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Abstract 16 
The Measurements Of Pollution In The Troposphere (MOPITT) is an ideal instrument to 17 
understand the impact of (1) assimilating multispectral/joint retrievals versus single-spectral 18 
products, (2) assimilating satellite profile products versus column products, and (3) assimilating 19 
multispectral/joint retrievals versus assimilating individual products separately. We use the 20 
Community Atmosphere Model with chemistry with the Data Assimilation Research Testbed 21 
(CAM-chem+DART) to assimilate different MOPITT CO products to address these three 22 
questions. Both anthropogenic and fire CO emissions are optimized in the data assimilation 23 
experiments. The results are compared with independent CO observations from TROPOspheric 24 
Monitoring Instrument (TROPOMI), the Total Carbon Column Observing Network (TCCON), 25 
NOAA Carbon Cycle Greenhouse Gases (CCGG) sites, In-service Aircraft for a Global Observing 26 
System (IAGOS), and Western wildfire Experiment for Cloud chemistry, Aerosol absorption and 27 
Nitrogen (WE-CAN). We find that (1) assimilating the MOPITT joint (multispectral Near-IR and 28 
Thermal-IR) column product leads to better model-observation agreement at and near the surface 29 
than assimilating the MOPITT Thermal-IR-only column retrieval. (2) Assimilating column 30 
products has a larger impact and improvement for background and large-scale CO compared to 31 
assimilating profile products due to vertical localization in profile assimilation. However, profile 32 
assimilation can out-perform column assimilations in fire-impacted regions and near the 33 
surface. (3) Assimilating multispectral/joint products results in similar or slightly better agreement 34 
with observations compared to assimilating the single-spectral products separately.  35 
 36 
 37 
1 Introduction 38 

With the increasing availability of satellite remote sensing instruments measuring 39 
atmospheric composition, there is potential to produce multispectral retrievals of several species, 40 
making use of thermal-infrared (TIR) and near-infrared (NIR) radiances from collocated 41 
instruments on the same satellite such as IASI (Infrared Atmospheric Sounding Interferometer) 42 
and GOME-2 (Global Ozone Monitoring Experiment-2) on the European MetOp satellites (Cuesta 43 
et al., 2013), or flying in close formation, such as on the NASA A-train and the NOAA's JPSS 44 
(Joint Polar Satellite System), e.g., OMI (Ozone Monitoring Instrument, Levelt et al., 2018), AIRS 45 
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(Atmospheric Infrared Sounder, Fu et al., 2018), OMPS (Ozone Mapping and Profiler Suite, Flynn 46 
et al., 2014), TROPOspheric Monitoring Instrument (TROPOMI, Veefkind et al., 2012) and CrIS 47 
(Cross-track Infrared Sounder, Fu et al., 2016). TIR retrievals use thermal contrast while NIR 48 
retrievals use reflected solar radiance from the surface. Taking MOPITT as an example, the TIR 49 
retrieval can provide vertical profiles with limited sensitivity to the surface while the NIR retrieval 50 
only provide total column product with some sensitivity to the surface. An example of averaging 51 
kernels of the MOPITT TIR and NIR retrievals can be found in the Figure 2 of Worden et al. 52 
(2010). 53 

The multispectral products have shown considerable increases in the vertical sensitivity of 54 
the retrievals for lowermost tropospheric ozone (O3) (e.g., Worden et al., 2007; Natraj et al., 2011; 55 
Fu 2018), carbon monoxide (CO) (Worden et al., 2010; Fu et al., 2016) and methane (CH4) 56 
(Schneider et al. 2022). Multispectral retrievals could be made using the co-located overpass made 57 
by low earth orbit and geostationary satellite such as, e.g., Geostationary Interferometric Infrared 58 
Sounder (GIIRS, Zeng et al., 2023), Geostationary Environment Monitoring Spectrometer 59 
(GEMS, Kim et al., 2020) and Tropospheric emissions: Monitoring of pollution (TEMPO, Chance 60 
et al., 2019). Table 1 shows the developed and potential multispectral products. It is important to 61 
understand the value of assimilating a multispectral product versus assimilating a single-spectral 62 
range product, and the value of assimilating a multispectral product versus separately assimilating 63 
single-spectral range products that are used to retrieve the multispectral products.   64 
 65 
Table 1. Developed and potential multispectral satellite retrievals. Shown in the table are satellites, 66 
their NIR and/or TIR spectral ranges (in µm), and potential chemical species from the multispectral 67 
retrievals. 68 

Morning Overpass Afternoon Overpass Geostationary 

MOPITT (2.3 & 4.7) 
 

(CO)  

AIRS (3.75–15.4) + OMI (0.27–0.5) 
 

(O3) 

GIIRS (East Asia) (0.55–14.2) + 
TROPOMI (2.3–2.4) 

  
IASI (3.6–15.5) + GOME2 (0.24–0.79) 

(O3)  
TES (8.7–10.5) + OMI (0.27–0.5) 

(O3) 
GEMS (East Asia) (0.3–0.5) + IASI 

(3.6–15.5)  
GOSAT (0.75–15) + TES (8.7–10.5) 

(O3) 
GEMS (East Asia) (0.3–0.5) + CrIS 

(3.9–15.4)  
CrIS (3.9–15.4) + GOSAT-2 (0.3–14.3) 

(CO, CH4) 
TEMPO (N. America)+ IASI (3.6–

15.5)  
CrIS (3.9–15.4) + TROPOMI (2.3–2.4) 

(CO, O3, CH4) 
TEMPO (N. America)+ CrIS (3.9–

15.4) 
 69 

Total column observations of ozone, CO and NO2 are now routinely assimilated in 70 
operational centers such as in the European Copernicus Atmosphere Monitoring Service (CAMS) 71 
program at the European Centre for Medium-Range Weather Forecasts (Inness et al., 2019; 2022) 72 
In addition, recently launched geostationary satellites such as GEMS and TEMPO will provide 73 
column products at high temporal resolution. While the satellite profile products are in general 74 
considered to contain more vertical information, it is important to understand the impacts of 75 
assimilating column products versus assimilating profile products and to understand what 76 
information is potentially missed by only assimilating column products. For example, Jiang et al. 77 
(2017) compared emission updates following the assimilation of the MOPITT lowermost surface 78 
profile, the tropospheric profile or the columns and identified errors indicative of model transport 79 
error impacts on emission estimates. 80 

The Measurements of Pollution in the Troposphere (MOPITT) instrument onboard the 81 
NASA Terra satellite is an ideal instrument to address these three questions. MOPITT retrieves 82 
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total column amounts and vertical profiles of CO using both thermal-infrared (TIR) and near-83 
infrared (NIR) measurements. In addition, MOPITT also provides the multispectral TIR-NIR joint 84 
product, which has enhanced the sensitivity to near-surface CO (Deeter et al., 2011, 2013; Worden 85 
et al., 2010). By comparing the results of assimilating different combinations of MOPITT CO 86 
products, we will be able to address these two questions. 87 

To conduct the data assimilation experiments, we use the Community Atmosphere Model 88 
with chemistry and the Data Assimilation Research Testbed (Anderson et al., 2009). CAM-89 
chem+DART has been previously used to assimilate MOPITT profile products (Arellano et al., 90 
2007; Barré et al., 2015; Gaubert et al., 2016, 2017, 2020, 2023). Here we present the first 91 
assimilation of MOPITT column products within CAM-chem+DART. This new capability also 92 
allows us to assimilate other satellite column products of CO and other chemical species in the 93 
future. Anthropogenic and fire emissions are optimized separately in the data assimilation 94 
experiments.  95 

This paper aims to understand the impacts of (1) assimilating multispectral/joint products 96 
versus single-spectral products, (2) assimilating satellite profile products versus column products, 97 
and (3) assimilating multispectral/joint products versus assimilating individual products 98 
separately. The paper is organized as follows: Section 2 describes CAM-chem, DART, and 99 
methods, Section 3 describes datasets used for results evaluation, Section 4 presents data 100 
assimilation results, Section 5 shows comparisons between data assimilation results and 101 
independent observations, Section 6 discuss optimized emissions and CAM-chem simulations 102 
with updated emissions, Section 7 is discussion and Section 8 concludes the study. 103 
 104 
 105 
  106 
Section 2: Methods and data 107 
2.1 MOPITT products 108 

The Measurements of Pollution in the Troposphere (MOPITT) instrument on board the 109 
NASA Terra satellite provides both thermal-infrared (TIR) and near-infrared (NIR) radiance 110 
measurements since March 2000 (Deeter et al., 2003). CO total column amounts and volume 111 
mixing ratio (VMR) profiles (10 vertical layers) are retrieved from the radiance measurements. 112 
TIR is used to retrieve MOPITT TIR CO total column product and MOPITT TIR CO vertical 113 
profile product; NIR is used to retrieve MOPITT NIR CO column product. Besides the TIR-only 114 
and NIR-only products, multispectral (JNT) products are also provided by MOPITT by jointly 115 
retrieving from TIR and NIR. JNT retrievals provide both MOPITT JNT CO total column product 116 
and MOPITT JNT CO vertical profile product. JNT products have enhanced the sensitivity to near-117 
surface CO (Deeter et al., 2011, 2013; Worden et al., 2010). MOPITT products can be accessed 118 
through https://search.earthdata.nasa.gov/search. In this study, we assimilate daytime MOPITT 119 
version 9 products (Deeter et al., 2022) of TIR profile, TIR column, NIR column, JNT profile, and 120 
JNT column in our experiments.  121 

We use the error-weighted average of the MOPITT data within 1°×1° model grid and 6-122 
hourly bin (i.e., super-observations). Averaged daily numbers of daytime total super-observations 123 
from MOPITT TIR, NIR, and JNT products during July 16th 2018 to August 14th 2018 is shown 124 
in Figure 1. The NIR product only covers the land while TIR and JNT products cover the land and 125 
ocean. Over the ocean, the JNT product is the same as the TIR product (Worden et al., 2010). 126 

 127 
2.2 CAM-chem 128 
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The Community Earth System Model (CESM) is a global Earth system model that includes 129 
the atmosphere, land, ocean, and ice components (Danabasoglu et al., 2020). CAM‐chem; 130 
(Emmons et al., 2020; Tilmes et al., 2019) is a global chemistry-climate model as a configuration 131 
of CESM version 2.2 (https://www2.acom.ucar.edu/gcm/cam-chem). CAM-chem accounts for 132 
physical, chemical and dynamical processes with a spatial resolution of 1.25° in longitude and 133 
0.95° in latitude and 32 vertical layers with ~8 layers in boundary layer and ~10 layers in the free 134 
troposphere (Tang et al., 2023). We use the default MOZART-TS1 chemical mechanism, which 135 
includes comprehensive tropospheric and stratospheric chemistry with ~220 chemical species and 136 
528 reactions (Emmons et al., 2020). The aerosol scheme used is the four-mode version of the 137 
Modal Aerosol Module (MAM4; Liu et al., 2016). 138 

We use CAMS-GLOB-ANT v5.1 inventory (Soulie et al., 2023) for anthropogenic 139 
emissions and FINNv2.4 (Wiedinmyer et al., 2023) for fire emissions. CAMS-GLOB-ANT v5.1 140 
provide monthly emissions and we generated daily files from the interpolation of the monthly 141 
values. The FINNv2.4 inventory provide daily fire emissions and are used directly. We update CO 142 
emission input files using the relative surface flux increments at every MOPITT CO assimilation 143 
step (6-hourly). 144 
 145 
2.3 DART 146 
 DART is an open-source community facility for efficient ensemble data assimilation 147 
(https://dart.ucar.edu/). It is developed and maintained at the National Center for Atmospheric 148 
Research (NCAR). DART has been coupled with Community Atmosphere Model (CAM) for 149 
global meteorological data assimilation (CAM+DART; Raeder et al., 2012, 2021). Based on 150 
CAM+DART, the capability of chemical data assimilation using CAM-chem online chemistry and 151 
DART is developed and applied for scientific research (CAM-chem+DART; Arellano et al., 2007; 152 
Barré et al., 2015; Gaubert et al., 2016, 2017, 2020). To assimilate meteorology and chemical 153 
observational data, an ensemble of 30 CAM-chem simulations with different initial conditions and 154 
emissions to generate the forecast ensemble at a given time. DART assimilates observations and 155 
produce the analysis, an ensemble of optimized initial conditions (see details in Gaubert et al., 156 
2016). We use ensemble mean at the forecast and the analysis step in the result sections. Ensemble 157 
mean of forecast is denoted by  158 

𝑥!"""" = "
#
∑ 𝑥$

!#
$%"      (1) 159 

 160 
Where 𝑥!"""" is the ensemble mean of “forecast”, N is the ensemble size and 𝑥$

! is the forecast value 161 
of the j-th ensemble member. In our runs, DART uses the Ensemble Adjustment Kalman Filter 162 
(EAKF; Anderson et al., 2001, 2003), a deterministic ensemble square root filter for the analysis 163 
step. Unless noted otherwise, our setup is the same as in Gaubert et al., (2023). We slightly change 164 
the emission update to include a correction to the previous day (t-1) in order to smooth the 165 
emissions increments. Briefly, we apply multiplicative covariance inflation to the forecast 166 
ensemble before each analysis step to optimally adjust the ensemble spread. The inflation 167 
parameter is also sequentially updated (Gharamti 2018) and varies in both space and time. The 168 
spatial localization horizontal half width is 600 km and 1200 m vertically. The main difference 169 
between the profile and the column assimilation resides in the vertical localization. There is no 170 
vertical localization in the column data assimilation except that the stratospheric (top 5) levels are 171 
not updated, as in the CO profile and meteorological DA. 172 

Forward operators (denoted as 𝐻) are applied to project model field to observation space 173 
(i.e., expected observations). In this case, the forward operators apply MOPITT averaging kernel 174 
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and prior information to model CO field before comparing it to MOPITT products. The capability 175 
of assimilating MOPITT profile products is described in Barré et al., (2015). In this study, we 176 
introduce observation operator to assimilate the MOPITT columns DART.  177 

We estimate the retrieved column C (molecules cm-2), using the prior column Ca and 178 
following Equation 3 of the MOPITT Version 9 Product User's Guide: 179 

𝐶 = 	𝐶& + 𝑎(𝑥'()*+,-. − 𝑥&)     (2) 180 
Where 𝑥'()*+,-.and 𝑥&are the modelled and the a priori profiles expressed as log10(VMR) and 181 
a is the total column averaging kernel. In this study, we assimilate both MOPITT profile and 182 
column products and compare the results. 183 
 184 
2.4 Data assimilation experiments setup 185 
 There are 6 CAM-chem+DART runs (Figure 2). The first run is the spin-up/control run 186 
that starts on July 1st 2018. The spin-up/control run only assimilates meteorological observations 187 
and the state vector consists in wind, temperature, specific humidity, and surface pressure. Besides 188 
the spin-up/control run, there are 5 experiment runs that assimilate different MOPITT CO 189 
product(s) to update model CO. Note that the experiment runs not only assimilate MOPITT CO 190 
products but also meteorological variables as in the spin-up/control run. The chemical state vector 191 
(CO and CO emissions) and the meteorological state vector do not impact each other. However, 192 
the changed meteorology due to meteorological data assimilation will impact the transport and 193 
possibly chemistry of CO during the forecast step. The 5 experiment runs are:  194 

(1) Column JNT assimilation;  195 
(2) Profile JNT assimilation; 196 
(3) Column TIR assimilation; 197 
(4) Column TIR and column NIR assimilation; 198 
(5) Profile TIR and column NIR assimilation.  199 

These 5 experiment runs are designed to address a few scientific questions: 200 
● The comparisons of experiment (1) and (2) will show the impacts of the assimilation of 201 

satellite profile versus column products. 202 
● The comparisons of experiment (1) and (3) will show the difference caused by TIR-only 203 

product versus joint product. 204 
● The comparisons of experiment (1) and (4) will show the impacts of assimilating joint 205 

products (TIR+NIR) versus assimilating them separately for column products. 206 
● The comparisons of experiment (2) and (5) will show the impacts of assimilating joint 207 

products (TIR+NIR) versus assimilating them separately for profile products.  208 
The experiment runs starts on July 16th 2018 and are initialized with the spin-up/control 209 

run. Each experiment runs for 35 days considering the cost and constrain of computational 210 
allocation. The first 20 days (July 11th to July 15th, 2018) are CO spin-up and the last 15 days (July 211 
31st to August 14th, 2018) are used for result analyses. The 15-day period are selected based on the 212 
spin-up time – as shown by fractions of observations rejected by the assimilation system (Figure 213 
3), the experiments finished spinning up around 31 July. Each CAM-chem+DART run includes 214 
30 ensemble members. These 30 ensemble members have different initial conditions and emissions 215 
to represent model uncertainties. The analysis step is done every 6 hours. Anthropogenic and fire 216 
emissions are optimized separately on a daily basis following the method described in Gaubert et 217 
al. (2020, 2023). 218 

 219 
2.5 CAM-chem simulations with updated emissions 220 
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To evaluate the updated emissions from the DA experiments, we conduct CAM-chem 221 
simulations for the same period using the ensemble mean of the updated fire and anthropogenic 222 
emissions. Hourly output is used for these simulations. Specifically, we conduct 6 CAM-chem 223 
simulations: 224 

(S1) Simulation with emissions from (1) Column JNT assimilation;  225 
(S2) Simulation with emissions from (2) Profile JNT assimilation;  226 
(S3) Simulation with emissions from (3) Column TIR assimilation; 227 
(S4) Simulation with emissions from (4) Column TIR and column NIR assimilation; 228 
(S5) Simulation with emissions from (5) Profile TIR and column NIR assimilation; 229 
(SControl) Simulation with original CAMS and FINN emissions. 230 
 231 

3 Datasets used for results evaluation 232 
 233 
3.1 TROPOspheric Monitoring Instrument (TROPOMI) 234 

We use CO column retrieved from the TROPOMI instrument onboard the ESA's Sentinel-235 
5 Precursor (Veefkind et al., 2012) to evaluate model results. The spatial resolution of CO 236 
retrievals is ~5.5 km × 7 km (Veefkind et al., 2012; Borsdorff et al., 2018). TROPOMI CO data 237 
can be downloaded from https://s5phub.copernicus.eu/dhus/#/home. The TROPOMI Level 2 CO 238 
(Apituley et al., 2018) is used here. The TROPOMI data are filtered following Landgraf et al. 239 
(2018). To compare the model results with TROPOMI CO, we interpolate model outputs spatially 240 
and temporally to match the locations and times of TROPOMI CO retrievals, and then apply 241 
TROPOMI CO total column averaging kernels to the interpolated model CO profiles to obtain 242 
modeled total CO columns (Apituley et al., 2018). 243 
 244 
3.2 The Total Carbon Column Observing Network (TCCON) 245 

TCCON is a network of ground-based Fourier Transform Spectrometers that records direct 246 
solar spectra in the NIR spectral region. Column-averaged mixing ratios of chemical species such 247 
as CO2, CH4, N2O, and CO are retrieved from these spectra. We use CO column data from the 248 
TCCON GGG2020 data release (https://tccondata.org/2020; TCCON Team, 2022) to evaluate 249 
model results. We interpolate model results to TCCON data locations and time and apply TCCON 250 
averaging kernels to model results for proper comparisons. 251 

 252 
3.3 NOAA Carbon Cycle Greenhouse Gases (CCGG) sites 253 

We use the atmospheric CO dry air mole fractions from the NOAA GML Carbon Cycle 254 
Cooperative Global Air Sampling Network 255 
(https://gml.noaa.gov/aftp/data/trace_gases/co/flask/surface/; Petron et al., 2022). Event data are 256 
used. The reference scale is WMO CO_X2014A. We interpolate model results to CCGG site 257 
locations and time for proper comparisons. Note that on average, each site only has data on ~4 258 
days and ~9 data points in total from July 16th, 2018 to August 14th, 2018. 259 
 260 
3.4 In-service Aircraft for a Global Observing System (IAGOS)  261 

IAGOS is a European research infrastructure developed for operations on commercial 262 
aircraft to monitor atmospheric composition (Petzold et al., 2015). The IAGOS instrument package 263 
1 measures CO as well as O3, air temperature, and water vapor (https://www.iagos.org/iagos-core-264 
instruments/package1/). CO is measured by infrared absorption using the gas filter correlation 265 
technique (Precision: ±5%, Accuracy: ±5 ppb). Here we use vertical profiles of CO from IAGOS 266 
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for model evaluation. We use CO profiles in North and West Africa, Tropical Asia, East Asia, 267 
Europe, Eastern North America, Western North America, Central and South America, and Middle 268 
East and conduct evaluation in these regions separately. CO profiles used and regions is shown in 269 
Figure S2. Note that IAGOS profiles are divided into regions based on their locations, however 270 
the IAGOS profiles in a region are not representative of the whole region due to coverage (Figure 271 
S2). 272 
 273 
3.5 Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen 274 
(WE-CAN) 275 

The WE-CAN field campaign was conducted over the Northwestern U.S. during July–276 
September 2018 (https://data.eol.ucar.edu/project/WE-CAN). There were 16 research flights of 277 
the NCAR/NSF C-130 research aircraft during the campaign. Our experiment runs start on July 278 
16th and end on August 14th. Therefore, we compare the model results to measurements from 279 
flights on July-31, August-02, August-03, August-06, August-08, August-09, and August-13. We 280 
use 1-minute averaged CO (Picarro G2401-mc) data. Model results are interpolated to match 281 
locations and time of the observations, and then both interpolated model results and observations 282 
are averaged back to the model spatial resolution (1.25° in longitude and 0.95° in latitude), 6-283 
hourly bins, and 50 hPa vertical layers. This is because the model spatial and temporal resolution 284 
are much lower than observations and model results cannot reproduce the high variability in the 285 
raw observations. 286 
 287 
4. Results 288 
4.1 Observation space diagnostics 289 
4.1.1 Fractions of observations rejected by the assimilation system 290 

In all the five experiments, the assimilation improves the agreement between model 291 
forecast and observations of not only the MOPITT products assimilated but also the MOPITT 292 
products that were not assimilated. Assimilating MOPITT CO column product(s) improves model 293 
agreement with MOPITT CO profile product(s) and vice versa. Figure 3 shows time series of the 294 
fraction of observations rejected by the assimilation system (%) when they are too far from the 295 
model ensemble mean. The decreasing fractions with time indicate more observations being 296 
accepted by the model, i.e., and observations and modeled values are getting closer in later time 297 
steps. For a MOPITT product that is not assimilated in an experiment run, it is still used in the 298 
“evaluation mode”, where the ensemble is run through the observation operator, but not 299 
assimilated. Therefore, the hypothetical fraction of observations rejected is still calculated for the 300 
MOPITT product for that experiment run, even though these observations are not assimilated. For 301 
the spin-up/control run, there is no significant trend for the fractions of rejected observations 302 
(Figure 3f). For the five experiments, the fractions of rejected observations decrease with time. 303 
Assimilating (Figures 3a-3e) any MOPITT product(s) improves model agreement with all the five 304 
MOPITT CO products regardless if they are column or profile products. When only assimilating 305 
column products ((1) Column JNT assimilation; (3) Column TIR assimilation; and (4) Column 306 
TIR and column NIR assimilation), the fraction of rejected observations decreases faster than that 307 
when assimilating both profile and column products ((5) Profile TIR and column NIR 308 
assimilation). For experiments that assimilate profiles (Experiments (2) and (5)), the fractions of 309 
rejected observations decrease slower than the other three experiments that only assimilate column 310 
products (Experiments (1), (3), and (4)). This is expected because profile assimilation has 311 
relatively small impact than column assimilation overall due to vertical localization. 312 
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 313 
4.1.2 Reduced centered random variable (RCRV) and chi-square statistics χ2 314 
 We use the RCRV as a diagnostic of the ensemble bias (Candille et al., 2007) and has been 315 
previously used to validate assimilation results (e.g., Gaubert et al., 2014). Mean RCRV for P 316 
observations is defined by the ratio between the innovation and its associated error: 317 

𝑅𝐶𝑅𝑉 = "
/
∑ 0!

"*12#
$3333

45",!
& 65$,!

&
/
7%"      (3) 318 

Where 𝑦78 is the value of i-th observation,	𝐻𝑥9
!""""gives the expected observation from the model 𝜎8,7;  319 

is the observation error variance, and 𝜎!,7;  is the ensemble variance. The mean of the RCRV 320 
represents the weighted bias of the forecast, and hence a value close to 0 indicates the ensemble is 321 
representative (i.e., error variances are comparable to the innovations). Figure 4 shows daily 322 
𝑅𝐶𝑅𝑉"""""""". For a given experiment, only 𝑅𝐶𝑅𝑉"""""""" of MOPITT product(s) assimilated in the experiment 323 
is shown here. In most cases 𝑅𝐶𝑅𝑉"""""""" is close to zero, indicating that the ensemble is representative. 324 
The only exceptions are NIR column product in (4) Column TIR and column NIR assimilation and 325 
(5) Profile TIR and column NIR assimilation. 326 

Chi-square statistics (χ2) is also used to verify an effective assimilation by comparing error 327 
specifications and their balance with actual model-observation mismatch (Ménard and Chang, 328 
2000) and has been previously used to evaluate assimilation results (e.g., Gaubert et al., 2016; 329 
Sekiya et al., 2021). Mean RCRV for P observations is defined as 330 

𝜒;""" = "
/
∑ (0!

"*12!
$)&

5",!
& 65$,!

&
/
7%"       (4) 331 

A value lower than 1 indicates an overfitting of the observations while a value higher than 1 332 
suggests an underestimation of the actual model and observation mismatch. Daily 𝜒;""" are also 333 
shown in Figure 4. The 𝜒;""" values are all higher than 1 indicating an underestimation of the actual 334 
model and observation mismatch. However, 𝜒;""" decreases with time and gradually approaches 335 
towards 1, indicating the degree of such underestimation decreases with time. 336 
 337 
4.2 Model space diagnostics 338 
 We analyze the impacts of assimilating MOPITT CO products by comparing the 339 
experiment runs with control/spin-up run, which effectively isolate the signal resulting from the 340 
CO assimilation. Figure 5 show the spatial distribution of CO difference caused by assimilation 341 
(CO from forecast of experiment minus CO from the control/spin-up run) for the 5 experiments 342 
(15-day average). At the surface, the spatial distributions of CO difference are similar among the 343 
5 experiments. In line with Gaubert et al., 2023, the 5 experiments show overall higher CO in the 344 
Northern Hemisphere and lower CO in the tropics and India compared to the control/spin-up run. 345 
Experiment (2) Profile JNT assimilation and Experiment (5) Profile TIR and column NIR 346 
assimilation reduce CO in California which is not the case for other experiments. Experiment (2) 347 
Profile JNT assimilation and Experiment (5) Profile TIR and column NIR assimilation are the only 348 
two experiments that involves profile product assimilation. In addition, profile JNT is retrieved 349 
with profile TIR and column NIR therefore Experiment (2) Profile JNT assimilation is expected 350 
to assimilate similar information as (5) Profile TIR and column NIR assimilation. In addition, 351 
when comparing Experiments (1) and (2), column assimilation has a larger downwind impact (e.g., 352 
the ocean between Africa and South America). At 500 hPa, the 5 experiments still show overall 353 
higher CO in the Northern Hemisphere compared to the control/spin-up run. However, the 354 
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Experiment (2) and (5) that include profile assimilation have lower CO values than the other 3 355 
experiments, especially in the high latitudes. 356 
 Assimilating profile products have different vertical impacts from assimilating column 357 
products (Figure 6). Overall, the two experiments that involve profile assimilation (Experiments 358 
(2) and (5)) seem to be close to each other, while the other three experiments that only involve 359 
column assimilation (Experiments (1), (3), and (4)) also exhibit similarities among themselves. 360 
Globally speaking, experiments that assimilate only column product(s) have a larger impact at and 361 
near the surface compared to experiments that assimilate only profile product(s) (Figures 6a and 362 
6b). This is reasonable because profile assimilation is more localized vertically. Regional speaking, 363 
the impacts of the five experiments vary across continents.  364 

The difference caused by assimilating profile products is in general smaller than the 365 
difference caused by assimilating column products. The exceptions are Africa and South America 366 
where the two experiments that assimilate profiles have lower CO than the three experiments that 367 
only assimilate columns between 900 hPa and 600 hPa. CO over the two regions is dominated by 368 
fire emissions during the experiment period. It is known that FINN overestimates fire emissions 369 
in the tropics (Wiedinmyer et al., 2023; Gaubert et al., 2023) of CO which were transported to 370 
upper levels through fire plume rise and tropical convection. This overestimation between 900 hPa 371 
and 600 hPa is corrected by assimilating MOPITT CO products, especially profile products that 372 
captured CO plumes between 900 hPa and 600 hPa. Experiment (2) Profile JNT assimilation and 373 
Experiment (5) Profile TIR and column NIR assimilation have some relatively small differences 374 
over some regions even though profile JNT is retrieved with profile TIR and column NIR. For 375 
example, over North America, (2) Profile JNT assimilation has lower CO values than Experiment 376 
(5) Profile TIR and column NIR assimilation. Experiment (1) Column JNT assimilation and 377 
Experiment (4) Column TIR and column NIR assimilation are in general similar with some 378 
exceptions. For example, over Africa between 900 hPa and 600 hPa, CO profile from Experiment 379 
(1) Column JNT assimilation is closer to Experiment (3) Column TIR assimilation rather than 380 
Experiment (4) Column TIR and column NIR assimilation. 381 
 382 
5 Comparisons with independent observations 383 
5.1 TROPOMI 384 

To evaluate the results, we compare the CO from DA forecasts with independent 385 
observations. Comparisons with TROPOMI CO column retrievals are shown in Figure 7. The 386 
control run underestimates background CO in the Northern Hemisphere while overestimates CO 387 
near fire source regions in the tropics and Southern Hemisphere. Compared to the control run, all 388 
five of the experiments show improved agreement with TROPOMI CO by increasing background 389 
CO in the Northern Hemisphere and reducing CO near fire source regions in the tropics and 390 
Southern Hemisphere. The spatial distributions of the mean biases from the three experiments with 391 
only column assimilation are close while those from the two experiments with profile assimilation 392 
are close. The two experiments with profile assimilations have smaller improvement for 393 
background CO in the Northern Hemisphere. This is reasonable because profile assimilation has 394 
relatively small impact than column assimilation due to tight vertical localization. However, near 395 
the fire source regions, the two experiments with profile assimilations have lower biases than the 396 
three experiments with only column assimilation. This is the case not only in Africa, South 397 
America and tropical Asia (Figure 7), but also in California (fire region) and Nevada (downwind 398 
of the fire region), USA during the study period which is the fire season in the region (Figure S5). 399 
This indicates profile assimilation can out-perform column assimilations in circumstances with 400 
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fire impacts, which is likely due to transport errors and fire plume rise that requires vertical 401 
information to resolve plume locations. 402 
 403 
5.2 TCCON 404 

Overall, the control run tends to underestimate CO and the 5 experiments all agree better 405 
with TCCON observations compared to the control run but still underestimates CO in general 406 
(Figure 8). Column assimilations (Experiments (1), (3), and (4)) significantly overestimate CO at 407 
pasadena01 and edwards01 sites in California, USA during 26 July 2018 to 04 August 2018, likely 408 
due to fire impacts. The significant overestimation is not seen in the two experiments with profile 409 
assimilations (Experiments (2) and (5)). This is consistent with the comparison results with 410 
TROPOMI and implies the profile assimilation can out-perform column assimilations in fire-411 
impacted regions. The model-observation discrepancies overall decrease with time. A time series 412 
of TCCON and modeled CO columns is shown in Figure S6. 413 

 414 
5.3 CCGG sites 415 

All experiments show improved agreement with surface in-situ CO observations from 416 
CCGG sites compared to the control run (Figure 9), as shown by with higher correlations (0.6-417 
0.65 versus 0.56) and lower model biases (0.7-4.91 ppb versus 8.6 ppb). As for RMSE, however, 418 
the experiments do not reduce RMSE compared to the control run (34-50 ppb versus 36 ppb). 419 
Experiment (1) Column JNT assimilation has the lowest mean bias (0.7 ppb) while Experiment 420 
(2) Profile JNT assimilation have the highest correlation (0.65). (1) Column JNT assimilation, (2) 421 
Profile JNT assimilation, (3) Column TIR assimilation, (4) Column TIR and column NIR 422 
assimilation, and (5) Profile TIR and column NIR assimilation. 423 

Spatial distributions of model bias in CO (ppb) against CO observations from CCGG sites 424 
are shown in Figures S7-S10. The UTA CCGG site is close to the two TCCON sites in California, 425 
USA (pasadena01 and edwards01). All the five experiments significantly underestimate CO at the 426 
UTA surface site during 26 July 2018 to 4 August 2018, whereas the five experiments overestimate 427 
CO compared to the two TCCON sites (Figure 8). This inconsistency is likely due to (1) UTA 428 
CCGG site measures CO at the surface while the TCCON sites measure column total CO; (2) there 429 
are only two data points during that period at the UTA site and are not comparable to the sampling 430 
of the two TCCON sites. 431 
 432 
5.4 IAGOS 433 
 Globally, all five experiments agree better with IAGOS CO profiles compared to the 434 
control run (Figure 10a). At the 900-1000 hPa layer, Experiment (2) Profile JNT assimilation has 435 
the lowest bias, followed by Experiment (4) Column TIR and column NIR assimilation. At layers 436 
above 800 hPa, the three experiments with only column assimilation have lower bias. CO bias of 437 
Experiments (1) Column JNT assimilation and (4) Column TIR and column NIR assimilation are 438 
very similar using that of (3) Column TIR assimilation as a reference. This is expected as Column 439 
JNT product contains similar information as column TIR product and column NIR products 440 
together. Over most regions, the five experiments show improved agreement with IAGOS data 441 
except for Tropical Asia and Central and South America where the five experiments have similar 442 
or larger biases (Figure 10). Over North and West Africa, the control run has positive bias whereas 443 
the five experiments have negative biases below 500 hPa, indicating the system might over-adjust 444 
in the region. The comparisons with IAGOS show that the experiments overall perform better in 445 
the Northern Hemisphere than in the tropics.   446 
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  447 
5.5 WE-CAN 448 
 The experiments do not show improvement from the control run when compared to 449 
airborne measurements from WE-CAN. This is expected because the airborne measurements 450 
during WE-CAN aimed to sample fire plumes and include extremely high CO concentrations 451 
which are challenging for a 1-degree global model to capture, not to mention the output is 6-hourly.  452 
The experiments only do show lower model bias than the control run (-24 to -48 ppb versus -52 453 
ppb), however the difference between Experiments (2) and (5) from the control run is small. The 454 
correlation and RMSE of the experiments are not improved. The subtle improvement in the mean 455 
bias is likely driven by large-scale adjustment rather than improvement in resolving flight-scale 456 
features.  457 
 458 
6. Emissions 459 
6.1 Emission updates 460 
 Assimilating profile products (Experiments (2) and (5)) tends to have a larger change to 461 
the emissions compared to only assimilating column products (Experiments (1), (3), and (4)). The 462 
5 experiments overall increase anthropogenic CO emissions while reduce fire CO emissions. For 463 
anthropogenic emissions, the two experiments that assimilate CO profiles (Experiments (2) and 464 
(5)) significantly increase anthropogenic CO emissions from ~500 Tg/year to ~700 Tg/year 465 
globally in August, which is not the case for the other experiments. Anthropogenic emissions in 466 
India are reduced by the experiments while in East Asia are increased (Figure 13). Fire emissions 467 
are reduced by the 5 experiments in Africa and South America and the reduction is the largest for 468 
the two experiments that assimilate CO profiles (Figures 12 and 13). This is consistent with the 469 
conclusion in Wiedinmyer et al. (2023), which found fire emissions in FINNv2.4 over Africa are 470 
too high, and consequently were reduced in FINNv2.5. The experiments overall increase fire 471 
emissions in North America, indicating that FINNv2.4 underestimates fire emissions in the region 472 
during the assimilation period. Fire and anthropogenic emissions can have different injection 473 
heights and impact different vertical levels. This is especially the case for regions with strong 474 
convection (e.g., central Africa).  475 
 476 
6.2 CAM-chem simulations with updated emissions 477 
 We compared the CAM-chem simulations with updated emissions and original emissions 478 
to CO observations from TROPOMI, TCCON, CCGG site, IAGOS, and WE-CAN (Figures S11-479 
S18). The five simulations with updated emissions overall show better agreement with 480 
observations compared to the control run with original emissions. Simulations using emissions 481 
from profile assimilation experiments (Simulations (S2) and (S5)) in general perform better than 482 
column assimilation especially near the surface (S17) and at fire source regions (Figures S11, S12, 483 
and S14). This is consistent with the evaluation of DA experiments. This indicates assimilating 484 
satellite profiles can perform better near the surface and have a larger impact on emissions 485 
compared to only assimilating column products. 486 
 487 
7. Discussions 488 
7.1 Assimilating multispectral product versus TIR-only product 489 

The comparisons between experiment (1) Column JNT assimilation and (3) Column TIR 490 
assimilation demonstrate the impacts of assimilating satellite multispectral/joint products versus 491 
TIR-only products. Overall, when comparing to independent CO column observations, 492 
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assimilating joint products do not show clear improvement from assimilating TIR-only products 493 
(Figures 7 and 8). However, when comparing to independent CO profile observations or surface 494 
CO observations, assimilating joint products leads to better model-observation agreement at and 495 
near the surface (Figures 9 and 10). This is reasonable as the joint MOPITT product has enhanced 496 
sensitivity to near-surface CO (Worden et al., 2010).  497 
 498 
7.2 Assimilating profile product versus column product 499 

The comparisons between experiment (1) Column JNT assimilation and (2) Profile JNT 500 
assimilation demonstrate the impacts of assimilating satellite multispectral/joint products versus 501 
TIR-only products. The fractions of rejected observations for Experiment (3) decrease slower 502 
than experiment (1) due to vertical localization when assimilating profile products. For the same 503 
reason, assimilating column products has a larger impact on the analysis compared to assimilating 504 
profile products. Therefore, experiment (2) with profile assimilation has smaller improvement for 505 
background and large-scale CO in the northern hemisphere (Figure 7) compared to experiment (1) 506 
with column assimilation. However, assimilating profile products can have different vertical 507 
impacts from assimilating column products (figure 6). Profile assimilation can out-perform column 508 
assimilations in fire-impacted regions and near the surface (Figure 10). 509 

Assimilating profile products tends to have a larger change to the emissions compared to 510 
only assimilating column products. Simulations using emissions from profile assimilation 511 
experiments in general perform better than column assimilation especially near the surface and at 512 
fire source regions. 513 

 514 
7.3 Assimilating multispectral product versus assimilating TIR and NIR separately 515 

For multispectral/joint products, we also compare the impacts of assimilating the joint 516 
product directly versus assimilating the single spectral products separately. MOPITT column JNT 517 
products are retrieved from MOPITT column TIR and column NIR products, while MOPITT 518 
profile JNT products are retrieved from MOPITT profile TIR and NIR products. Therefore, we 519 
compare Experiment (1) to Experiment (4), Experiment (2) to Experiment (5) for demonstration. 520 
In general, assimilating multispectral/joint products result in similar or slight better agreement with 521 
observations compared to assimilating the single-spectral products separately. This is the case for 522 
both assimilating profile products (Experiments (2) versus (5)) and column products (Experiments 523 
(1) versus (4)). In addition, assimilating multispectral/joint products is more computationally 524 
efficient than assimilating single spectral products separately. These two reasons point to the 525 
benefit of developing multispectral/joint products for CO as well as other species such as O3 and 526 
CH4 and assimilating them in DA systems. 527 
 528 
7.4 Limitation 529 
 Here we only conduct experiments for 15 days due to limitation in computational 530 
resources. The 15 days in July and August 2018 may not be representative of other seasons and 531 
years. More research is needed to fully understand the impact of (1) assimilating multispectral/joint 532 
products versus single-spectral products, (2) the comparison of satellite profiles and satellite 533 
columns DA, and (3) assimilating multispectral or each product separately. Nevertheless, the 534 
results and conclusions presented in this study are valid and shed light on the impacts of 535 
assimilating different satellite products of the same atmospheric composition.  536 

The CAM-chem+DART experiments in this study overall show improvement in 537 
background and large-scale CO distributions compared to the control/spin-up run, as shown by the 538 
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comparisons with global observations such as TROPOMI and TCCON. However, CAM-539 
chem+DART improvement on small-scale features is challenging due to limitation in model 540 
resolution, as shown by the comparisons with airborne measurements during WE-CAN. A higher 541 
resolution DA system is needed to resolve these features. We are currently developing the 542 
capability of DA using MUSICA+DART which will address this issue (Pfister et al., 2020). 543 
MUSICA has already been shown to better resolve fires at higher resolution while still addressing 544 
global-scale impacts (Tang et al., 2022, 2023).  545 
 546 
8. Conclusions 547 

We conduct 6 CAM-chem+DART assimilation runs for 15 days (July 31st, 2018 to August 548 
14th, 2018) to understand the impact of (1) assimilating multispectral products versus single-549 
spectral products, (2) assimilating satellite profile products versus column products, and (3) 550 
assimilating multispectral products versus assimilating individual products separately. The DA 551 
runs include 1 control run that only assimilates meteorological variables and 5 experiment runs 552 
that assimilate meteorological variables and different MOPITT product(s), namely (1) Column 553 
JNT assimilation; (2) Profile JNT assimilation; (3) Column TIR assimilation; (4) Column TIR and 554 
column NIR assimilation; and (5) Profile TIR and column NIR assimilation. We then compare the 555 
results with independent CO observations from satellite, ground-based remote sensing, surface and 556 
aircraft observations (TROPOMI, TCCON, CCGG sites, IAGOS, and WE-CAN). Fire and 557 
anthropogenic emissions of CO are also optimized in the DA experiments. We conduct 5 CAM-558 
chem runs with the 5 sets of optimized emissions to understand the impacts of assimilating 559 
different MOPITT products. We also conduct 1 additional CAM-chem runs with original 560 
emissions for reference. The main findings are as follows: 561 

(1) Assimilating MOPITT profile products improves model agreement with MOPITT 562 
column products and vice versa.  563 

(2) The five experiments show overall higher CO in the Northern Hemisphere and lower 564 
CO in the tropics and India compared to the control/spin-up run. 565 

(3) All five DA experiments show improved agreement with CO observations from 566 
TROPOMI, TCCON, CCGG sites, and IAGOS compared to the control/spin-up run. Results were 567 
not improved compared to WE-CAN because … 568 

(4) Assimilating profile products tends to have a larger change to the emissions compared 569 
to only assimilating column products. The five experiments overall increase anthropogenic CO 570 
emissions while reducing fire CO emissions.  571 

(5) The five CAM-chem simulations with updated emissions overall show better 572 
agreement with observations compared to the control run with original emissions. Simulations 573 
using emissions from profile assimilation experiments in general perform better than column 574 
assimilation especially near the surface and at fire source regions. 575 

(6) Assimilating MOPITT joint column product leads to better model-observation 576 
agreement at and near the surface than assimilating MOPITT TIR-only column product. 577 

(7) Assimilating column products has larger impacts and improvement for background and 578 
large-scale CO compared to assimilating profile products due to vertical localization in profile 579 
assimilation. However, profile assimilation can out-perform column assimilations in fire-impacted 580 
regions and near the surface. 581 

(8) Assimilating multispectral/joint products result in similar or slightly better agreement 582 
with observations compared to assimilating the single-spectral products separately. Assimilating 583 
multispectral/joint products is also more computationally efficient than assimilating single spectral 584 
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products separately. Therefore, it is advantageous to develop multispectral/joint products for CO 585 
as well as other species (e.g., O3 and CH4) and assimilating them in DA systems. 586 

(9) CAM-chem+DART improvement on small-scale features is challenging due to 587 
limitation in model resolution. We are currently developing the capability of DA using 588 
MUSICA+DART (a higher resolution DA system) to address this issue. 589 
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 901 
Figure 1. Daily number of super-observations per day and per grid from MOPITT (a) TIR, (b) 902 
NIR, and (c) JNT products during July 16th 2018 to August 14th 2018. Total Carbon Column 903 
Observing Network (TCCON) sites are marked by yellow stars and NOAA Carbon Cycle 904 
Greenhouse Gases (CCGG) sites are marked by pink circles. 905 
 906 
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 907 

 908 
 909 
Figure 2. Setup of the CAM-chem/DART data assimilation experiments.  910 
 911 
 912 
 913 
 914 
 915 
 916 

 917 
Figure 3. Time series of the fractions of observations rejected by the assimilation system (%) due 918 
to that they are too far from the ensemble mean. 919 
 920 
 921 
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 922 
Figure 4. timeseries of (a-g) daily mean of Reduced Centered Random Variable (RCRV) and (h-923 
n) daily mean of Chi-square. For each experiment, only RCRV and Chi-square of the MOPITT 924 
product that were assimilated are shown. 925 
 926 
 927 
 928 
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 929 
Figure 5. 15-day (July 31 - August 14, 2018) average of the difference in CO (forecast of 930 
experiment minus control run) for the 5 experiments at the model surface, 500 hPa, and 200 hPa.  931 
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 932 
 933 
Figure 6. Vertical profile of the 15-day (July 31 - August 14, 2018) average difference in CO 934 
(forecast of experiment minus control run) over different regions. 935 
 936 
 937 

 938 
Figure 7. 15-day (July 31 - August 14, 2018) mean biases (ppb) of modeled CO against CO 939 
columns from the TROPOspheric Monitoring Instrument (TROPOMI) for the 5 experiments and 940 
the control run. TROPOMI averaging kernels are applied to model CO for the comparisons.  941 
 942 
 943 
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 944 
Figure 8. Mean biases (ppb) of modeled CO against CO columns from the Total Carbon Column 945 
Observing Network (TCCON) for the 5 experiment and the control run. TCCON averaging kernels 946 
are applied to model CO for the comparisons. Spatial locations of TCCON sites can be found in 947 
Figure 2 and Figure S1. A time series of TCCON and modeled CO can be found in Figure S4. 948 
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 950 
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 953 
Figure 9. Comparisons of modeled CO (ppb) and CO observations from the NOAA Carbon Cycle 954 
Greenhouse Gases (CCGG) sites during July 31st, 2018 to August 14th, 2018 for the 5 experiments 955 
and the control run. Spatial locations of CCGG sites can be found in Figure 2 and Figure S1. A 956 
spatial distribution of model bias in CO against CO observations from CCGG sites can be found 957 
in Figure S5. 958 
 959 
 960 
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 961 
Figure 10. Mean biases (ppb) of modeled CO against CO profiles from the In-service Aircraft for 962 
a Global Observing System (IAGOS) measurements for the 5 experiments (colored lines) and the 963 
control run (black line) at different vertical levels. Locations of IAGOS CO profiles can be found 964 
in Figure S2. 965 
 966 
 967 

 968 
Figure 11. Mean biases (ppb) of modeled CO against airborne CO observations from the Western 969 
wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) field 970 
campaign for the 5 experiments and the control run at different vertical levels. 971 
 972 
 973 
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 974 
Figure 12. Updated (a-g) CAMS anthropogenic CO emissions and (h-n) FINNv2.4 fire CO 975 
emissions as a result of assimilating different MOPITT products. The emissions from the 976 
Spinup/control run are the unchanged original emissions of CAMS and FINNv2.4. 977 
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 978 
Figure 13. Updates on the (a) CAMS anthropogenic CO emissions and (b) FINNv2.4 fire CO 979 
emissions as a result of assimilating MOPITT Column JNT product. Updates is calculated as CO 980 
from the experiment minus CO from the control run. (c-j) are similar to (a-b) but for other 981 
experiments. 982 
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