
Responses to Referee#2 (Steffen Beirle) comments and appendix A: 

The study "Benchmarking data-driven inversion methods for the estimation of local CO2 
emissions from XCO2 and NO2 satellite images" investigates the performance of 
various approaches for the quantification of CO2 emissions from synthetic satellite 
images. As the quantification of CO2 emissions from upcoming satellites is a very 
important task with strong political and economical impact, this study provides an 
important scientific contribution. The study is generally well written, and matches the 
cope of AMT. However, I see one of the main results of this study, i.e. the rather poor 
performance of the divergence method, related to the way this method was implemented 
(temporal mean only), which is quite different from for treatment of the other methods 
(single images). I thus recommend publication after dealing with the comments below. 

Thank you for your positive comments. We agree that focusing on a version of the 
divergence method which provides temporal mean fluxes only in the comparison to 
the other methods, which also provide single image estimates, can be questioned. 
However, the overarching goal of our paper is to benchmark data-driven methods in 
their current standard versions, i.e. in the most common way they are used. And, the 
different versions of the divergence method that have been studied in recent years 
provide temporal-averaged (mostly annual) emissions (Beirle et al., 2019, 2021; 
Hakkarainen et al., 2022, Sun, 2022). To our knowledge, there is a lack of study on 
the use of the divergence method to estimate instant emissions from single satellite 
images, and thus of knowledge about how to adapt this method for such an 
application. This explains why we had to conduct a series of sensitivity experiments 
to properly address the following comments, as detailed below. 

Actually, a second reason for which we did not investigate the application of the 
divergence method to estimate emissions from single overpasses in the first version 
of our manuscript was that the first insights from the analysis of divergence maps 
suggested that they were unusable for this purpose: these maps extracted from 
single images can indeed show important variabilities as shown by the example of 
the strong emitting power plant of Janschwalde for January 12 (Figs R1, R2). This 
and other examples suggested that the computation of the emissions from single 
divergence maps using direct integration lacks reliability when applied to this type of 
data. Our parallel analysis on TROPOMI SO2 data (not documented in this study) 
strengthened this assumption, suggesting that the problem was not specific to the 
application to the SMARTCARB dataset, but likely a methodological limitation of the 
divergence approach based on the spatial integration of the divergence signal (called 
hereinafter integral divergence approach): small changes in the integration radius 
could lead to large changes in the estimated emissions suggesting that this 
approach was not very robust, as shown in the example of the figure R1. 

This is why, in the first version of the manuscript, we chose the peak fitting approach 
to extract the emissions from the divergence map instead of integrating the 
divergence signal (Beirle et al., 2019, 2023). This approach works better with noisy 



data thanks to the natural smoothing effect of the bivariate Gaussian function and 
provides relatively accurate annual estimates as shown in our study. However, its 
application to individual overpasses raises challenges. Proper and nice peaks are 
rarely visible in CO2 divergence maps extracted from individual images. Attempting 
to fit the data with the peak model often yields poor results both visually and in terms 
of emission estimates; the divergence map around a source hardly fits with a "peak"-
like shape. This is the case for the example in Figures R1 and R2 where the 
determination of the parameters of the Gaussian bivariate function does not 
converge. The peak-fitting approach may also attempt to fit false plumes if the 
divergence from a given source is not strong enough or because there are numerical 
artifacts in the divergence map close to the source.  

Our explanation for the lack of robustness of the divergence approaches when 
applied to single CO2 images that was suggested by this analysis lied on: 

(1) the fact that we do not compute the divergence method perfectly in line with the 
theory. For example, as can be seen in Figure 7 of Koene et al. (2024, 
https://doi.org/10.1029/2023JD039904), the divergence flux map for a plume is never 
merely a simple enhancement at the source and "zero" elsewhere. There are too 
many violations of assumptions, e.g., that the effective wind field is perfect. 
Integration of the divergence flux map thus starts capturing features that are not 
related to source emissions at all. 

(2) the presence of other (CO2) sources and sinks, meaning that a different radius 
selects additional but unwanted sources/sinks. 

We illustrate graphically the benefit of averaging the divergence maps, using, again, 
results for the Janschwälde power plant. The annual averaged divergence map in 
the area of this power plant is given in Figure R3. In this example, the enhancement 
over the background is much closer to a 2D Gaussian shape and the estimate by the 
peak-fitting divergence approach was found to be ~44.9 MtCO2/yr. This estimate of 
the annual emissions is indeed close to the true value (~41.5 MtCO2/yr). The 
integrated divergence method also generated good results: 36.6, 46.3 and 46.3 
MtCO2/yr for an integration radius of 3, 5, and 7 km respectively.  
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Figure R1: Divergence map estimated around the Janschwalde power station on January 2015 the 
12th. Dotted circles show the different integration radii (3 km, 5 km and 7 km) used by the divergence 
method when emissions are derived from the integration of the divergence maps. Estimates are about 
60.3, 111.2 and 120.2 MtCO2/yr when using integration radii 3, 5, and 7 km respectively. The true 
value being 52.2 MtCO2/yr, this suggests that the integrated divergence approach generates 
uncertain results which strongly depends on the integration radius when inverting single images. The 
peak-fitting divergence approach was not able to produce any result because it was unable to fit a 
Gaussian bivariate function to the divergence map.  

 



Figure R2: XCO2 map (ppm) around the Janschwalde power station on January 2015 the 12th.  

 
 



I  

Figure R3: Map of the annual average divergence around the Jänschwalde power station for 2015 

However, following this review, we have implemented the suggestions made 
by the referee and retrieved emission estimates from single images using several 
versions of the divergence approach. These versions compute the divergence maps 
by considering only the advective term of the divergence expression (see section 3.5 
in Beirle et al., 2023) which removes the impact of the background. The results when 
considering one year of single overpass images showed that the performance of the 
integral divergence approach is much better than the peak-fitting divergence 
approach. This led us to conduct an extensive set of computations, varying the 
integration radius when applying this approach. This finally revealed that, with 
integration radii close to the spatial resolution of the data, the performance of the 
integral divergence approach can get comparable to that of the other methods in our 
study (Figure R4 and R5).  

 



Figure R4: Performances of the different versions of the divergence inversion method when 
estimating emissions from one year of single images for different benchmarking scenarios: cloud-free 
CO2 and NO2 data with SMARTCARB winds (in blue) and cloud-filtered CO2 and NO2 data with 
SMARTCARB winds (in orange). Distributions of the relative absolute deviations are illustrated using 
violin plots. Boxes are the inter-quartiles of the distributions, the whiskers are the 5th and 95th 
percentiles, and the lines within boxes are the medians. Numbers in the inter-quartile boxes are the 
number of estimates for each benchmarking scenario and inversion method. Methods DIV_int_R=xkm 
and DIV_PeakFit are the integral (for an integration radius of x km) and peak-fitting versions of the 
divergence approach respectively. For a given overpass and source, the emission estimate of the 
method DIV_int_R=x-y-zkm is the average of the estimates when integrating over circles of x, y and z 
km radius around the source.  

 

Figure R5: Performances of the inversion methods when estimating emissions from one year of  



single images for different benchmarking scenarios: cloud-free CO2 and NO2 data with SMARTCARB 
winds (in blue) and cloud-filtered CO2 and NO2 data with SMARTCARB winds (in orange). 
Distributions of the relative deviations (top panel) and relative absolute deviations (bottom panel) are 
illustrated using violin plots. Boxes are the inter-quartiles of the distributions, the whiskers are the 5th 
and 95th percentiles, and the lines within boxes are the medians. Numbers in the inter-quartile boxes 
are the number of estimates for each benchmarking scenario and inversion method. Methods 
DIV_int_R=2-3-4km and DIV_PeakFit are the integral and peak-fitting versions of the divergence 
approach respectively. For a given overpass and source, the emission estimate of the method 
DIV_int_R=2-3-4km is the average of the estimates when integrating over circles of 2,3 and 4 km 
radius around the source.  

We conclude from this series of reasoning and analysis that: 

● We agree with the reviewer that the integral divergence method has a good 
potential to estimate emissions from single overpasses, comparable to that of 
the other methods tested in this study. This topic raises very interesting 
questions  

● This deserves some discussion in our manuscript, and a documentation of the 
new results described here in answer to the review 

but 

● Fully including the integral divergence method into the comparison of 
emission estimates based on single images in the main text of the manuscript 
would require a better analysis of the potential of this approach, and thus 
some further investigations, which are out of the scope of this study. We 
managed to get performances comparable to that of the other methods based 
on a large but non exhaustive set of tests of sensitivity to the integration 
radius (Fig. R4), while our application of the other methods could rely on 
configurations from past experiments. Such investigations would include: 
testing whether the skill of the approach could be further improved by refining 
the integration radius, identifying why the best results are currently obtained 
for a radius close to the spatial resolution of the images etc... In addition to 
deriving meaningful indices of the uncertainties in the corresponding emission 
estimates.   

This adds to our choice to benchmark data-driven inversion methods in standard 
configurations documented by previous studies. 

Therefore, we have decided not to include the results of the divergence method for 
single-image estimates in the main part of the article, but to discuss them in the 
conclusion section 6 and to document them in the new Appendix A (see end of this 
document) as preliminary results. The paragraph inserted in the conclusion section is 
as follows: 

In this study, we chose not to analyze the potential of the divergence method for 
estimating instant emissions from single satellite overpasses because of the lack of 



studies on such an application of this method. As highlighted in the introduction 
section, our aim is to compare proven approaches for the local scale estimate of 
strong sources (such as the application of the divergence method to time-averages 
of satellite images). Moreover, the strong spatial variability of the divergence fields 
derived from single images suggest that only averaged fields could be processed 
properly with the version of the divergence approach which is used here for annual 
estimates and which relies on the peak-fitting of temporally averaged divergence 
fields. However, we have conducted some preliminary analysis on a version of the 
divergence method which instead integrates the divergence signal spatially (over 
disks centered on the sources). The results, documented in appendix A, 
demonstrate that with a range of integration radii close to that of the spatial 
resolution of image, this approach can yield estimates that would be comparable in 
terms of accuracy and quantity to that of the best inversion methods of our 
benchmark evaluation for single-image based estimates. A better understanding of 
the behavior of this approach as a function of the integration radius, and an 
assessment of the estimation errors are needed to conduct a proper comparison to 
the other methods. This deserves further investigations. However, these preliminary 
results raise optimistic perspectives regarding the potential of using the divergence 
method for estimating instant emissions from single-overpass images 

In addition to Appendix A and to this new paragraph of the conclusion section, we 
added some sentences in the section describing the divergence method (section 
2.1.5.) in order to mention our choice of applying the divergence method on temporal 
averaged maps: 

Old paragraph:  

Divergence maps are computed from flux fields by using a finite difference 
approximation and in order to clearly detect point sources, the method needs to 
average the divergence fields over a long period. Here, divergence maps are 
averaged over one year. 

New paragraph: 

Divergence maps are computed from the mass flux field using a finite difference 
approximation. The divergence map is then averaged over a long period to enhance 
the emission signal, while reducing the impact of noise and the spatio-temporal 
variations of the CO2 background. Here, divergence maps are averaged over one 
year. In theory, the divergence method can also be used to estimate emissions from 
single-overpass images such as the cross-sectional flux method (as the two methods 
are in theory similar, see Koene et al. 2024). However, we choose in this study to 
focus on the standard application of this method (e.g., Beirle et al. 2019, 2021, 2023; 
Hakkarainen et al., 2022, Sun et al., 2022), which provides temporally averaged 
estimates. Appendix A provides a brief overview of the performance when estimating 
emissions from individual images with different versions of the divergence approach. 



Finally, we mention in the introduction section that the divergence method is, in its 
standard version, used for inverting temporal-averaged emissions. 

Old sentence: 

Contrarily to the other methods of this study, the Div method produces annual 
estimates from average fields extracted from multiple images. 

New sentence:  

Contrarily to the other methods of this study, the Div method is generally used to 
generate annual estimates from average fields extracted from multiple images. 

Implementation of the divergence method 

The authors find the divergence method to show poorest performance for the 
quantification of CO2 emissions. However, I suspect that this result is partly due to 
the way the retrieval was done. In particular, the divergence method was treated 
quite differently, and - if I understood correctly - uses a different data selection then 
the other methods: The quantification of emissions from methods (1) to (4) require 
the identification of a plume. I.e. these methods are only applied to favourable 
conditions which are close to steady state - which is more or less assumed in all 
approaches. In contrast, the divergence method was applied to a temporal mean flux 
which probably contains unfavourable conditions as well - please clarify. 
 
We agree with the referee and we have added in the conclusion the sentence:  
However, its performance could be improved by selecting and averaging images that 
are characterized by favorable conditions such as strong signals or wind speeds 
important enough to guarantee the predominance of advective processes in the 
atmospheric transport. 

In any case, I don't see why the divergence method is not applied to single images 
as well as all other methods. For a plume as the one shown in Fig. 1, the divergence 
of the flux should directly yield the corresponding emissions. The motivation to use a 
long-term mean in Beirle et al. (2019, 2021, 2023) was that we wanted to *identify* 
and *localize* point sources first. These tasks are considered as solved in this study 
- the locations of the considered point sources are given a-priori. Thus the 
divergence might easily be calculated for the single image data as well, and 
emissions can be derived by simply integrating the divergence signal within e.g. 15 
or 30 km radius around the point source. 

We assessed qualitatively the effect of estimating emissions by integrating the 
divergence signal, using integration radii varying from 3 to 30 kms, for an example 
similar to the one shown in Fig. 1 of the paper. We found that emissions estimates 
show an important difference with respect to the true emissions and that they are 
very sensitive to the chosen integration radius. Probably, as the radius increases, 



more and more noisy pixels are included in the integration, yielding varying results 
depending on the surrounding area. For this reason, estimates corresponding to 
integration radii greater than 10 km are far from the truth (Fig. R5). 

As example, Figure R1 shows the divergence map around the Jänschwalde power 
plant for January the 12th. Even for this example which is characterized by a “nice” 
plume in amplitude and shape (Figure R1), the integrated divergence method gives 
estimates (60.3, 111.2 and 120.2 MtCO2/yr for an integration radius of 3,5 and 7 km 
respectively) that are very sensitive to the integration radius and in average far from 
the truth (97 vs 52.2 MtCO2/yr) 

The analysis of the example above would suggest that estimating emissions with the 
integral divergence method from single images is unreliable. However, as discussed 
above, when analyzing inversion results for a whole year of single images (Figure 
R5), the performance of the divergence method is much better for a version of the 
divergence method which averages the estimates derived from the integration of 
divergence maps for radii of 2,3 and 4 km. 

I don't see the need for an a-priori background correction, as the derivative does this 
automatically.  

The divergence method as used in the paper is the "full" divergence method, i.e., ∇ . 
(VCD*U), while the reviewer undoubtedly expects that the divergence is computed in 
simplified form as U.∇(VCD). While in the latter expression it is true that a (constant) 
background is removed by the derivative operation, this does not hold for the “full” 
divergence method. Then, rather, it really does pay to subtract the background, i.e., 
to compute ∇.( [VCD-BG] * U). A motivation for such an approach has been given in 
Koene et al. (2024): the effective wind field U should only describe the enhancement 
of the CO2 plume – not the total-column density-weighted wind between the surface 
and the top-of-the-atmosphere. As U is typically taken on a fixed model level (e.g., 
200 m), not removing the background would mean there is a considerable mis-match 
between VCD (total column) and U (wind at one altitude), invalidating the 
assumptions of the divergence method. By removing the background, we can more 
safely assume that VCD-BG (the plume enhancement) and U (wind at one altitude) 
form a consistent data pair. Hakkarainen et al. (2022) showed as well that a 
background (and noise) removal should be applied to make the divergence method 
robust for estimating emissions from CO2 data. 

However, for the integral divergence methods that have been studied in appendix A, 
a-priori background correction was indeed found to have a weak impact on the 
results as we computed the divergence of fluxes by only considering the advective 
term U.∇(VCD) (see section 3.5 in Beirle et al., 2023). 



 
Furthermore, the noise of CO2 is probably not critical neither - an outlier pixel causes 
a high positive and a corresponding negative derivative next to each other, which 
just cancel out in the spatial integral. Only outliers at the edge of the integration 
radius might be problematic; this effect can easily be quantified by varying the 
integration radius. 

We agree with the reviewer and mention this in Appendix A. The impact of the edge 
outliers is indeed mitigated when averaging estimates from different integration 
radius. Figure R4 illustrates, for example, that the performance of the integral 
divergence method is improved when averaging estimates across integration radii of 
2, 3, and 4 km, compared to using a single radius of 3 km for estimation. 

 
Thus I would like to ask the authors to add a further simple divergence-based 
emission estimate by just calculating and integrating the divergence on the original 
(unsmoothed) CO2 data for those days where a plume could be detected, and 
update all figures accordingly. I consider this to be a fairer comparison to the other 
methods, and actually expect the divergence method to be competitive to the other 
methods. 

As said above, we have decided not to include single-image estimates of the 
divergence method in the main method-result sections because we wanted to 
benchmark the different data-driven inversion methods in their standard version 
which, for the divergence method, process and generate temporal averaged 
quantities and because, the recently obtained results, while promising, are 
preliminary and need to be refined. We have however included some preliminary 
results in Appendix A concerning the potential of the divergence approach in 
estimating emissions from single images. 

 
Title: The authors should add "synthetic" before "satellite" in order to avoid 
misunderstandings. 

Corrected as suggested 

Line 91: I would propose to have a real enumeration here with new lines for each 
item. 

Corrected as suggested 

Line 143: "however the ability of the different approaches to detect unknown point 
sources has not been studied here" 
It might be mentioned that the divergence method is particularly suited for this task. 

Following the suggestion of the reviewer, we added the sentence: 



Of mention is that the divergence, cross-sectional flux and machine-learning 
methods are particularly well-suited for automatic detection of plumes from unknown 
sources (Zheng et al., 2020; Beirle et al., 2021; Schuit et al., 2023) 

Line 284: Yes - if the focus is the detection/localization of point sources, temporal 
averaging is needed. But in this study, the locations are known and assumed as 
given for all other methods, so they should be considered as given for the 
divergence approach as well. 

As mentioned earlier, temporal averaging helps to identify the enhancements related 
to CO2 emissions from a specific source in the divergence maps. In most cases, the 
noise in the observations, spatial variations in the background divergence field, and 
plumes from other sources make it difficult to distinguish the plume from a particular 
source in divergence maps derived from single images. 

We precise this in the text by rephrasing the sentence: 

Old sentence: Divergence maps are computed from flux fields by using a finite 
difference approximation and in order to clearly detect point sources, the method 
needs to average the divergence fields over a long period 

New sentence: Divergence maps are computed from the mass flux field using a finite 
difference approximation. Divergence maps are then averaged over a long period to 
enhance the emission signal, while reducing the impact of noise and the spatio-
temporal variations of the CO2 background 

Table 1: I find the statement that the "Potential for joint use of NO2 to detect plumes" 
is not given for the divergence method highly misleading.  
The divergence does not need to detect a plume - it is based on changes of the flux. 
But for this, it is of course very helpful to have information on the respective 
divergence for NO2!  

We agree with the reviewer and remove this column from the table as in addition to 
being misleading, it does not really provide much information. 

 
Generally, the divergence method is the only method capable of localizing a point 
source without a-priori knowledge, i.e. the NO2 measurements analyzed with the 
divergence method could build the base for all different methods for CO2 emission 
estimates by providing the location of point sources.  
For the concrete focus of this study, the NO2 divergence might be used as indicator 
(filter) for favorable (steady state) conditions - if the divergence does not yield 
reasonable results for NO2, also the CO2 results are probably questionable and 
should be skipped. 



The approach suggested by the reviewer is indeed a good idea, but beyond the 
scope of this paper. However, we have added a phrase in the conclusion to this 
effect: 

"However, its performance could be improved by selecting and averaging images 
that are characterized by favorable conditions such as strong signals or wind speeds 
important enough to guarantee the predominance of advective processes in the 
atmospheric transport" 

 

We have included below the appendix A that we want to include in the new version 
of the manuscript: 

 

Appendix A: Potential of the divergence approach to estimate local CO2 
emissions from single-overpass satellite images of XCO2 and NO2  
 

In this study, the performance of the divergence approach to estimate local CO2 emissions 
from XCO2 and NO2 synthetic satellite images is assessed with a standard version of this 
approach (e.g., Beirle et al., 2021; Hakkarainen et al., 2022), which provides temporally 
averaged estimates. Results concerning the divergence approach are thus analyzed in the 
main part of this paper in terms of annual means. However, following the suggestions of a 
reviewer (S. Beirle), we also tested the potential of this method to estimate instant emissions 
using single-overpass images. For this purpose, we have used two versions of the divergence 
approach that have been modified for single image geometry as in Beirle et al. (2023).  

For both versions, the computation of the divergence fields is performed by only 
considering the “advective” term (106 ∗ 𝑀𝑎𝑖𝑟 ∗ 𝑈 ∗ ∇(𝑉𝐶𝐷)) of the full expression of the 
horizontal flux divergence (∇(106𝑀𝑎𝑖𝑟 ∗ 𝑈 ∗ 𝑉𝐶𝐷)) where Mair is the dry air mass, U is the 
wind vector and VCD is the column in parts per million. Such reformulation of the 
divergence method that does not compute the divergence of the wind term was also used by 
Beirle et al. (2023) for NO2. The advantage of this reformulation for CO2 is that the 
background (e.g., a constant offset of 400 ppm) is implicitly removed.  

These versions of the divergence approach differ from each other in their way of 
computing emissions from the divergence maps associated with single-overpass images: the 
first version integrates the divergence fields on disks centered on the sources (Figure A10). 
And, to mitigate the impact of the uncertainties in the observations, the emission estimate for 
a given satellite overpass and source can be computed as the average of the estimates when 
integrating the divergence signal on disks of different radii. This version of the divergence 
approach will be referred to hereinafter as the integral divergence method. The second 
version proceeds in a similar way to the one used in the main part of the article and fits a 2-D 
Gaussian function to the divergence maps in order to retrieve source emissions (e.g. Beirle et 
al. 2020). The modified peak fitting model is similar to the original but with a reduced 
number of estimated parameters. Namely, the parameters related to the background and the 



location correction (x₀,y₀) are removed from the model parameters. This version of the 
divergence approach will be referred to hereinafter as the peak-fitting divergence method. 

For both versions, potential peaks are detected by using NO2 fields which are integrated 
over disks of 6 km radius centered on the sources. If the integral of the divergence map on the 
disk is larger than the integral on the area outside the disk, then the enhancement, related to a 
given source and for a given satellite overpass, is considered strong enough and the emission 
estimation can be carried out. Many sources in the SMARTCARB dataset are weak and 
enhancements may be barely visible which causes challenges for both versions. 
 

Figure A10: Divergence map estimated around the Janschwalde power station on January 2015 the 12th. Dotted 
circles show different radii (3 km, 5 km and 7 km) which define integration disks that could be used by the 
integral divergence method. 

To evaluate the potential of these two versions of the divergence approach, we use the 
SMARTCARB dataset described in section 2.2. which provides about 3000 images to 
determine the emissions of the 16 local sources that are considered in this study (if we take 
into account the cloud cover, only 500 images remain usable). Furthermore, we consider two 
benchmark scenarios (see table 2 and section 2.3) where inversions are performed using CO2 
and NO2 data with SMARTCARB winds. In one case, we use cloud-free data, while in the 
other, cloud-filtered data.  

The analysis of the deviations from the truth of the instant estimates shows that the 
integral divergence approach is strongly sensitive to the radius of the integration disks (Fig. 



A11). No clear trend appears except that errors increase sharply for a radius greater than 10 
km, with a significant presence of outliers. Below this value, the absolute relative deviations 
(bottom panel of Fig. A11) can increase or decrease depending on the value of the radius 
Furthermore, the integral divergence approach can underestimate or overestimate emissions 
depending if the radius is lower or greater than ~4 km. A possible explanation for this 
behavior could be that the impacts of the two main sources of errors in the divergence method 
— namely, the uncertainties in the observations and the influence of additional but unwanted 
sources on the background of the divergence fields — evolve in opposite directions as the 
integration radius increases. The impact of the uncertainties is mitigated when the area of the 
integration disk increases because errors have more probability to cancel out. Conversely, the 
impact of neighboring sources on the background of the divergence field intensifies as the 
integration radius increases, because the likelihood of capturing features in the divergence 
maps that are not directly related to the emissions of the targeted sources grows. This impact 
consistently introduces a positive bias in the estimates (as we capture more sources) and is 
likely more important than the one related to the uncertainties as performance overall 
degrades when the integration radius increases. 

The peak-fitting divergence method is characterized by a poor performance compared to 
the integral divergence method for the ensemble of integration radii that we have considered 
here (Fig. A11). The estimation of small emitting sources may be more difficult for the peak-
fitting version as the fit of the 2-D Gaussian function to the data associated to these sources 
often fails and does not provide optimal and reliable parameter combinations, yielding poor 
and often overestimated emission estimations. Therefore, even though the peak-fitting 
divergence method is generally more efficient at the annual scale, these results suggest that it 
is not the case when estimating instant emissions from single overpass images.  

 
Figure A11: Performances of the different versions of the divergence inversion method when estimating 
emissions from one year of  single images for different benchmarking scenarios: cloud-free CO2 and NO2 data 
with SMARTCARB winds (in blue) and cloud-filtered CO2 and NO2 data with SMARTCARB winds (in 
orange). Distributions of the relative deviations (top panel) and relative absolute deviations (bottom panel) are 



illustrated using violin plots. Boxes are the inter-quartiles of the distributions, the whiskers are the 5th and 95th 
percentiles, and the lines within boxes are the medians. Numbers in the inter-quartile boxes are the number of 
estimates for each benchmarking scenario and inversion method. Methods DIV_int_R=xkm and DIV_PeakFit 
are the integral (for an integration radius of x km) and peak-fitting versions of the divergence approach 
respectively. For a given overpass and source, the emission estimate of the method DIV_int_R=x-y-zkm is the 
average of the estimates when integrating over circles of x, y and z km radius around the source.  

The configuration of the integral divergence method which averages estimates across the 
integration radii of 2, 3 and 4 km shows the best performance amongst the configurations that 
we have tested. Probably, the impacts of the data uncertainties and the background are well 
balanced for this range of radii and the fact of averaging estimates across three different radii 
further reduces the influence of the data uncertainties on the results. When compared to other 
inversion methods analyzed in this study, the performance of this configuration of the integral 
divergence method is similar to that of the best inversion methods (Fig. A12). For the 
benchmarking scenario considering cloud-free data, its relative absolute deviations are for 
example characterized by a median value of ~38% and Interquartile Range (IQR) of [~19% ‒  
~64%] which are comparable to deviations associated to the Light Cross-Sectional Flux 
(LCSF) method which have a median value of ~32 % and an IQR of [~15 % ‒ ~56 %]. Note 
that the integral divergence method generates fewer estimates (2174) compared to the LCSF 
method (2722), but more than the Gaussian Plume (GP) method (1776). 

Figure A12: Performances of the inversion methods when estimating emissions from one year of  single images 
for different benchmarking scenarios: cloud-free CO2 and NO2 data with SMARTCARB winds (in blue) and 
cloud-filtered CO2 and NO2 data with SMARTCARB winds (in orange). Distributions of the relative deviations 
(top panel) and relative absolute deviations (bottom panel) are illustrated using violin plots. Boxes are the inter-
quartiles of the distributions, the whiskers are the 5th and 95th percentiles, and the lines within boxes are the 
medians. Numbers in the inter-quartile boxes are the number of estimates for each benchmarking scenario and 
inversion method. Methods DIV_int_R=2-3-4km and DIV_PeakFit are the integral and peak-fitting versions of 
the divergence approach respectively. For a given overpass and source, the emission estimate of the method 
DIV_int_R=2-3-4km is the average of the estimates when integrating over circles of 2,3 and 4 km radius around 
the source.  



These preliminary results regarding the potential of the integral divergence method for 
estimating local CO2 emissions from single-overpass images of XCO2 and NO2 appear 
promising, especially since this method allows for the detection of plumes from unknown 
sources (Beirle et al., 2021). However, further investigation is required to properly assess 
factors such as the integration radius based on data resolution, and to generalize this method 
to various types of satellite data. Additionally, a thorough quantitative error assessment is 
essential to evaluate the accuracy of the estimates, enabling the classification and selection of 
estimates, which would enhance the method's overall performance. 

 

 

 


