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Abstract. Continuous Wavelet Transform (CWT) is a commonly used mathematical tool when it comes to the time-frequency

(or distance-wavenumber) analysis of non-stationary signals and is used in a variety of research areas. In this work we use

the CWT to investigate signatures of atmospheric internal gravity waves (GW) as observed in vertical temperature profiles

obtained for instance by lidar. The focus is laid on the determination of vertical wavelengths of dominant GWs. According to

linear GW theory these wavelengths are a function of horizontal wind speed and hence, vertical wind shear causes shifts in5

the evolution of the vertical wavelength. The resulting signal fulfills the criteria of a chirp. Using complex Morlet wavelets,

we apply CWT to test mountain wave signals modeling wind shears of up to 5m s−1 km−1 and investigate the capabilities

and limitations. We find that the sensitivity of the CWT decreases for large chirp rates, i.e. strong wind shear. For a 4th

order Morlet wavelet, edge effects become dominant at a vertical wind shear of 3.4m s−1 km−1. For higher-order wavelets,

edge effects dominate at even smaller values. In addition, we investigate the effect of GW amplitudes growing exponentially10

with altitude on the determination of vertical wavelengths. It becomes evident that, in case of conservative amplitude growth,

spectral leakage leads to artificially enhanced spectral power at lower altitudes. Therefore, we recommend to normalize the GW

signal before the wavelet analysis and the determination of vertical wavelengths. Finally, the cascading of receiver channels

which is typical for middle atmosphere lidar measurements results in an exponential saw-tooth-like pattern of measurement

uncertainties as function of altitude. With the help of Monte Carlo simulations we compute a wavelet noise spectrum and15

determine significance levels, which enables the reliable determination of vertical wavelengths. Finally, the insights obtained

from the analysis of artificial chirps are used to analyse and interpret real GW measurements from the Compact Rayleigh

Autonomous Lidar in April 2018 at Río Grande, Argentina. The comparison of results of commonly used and our suggested

wavelet analysis demonstrates improvements in the accuracy of determined wavelengths. For future analyses, we suggest the

usage of a 4th order Morlet wavelet, the normalization of GW amplitudes before wavelet analysis, and the significance level20

computation based on measurement uncertainties.

1 Introduction

The wavelet transform is a powerful mathematical tool to study non-stationary signals in time series and images. In contrast

to the Fourier analysis, which decomposes a signal into a sum of sine and cosine functions, the wavelet analysis decomposes
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the signal into a finite number of localized wavelets (Daubechies, 1990). It thus localizes signatures of interest in both time25

and frequency, making it a valuable tool for analyzing non-stationary signals. The wavelet transform has been used in a wide

range of applications such as denoising (e.g. Pan et al., 1999; Alfaouri and Daqrouq, 2008; Tian et al., 2023), compression (e.g.

Boix and Canto, 2010), feature extraction (e.g. Bruce et al., 2002; Seena and Yomas, 2014) and classification (e.g. Lambrou

et al., 1998; Too et al., 2019) and is often applied to geophysical data (e.g. Torrence and Compo, 1998; Kaifler et al., 2017;

Bauer et al., 2020; Jin and Duan, 2021; Reichert et al., 2021). While the discrete wavelet transform is computationally cheap,30

it cannot capture the continuous time evolution of a signal. The continuous wavelet transform (CWT) provides a continuous

representation of the signal in the time-frequency (or distance-wavenumber) domain, which makes it useful for analyzing

signals that show time-dependent frequency variations.

One example of such non-stationary signals are perturbations in air density and temperature caused by atmospheric internal

gravity waves (GW). These are localized and intermittent phenomena (Fritts and Alexander, 2003) that are generated due to35

e.g. flow over orography (e.g. Queney, 1948; Dörnbrack et al., 1999; Kaifler et al., 2015), propagating Rossby wave trains (e.g.

Dörnbrack et al., 2022), and regions of strong wind shear (e.g. Fritts, 1982). Their spectral properties such as frequency and

wavenumber are functions of atmospheric background conditions like stratification and wind shear which are rarely zero in the

real atmosphere and hence, transient conditions most of the time result in non-stationary GW signals. The vertical wavelength

of stationary mountain waves (MW) excited by flow over orography is approximately given as λz = 2π u
N where u is the40

horizontal wind in the direction of wave propagation and N is the thermal stability (Nappo, 2013). Since u and N are in most

cases not constant in the real atmosphere, the vertical wavelength changes with altitude and time. In this work we investigate

whether the CWT is a suitable tool to analyse the change in wavelength due to wind shears of different strengths.

We focus on three major aspects of the CWT. First, one parameter that must be chosen is the non-dimensional frequency or

order m0 of the wavelet. In case of the Morlet wavelet the order can be interpreted as the number of oscillations within the45

localization window. It determines the width of the wavelet in the time- and frequency-domain. A high order results in better

frequency and worse time resolution, while the opposite is true for a low order. However, the order must not become arbitrary

small as the admissibility condition must be fulfilled, i.e. the integral over the wavelet must be zero. In literature, there is no

consensus on the optimal order of the Morlet wavelet. Many studies use an order of 6, as given in the widely cited work by

Torrence and Compo (1998). Other studies dealing with GW analysis use orders of 2, 4, 5 or 6.2 (see Table 1). However, the50

choice of the order plays an important role in the determination of vertical wavelengths as these can change rapidly depending

on vertical wind shear.

Secondly, according to linear GW theory, not only can vertical wavelengths change rapidly, but the amplitudes of GWs also vary

with altitude. Generally, amplitudes increase exponentially with altitude enforced by conservation of energy and decreasing

air density. However, when thermal or dynamical instability is reached, wave dissipation occurs, causing GW amplitudes to55

decrease above the breaking altitude. This variation in GW amplitude may lead to an undesirable shift in the localization of

the wavelet during the computation of the CWT. To our knowledge, only few studies have normalized their GW signals before

the wavelet analysis in order to prevent amplitude growth-induced errors (Wright et al., 2017; Vadas et al., 2018; Strelnikova

et al., 2020; Gisinger et al., 2022).
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Publication Latitude Height range T ′ separation method Significance COI order m0 Uncertainties Range of λz

(Chane-Ming et al., 2000) 21◦S 30-60 km Temporal mean sub-

traction and vertical

Butterworth filtering

T ′ > 1K - 5.336 up to 0.86 % 1-10 km

(Werner et al., 2007) 69◦N 30-60 km Polynomial fit 50 % of T ′ maximum - 6.2 - 3-8.5 km

(Rauthe et al., 2008) 54◦N 1-105 km Nightly mean sub-

traction

- yes 5 1.5-2.5 K, never ex-

ceed 10 K

6-48 km

(Ehard et al., 2016) 68◦N 30-65 km Sliding cubic spline - yes 6 - 7-12 km

(Baumgarten et al., 2017) 54◦N 30-70 km Daily mean subtrac-

tion and Butterworth

filtering

- yes - - 3-20 km

(Reichert et al., 2021) 54◦S 15-95 km subtraction of long-

period subseasonal

oscillations

Spectral power

>50 % of T uncer-

tainty

yes 4 0.3-10 K 4-30 km

(Wing et al., 2021) tropical 15-95 km Nightly mean sub-

traction and Butter-

worth filtering

- yes - 0.1 K, never exceed

10 %

4-7 km

(Gisinger et al., 2022) 54◦S 15-80 km Butterworth filtering - yes 2 2-15 km

Table 1. Overview of publications dealing with vertical wavelength determination in lidar temperature soundings using the CWT. Every

study has used the complex Morlet wavelet in their analysis.

Table 1 lists publications that determine vertical wavelengths of GWs based on wavelet analysis. While the discussion on60

background and perturbation separation is a common one and has been summarized, for instance, by Ehard et al. (2015), we

seek to establish guidelines on best practices for the determination of vertical wavelengths. We note that all listed works address

measurement uncertainties and significance levels in the wavelet power spectrum (WPS) differently, if at all. Also, the cone of

influence (COI) that indicates the region where edge effects may influence the WPS is not dealt with or not even mentioned in

some papers. Therefore, as the third and last aspect of our work, we address the propagation of measurement uncertainties into65

the WPS, the computation of significance levels and hence the reliability of determined vertical wavelengths.

Ultimately, it is important to determine the vertical wavelength of GWs correctly since this parameter provides valuable infor-

mation on the dynamics of the mean-flow. A shrinking vertical wavelength, for instance, may be indicative of a reduction in

horizontal wind speed and, in extreme cases when the wavelength approaches zero, may point to a critical level, i.e. a level

where the intrinsic phase speed of a GW becomes equal to the horizontal wind speed and GW dissipation occurs. In addition,70

the vertical wavelength is a crucial quantity in raytracing (Marks and Eckermann, 1995; Geldenhuys et al., 2021) and is used

in the computation of GW momentum fluxes (e.g. Ern et al., 2022). Moreover, knowledge about the vertical wavelength is

necessary to derive temperature amplitudes and momentum fluxes in the mesosphere lower thermosphere from OH-airglow

observations (Fritts et al., 2014).

75
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Our considerations culminate in the following three questions:

1. What is the optimal choice for the order of the Morlet wavelet given a considerable vertical wind shear that gives rise to

shifts in vertical wavelength of GWs?

2. Assuming a conservative growth rate of GW amplitudes with altitude, what is the benefit of normalizing GW amplitudes

before applying the wavelet analysis?80

3. How do measurement uncertainties affect the results of wavelet analysis and, in particular, which parts of the WPS can

be trusted to representing reliable power estimates?

This publication is structured as follows. In Section 2 we first give a brief repetition on the mathematical foundation of the CWT

and define four linear chirps as test signals. After that we investigate the research questions in Section 3 based on the defined

test signals and, subsequently, we present a case study demonstrating the application of wavelet analysis to GW signatures85

observed by the CORAL lidar in Argentina. Section 4 discusses the results and Section 5 gives a summary, conclusions, and

recommendations on how to determine vertical wavelengths of non-stationary GW signatures in the middle atmosphere in the

form of short step-by-step instructions.

2 Methods

2.1 Continuous Wavelet Transform90

In the following we will recall the building blocks of the CWT and introduce the commonly used terms. The interested reader

is referred to Torrence and Compo (1998); Maraun and Kurths (2004); Ge (2008) for detailed information.

The core of the CWT is the mother wavelet that is in this work chosen to be the complex Morlet wavelet and given as

ψ0(η) = π−1/4eim0ηe−η2/2 (1)

where η is the non-dimensional length and m0 is the non-dimensional wavenumber. m0 is also called order of the Morlet95

wavelet. Morlet wavelets are a class of wavelets that are commonly used in geophysics (e.g. Grinsted et al., 2004; Wong et al.,

2012; Kaifler et al., 2017; Llamedo et al., 2019; Wu et al., 2021; Reichert et al., 2021; Geldenhuys et al., 2022). Daughter

wavelets are scaled (s) and translated (ξ) versions of the mother wavelet such that

ψ(ξ,s) = c(s)ψ0

(
z− ξ

s

)
, (2)

where z is altitude and c(s) is a normalization factor. Three Morlet wavelets with orders of 4, 6, and 8 are illustrated in100

Figure 1. Normalization can be performed in two different ways: Either one requires a flat white noise spectrum or sines of

the same amplitude having the same integrated power in the wavenumber domain. Torrence and Compo (1998) have defined

c(s) =
√

δz
s which results in a flat white noise spectrum but sines of same amplitude have less spectral power at larger scales.

In order to allow for a fair comparison of peaks in the WPS we follow Maraun and Kurths (2004) and references therein and
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define c(s) =
√
δz, where δz is the vertical sampling interval.105

The CWT of a temperature signal T (z) is given by the convolution with the set of daughter wavelets:

W (z,s) = c(s)

zf∫
zi

T (z)ψ∗(z− ξ,s)dξ (3)

= c(s)

mmax∫
−mmax

T̂ (m)ψ̂∗(m,s)eimzdm, (4)

where zi and zf define the altitude range of the measurement, (∗) indicates the complex conjugate, (̂ ) indicates the Fourier

transform, and mmax = 1
2δz . Equation 4 makes use of the convolution theorem. As the Morlet wavelet is complex, also the110

wavelet transform is complex and the WPS is defined as |W (z,s)|2.

The scales of the daughter wavelets are computed as

sj = s02
jδj , j = 0,1, ...,J (5)

J =
1

δj
log2

(
Nδz

s0

)
, (6)

where s0 is the smallest resolvable scale and set to s0 = 2δz, δj = 1
16 , and J determines the largest scale which depends on115

the altitude range of the measurement.

In case of non-periodic signals, the computed spectral power at the edges of the WPS, i.e. where z−zi <
√
2s or zf−z <

√
2s,

where zi and zf are starting and ending altitudes respectively, is not reliable and might be overestimated. The factor
√
2s is

called e-folding time (in our context e-folding length) and ensures that spectral power from edge discontinuities drops by a

factor of e−2. This e-folding length region where the spectral power at the edges of the WPS is affected by discontinuities is120

commonly referred to as the cone of influence (COI). Larger orders result in a larger extend of the Morlet wavelet and hence

to a more extended COI in the WPS. It is suggested to pad the profile with zeros up to the next power of two before applying

the CWT. This results in an underestimation of spectral power at the edges and a speed up of the FFT algorithm.

The chosen scales are not necessarily identical to wavelengths. The conversion is given by

λ=
2πs

m0 +
√
2+m2

0

. (7)125

A scale of s= 5 km is equivalent to a wavelength of 3.9 km for an order of 4 and 7.6 km for an order of 8 (see Fig. 1). Werner

et al. (2007) have chosen an order of 6.2 which ensures that scales and wavelengths are identical. In the next sections we define

four linear chirps LCi(z) that serve as test signals with well-known wavelengths λinput(z), amplitudes a(z), and noise levels

r(z). Subsequently, the CWT of LCi(z) are computed and the locations of the maxima in the WPS are used to determine the

λoutput(z) as function of altitude. The ratio of output to input wavelength is used as a metric to quantify how well the wavelet130

analysis has captured the chirp.
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Figure 1. Illustration of three wavelets and their spectral representation with identical scale s= 5 km but different orders (blue: m0 = 4,

orange: m0 = 6, green: m0 = 8). Solid (dashed) lines show the real (imaginary) part of the Morlet wavelet. Contours show the representation

of each wavelet in the z−λz-space. Horizontal and vertical bars mark the standard deviation in z and λz respectively.

2.2 Definition of test signals

To assess the performance of the wavelet analysis we define four linear chirps according to

LCi(z) = ai(z)sin

2π

z∫
0

1

λi(z̃)
dz̃

+ ri(z) (8)
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where ai(z) are amplitudes, ri(z) are random numbers from a Gaussian distribution with mean µ= 0 and standard deviation135

σi, and the vertical wavelengths λi are given as

λi(z) =
2π∂zui

N
z+λ0, (9)

where N = 0.02s−1, λ0 = 0.2 km, and z ranges from 0 km to 100 km. The first two chirps, LC1 and LC2, have constant am-

plitudes of a1,2 = 1.0K, no additive white Gaussian noise σ1,2 = 0.0K, and differ only by the chirp rates which are computed

from wind shears of ∂zu1 = 5m s−1 km−1 and ∂zu2 = 2.5m s−1 km−1, which are typical values for a real atmosphere (Fig.2a,140

b). The latter two chirps, LC3 and LC4, have a chirp rate according to a wind shear of ∂zu3,4 = 2.5m s−1 km−1, show a linear

amplitude growth with growth rate γ = 1.0K km−1 according to a3,4(z) = 1.0K+ γzK but differ in their additive Gaussian

white noise levels. While LC3 has no additive noise, LC4 shows a constant noise level a standard deviation of σ4 = 5K, and

uncorrelated values every 100 m (Fig.2c, d). An overview of the chirp parameters is given in Table 2.

a / K ∂zu / m s−1 km−1 σ / K

LC1 1.0 5.0 0.0

LC2 1.0 2.5 0.0

LC3 γz+1.0 2.5 0.0

LC4 γz+1.0 2.5 5.0

Table 2. Parameter of the four defined linear chirps.
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Figure 2. Four defined linear chirps with either constant (a,b) or linearly growing (c,d) amplitudes. Wavelengths derived from wind shears

of 5m s−1 km−1 (a) and 2.5m s−1 km−1 (b,c,d) change linearly. The added Gaussian white noise is σ = 0K (a,b,c) and σ = 5K (d).

3 Results145

3.1 What is the optimal choice for the order of the Morlet wavelet?

Figure 3 illustrates the WPS of LC1 and LC2 using wavelet orders of 4 and 6. We focus on the lowermost 50 km since vertical

wavelengths increase further above and the WPS maximum lies completely in the COI there. When using a 6th order wavelet,

we find that the WPS maximum of LC2 is entirely within the COI (Fig. 3a). Comparing the evolution of input and output

wavelengths, we find mostly good agreement but also one discontinuity at 35 km. This discontinuity disappears when using a150

4th order wavelet (Fig. 3b), resulting in the WPS maximum being now outside the COI. We notice that output wavelengths are

at all altitudes shorter than input wavelengths. When increasing the wind shear to 5m s−1 km−1, the WPS maximum of LC1 is

located within the COI and again a discontinuity occurs (Fig. 3c).
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Figure 3. WPS of LC2 using m0 = 6 (a), m0 = 4 (b), and WPS of LC1 using m0 = 4 (c). Orange lines mark the input wavelength as

function of altitude and green diamonds mark the determined output wavelength, i.e. the maximum in the WPS at each z. The hatched blue

regions mark the COI.

To quantify the level of agreement between input and output wavelength we compute their ratio as function of wind shear

and wavelet order. For that we generate more linear chirps similar to LC1 and LC2 with constant amplitudes, no additive noise,155

and wavelengths computed from wind shears in the range 0.5−4.5m s−1 km−1. We compute the WPS using wavelet orders of

4, 6, and 8 and determine the output wavelengths as the WPS maxima. Figure 4 illustrates the distributions of wavelength ratios

derived from the lowermost 50 km of the simulated altitude range and Table 3 lists the corresponding median deviations as well

as interquartile ranges (IQR). We find an average negative deviation from the input wavelength of ≈−10% for m0 = 4, while

the IQR stays below 10% for all considered wind shears. For wavelet orders of 6 and 8 we notice smaller median deviations160

from unity, while the IQR exceeds 10% starting at a wind shear of 3.0m s−1 km−1 and 2.0m s−1 km−1, respectively. The

increase in IQR is most likely due to increasing edge effects such as mentioned discontinuities shown in Figure 3a,c. The

e-folding line marking the COI can also be understood as a chirp rate that corresponds to a maximum wind shear up until edge

effects are negligible. Assuming a constant N = 0.02s−1 for the case m0 = 4, the maximum wind shear that is reached until

edge effects can be considered minor is 3.4m s−1 km−1, for m0 = 6 it is 2.3m s−1 km−1, and for m0 = 8 it is 1.8m s−1 km−1.165

These values are in line with the broadening of the wavelength ratio distributions in Figure 4 and the notable increase in IQRs

in Table 3.

9



Figure 4. Normalized histograms of the wavelength ratio as function of wind shear and wavelet order (blue: m0 = 4, orange: m0 = 6,

green: m0 = 8). The determination of wavelengths is based on linear chirps with constant amplitude and no additive noise. Horizontal lines

represent the median of the distribution. Note that for m0 = 8 and wind shear > 3.5m s−1 km−1 the median lies outside the plot range. The

grey dashed line marks a wavelength ratio of one. See Table 3 for details.

∂zu/m s−1 km−1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

m0 = 4 −4.6+1.1
−1.1 −7.4+1.0

−1.1 −9.5+1.0
−1.0 −11.1+1.0

−1.0 −12.1+1.0
−1.1 −12.7+1.7

−1.4 −13.5+2.7
−1.2 −14.1+3.0

−2.7 −14.3+5.3
−4.3

m0 = 6 −3.7+1.1
−1.1 −5.5+1.1

−1.0 −6.2+1.1
−1.0 −6.4+1.6

−1.3 −4.9+4.3
−3.8 −2.2+12.9

−8.9 −4.2+26.0
−3.9 0.4+15.1

−10.8 4.0+23.1
−14.8

m0 = 8 −3.0+1.1
−1.1 −3.7+1.0

−1.0 −3.5+1.4
−1.4 −2.3+8.3

−2.8 4.8+12.7
−7.0 9.6+24.4

−15.1 80.0+>100
−59.8 57.2+>100

−51.7 89.0+>100
−62.9

Table 3. Median deviation from a wavelength ratio of unity and IQR in percent as function of wind shear and wavelet order. Green cells

mark distributions with an IQR smaller than 10%.

3.2 What is the benefit of normalizing GW amplitudes before applying the wavelet analysis?

It is expected that GW amplitudes grow exponentially with altitude in the absence of dissipation due to conservation of energy

since air density decreases with altitude. Do amplitudes growing with altitude affect the determination of vertical wavelengths170

in the wavelet analysis? To investigate potential effects, we consider the general solution to the Taylor-Goldstein equation for

u= 0m s−1 and without loss of generality at x= t= 0. Furthermore, for simplicity, we limit our analysis to the solution for
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an upward propagating wave. See also equations 2.54-2.56 in Nappo (2013). The GW’s temperature signature is given as

T (z) = T0e
z/2Heim0z/s, (10)

where T0 is an arbitrary initial temperature and H is the density scale height that is in the middle atmosphere in the order of175

6-8 km. The product of T (z) with the complex conjugate daughter Morlet wavelet at ξ = 0 evaluates to

T (z)ψ∗(z,s) = T0e
z/2Heim0z/s ·π−1/4e−im0z/se−z2/2s2 (11)

= T0π
−1/4ez/2He−z2/2s2 . (12)

The position of the peak of this product is not in agreement with the peak of the Morlet wavelet’s Gaussian window anymore

but is located at z = s2

2H . It becomes clear that during the computation of the convolution (Eq. 4), due to the exponential growth180

of GW amplitudes, spectral power leaks from z = z0 +
s2

2H down to z = z0. In other words, spectral amplitudes computed

at (z,s) are dominated by wave amplitudes at
(
z+ s2

2H ,s
)

. For example, assuming H = 7 km and a vertical wavelength of

λz = 2 km, spectral leakage occurs over an altitude range of 0.5 km, while for a vertical wavelength of λz = 10 km spectral

power leaks over an altitude range of 12 km. Figure 5 illustrates the consequences in case the wavelength is determined without

normalizing the amplitudes before the wavelet analysis. Output wavelengths identified as the maxima in the WPS of LC3185

deviate significantly from input wavelengths when amplitudes grow linearly (Fig. 5b). As mentioned above, due to spectral

leakage, the WPS at low altitudes is strongly affected by large-scale large-amplitude signals at higher altitudes. Please note

that increasing amplitudes affect the determination of wavelengths only in case the wavelength also changes with altitude.

We investigate whether a normalization of the signal before the wavelet analysis can mitigate the problem of spectral leakage.

We suggest the following: First, we compute the running root-mean-square (RMS) of the temperature perturbations over a190

boxcar window of lengthL. Ideally,L covers one vertical wavelength. A multiplication with a factor or
√
2 converts the running

RMS of temperature perturbations into what can be considered GW amplitudes. Second, we fit a 4th degree polynomial to the

derived GW amplitudes. Finally, we normalize the temperature perturbations by dividing them by the result of the polynomial

fit. Following this procedure, the output wavelengths retrieved from the WPS are again in reasonable agreement with the input

wavelengths as demonstrated in Figure 5c.195
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Figure 5. WPS of LC2 (a), WPS of LC3 (b), and WPS of LC3 after amplitude normalization for m0 = 4 (c). Orange lines mark the input

wavelength and green diamonds mark determined output wavelengths, i.e. the maximum in the WPS at each z. The hatched blue regions

mark the COI.

In order to further quantify the effect of growing amplitudes on the determination of vertical wavelengths, we multiply

the linear chirps from Section 3.1 with linearly increasing amplitudes according to growth rates of 0.1K km−1, 1K km−1,

and 10K km−1. The modified chirps are analysed with and without normalization using a 4th order wavelet. Distributions of

wavelength ratios are illustrated in Figure 6 and median deviations from a wavelength ratio of unity as well as IQRs are given

in Table 4.200

12



Figure 6. Normalized histograms of the wavelength ratio as function of wind shear and amplitude growth rate (blue: without normalization,

orange: with normalization). The wavelet order is m0 = 4. Horizontal lines represent the median of the distribution. The grey dashed lines

mark a wavelength ratio of one. See Table 4 for details.

Growth rate ∂zu/m s−1 km−1 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.1K km−1
not normalized −3.9+1.1

−1.0 −5.4+1.2
−1.1 −5.3+1.5

−2.2 −3.9+3.1
−4.5 −1.1+6.5

−7.7 16.9+22.4
−24.7 18.7+>100

−28.1

normalized −4.4+1.1
−1.0 −7.2+1.0

−1.0 −9.5+0.9
−1.0 −11.2+1.1

−1.1 −12.2+1.3
−1.3 −12.6+1.7

−1.3 −10.7+2.4
−2.7

1K km−1
not normalized −3.6+1.0

−1.1 −4.2+1.2
−1.2 −2.1+1.5

−2.7 4.8+2.3
−10.2 18.5+19.3

−24.8 26.4+>100
−33.8 22.5+>100

−31.2

normalized −4.3+1.0
−1.0 −7.1+1.0

−1.1 −9.3+1.3
−1.2 −10.7+1.7

−1.4 −11.2+2.6
−1.8 −10.3+2.7

−1.9 −7.9+3.8
−3.6

10K km−1
not normalized −3.5+1.0

−1.1 −3.9+1.3
−1.2 −1.1+1.6

−3.4 6.6+2.5
−11.8 19.9+67.5

−26.2 26.4+>100
−33.8 25.5+>100

−34.1

normalized −4.3+1.0
−1.0 −7.0+1.1

−1.2 −9.3+1.4
−1.2 −10.6+1.8

−1.4 −11.0+2.7
−1.9 −9.8+2.9

−2.1 −7.5+4.3
−3.5

Table 4. Median deviation from a wavelength ratio of one and IQR in percent as function of wind shear and growth rate. Green cells mark

distributions with IQRs smaller than 10%.
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We notice that for wind shears less than 1.5m s−1 km−1 the wavelength ratio distributions deviate less from unity when no

normalization is applied regardless of the amplitude growth rate. However, when wind shears exceed 2m s−1 km−1, we find

that the IQRs for not normalized chirps increase drastically while the normalization keeps the IQRs at a low level.

3.3 How do measurement uncertainties affect the results of wavelet analysis and, in particular, which parts of the

WPS can be trusted to representing reliable power estimates?205

Every measurement is subject to measurement uncertainties. To model a simple case, we assume a white noise spectrum. To

distinguish a physically meaningful signal from noise, we need to know how the noise is reflected in the WPS. We propose the

following approach: First, we generate 5,000 Gaussian white-noise profiles with a vertical resolution of 100 m, with µ= 0K,

and σ = 5K and compute the WPS of each noise profile. From the set of 5,000 WPS we determine the 99th percentile of

spectral power as function of z and λz . Any spectral power in the signal’s WPS above this 99th percentile is considered to be210

significant on the 99 % level.

We now inspect the WPS of LC4 (the linear chirp with growing amplitudes and added noise, Fig. 7a) and find a similar

distribution of wavelengths as for LC3 (the linear chirp with growing amplitudes without added noise, Fig. 5b). To mitigate

the problem of spectral leakage due to growing wave amplitudes, we normalize LC4 as described in Section 3.2 and obtain

the results shown in Figure 7b. As evident from Figure 7b, the normalization results in an increase of spectral power of the215

linear chirp but also of noise notable below 10 km. In other words, where the signal-to-noise ratio is low (in this case below

2) the determination of vertical wavelengths is not reliable. It is crucial to compute significance levels to determine physically

meaningful wavelengths.
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Figure 7. WPS of the original LC4 (a) and of the normalized LC4 (b). m0 = 4 was used in the CWT. Red contours mark the 99% significance

level. Orange lines mark the input wavelength and green diamonds determined output wavelengths, i.e. the maximum in the WPS at each z.

The hatched blue regions mark the COI.

3.4 Application to Lidar Temperature Profiles

In the following we apply the wavelet analysis to a temperature profile obtained by the Compact Rayleigh Autonomous Li-220

dar (CORAL). CORAL is a mobile lidar system developed and built by the German Aerospace Center (DLR) and provides

temperature measurements from approximately 15 km to 100 km altitude. For details see Kaifler and Kaifler (2021). In this

work, we analyze a temperature profile obtained at Río Grande (53.7◦S, 67.7◦W), Argentina, on the night of 21 May 2018

00UTC. The profile shown in Figure 8a is binned in the vertical to 100 m resolution with statistical independent values every

900 m. We use this example to demonstrate the CWT analysis and substantiate the points raised in previous sections, as well as225

show the limitations of the CWT with respect to the wavelet analysis of non-stationary GW signals. The temperature profile in

Figure 8a shows significant temperature variability which can be attributed to MWs. Río Grande is in the lee of the Southern

Andes and is known to be a hotspot for GWs, in particular MWs (e.g. Hoffmann et al., 2013; Hindley et al., 2020; Rapp et al.,

2021; Reichert et al., 2021). The temperature uncertainty peaks at 30 km and 45 km where receiving channels are switched,

and at altitudes above 90 km. In an initial step, potential GW signals are separated from a thermal larger-scale background.230

This can be realised in multiple ways. We follow Ehard et al. (2015) and apply a 5th order high-pass Butterworth filter with a
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cutoff wavelength of 20 km to the temperature profile in order to separate the temperature background from the GW-induced

temperature perturbations. In addition, we compute the theoretically expected upper limit of vertical wavelengths using the

Brunt Väisälä frequency determined from the derived temperature background and horizontal winds from ERA5 reanalysis

and juxtapose the measured vertical wavelength using our best practice (Fig. 8d). Reanalysis data is spectrally truncated at235

wavenumber T21 in order to define a synoptic-scale background (e.g. Reichert et al., 2021).

After separating the background temperature profile (Fig. 8a) from GW-induced perturbations (Fig. 8b), we apply the poly-

nomial fit as suggested in Section 3.2 in order to derive GW amplitudes. A maximum growth rate of 0.82K km−1 is found at

36 km. The polynomial fit is used to normalize the perturbations before applying the wavelet analysis. Results show short ver-

tical wavelengths and a minimum in GW amplitudes at altitudes of about 25 km. Above, vertical wavelengths become longer240

and amplitudes increase towards a maximum of 20 K at 55 km. Temperature perturbations are dominated by small scales above

80 km.

The ERA5 profiles of zonal and meridional wind show a rather steady increase of wind speeds between 20 km and 50 km. The

vertical shear of horizontal wind exceeds 3.4m s−1 km−1 between 32 km and 37 km. At this altitude, we find a discontinuity in

the profile of measured vertical wavelengths. Computed and measured vertical wavelengths agree quite well below 35 km but245

differ by up to a factor of two above 35 km. This is our test case for the application of the CWT.
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Figure 8. (a) Temperature profile obtained by CORAL on the night 21 May 2018 00UTC (blue), associated temperature uncertainties (green),

and determined temperature background (orange). (b) Associated temperature perturbation (blue) and wave amplitude (orange). (c) Zonal

(blue) and meridional (purple) wind speed from ERA5 and stratification (orange). The green region marks altitudes where the wind shear

exceeds 3.4m s−1 km−1. (d) Maximum vertical wavelength calculated from ERA5 wind and CORAL background temperature profiles (blue)

and measured vertical wavelengths (green).

3.4.1 Analysis of measurement noise

Figure 9 shows the result of our noise analysis based on uncertainties in lidar retrieved temperatures. The procedure is similar

to that described in Section 3.3. We generate 5,000 noise profiles with uncorrelated values every 100 m, a mean of µ= 0 and

a standard deviation corresponding to the temperature uncertainty at the respective altitude. Subsequently, we compute 5,000250

WPS and determine the 99th percentile which is presented in Figure 9. The saw-tooth pattern in the profile of measurement

uncertainties (Fig. 8a) is reflected in enhancements of spectral power at corresponding altitudes. If we look at the horizontal

stripes with maximum spectral power, we note that these maxima become wider towards longer wavelengths. This is probably

due to the fact that the wavelet’s localization is weaker at longer wavelengths and noise from distant altitudes contributes to the

WPS.255
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Figure 9. 99th percentile computed from 5,000 WPS of lidar measurement uncertainties. The hatched blue region marks the COI.

3.4.2 Wavelet analysis of GW-induced temperature perturbations

We now create a WPS in the conventional way in which the amplitudes of the temperature disturbance are not normalized, the

order of the wavelet is set tom0 = 6, and no significance levels are determined (Fig. 10a). Furthermore, we create a WPS based

on our best-practice procedure where the amplitudes of the temperature perturbation are normalized, the order of the wavelet

is set to m0 = 4, and significance levels are calculated (Fig. 10b). In the conventional WPS we find only little variation in the260

vertical wavelength with values ranging from λz = 12.7 km to 16.4 km. Values decrease from the upper and lower edge of the

profiles towards 65 km altitude. Considering the COI, λz is reliable between 35 km and 75 km altitude only. The conventional

WPS shows no other interesting features. Let us now turn to the best-practice WPS (Fig. 10b). Similar to the conservative case,

we find an extended altitude region from 30 km to 80 km with only little variation in the vertical wavelength with values of

λz = 11.1 km to 15.0 km which are smaller than the values found in the conservative case. This agrees with the results from our265
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sensitivity study (Section 3.1). In contrast to the conventional case we are able to identify maxima in the WPS now at vertical

wavelengths from λz = 4.7 km at 20 km altitude to λz = 9.8 km at 30 km altitude and vertical wavelengths in the order of 6 km

to 7 km above 80 km altitude.

Figure 10. (a) WPS of measured temperature perturbations from 21 May 2018 00UTC for m0 = 6. (b) Same as (a) but following best

practices in the computation of the WPS. Green diamonds mark the derived vertical wavelengths, i.e. the maxima in the WPS at each z. The

red line marks the 99 % significance level. The hatched blue regions mark the COI.

4 Discussion

We investigated the choice of wavelet order, amplitude normalization, and determination of significance levels using linear270

chirps. To a first approximation, i.e. for sufficiently short height regions, it can be assumed that the vertical wavelength of GWs

changes linearly. The study of linear chirps using the CWT shows the limitations of the CWT, but also how these limitations

can be extended if necessary and what consequences this has for the interpretation of the results.

In general, multiple GWs can overlap in space and time and one has to investigate not only the global maximum but also

local maxima in the WPS to separate individual GWs. This was done, for instance, by Chane-Ming et al. (2000); Rauthe et al.275

(2008); Baumgarten et al. (2017); Reichert et al. (2021); Mori et al. (2021). However, in order to systematically investigate the

limitations of wavelet analysis with respect to its ability to separate superimposed GWs, further analyses which are beyond the

scope of this work, are necessary.
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4.1 The choice of m0

Linear GW theory shows that vertical wavelengths of GWs are a function of the horizontal wind speed. Therefore, vertical280

wind shear causes shifts in the vertical wavelength of GWs. Our test cases suggest that the resolvable chirp rate is sensitive

to the order of the wavelet (Fig. 4). When the shear region is stronger localized than the wavelet itself, edge effects influence

the WPS and thus the determined wavelengths. We suggest to first inspect background wind and stability in order to make an

educated guess of the GW’s wavelength shift. Depending on the expected chirp rate, we recommend to use the highest order

wavelet possible in the CWT computation since we find that the accuracy of the determined wavelengths decreases for lower285

order wavelets. As an example, consider a MW signal modulated by a wind shear of 4.5m s−1 km−1. The highest possible

wavelet order that should be used to study the signal is m0 = 4, since the accuracy of the determination of the wavelength

decreases significantly when higher orders are used (see Table 3). However, if the wind shear is only 1.5m s−1 km−1, a wavelet

order ofm0 = 8 should be used, since the accuracy of the determination of the wavelength is better for this order than for lower

orders. That in mind, it is very likely that the distribution of vertical wavelengths presented in Reichert et al. (2021) is biased290

towards shorter wavelengths since they used a fourth order wavelet in their wavelet analysis. On the other hand, Reichert et al.

(2021) did not normalize GW signatures, which can have the opposite effect leading to overestimated vertical wavelengths

(Fig. 6).

Edge effects arising from weak wavelet localization become a problem in regions where strong wind shear is expected, such

as the mid-latitude wintertime lower stratosphere. For the example presented in Figure 8 we find wind shears exceeding295

3.4m s−1 km−1 in the lower stratosphere (Fig. 8c) and even values of up to 7m s−1 km−1 are not rare in austral winter in

the Southern Andes region. As expected from reanalysis winds, it is the region of strongest shear where the dominant vertical

wavelength transitions quickly from λz = 10 km to λz = 15 km in the WPS (Fig. 10b). Following the traditional analysis, this

jump might be interpreted as a hint on two distinct and often termed "quasi-monochromatic" wave packets. However, with

our new best-practice approach there is evidence that the observed signature reflects a MW undergoing a rapid wavelength300

shift. ERA5 temperature perturbation fields and co-located OH-airglow imagery (both not shown) provide more evidence that

the MW observed by CORAL propagates steeply within the lidar’s field of view. On the other hand, the difference between

computed and measured vertical wavelength (Fig. 8d) could be an indication for an obliquely propagating MW. After all, this

work is of methodological nature and the geophysical interpretation of the results is not in our focus.

As shown in this work, the best choice of m0 depends on the expected wavelength shift and therefore, background wind shear305

and thermal stability should be investigated before applying wavelet analysis.

4.2 GW amplitude normalization

According to linear theory, GW amplitudes increase exponentially with altitude in the absence of dissipation. We demonstrated

in Section 2.1 that the exponential variation of GW amplitudes results in spectral leakage of wavelet power to altitudes with

smaller GW amplitudes and hence, growing GW amplitudes lead to inaccuracies in determined vertical wavelengths. To our310

knowledge, no other work has yet investigated this effect even though it appears the effect is known in literature as for example
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Gisinger et al. (2022) normalized GW signals when comparing lidar measurements and results from a numerical weather

prediction model, and Vadas et al. (2018) scaled temperature perturbations with density. However, they did not investigate

systematic differences between WPS of normalized and unnormalized GW signals. In this work, we normalized the GW

signals by dividing them by a fourth degree polynomial obtained by a fit to the wave amplitudes. The order of the polynomial315

should be such that it has as little energy as possible at wavelengths in the spectral range of interest. We found that regardless

of the growth rate it is better to not normalize GW signals as long as the wind shear remains weaker than about 1.5m s−1 km−1

(Table 4). As the wind shear increases, normalization provides better results. In particular, the wavelength ratios are less

scattered (see distributions in Fig. 6). At the same time, however, normalization leads to a systematic underestimation of the

vertical wavelength, as already shown in the case of constant amplitudes (Table 3). Again, we suggest to inspect background320

wind profiles before applying wavelet analysis and normalize GW signals when wind shears larger than 1.5m s−1 km−1 are

expected.

Since the wind shear in the case study (Fig. 8c) easily exceeds the 1.5m s−1 km−1, we normalized the temperature perturbations

before applying the CWT. It is this additional step which allowed us to capture the evolution of the MW (see Fig. 10b), revealing

an increase of vertical wavelength from λz = 10 km to λz = 15 km at approximately 32 km altitude.325

4.3 Significance levels in wavelet power spectra

Chane-Ming et al. (2000); Werner et al. (2007); Reichert et al. (2021) used temperature amplitudes to determine whether signals

of interest are reliable. By doing so they made the implicit assumption of a flat noise spectrum. This may be approximately

true for certain spectral regions, but generally this assumption cannot be made for real measurement data. For example, using

wavelet analysis to investigate the noise in lidar data, we were able to show that the spectral amplitudes increase toward long330

vertical wavelengths, revealing the characteristics of red noise (Fig. 9). Therefore, even if the noise level is low at a specific

altitude, a large scale signal could be potentially not significant at this very same altitude due to higher noise levels at distant

altitudes. We argue that it is crucial to compute significance levels as described in Section 3.3 in order to reliably determine

wavelengths. In our case study all maxima in the WPS are significant (Fig. 10).

5 Summary and Conclusion335

We studied the determination of vertical wavelengths based on wavelet analysis using first artificial test signals and later lidar

temperature measurements. We discussed the treatment of measurement uncertainties, the impact of GW amplitudes increasing

with altitude, and the influence of chirps that arise due to the vertical shear of horizontal wind. Following tests with artificially

created data, we presented a recipe which aims to minimize the influence of edge effects in wavelet analysis. For the analysis of

lidar data, we suggest to first inspect atmospheric background variables such as horizontal wind speed and thermal stability and340

then, depending on the particular atmospheric conditions, choose the wavelet order which is most suitable for analyzing the

data. For measurements taken at a mid-latitude site like Río Grande (54◦ S) in winter we setm0 = 4. This choice has the advan-

tage that for one the admissibility condition is still met and second, chirps due to wind shears of up to ∂zu= 4.5m s−1 km−1
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can be resolved. In addition, the e-folding length is smaller, resulting in weaker edge effects. Second, prior to the wavelet anal-

ysis, GW amplitudes usually should be normalized in order to prevent spectral leakage. In this work, a 4th degree polynomial345

fit was found to be a suitable normalization method. Third, the noise characteristic of the instrument is used to compute a

noise-WPS which in turn is used to determine significance levels.

In the following, we give step-by-step instructions on how to analyze lidar data for GWs.

1. Separation of background and perturbation350

Apply a 5th order Butterworth filter in the vertical. In a first substep, the cutoff is set to the maximum wavelength that

can be expected from theoretical considerations, i.e. for mid-frequency MWs λz ≈ 2π u
N . This cutoff is usually too large

at first and is set in a second substep to the maximum wavelength that results from the wavelength determination. The

Butterworth filter and other approaches are extensively discussed in Ehard et al. (2015).

2. Amplitude Normalization355

Compute the running RMS of the temperature perturbation over a window size that is equal to the cutoff wavelength

of the Butterworth filter. Fit a polynomial to the running RMS and use the result to normalize the perturbations. The

polynomial fit should capture only large scales and the degree of the polynomial should be chosen such that the spectral

power in the wavelength range containing GW signals remains approximately unaffected.

3. Wavelength determination360

Compute the WPS of the normalized temperature perturbation profile. Create a profile of vertical wavelength by identi-

fying maxima in the WPS at each altitude.

4. Noise WPS computation

Generate 5,000 Gaussian noise profiles with a standard deviation given by the measurement uncertainty as function of

altitude. Compute the WPS of these profiles and determine the percentile of the WPS that is associated with the desired365

significance level.

5. Assessment of significance levels

Consider only vertical wavelengths in regions outside the COI and where the desired significance level is reached.

Disregard the lower- and uppermost ∼ 5 km in altitude because of edge effects from the Butterworth filtering as well as

the amplitude normalization.370

The presented limitations of wavelet analysis and work-arounds can be easily applied to temperature or wind profiles obtained,

for instance, by other lidars and also by radars, radiosondes, and satellites. In essence, when choosing the wavelet transform

for the investigation of GW signals in vertical profiles, one first must come up with an educated guess on expected wavelength

shifts and amplitude growth. We found that the evolution of these two quantities determines in large parts the feasibility of the

wavelet analysis.375

22



Code and data availability. CORAL and ERA5 data are publicly available as netCDF and sav files at https://doi.org/10.5281/zenodo.11119614.

IDL and Python routines are accessible via the same link.

Author contributions. RR developed the method, carried out all data analysis, and wrote the manuscript. NK and BK provided the CORAL

data and revised the manuscript.

Competing interests. The authors declare that they have no conflict of interest.380

Acknowledgements.

23



References

Alfaouri, M. and Daqrouq, K.: ECG signal denoising by wavelet transform thresholding, American Journal of applied sciences, 5, 276–281,

2008.

Bauer, K., Norden, B., Ivanova, A., Stiller, M., and Krawczyk, C. M.: Wavelet transform-based seismic facies classification and modelling:385

application to a geothermal target horizon in the NE German Basin, Geophysical Prospecting, 68, 466–482, 2020.

Baumgarten, K., Gerding, M., and Lübken, F.-J.: Seasonal variation of gravity wave parameters using different filter methods with daylight

lidar measurements at midlatitudes, Journal of Geophysical Research: Atmospheres, 122, 2683–2695, 2017.

Boix, M. and Canto, B.: Wavelet Transform application to the compression of images, Mathematical and computer modelling, 52, 1265–1270,

2010.390

Bruce, L. M., Koger, C. H., and Li, J.: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction,

IEEE Transactions on geoscience and remote sensing, 40, 2331–2338, 2002.

Chane-Ming, F., Molinaro, F., Leveau, J., Keckhut, P., and Hauchecorne, A.: Analysis of gravity waves in the tropical middle atmosphere

over La Reunion Island (21 S, 55 E) with lidar using wavelet techniques, in: Annales Geophysicae, vol. 18, pp. 485–498, 2000.

Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis, IEEE transactions on information theory, 36, 961–395

1005, 1990.

Dörnbrack, A., Leutbecher, M., Kivi, R., and Kyrö, E.: Mountain-wave-induced record low stratospheric temperatures above northern Scan-

dinavia, Tellus A: Dynamic Meteorology and Oceanography, 51, 951–963, 1999.

Dörnbrack, A., Eckermann, S. D., Williams, B. P., and Haggerty, J.: Stratospheric Gravity Waves Excited by a Propagating Rossby Wave

Train—A DEEPWAVE Case Study, Journal of the Atmospheric Sciences, 79, 567–591, 2022.400

Ehard, B., Kaifler, B., Kaifler, N., and Rapp, M.: Evaluation of methods for gravity wave extraction from middle-atmospheric lidar tempera-

ture measurements, Atmospheric Measurement Techniques, 8, 4645–4655, 2015.

Ehard, B., Achtert, P., Dörnbrack, A., Gisinger, S., Gumbel, J., Khaplanov, M., Rapp, M., and Wagner, J.: Combination of lidar and model

data for studying deep gravity wave propagation, Monthly Weather Review, 144, 77–98, 2016.

Ern, M., Preusse, P., and Riese, M.: Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared405

limb sounding satellite observations, Atmospheric Chemistry and Physics, 22, 15 093–15 133, 2022.

Fritts, D. C.: Shear excitation of atmospheric gravity waves, Journal of Atmospheric Sciences, 39, 1936–1952, 1982.

Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Reviews of geophysics, 41, 2003.

Fritts, D. C., Pautet, P.-D., Bossert, K., Taylor, M. J., Williams, B. P., Iimura, H., Yuan, T., Mitchell, N. J., and Stober, G.: Quantifying

gravity wave momentum fluxes with Mesosphere Temperature Mappers and correlative instrumentation, Journal of Geophysical Research:410

Atmospheres, 119, 13–583, 2014.

Ge, Z.: Significance tests for the wavelet cross spectrum and wavelet linear coherence, in: Annales Geophysicae, vol. 26, pp. 3819–3829,

2008.

Geldenhuys, M., Preusse, P., Krisch, I., Zülicke, C., Ungermann, J., Ern, M., Friedl-Vallon, F., and Riese, M.: Orographically induced

spontaneous imbalance within the jet causing a large-scale gravity wave event, Atmospheric Chemistry and Physics, 21, 10 393–10 412,415

2021.

24



Geldenhuys, M., Kaifler, B., Preusse, P., Ungermann, J., Alexander, P., Krasauskas, L., Rhode, S., Woiwode, W., Ern, M., Rapp, M., et al.: Ob-

servations of gravity wave refraction and its causes and consequences, Journal of Geophysical Research: Atmospheres, p. e2022JD036830,

2022.

Gisinger, S., Polichtchouk, I., Dörnbrack, A., Reichert, R., Kaifler, B., Kaifler, N., Rapp, M., and Sandu, I.: Gravity-Wave-Driven Seasonal420

Variability of Temperature Differences Between ECMWF IFS and Rayleigh Lidar Measurements in the Lee of the Southern Andes,

Journal of Geophysical Research: Atmospheres, 127, e2021JD036 270, 2022.

Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series,

Nonlinear processes in geophysics, 11, 561–566, 2004.

Hindley, N., Wright, C., Hoffmann, L., Moffat-Griffin, T., and Mitchell, N.: An 18-year climatology of directional stratospheric gravity wave425

momentum flux from 3-D satellite observations, Geophysical research letters, 47, e2020GL089 557, 2020.

Hoffmann, L., Xue, X., and Alexander, M.: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder

observations, Journal of Geophysical Research: Atmospheres, 118, 416–434, 2013.

Jin, Y. and Duan, Y.: 2d wavelet decomposition and fk migration for identifying fractured rock areas using ground penetrating radar, Remote

Sensing, 13, 2280, 2021.430

Kaifler, B. and Kaifler, N.: A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere, Atmospheric Measurement

Techniques, 14, 1715–1732, 2021.

Kaifler, B., Kaifler, N., Ehard, B., Dörnbrack, A., Rapp, M., and Fritts, D. C.: Influences of source conditions on mountain wave penetration

into the stratosphere and mesosphere, Geophysical Research Letters, 42, 9488–9494, 2015.

Kaifler, N., Kaifler, B., Ehard, B., Gisinger, S., Dörnbrack, A., Rapp, M., Kivi, R., Kozlovsky, A., Lester, M., and Liley, B.: Observational435

indications of downward-propagating gravity waves in middle atmosphere lidar data, Journal of Atmospheric and Solar-Terrestrial Physics,

162, 16–27, 2017.

Lambrou, T., Kudumakis, P., Speller, R., Sandler, M., and Linney, A.: Classification of audio signals using statistical features on time and

wavelet transform domains, in: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing,

ICASSP’98 (Cat. No. 98CH36181), vol. 6, pp. 3621–3624, IEEE, 1998.440

Llamedo, P., Salvador, J., de la Torre, A., Quiroga, J., Alexander, P., Hierro, R., Schmidt, T., Pazmino, A., and Quel, E.: 11 years of Rayleigh

lidar observations of gravity wave activity above the southern tip of South America, Journal of Geophysical Research: Atmospheres, 124,

451–467, 2019.

Maraun, D. and Kurths, J.: Cross wavelet analysis: significance testing and pitfalls, Nonlinear Processes in Geophysics, 11, 505–514, 2004.

Marks, C. J. and Eckermann, S. D.: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary445

results for the middle atmosphere, Journal of Atmospheric Sciences, 52, 1959–1984, 1995.

Mori, R., Imamura, T., Ando, H., Häusler, B., Pätzold, M., and Tellmann, S.: Gravity wave packets in the venusian atmosphere observed by

radio occultation experiments: Comparison with saturation theory, Journal of Geophysical Research: Planets, 126, e2021JE006 912, 2021.

Nappo, C. J.: An introduction to atmospheric gravity waves, Academic press, 2013.

Pan, Q., Zhang, L., Dai, G., and Zhang, H.: Two denoising methods by wavelet transform, IEEE transactions on signal processing, 47,450

3401–3406, 1999.

Queney, P.: The problem of air flow over mountains: A summary of theoretical studies, Bulletin of the American Meteorological Society, 29,

16–26, 1948.

25



Rapp, M., Kaifler, B., Dörnbrack, A., Gisinger, S., Mixa, T., Reichert, R., Kaifler, N., Knobloch, S., Eckert, R., Wildmann, N., et al.:

SOUTHTRAC-GW: An airborne field campaign to explore gravity wave dynamics at the world’s strongest hotspot, Bulletin of the Amer-455

ican Meteorological Society, 102, E871–E893, 2021.

Rauthe, M., Gerding, M., and Lübken, F.-J.: Seasonal changes in gravity wave activity measured by lidars at mid-latitudes, Atmospheric

Chemistry and Physics, 8, 6775–6787, 2008.

Reichert, R., Kaifler, B., Kaifler, N., Dörnbrack, A., Rapp, M., and Hormaechea, J. L.: High-Cadence Lidar Observations of Middle At-

mospheric Temperature and Gravity Waves at the Southern Andes Hot Spot, Journal of Geophysical Research: Atmospheres, 126,460

e2021JD034 683, 2021.

Seena, V. and Yomas, J.: A review on feature extraction and denoising of ECG signal using wavelet transform, in: 2014 2nd international

conference on devices, circuits and systems (ICDCS), pp. 1–6, IEEE, 2014.

Strelnikova, I., Baumgarten, G., and Lübken, F.-J.: Advanced hodograph-based analysis technique to derive gravity-wave parameters from

lidar observations, Atmospheric Measurement Techniques, 13, 479–499, 2020.465

Tian, C., Zheng, M., Zuo, W., Zhang, B., Zhang, Y., and Zhang, D.: Multi-stage image denoising with the wavelet transform, Pattern

Recognition, 134, 109 050, 2023.

Too, J., Abdullah, A. R., and Saad, N. M.: Classification of hand movements based on discrete wavelet transform and enhanced feature

extraction, International Journal of Advanced Computer Science and Applications, 10, 2019.

Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, Bulletin of the American Meteorological society, 79, 61–78, 1998.470

Vadas, S. L., Zhao, J., Chu, X., and Becker, E.: The excitation of secondary gravity waves from local body forces: Theory and observation,

Journal of Geophysical Research: Atmospheres, 123, 9296–9325, 2018.

Werner, R., Stebel, K., Hansen, G., Blum, U., Hoppe, U.-P., Gausa, M., and Fricke, K.-H.: Application of wavelet transformation to determine

wavelengths and phase velocities of gravity waves observed by lidar measurements, Journal of Atmospheric and Solar-Terrestrial Physics,

69, 2249–2256, 2007.475

Wing, R., Martic, M., Triplett, C., Hauchecorne, A., Porteneuve, J., Keckhut, P., Courcoux, Y., Yung, L., Retailleau, P., and Cocuron, D.:

Gravity Wave Breaking Associated with Mesospheric Inversion Layers as Measured by the Ship-Borne BEM Monge Lidar and ICON-

MIGHTI, Atmosphere, 12, 1386, 2021.

Wong, S. H., Santoro, A. E., Nidzieko, N. J., Hench, J. L., and Boehm, A. B.: Coupled physical, chemical, and microbiological measurements

suggest a connection between internal waves and surf zone water quality in the Southern California Bight, Continental Shelf Research,480

34, 64–78, 2012.

Wright, C. J., Hindley, N. P., Hoffmann, L., Alexander, M. J., and Mitchell, N. J.: Exploring gravity wave characteristics in 3-D using a novel

S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage, Atmospheric Chemistry and Physics, 17,

8553–8575, 2017.

Wu, S., Hu, Z., Wang, Z., Cao, S., Yang, Y., Qu, X., and Zhao, W.: Spatiotemporal variations in extreme precipitation on the middle and485

lower reaches of the Yangtze River Basin (1970–2018), Quaternary International, 592, 80–96, 2021.

26


