 
America and tropical Asia (Figure 8), but also in California (fire region) and Nevada (downwind 442 
of the fire region), USA during the study period which is the fire season in the region (Figure S5). 443 
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This indicates profile assimilation can out-perform column assimilations in circumstances with 444 
fire impacts, which is likely due to transport errors and fire plume rise that requires vertical 445 
information to resolve plume locations. 446 
 447 
5.2 TCCON 448 

Overall, the control run tends to underestimate CO and the 5 experiments all agree better 449 
with TCCON observations compared to the control run but still underestimates CO in general 450 
(Figure 9). Column assimilations (Exp1-CJ, Exp3-CT, and Exp4-CT+CN) significantly 451 
overestimate CO at pasadena01 and edwards01 sites in California, USA during 26 July 2018 to 04 452 
August 2018, likely due to fire impacts. The significant overestimation is not seen in the two 453 
experiments with profile assimilations (Exp2-PJ and Exp5-PT+CN). This is consistent with the 454 
comparison results with TROPOMI and implies the profile assimilation can out-perform column 455 
assimilations in fire-impacted regions. The model-observation discrepancies overall decrease with 456 
time. A time series of TCCON and modeled CO columns is shown in Figure S6. 457 

 458 
5.3 CCGG sites 459 

All experiments show improved agreement with surface in-situ CO observations from 460 
CCGG sites compared to the control run (Figure 10), as shown by with higher correlations (0.6-461 
0.65 versus 0.56) and lower model biases (0.7-4.91 ppb versus 8.6 ppb). As for RMSE, however, 462 
the experiments do not reduce RMSE compared to the control run (34-50 ppb versus 36 ppb). 463 
Exp1-CJ has the lowest mean bias (5.7 ppb) while Exp5-PT+CN have the highest correlation 464 
(0.79). 465 

Spatial distributions of model bias in CO (ppb) against CO observations from CCGG sites 466 
are shown in Figures S7-S10. The UTA CCGG site is close to the two TCCON sites in California, 467 
USA (pasadena01 and edwards01). All the five experiments significantly underestimate CO at the 468 
UTA surface site during 26 July 2018 to 4 August 2018, whereas the five experiments overestimate 469 
CO compared to the two TCCON sites (Figure 9). This inconsistency is likely due to (1) UTA 470 
CCGG site measures CO at the surface while the TCCON sites measure column total CO; (2) there 471 
are only two data points during that period at the UTA site and are not comparable to the sampling 472 
of the two TCCON sites. 473 
 474 
5.4 IAGOS 475 
 Globally, all five experiments agree better with IAGOS CO profiles compared to the 476 
control run (Figure 11a). At the 900-1000 hPa layer, Exp2-PJ has the lowest bias, followed by 477 
Exp4-CT+CN. At layers above 800 hPa, the three experiments with only column assimilation have 478 
lower bias. CO bias of Exp1-CJ and Exp4-CT+CN are very similar using that of Exp3-CT as a 479 
reference. This is expected as Column JNT product contains similar information as column TIR 480 
product and column NIR products together. Above 200 hPa, all five experiments overall agree 481 
better with IAGOS CO compared to the control run. However, experiments involving profile 482 
assimilation do not show obvious differences compared to experiments only involving column 483 
assimilation above 200 hPa. Over most regions, the five experiments show improved agreement 484 
with IAGOS data except for Tropical Asia and Central and South America where the five 485 
experiments have similar or larger biases (Figure 11). Over North and West Africa, the control run 486 
has positive bias whereas the five experiments have negative biases below 500 hPa, indicating the 487 
system might over-adjust in the region. The comparisons with IAGOS show that the experiments 488 
overall perform better in the Northern Hemisphere than in the tropics.   489 
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  490 
5.5 WE-CAN 491 
 The experiments do not show improvement from the control run when compared to 492 
airborne measurements from WE-CAN. This is expected because the airborne measurements 493 
during WE-CAN aimed to sample fire plumes and include extremely high CO concentrations 494 
which are challenging for a 1-degree global model to capture, not to mention the output is 6-hourly.  495 
The experiments only do show lower model bias than the control run (-24 to -48 ppb versus -52 496 
ppb), however the difference between Exp2-PJ and Exp5-PT+CN from the control run is small. 497 
The correlation and RMSE of the experiments are not improved. The subtle improvement in the 498 
mean bias is likely driven by large-scale adjustment rather than improvement in resolving flight-499 
scale features.  500 
 501 
6. Emissions 502 
6.1 Emission updates 503 
 Assimilating profile products (Exp2-PJ and Exp5-PT+CN) tends to have a larger change 504 
to the emissions compared to only assimilating column products (Exp1-CJ, Exp3-CT, and Exp4-505 
CT+CN). As shown previously, profile assimilation can out-perform column assimilations near 506 
the surface due to vertical localization. Different CO concentrations at and near the surface resulted 507 
in different emission updates between profile assimilation and column assimilation. The 5 508 
experiments overall increase anthropogenic CO emissions while reduce fire CO emissions (Figure 509 
13). For anthropogenic emissions, the two experiments that assimilate CO profiles (Exp2-PJ and 510 
Exp5-PT+CN) significantly increase anthropogenic CO emissions from ~500 Tg/year to ~700 511 
Tg/year globally in August, which is not the case for the other experiments. Anthropogenic 512 
emissions in India are reduced by the experiments while in East Asia are increased (Figure 14). 513 
Fire emissions are reduced by the 5 experiments in Africa and South America and the reduction is 514 
the largest for the two experiments that assimilate CO profiles (Figures 13 and 14). This is 515 
consistent with the conclusion in Wiedinmyer et al. (2023), which found fire emissions in 516 
FINNv2.4 over Africa are too high, and consequently were reduced in FINNv2.5. The experiments 517 
overall increase fire emissions in North America, indicating that FINNv2.4 underestimates fire 518 
emissions in the region during the assimilation period. Fire and anthropogenic emissions can have 519 
different injection heights and impact different vertical levels. This is especially the case for 520 
regions with strong convection (e.g., central Africa).  521 
 522 
6.2 CAM-chem simulations with updated emissions 523 
 We compared the CAM-chem simulations with updated emissions and original emissions 524 
to CO observations from TROPOMI, TCCON, CCGG site, IAGOS, and WE-CAN (Figures S11-525 
S18). The five simulations with updated emissions overall show better agreement with 526 
observations compared to the control run with original emissions. Simulations using emissions 527 
from profile assimilation experiments (Simulations (S2) and (S5)) in general perform better than 528 
column assimilation especially near the surface (S17) and at fire source regions (Figures S11, S12, 529 
and S14). This is consistent with the evaluation of DA experiments. This indicates assimilating 530 
satellite profiles can perform better near the surface and have a larger impact on emissions 531 
compared to only assimilating column products. 532 
 533 
7. Discussions 534 
7.1 Assimilating multispectral product versus TIR-only product 535 
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The comparisons between Exp1-CJ and Exp3-CT demonstrate the impacts of assimilating 536 
satellite multispectral/joint products versus TIR-only products. Overall, when comparing to 537 
independent CO column observations, assimilating joint products do not show clear improvement 538 
from assimilating TIR-only products (Figures 8 and 9). However, when comparing to independent 539 
CO profile observations or surface CO observations, assimilating joint products leads to better 540 
model-observation agreement at and near the surface (Figures 10 and 11). This is reasonable as 541 
the joint MOPITT product has enhanced sensitivity to near-surface CO (Worden et al., 2010).  542 
 543 
7.2 Assimilating profile product versus column product 544 

The comparisons between Exp1-CJ and Exp2-PJ demonstrate the impacts of assimilating 545 
satellite multispectral/joint products versus TIR-only products. The fractions of rejected 546 
observations for Exp3-CT decrease slower than Exp1-CJ due to vertical localization when 547 
assimilating profile products. For the same reason, assimilating column products has a larger 548 
impact on the analysis compared to assimilating profile products. Therefore, Exp2-PJ with profile 549 
assimilation has smaller improvement for background and large-scale CO in the northern 550 
hemisphere (Figure 8) compared to Exp1-CJ with column assimilation. However, assimilating 551 
profile products can have different vertical impacts from assimilating column products (figure 7). 552 
Profile assimilation can out-perform column assimilations in fire-impacted regions and near the 553 
surface (Figure 11). 554 

Assimilating profile products tends to have a larger change to the emissions compared to 555 
only assimilating column products. Simulations using emissions from profile assimilation 556 
experiments in general perform better than column assimilation especially near the surface and at 557 
fire source regions. 558 

 559 
7.3 Assimilating multispectral product versus assimilating TIR and NIR separately 560 

For multispectral/joint products, we also compare the impacts of assimilating the joint 561 
product directly versus assimilating the single spectral products separately. MOPITT column JNT 562 
products are retrieved from MOPITT column TIR and column NIR products, while MOPITT 563 
profile JNT products are retrieved from MOPITT profile TIR and NIR products. Therefore, we 564 
compare Exp1-CJ to Exp4-CT+CN, Exp2-PJ to Exp5-PT+CN for demonstration. In general, 565 
assimilating multispectral/joint products result in similar or slight better agreement with 566 
observations compared to assimilating the single-spectral products separately. This is the case for 567 
both assimilating profile products (Exp2-PJ versus Exp5-PT+CN) and column products (Exp1-CJ 568 
versus Exp4-CT+CN). In addition, assimilating multispectral/joint products is more 569 
computationally efficient than assimilating single spectral products separately. These two reasons 570 
point to the benefit of developing multispectral/joint products for CO as well as other species such 571 
as O3 and CH4 and assimilating them in DA systems. 572 
 573 
7.4 Limitation 574 
 Here we only conduct experiments for 15 days as the number of experiments and 575 
computational cost prohibit longer simulations. A previous study performed longer simulations for 576 
one experiment that assimilated the MOPITT profile product for a whole year (Gaubert et al., 577 
2016) and found that there is no significant seasonal change in the performance of the CAM-578 
chem+DART. If observations of roughly the same quality/quantity are available in other years, the 579 
performance of the DA might be expected to be similar. However, more research is needed to fully 580 
understand the impact of (1) assimilating multispectral/joint products versus single-spectral 581 
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products, (2) the comparison of satellite profiles and satellite columns DA, and (3) assimilating 582 
multispectral or each product separately. This study provides guidance for future work on the 583 
assimilation of multi-spectral satellite retrievals of atmospheric composition using MOPITT as a 584 
demonstration. However, whether the conclusions based on MOPITT CO are applicable to other 585 
species (e.g., CH4 and O3) needs further study. Nevertheless, the results and conclusions presented 586 
in this study are valid and shed light on the impacts of assimilating different satellite products of 587 
the same atmospheric composition.  588 

The CAM-chem+DART experiments in this study overall show improvement in 589 
background and large-scale CO distributions compared to the control/spin-up run, as shown by the 590 
comparisons with global observations such as TROPOMI and TCCON. However, CAM-591 
chem+DART improvement on small-scale features is challenging due to limitation in model 592 
resolution, as shown by the comparisons with airborne measurements during WE-CAN. A higher 593 
resolution DA system is needed to resolve these features. We are currently developing the 594 
capability of DA using MUSICA+DART which will address this issue (Pfister et al., 2020). 595 
MUSICA has already been shown to better resolve fires at higher resolution while still addressing 596 
global-scale impacts (Tang et al., 2022, 2023).  597 
 598 
8. Conclusions 599 

We conduct 6 CAM-chem+DART assimilation runs for 15 days (July 31st, 2018 to August 600 
14th, 2018) to understand the impact of (1) assimilating multispectral products versus single-601 
spectral products, (2) assimilating satellite profile products versus column products, and (3) 602 
assimilating multispectral products versus assimilating individual products separately. The DA 603 
runs include 1 control run that only assimilates meteorological variables and 5 experiment runs 604 
that assimilate meteorological variables and different MOPITT product(s), namely Exp1-605 
CJ; Exp2-PJ; Exp3-CT; Exp4-CT+CN; and Exp5-PT+CN. We then compare the results with 606 
independent CO observations from satellite, ground-based remote sensing, surface and aircraft 607 
observations (TROPOMI, TCCON, CCGG sites, IAGOS, and WE-CAN). Fire and anthropogenic 608 
emissions of CO are also optimized in the DA experiments. We conduct 5 CAM-chem runs with 609 
the 5 sets of optimized emissions to understand the impacts of assimilating different MOPITT 610 
products. We also conduct 1 additional CAM-chem runs with original emissions for reference. The 611 
main findings are as follows: 612 

(1) Assimilating MOPITT profile products improves model agreement with MOPITT 613 
column products and vice versa.  614 

(2) All five DA experiments show improved agreement with CO observations from 615 
TROPOMI, TCCON, CCGG sites, and IAGOS compared to the control/spin-up run. Assimilating 616 
MOPITT joint column product leads to better model-observation agreement at and near the surface 617 
than assimilating MOPITT TIR-only column product. 618 

(3) Assimilating profile products tends to have a larger change to the emissions compared 619 
to only assimilating column products. The five experiments overall increase anthropogenic CO 620 
emissions while reducing fire CO emissions. The five CAM-chem simulations with updated 621 
emissions overall show better agreement with observations compared to the control run with 622 
original emissions. Simulations using emissions from profile assimilation experiments in general 623 
perform better than column assimilation especially near the surface and at fire source regions. 624 

(4) Assimilating column products has larger impacts and improvement for background and 625 
large-scale CO compared to assimilating profile products due to vertical localization in profile 626 
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assimilation. However, profile assimilation can out-perform column assimilations in fire-impacted 627 
regions and near the surface. 628 

(5) Assimilating multispectral/joint products result in similar or slightly better agreement 629 
with observations compared to assimilating the single-spectral products separately. Assimilating 630 
multispectral/joint products is also more computationally efficient than assimilating single spectral 631 
products separately. Therefore, it is advantageous to develop multispectral/joint products for CO 632 
as well as other species (e.g., O3 and CH4) and assimilating them in DA systems. 633 
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 1060 
Figure 1. Averaging kernel (AK) rows for MOPITT retrieval types TIR only, NIR only, and 1061 
multispectral TIR+NIR. Global average of AKs during July and August 2018 are shown. 1062 
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 1063 
Figure 2. Daily number of super-observations per day and per grid from MOPITT (a) TIR, (b) 1064 
NIR, and (c) JNT products during July 16th 2018 to August 14th 2018. Total Carbon Column 1065 
Observing Network (TCCON) sites are marked by yellow stars and NOAA Carbon Cycle 1066 
Greenhouse Gases (CCGG) sites are marked by pink circles. 1067 
 1068 
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 1069 

 1070 
 1071 
Figure 3. Setup of the CAM-chem/DART data assimilation experiments.  1072 
 1073 
 1074 
 1075 
 1076 
 1077 
 1078 

 1079 
Figure 4. Time series of the fractions of observations rejected by the assimilation system (%) due 1080 
to that they are too far from the ensemble mean. 1081 
 1082 
 1083 
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 1084 
Figure 5. timeseries of (a-g) daily mean of Reduced Centered Random Variable (RCRV) and (h-1085 
n) daily mean of Chi-square. For each experiment, only RCRV and Chi-square of the MOPITT 1086 
product that were assimilated are shown. 1087 
 1088 
 1089 
 1090 
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 1091 



 29 

Figure 6. 15-day (July 31 - August 14, 2018) average of the difference in CO (forecast of 1092 
experiment minus control run) for the 5 experiments at the model surface, 500 hPa, and 200 hPa. 1093 
Note that the color scales for model surface, 500 hPa, and 200 hPa are different. 1094 

 1095 
 1096 
Figure 7. Vertical profile of the 15-day (July 31 - August 14, 2018) average difference in CO 1097 
(forecast of experiment minus control run) over different regions. 1098 
 1099 
 1100 

 1101 
Figure 8. 15-day (July 31 - August 14, 2018) mean biases (ppb) of modeled CO against CO 1102 
columns from the TROPOspheric Monitoring Instrument (TROPOMI) for the 5 experiments and 1103 
the control run. TROPOMI averaging kernels are applied to model CO for the comparisons.  1104 
 1105 
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 1106 

 1107 
Figure 9. Mean biases (ppb) of modeled CO against CO columns from the Total Carbon Column 1108 
Observing Network (TCCON) for the 5 experiment and the control run. TCCON averaging kernels 1109 
are applied to model CO for the comparisons. Spatial locations of TCCON sites can be found in 1110 
Figure 3 and Figure S1. A time series of TCCON and modeled CO can be found in Figure S4. 1111 
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 1113 
 1114 
 1115 
 1116 
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 1117 
Figure 10. Comparisons of modeled CO (ppb) and CO observations (ppb) from the NOAA Carbon 1118 
Cycle Greenhouse Gases (CCGG) sites during July 31st, 2018 to August 14th, 2018 for the 5 1119 
experiments and the control run. Spatial locations of CCGG sites can be found in Figure 3 and 1120 
Figure S1. A spatial distribution of model bias in CO against CO observations from CCGG sites 1121 
can be found in Figure S5. 1122 
 1123 
 1124 
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 1125 
Figure 11. Mean biases (ppb) of modeled CO against CO profiles from the In-service Aircraft for 1126 
a Global Observing System (IAGOS) measurements for the 5 experiments (colored lines) and the 1127 
control run (black line) at different vertical levels. Locations of IAGOS CO profiles can be found 1128 
in Figure S2. 1129 
 1130 
 1131 

 1132 
Figure 12. Mean biases (ppb) of modeled CO against airborne CO observations from the Western 1133 
wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) field 1134 
campaign for the 5 experiments and the control run at different vertical levels. 1135 
 1136 
 1137 
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 1138 
Figure 13. Updated (a-g) CAMS anthropogenic CO emissions and (h-n) FINNv2.4 fire CO 1139 
emissions as a result of assimilating different MOPITT products. The emissions from the 1140 
Spinup/control run are the unchanged original emissions of CAMS and FINNv2.4. 1141 
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 1142 
Figure 14. Updates on the (a) CAMS anthropogenic CO emissions and (b) FINNv2.4 fire CO 1143 
emissions as a result of assimilating MOPITT Column JNT product. Updates is calculated as CO 1144 
from the experiment minus CO from the control run. (c-j) are similar to (a-b) but for other 1145 
experiments. 1146 


