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1 Responses to Reviewer 1

Overall the proposed scheme is interesting and a useful contribution
to the field. Up to and including the bias correction scheme it is well
described. After that once we get into (I think) a proposed error
estimation scheme I found it difficult to understand. I’ve picked out
a few things that were unclear to me, if these things are explained in
the text I’m happy to be corrected.

We would like to thank the reviewer for the kind comments, and for provid-
ing constructive inputs which helped improve our manuscript. Please see our
detailed responses below.

1. Quality of English is good, it would benefit from another look
through by the authors to fix a few grammatical errors. Exam-
ples (not an exhaustive list):
Line 51 an bias-correction should be a bias correction
Line 88 AMV should be AMVs
Line 171: due -¿ due to
Line 193: track -¿ track of

Thank you for the comment. We have fixed the issues above, and we have
gone over the paper once more to address the grammatical errors.

2. In section 2.1 it would be worth explaining how the heights were
chosen – traditional AMVs are concentrated around 850 and 200
hPa, so 300 hPa is a little low in the atmosphere and there are
normally few quality AMVs at 500 hPa.
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The reviewer is correct that traditional cloud-track AMVs tend to be
concentrated at levels with high ( 200 hPa) and low ( 850 hPa) clouds. To
explain our reasoning, we added the following text in the last paragraph
of Section 2.1 as follows:

“Traditional AMVs used for tracking clouds are typically focused on
high-level clouds (at around 200 hPa) and low-level clouds (at around
850 hPa). Tracking mid-level clouds poses a challenge because they
are often obscured by high-level clouds. In this OSSE study, we
are considering using AMVs derived from sounder-based water va-
por retrievals, which are most reliable in the middle troposphere.
Furthermore, lidar winds, primarily derived from the UV (Rayleigh
scattering) channel, provide retrievals mainly in the middle to up-
per troposphere where the scattering signal is adequate for returning
Doppler information, and the view is less likely to be obstructed
by clouds. For these reasons, we opted to perform our OSSE error
characterization experiments at the 850, 500, and 300 hPa pressure
levels.“

3. In the same section, line 115-6, why only conventional obs +
brightness temperatures to initialise, and not all observation
types? And on line 114-5, why the 3rd most powerful mem-
ber?

The simulation we chose was used as a nature run in a previously published
observing system simulation experiment (Posselt et al., 2022). We chose
to use the 3rd strongest ensemble member, as it generated a category
5 hurricane, but retained a realistic development time scale and track
(as compared with Hurricane Harvey (2017), upon which it was based).
We provide additional detail in Posselt et al. (2022) as to the choice of
observation types, but in brief we used conventional observations as the
measurements from low Earth orbiting operational satellites were so sparse
in time that they had little impact on the initialization of the ensemble.

4. Line 121: I don’t know a great deal about tropical cyclones but
a drop of 0.4 hPa seems very small and not a ‘plunge’

We apologize for the error. The ‘plunge’ is actually 40 hPa, but we made
an error in the conversion. We have fixed this in the paper. Thank you
for the careful read!

5. Section 2.2: Although you refer to another paper, you could
state here which traditional feature tracking algorithm you’re
referring to and AMV people will know its main strength
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We apologize for the lack of clarity. Our AMV approach relies on tracking
water vapor, though the technique is based on optical flow rather than
pattern tracking (Yanovsky et al., 2024). More detail on the algorithm
is described in the updated Section 2.2, which is now much expanded
compared to the previous draft.

6. Line 128: what do you mean by dense AMVs? If they are derived
for every pixel that already implies they are spatially dense, so
are they dense in some other way?

Upon reading the sentence in question, we agree that the word dense
was redundant and somewhat confusing. Therefore we have reworded the
sentence as “For every pair of images, the optical flow algorithm generated
Atmospheric Motion Vectors for every pixel.”.

7. What part of the NatureRun is used to derive the AMVs –
the clouds, as in traditional AMV feature matching? Or the
humidity surfaces, or something else?

We use the humidity surfaces to derive the AMV through an algorithm
called optical flow. We have updated Section 2.2 to make this clearer.
Thank you!

8. The main source of error in AMVs is generally thought to be
height assignment. If the optical flow is done on WRF humidity
fields, then the error is only coming from the tracking and likely
to be smaller than typical AMV errors

We agree with this comment. The height assignment error is a predom-
inant source of error, and in this paper we have tackled the easier topic
of fixed-height error. We intend to expand the OSSE study to examine
the height-assignment errors in a different paper, and we have noted the
difficulties of height-assignment in the following passage in Section 1:

“Velden and Bedka (2009) along with Salonen et al. (2015) have high-
lighted the significant impact of height assignment on the uncertainty
of Atmospheric Motion Vectors (AMVs) derived from cloud move-
ment and sequences of infrared satellite radiance images. However,
this error source is intertwined with uncertainties in the water vapor
profile itself, and modeling this within the OSSE framework requires
extensive knowledge and parameterization of the height-assignment
error process, which is beyond the scope of this paper. As such, in
this paper we will focus on fixed-height errors in the AMV estimates
and the bias-corrections arising therefrom. “
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9. On figure 1 a scale would be helpful, to know how fast the winds
are, and how large the differences are. The factor by which the
differences are magnified should also be stated.

Thank you for the comment. We have included a legend key (in red) on
the top of each plot that should help readers decipher the speed in m/s of
each arrow.

Upon careful consideration, we found that we can make Figure 1 more
informative by keeping all the arrows (i.e., optical flow, NatureRun, and
difference plots), on the same scale. This way, the difference plots will
be able to highlight both the changes in direction and magnitudes of the
windspeed difference.

The updated Figure 1 is now much improved, in our opinion. Thank you
for the feedback.

10. Section 3.1 I was a bit confused here, are we treating the WRF
winds as truth and trying to bias correct towards WRF? Or are
we simulating some Aeolus-style u-winds from WRF and bias
correcting towards them? How are the lidar winds simulated?
There should be some error associated with such lidar winds.

We are opting towards the second option: simulating Aeolus-style u-winds
from WRF and bias correcting towards them. We are simulating lidar
winds by randomly sampling 1% of the data domain as lidar data locations.
Another referee also commented on the need to add some error associated
with the lidar winds, and thus to address this we opted to add a random
zero-mean Gaussian error to the WRF u-wind. The standard deviation
for this Gaussian error depends on the pressure levels: 2 m/s for 850 hPa,
3 m/s for 500 hPa, and 5 m/s for 300 hPa.

After we have added these random errors to the simulated lidar winds, we
found that

• The bias-correction performance (Table 4 and 5) did not change sig-
nificantly. This is likely because random noise is Gaussian, and their
impact is greatly reduced since we are only estimating the first mo-
ment (the mean value) in the bias-correction exercise.

• The coverage percentage in Figure 5 tends to be increased compared
to the last draft. This is because we added a constant error (2 m/s
for 850 hPa, 3 m/s for 500 hPa, and 5 m/s for 300 hPa), which is
added to both the numerator and the denominator of the coverage
probability calculation in Figure 5.

• The increased variability introduced by the lidar simulated error
weakens the linear relationship between the predicted error and the
empirical error in Figure 6 (i.e., the R2 value is decreased). However,
the monotonically increasing relationship is still evident.
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• The relationship between the predicted error and Root-Mean-Squared-
Vector-Difference (RMSVD) is no longer clear, since the magnitude
of the error we introduced (2 m/s for 850 hPa, 3 m/s for 500 hPa, and
5 m/s for 300 hPa for both the u and v winds) is too large compared
to the magnitude of the typical bias variability (1̃-2 m/s). Therefore,
we have opted to remove the subsection on the comparison of the
predicted error to RMSVD.

We have updated the corresponding Tables and Figures to reflect the
added error for lidar simulated values. Overall, although the strength
of some of the relationships have weakened, the conclusions from before
(with no error added) are still valid.

11. What is meant by wind-moisture gradient? Also, I’ve never
heard the word heteroskedasticity and had to look it up, could
you define it in the text or explain what you mean without using
it? What is ‘error residual’?

We apologize for the lack of clarity. The wind-moisture gradient angle is a
short name for the angle between the wind direction and the water vapor
gradient. We have opted to remove this short name entirely and just refer
to it in full.

Heteroskedasticity, also known as heteroscedasticity, occurs in statistical
analysis when the standard deviations of a predicted variable vary across
different values of an independent variable, rather than remaining con-
stant. This is an important term because many statistical approaches
assumes constant error (homoskedasticity), so recognizing when we have
non-constant error variance is important with regards to the selection
of the appropriate modelling approach. The ‘error residual’ here meant
‘windspeed difference’, and we can see why it was confusing. Therefore,
we clarified the sentence in question as follows:

“As for the predictor variables, Posselt et al. (2019) examined the
relationship between ‘tracked’ and ‘true’ wind using an OSSE frame-
work for the same ETC region as this study, and they noted that
there is considerable heteroskedasticity (i.e., non-constant variance)
in the windspeed difference (i.e., ‘tracked’ windspeed minus ‘true’
windspeed) as a function of water vapor, wind speed, water vapor
gradient, and the angle between wind direction and water vapor gra-
dient (Figure 6, Posselt et al., 2019).”

12. Figure 2 caption – mention that the labels are defined in Table
2

Thank you for the suggestion. We have added the following lines to the end
of the caption of Figure 2: “Variable names along the x-axis are defined
in Table 2.”
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13. Table 3 caption, mention that the numbers in arrays are being
searched through.

We have modified the caption of Table 3 to include the following lines:
“Note that the arrays under Parameter Settings specify the option grid
through which GridSearchCV is searching for the optimal choice.” Thank
you for the suggestion!

14. Section 3.2: Line 238-245: I appreciate that there is an attempt
to explain MLP but there are lots of new terms that are not
fully explained for example nodes and neurons, backpropagation,
gradient descent

We apologize for the confusion. Unfortunately the discipline of machine
learning (specifically that focused on neural networks) have, over their
long development, come up with technical terms that are very difficult to
explain without large expository materials.

We have, however, read the excellent tutorial series by Randy Chase– “A
Machine Learning Tutorial for Operational Meteorology” (Chase et al.,
2022, 2023), and we think this would be a good primer for readers who are
not familiar with the machine learning approaches in Section 3.2. There-
fore, we have included the following recommendation at the beginning of
Section 3.2:

“...For this reason, we have chosen four methods that are known to
do well for high-dimensional problems with complex relationships:
random forest, gradient boosting trees, multi-level perceptron, and
nearest neighbor. Here, we touch briefly on an overview of the meth-
ods, before going into details of optimization and comparison. For
readers who are not familiar with these machine learning approaches,
we recommend the excellent tutorial series “A Machine Learning Tu-
torial for Operational Meteorology” (Chase et al., 2022, 2023).”

15. Line 250: what is the standard Euclidean distance?

The standard Eucledian distance between two points in Euclidean space
is the length of the line segment between them. It’s also called the
Pythagorean distance.

16. Figure 3 – what is NR?

NR is an abbreviation for NatureRun. To make this clearer, we included
the abbreviation when we first introduced NatureRun as follows:
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“The evaluation of the impact of bias-correction on optical flow AMV
will be carried out in the context of an OSSE. All OSSEs share these
key components: 1) A reference dataset, used as a basis for compar-
ison. In our case, this is a NatureRun (NR), which is a high-fidelity
simulation mimicking real-world conditions...”

17. Table 4 – what is MarginalSTD and why are some numbers red?

We apologize for the confusion. We have replaced ‘MarginalSTD’ with
the term ‘Uncorrected bias’. And we appended the following sentences in
the caption for Table 4:

“...Units are in m/s. A cell that is colored red indicates the best
performing method, which is defined as having bias that is closest to
zero. The uncorrected bias is defined as the bias of the raw optical
flow data relative to the WRF data.”

18. Lines 264-281: by this point we’re talking about the bias of the
optical flow winds (with or without bias correction applied) vs
the WRF simulation truth? Is that right? Perhaps worth re-
mentioning the first time ‘bias’ is mentioned.

This is indeed the case. We have added the following clarification to the
first time bias is mentioned:

“...In all pressure levels, the machine learning approach consistently
exhibits smaller bias than the uncorrected optical flow data, where
bias is defined as the expected value of the difference between u-wind
from optical flow (both corrected and uncorrected) and the WRF
simulated truth. ”

Thank you for the suggestion!

19. Line 274: what is meant by state-of-the-art ensemble methods
and neural networks? Do any of the methods being tested fit
this description?

We apologize for the confusion. The term ‘state-of-the-art ensemble meth-
ods and neural networks’ refers to the class of algorithm that random for-
est, gradient boosted trees, and MLP belong to. To remove confusion, we
have removed that term entirely and rephrased that sentence as follows:

“...Nearest neighbor, on the other hand, consistently reduces bias
relative to the uncorrected optical flow but falls short of the perfor-
mance achieved by the other three algorithms.”
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20. Table 5 – perhaps I missed this in the text, but why are they
biases so much larger with the spatial validation than with the
temporal validation

We did not explain this adaquately in the previous draft. The main region
is that the functional relationship of the bias and the predictor variables
in Section 3.1 probably change more quickly in space rather than in time,
hence the difference in performance. We have added the following para-
graph around line 310.

“Another observation is that the validation spatial biases in Table 5
tend to be bigger than the validation temporal biases in Table 4 (e.g.,
the typical MAB in the spatial case is around .5 m/s, while the typical
bias in the temporal validation case is around .05 m/s). In both cases,
the machine learning corrected values tend to be improved over the
uncorrected optical flow data, indicating that the algorithm is able
to capitalize on information within the training dataset for both the
spatial and temporal case. However, their difference in performance
in Table 4 and Table 5 indicate that functional relationship between
the biases and the predictive variables in Section 3.1 may change
depending on the spatial region, which makes sense intuitively since
different regions of a storm system might exhibit different bias char-
acteristics. However, this functional relationship, as demonstrated by
Table 4, tends to be much more stable in terms of temporal evolution
in the time scales that we examined (i.e., 3, 4, and 6 hours in ad-
vance), which allows the algorithms considered to be more accurate
in predicting and correcting the biases. ”

21. Section 3.3 Table 6 – looks like a caption for a non existent table

That indeed was a reference to another Table that was removed from
the last draft. We have removed references to Table 6. Thank you for
the careful read. (Please note that deleting the reference to Table 6 now
renames Table 7, which are mentioned in Comment 22 and 25, to Table 6
instead.)

22. Table 7: does it say in the text somewhere which data is Marginal?

We apologize for the oversight. We have changed the word ’Marginal
STD’ to ‘Baseline STD’, and we include the definition of it in the caption
as follows:

‘Figure 6: STD vs Quality Indicators based on RF prediction errors.
Baseline STD is defined as the STD of the entire optical flow dataset
against the WRF simulated truth. (i.e., std(û− u)). ”
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23. Normally, AMV quality indicators are given as an integer from 0
to 100. Why is a different scale used for these quality indicators?

In this section, we aimed to provide a quick demonstration that the pre-
dicted uncertainties could be useful for developing quality indicators.

While normal AMV indicators are typically given as an integer from 0 to
100, our goal is to simplify the analysis to get across the point that the
‘High’, ‘Mid’, and ‘Low’ quality indicators that we developed have the cor-
responding ‘Low’, ‘Mid’, and ‘High’ errors relative to the withheld truth,
as one would expect from the name of those quality indicator categories.

A mapping of the errors provided by the Quantile Random Forest and the
0-100 AMV Quality Indicators and their performance is of interest, but
we feel that this is an important topic that is best examined in detail in a
different paper.

24. Page 19: I found this page quite a struggle, I get that you are
trying to come up with error estimates, but what are prediction
intervals, nodes, ‘leaf’ etc?

We apologize for the confusion. Unfortunately, the terms ’leafs’, ’nodes’
refer to the design of random forest, which would require a lot of expository
materials that is beyond the scope of this paper. Fortunatately, Randy
Chase did provide an excellent overview of random forest along with the
definition of common terms in the first paper of his series “A Machine
Learning Tutorial for Operational Meteorology”. Therefore, we have opted
to refer the readers to this series again as follows

“...In contrast to normal random forests, which approximate the con-
ditional mean of a response variable, quantile random forests (QRF)
provide the full conditional distribution of the response variable to
construct prediction intervals. (For readers who are not familiar with
the random forest algorithm, Chase et al. (2022) provides an excellent
meteorology-geared tutorial)”

25. Is QRF quantile random forest or quantile regression forest?

We apologize for the confusion. QRF should mean Quantile Random
Forest, and we have gone over the paper and removed all references to
quantile regression.

26. Table 7 is quite a few pages away from where it is referred to, it
would be good to move it closer.
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This table has been moved closer. Now it should be presented in the page
immediately following when it is mentioned. Thank you.

27. Section 3.3.1 Line 398: Here it is suggested that the error esti-
mation would only work when lidar data is coincident. I though
the idea was to train a model using lidar data, that can then be
used any time, anywhere? If the proposed scheme would only
work when, for example, Aeolus data happens to be in the same
place as AMVs then the scheme would only apply to a very small
fraction of AMVs were it used operationally.

We also wish that this model, after being trained, can be used anytime,
anywhere, but unfortunately that is very difficult problem to solve.

In general, machine learning predictions are valid (or useful) when applied
to new data that are ‘similar’ to data that are used in training. Applying a
trained model to data that is ‘vastly’ different from training data is called
‘extrapolation’, and this is a highly risky procedure that might produce
meaningless results.

Part of this paper’s focus is to examine what kind of information (and
how much) we can extract from coincident AMVs/lidar data. We also
examined the limit of ‘how far’ away from the lidar we can use the trained
model. We found that in general, the model is more robust in the temporal
direction rather than the spatial direction, and that we can predict as far
as 6 hours in advance without significant loss of performance.

Further limits on how ‘far’ one can go from the lidar data in applying this
model is a topic of future research.

28. Section 4 (Conclusions) Line 450: true AMVs = WRF Nature-
Run, correct? Better to say so

We have changed ’true AMVs’ to ’NatureRun wind variability’ in this line.
Thank you. The line now reads:

“We observed that, while the prediction intervals often tend to be
too narrow (underestimating the variability of the true process), they
generally exhibit a monotonically increasing relationship with the
NatureRun wind variability.”

Again, we would like to thank the reviewer for the careful read and the insightful
comments (especially the one about adding random measurement errors to the
simulated lidar data, along with the details that we missed earlier such as missing
tables and ambiguous captions). The paper has improved significantly after
incorporating your feedback!
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