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Abstract.  11 

The largest anthropogenic emissions of carbon dioxide (CO2) come from local sources such as cities and power plants. The 12 

upcoming Copernicus CO2 Monitoring Mission (CO2M) will provide satellite images of the CO2 and NO2 plumes associated 13 

with these sources at a resolution of 2 km × 2 km and with a swath of 250 km. These images could be exploited with 14 

atmospheric plume inversion methods to estimate local CO2 emissions at the time of the satellite overpass and the 15 

corresponding uncertainties. To support the development of the operational processing of satellite column-averaged CO2 dry 16 

air mole fraction (XCO2) and tropospheric column NO2 imagery, this study evaluates “data-driven inversion methods”, i.e., 17 

computationally light inversion methods that directly process information from satellite images, local winds and 18 

meteorological data, without resorting to computationally expensive dynamical atmospheric transport models. We have 19 

designed an objective benchmarking exercise to analyse and compare the performance of five different data-driven inversion 20 

methods: two implementations with different complexity for the cross-sectional flux approach (CSF and LCSF) and one 21 

implementation for the Integrated Mass Enhancement (IME), the Divergence (Div) and the Gaussian Plume model inversion 22 

(GP) approaches. This exercise is based on pseudo-data experiments with simulations of synthetic “true” emissions, 23 

meteorological and concentration fields, and CO2M observations in a domain of 750 km × 650 km centred on Eastern 24 

Germany over 1-year. The performance of the methods is quantified in terms of accuracy in the single-image (from 25 

individual images) or annual average (from the full series of images) emission estimates and in terms of number of instant 26 

estimates for the city of Berlin and 15 power plants in this domain. Several ensembles of estimations are conducted, using 27 

different scenarios for the available synthetic datasets. These ensembles are used to analyse the sensitivity of the 28 

performance to the loss of data due to cloud cover, to the uncertainty in the wind or to the added value of simultaneous NO2 29 

images. The GP and the LCSF methods generate the most accurate estimates from individual images. The deviations 30 

between the emission estimates and the true emissions from these two methods have similar Interquartile Ranges (IQR): 31 
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between ~20% and ~60% depending on the scenario. When taking the cloud cover into account, these methods produce 32 

respectively 274 and 318 instant estimates from the ~500 daily images that cover significant portions of the plumes from the 33 

sources. Filtering the results based on the associated uncertainty estimates can improve the statistics of the IME and CSF 34 

methods, but at the cost of a large decrease in the number of estimates. Due to a reliable estimation of uncertainty and thus a 35 

suitable selection of estimates, the CSF method achieves similar if not better statistics of accuracy for instant estimates 36 

compared to the GP and LCSF methods after filtering. In general, the performances for retrieving single-image estimates are 37 

improved when, in addition to XCO2 data, collocated NO2 data are used to characterise the structure of plumes. With respect 38 

to the estimates of annual emissions, the root mean square errors (RMSE) are for the most realistic benchmarking scenario 39 

20% (GP), 27% (CSF), 31% (LCSF), 55% (IME) and 79% (Div). This study suggests that the Gaussian plume and/or the 40 

cross-sectional approaches are currently the most efficient tools to provide estimates of CO2 emissions from satellite images 41 

and their relatively light computational cost will enable analysis of the massive amount of data provided by future missions 42 

of satellite XCO2 imagery. 43 

1 Introduction 44 

The satellite imagery of column-averaged CO2 dry air mole fractions (XCO2) has been identified as an essential 45 

component of a future atmospheric observing system to monitor anthropogenic CO2 emissions, and in particular to detect 46 

and monitor hotspot atmospheric plumes and thus emissions, in order to verify emission reductions or assess national 47 

budgets (Ciais et al., 2015; Pinty et al., 2017). The Copernicus CO2 Monitoring (CO2M mission  was designed to meet these 48 

objectives with a constellation of two to three Low Earth Orbit (LEO) satellites flying in a sun-synchronous low-earth orbit 49 

crossing the Equator around 11:30 local time. Each satellite will carry an imaging spectrometer providing images of XCO2 50 

and of NO2 tropospheric column densities (referred to as NO2 hereinafter) along a 250 km wide swath with a resolution of 2 51 

km × 2 km (Sierk et al., 2019). Current satellite missions, like Sentinel-5 Precursor (Sentinel-5P) and the third Orbiting 52 

Carbon Observatory (OCO-3, when targeting specific sources in its Snapshot Area Map -SAM- mode), already deliver NO2 53 

column-density and XCO2 images, albeit, for the former, at a resolution coarser than CO2M, and for the latter, over areas 54 

and at a frequency much smaller than with CO2M. Upcoming missions, such as Global Observing SATellite for Greenhouse 55 

gases and Water cycle (GOSAT-GW, Kasahara et al., 2020), MicroCarb (in its “city-mode”, Pascal et al., 2017) and Twin 56 

ANthropogenic Greenhouse gas Observers (TANGO, Landgraf et al., 2020), are expected to increase the amount of CO2 and 57 

NO2 images of the plumes from emission hotspots. 58 

Operational services are being developed such as the Copernicus capacity for anthropogenic CO2 emissions monitoring 59 

and verification support (CO2MVS, Pinty et al., 2017; Janssens-Maenhout et al., 2020), to process these XCO2 and NO2 60 

images for the monitoring of emissions in a systematic and global way at spatial and time scales that are relevant for 61 

policymakers and to support emission mitigation actions. Plume inversion systems are used to derive estimates of the CO2 62 

emissions from local sources using satellite images of the corresponding atmospheric plumes. One of the key elements of 63 
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operational services will thus be standard plume inversion methods providing precise and reliable data in an automated and 64 

fast manner. Various plume inversion approaches and implementations are now regularly used to process the existing 65 

spaceborne atmospheric plumes images (Varon et al., 2018; Zheng et al. 2020; Kuhlmann et al., 2021; Nassar et al., 2021; 66 

Jacob et al., 2022; Hakkarainen et al., 2023a). Therefore, there is a need to benchmark in a quantitative way the plume 67 

inversion methods for the estimation of local emissions of CO2, and more generally of greenhouse gases and pollutants. 68 

Monitoring anthropogenic CO2 emissions of point sources or cities from satellite XCO2 images is challenging as 69 

corresponding column-average enhancements are often small compared with the local fluctuations of the “background” CO2 70 

field due to biogenic CO2 fluxes and to neighbour anthropogenic sources, and with the typical level of errors in the XCO2 71 

retrievals (Buchwitz et al., 2013). Despite this challenge, the potential of CO2 imagers to estimate anthropogenic emissions 72 

has been demonstrated with observing system simulation experiments (OSSEs) using synthetic data, for power plants 73 

(Bovensmann et al., 2010), cities (Pillai et al., 2016; Broquet et al., 2018; Wang et al., 2020) and in a more general way, at 74 

local to national scales (Santaren et al., 2021). Furthermore, several studies have shown that the joint analysis of co-located 75 

NO2 satellite observations strongly enhances the skill to detect the XCO2 enhancement plumes from sources in XCO2 76 

images, and consequently to estimates the corresponding CO2 emissions (Reuter et al., 2019; Kuhlmann et al., 2021). NO2 77 

observations are indeed characterised by a better signal-to-noise ratio and a generally small and low-amplitude background 78 

field, due to the relatively short lifetime of nitrogen oxides (NOx). 79 

CO2 emissions of large point sources and cities can be estimated from satellite images by plume inversion systems 80 

integrating the observations with dynamical transport model simulations of atmospheric CO2 concentrations (e.g., Broquet et 81 

al., 2018; Ye et al., 2020; Santaren et al., 2021). In principle, the use of such dynamical models could support the analysis of 82 

the 3D dynamical patterns of the observed plume and thus the accuracy of the inversion. They could also support the 83 

derivation of the spatial distribution of the emissions within cities, and of the temporal variation of the emissions 84 

corresponding to a plume in the hours preceding each satellite overpass. However they can be strongly impacted by 85 

modelling errors which become critical at local scale, when trying to model plumes from emission hotspots over a few tens 86 

to a few hundreds of kilometres (Brunner et al., 2023). Furthermore, their computational burden hampers their use for a 87 

global and routine coverage of the sources in an operational context. Data-driven plume inversion methods appear to be 88 

currently more suitable for such wide-scale applications (Ehret et al., 2022). These are computationally light inversion 89 

methods that directly process information from satellite images and local winds and meteorological data (typically from 90 

operational weather analyses), without resorting to dynamical atmospheric transport models. 91 

The main data-driven approaches for estimating local emissions based on satellite images of plumes that have been tested 92 

and analysed in a significant number of studies are:  93 

1) the Integrated Mass Enhancement (IME) approach, which relates the total mass of plumes to the corresponding 94 

emissions; it has been used for retrieving CH4 emissions from airborne observations (Frankenberg et al., 2016) or from fine-95 

scale satellite data (Varon et al., 2018) 96 
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2) the Gaussian plume approach which extracts emissions from the fit of plume shapes by Gaussian functions and was 97 

applied for instance to estimate power plant CO2 emissions from OCO-2 satellite data (Nassar et al. 2017; 2021)  98 

3) the cross-sectional flux approach which infers emissions from the fluxes passing through cross-sections of the plumes 99 

and whose potential to estimate CO2 emissions of power plants with CO2 and NO2 satellite imagery data was assessed, for 100 

instance, by Kuhlmann et al. (2021) 101 

4) the divergence (Div) approach, which derives emissions from the application of the divergence operator to fields of 102 

fluxes and which was originally designed to estimate nitrogen oxide (NOx) emissions from NO2 data provided by the 103 

TROPOMI satellite imagery (e.g. Beirle et al., 2019; 2021, 2023) and was more recently adapted to the quantification of CO2 104 

emissions (Hakkarainen et al., 2022). Contrarily to the other methods of this study, the Div method is generally used to 105 

generate annual estimates from average fields extracted from multiple images. 106 

Against this background, the aim of this study is to benchmark these four data driven plume inversion approaches for the 107 

monitoring of CO2 emission hotspots with CO2M images. We present a benchmarking framework to objectively evaluate 108 

and compare the performance of different implementations of the four data-driven approaches (Sect. 2.1) to estimate CO2 109 

local emissions from such satellite data. For this purpose, we use one year of synthetic satellite observations  closely 110 

mimicking those expected from the upcoming CO2M mission (Sect. 2.2) that were generated in the European Space Agency 111 

(ESA) funded SMARTCARB project from high-resolution atmospheric transport simulations (e.g. Brunner et al., 2019; 112 

Kuhlmann et al., 2020). The emissions of the city of Berlin and 15 large power plants are estimated from these synthetic 113 

satellite data and the ability of the different inversion methods is assessed by comparing their estimates to the corresponding 114 

true values used by the atmospheric transport model. Performances of the different inversion approaches are evaluated for 1) 115 

single-image estimates that are retrieved from daily images (Sect. 3) and, 2) annual estimates that are computed from the 116 

inversion of one year of data (Sect. 4). Furthermore, performances are analysed for different scenarios regarding the data 117 

used by the inversions, where the impacts of considering the cloud cover in the data, the uncertainties in the wind and the use 118 

of collocated NO2 data are assessed. Finally, results are discussed by analysing 1) the potential of ensemble approaches that 119 

would gather different inversion methods and, 2) the trade-off between overall accuracy and number of estimates when the 120 

cases are filtered based on the uncertainties in the estimates computed by the plume inversion methods (Sect. 5).  121 

2 Data and methods 122 

2.1 Data-driven inversion methods  123 

Five different emission quantification methods are evaluated in this study: (1) the integrated mass enhancement method 124 

(IME), (2) the cross-sectional flux (CSF) method, (3) the light cross-sectional flux (LCSF) method, (4) the Gaussian plume 125 

(GP) method and (5) the divergence (Div) method. More precisely, what is studied here are specific configurations of certain 126 

methods as is the case for the CSF and LCSF “methods” which are derived from the same general approach. But, hereinafter 127 

we will refer to these configurations as methods to avoid weighing down the text. The general approaches have been widely 128 
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used and described in previous papers such as Varon et al. (2018) and Beirle et al. (2019, 2021). The specific 129 

implementations of the CSF and Div methods tested here have been used extensively by the authors in previous studies 130 

(Kuhlmann et al., 2019, 2020, 2021 and Hakkarainen et al., 2022). They have been slightly upgraded in the course of this 131 

benchmarking exercise to improve their stability, accuracy, and capability of running in a fully automated way. Details of the 132 

methods are presented in an accompanying study by Kuhlmann et al. (2023). Further details about the theory of the Div 133 

method and its application are given in Koene et al. (2023) and Hakkarainen et al. (2022, 2023b). All algorithms and tools 134 

used in this work have been integrated into a Python library for data-driven emission quantification (ddeq), which has been 135 

made publicly available and is described in Kuhlmann et al. (2024). We provide below a short description of these methods 136 

with an emphasis on their relative advantages and limitations and on the way they estimate uncertainty. The main features of 137 

the methods are summarised in Table 1 and illustrated in Figure 1 and Figure A1. Table 1 also lists the computation times of 138 

the methods calculated for the same inversion example using the same hardware. As the methods have all been implemented 139 

in the same Python package, the timings are directly comparable. 140 

All methods except the Div method can provide estimates derived from individual satellite images. The Div approach as 141 

implemented here is based on the averaging of information contained within multiple images and hence typically delivers 142 

annual estimates. We will hereinafter refer to the IME, CSF, LCSF and GP methods as single-image methods. These 143 

methods share a common algorithmic sequence that starts with identifying clusters of enhancements above a background in 144 

satellite images. Subsequently, these clusters are assigned to plumes from specific known sources, and finally, the emissions 145 

of the corresponding sources are estimated. The plume detection combines the first two stages and can be used to discern 146 

plumes from unreported sources; however the ability of the different approaches to detect unknown point sources has not 147 

been studied here, as the primary focus is to analyse their potential to detect and process plumes of known sources from 148 

CO2M-like satellite images (see Sect. 2.2). Of mention is that the divergence, cross-sectional flux and machine-learning 149 

approaches are particularly well-suited for automatic detection of plumes from unknown sources (Zheng et al., 2020; Beirle 150 

et al., 2021; Schuit et al., 2023). Moreover, as previously mentioned, a benefit of the CO2M mission is the availability of co-151 

registered XCO2 and NO2 columns, which can further benefit the plume detection and emission quantification steps. 152 

Obtaining the column enhancements over the background can be achieved with different thresholding techniques as 153 

detailed below. When it comes to NO2, the global background field is insignificant but in the case of CO2, its amplitude is 154 

important and can vary significantly in space and time due to biogenic and other anthropogenic fluxes surrounding the 155 

sources of interest and due to gradients in the background. Another common feature is the need for defining an effective 156 

wind speed, which describes the average mass transport of CO2 within the plumes. This a major challenge as wind speed 157 

varies with altitude whereas satellite images contain integrated column measurements with no vertical resolution. 158 

Additionally, the horizontal resolutions of wind products are generally different from those of satellite images. To address 159 

these limitations, the methods determine effective winds in a more or less sophisticated manner. 160 

Finally, all methods have implemented some quality control on their estimates. These checks are more or less restrictive 161 

depending on the methods and may filter out, for example, cases with overlapping plumes originating from neighbouring 162 
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sources. Further details are provided in Kuhlmann et al. (2023). Of particular note is the fact that our implementation of the 163 

GP method discards values that are below 1/4 or beyond 4 times the “true” values averaged one hour before the satellite 164 

overpass (10:00 to 11:00 UTC); this filtering stabilises the otherwise underdetermined inversion. Unlike the other methods, 165 

the GP method thus uses a priori information about the source strength, which artificially improves its performance. 166 

2.1.1 Cross-sectional flux (CSF) inversion method 167 

The cross-sectional flux inversion method has been used in many studies such as for example the determination of CH4 168 

emissions of point sources from high-resolved satellite data for which its superiority over other methods has been 169 

demonstrated within the framework of the study of Varon et al. (2018). In brief, this method calculates the fluxes through 170 

single or multiple cross-sections of the plumes as the product of effective winds and integrals of column mass enhancements 171 

along plume transects (line densities). Under the assumption of steady-state conditions, these fluxes are equivalent to the 172 

emissions. The CSF method used in this study has been used by Kuhlmann et al. (2020, 2021) for the estimation of CO2 173 

emissions from CO2 and NO2 images. These studies have demonstrated that the inclusion of NO2 observations significantly 174 

increases the number and precision of the estimates. 175 

The plume detection module of the CSF approach determines in a first stage the CO2 or NO2 pixels that are significantly 176 

enhanced above the background with a statistical z-test (Kuhlmann et al., 2021). To perform this, a Gaussian kernel to 177 

average local observations values is applied and the background field is at this stage computed by applying a median filter. 178 

The parameters defining the z-test were carefully assessed in order to get enough valid pixels to describe a plume while 179 

avoiding false detections (Kuhlmann et al. 2019). The detected pixels are then grouped by a labelling algorithm and assigned 180 

to a source. Finally, a curve representing the centerlines of the plume is fitted to the detected pixels. 181 

For the quantification of CO2 emissions, the CSF method groups the detected plume pixels into sub-polygons along the 182 

curved plume, whose width equals ~5 km (2-3 pixels of CO2M data). All detected pixels within a sub-polygon are used to 183 

construct a single estimate of the line density. Following Reuter et al. (2019), the CSF method assumes that the plume 184 

transect follows a Gaussian behaviour, after removing the background signal with a normalised convolution. To obtain the 185 

line densities, the integration of the fitted Gaussian functions does not require any additional computation as the line 186 

integrals are simply equal to the amplitude parameters of the fitted Gaussian functions. Then, in order to be converted into 187 

fluxes, line densities are multiplied by effective winds which are the horizontal winds at the corresponding source locations 188 

and times of the satellite overpasses, vertically weighted by the GNFR-A/SNAP-1 emission profile (Brunner et al., 2019). 189 

Finally, the CO2 emission of a given source retrieved from a given satellite image is computed by averaging the CO2 190 

estimated fluxes of all the sub-polygons describing the plume downstream of the source. The uncertainty in the emission 191 

estimate is then computed by propagation of the uncertainties in the line densities computation and in the wind; the 192 

uncertainties in the line densities are extracted from the standard deviation of the sub-polygon estimates and capture mostly 193 

satellite data noise through uncertainty in the Gaussian fitting. 194 
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When NO2 data are used in conjunction with CO2, detections of plumes are first performed for NO2, while the CO2 and 195 

NO2 enhancements are fitted simultaneously by Gaussian functions that share the same mean (or central location) and the 196 

same standard deviation. Thus, the fit of CO2 enhancements takes advantage of the better signal-to-noise ratio of NO2 data 197 

by better constraining the parameters of the Gaussian functions, which provides more accurate estimates of CO2 line 198 

densities and hence CO2 emissions. 199 

2.1.2 Light cross-sectional flux (LCSF) inversion method 200 

The light cross-sectional flux method shares the same theoretical foundations as the CSF method, but its implementation 201 

is largely different. It is derived from the method originally developed by Zheng et al. (2020) to estimate the CO2 emissions 202 

of cities and industrial areas in China that produce atmospheric plumes clearly detectable in transects of OCO-2 data which 203 

are characterised by a resolution of few km2 and by a  swath about 10 km wide, which is almost 25 times narrower than the 204 

~250 km wide swath of the CO2M instruments. This method has been applied to the routine and automatic estimation of 205 

isolated clusters of CO2 emissions worldwide (Chevallier et al., 2020) and to study the temporal variability of the emissions 206 

based on several years of OCO-2 and OCO-3 data (Chevallier et al., 2022). The method has undergone significant 207 

modifications for this comparative study, where the location of the emission sources is known, in order to fully harness the 208 

potential of high-resolution satellite imagery. 209 

For a given source and satellite overpass, the LCSF method performs a simple detection of the plume by extracting from 210 

the satellite image an area which is 100 km wide in across-wind (perpendicular) direction and which extends downwind the 211 

source over a distance equal to the distance travelled by the wind in one hour. The method then selects the pixels of the 212 

extracted area where XCO2 or NO2 enhancements – simply defined as the difference between data values and the average 213 

data of the area – are greater than the spatial variability, i.e. the standard deviation of the data contained within the area. 214 

The quantification of the source emission is then performed on each selected enhancement by extracting again a 100 km 215 

wide across-wind area centred at the enhancements and extending 10 km (~5 CO2M pixels) downwind from the 216 

enhancements. The sums of a linear term accounting for large scale variations in the background fields and a Gaussian 217 

function describing the plume cross-section perpendicular to the wind direction  are then fitted to the data contained within 218 

these areas. The plume detection and fitting of the enhancements can be carried out in the same way when NO2 data are 219 

available. And, standard deviations and means of the Gaussian functions fitted with NO2 data are then used for fitting CO2 220 

enhancements; CO2 data constrain in this case only the amplitudes of the CO2 Gaussian functions. This allows transferring 221 

information derived from NO2 data when estimating CO2 emissions from CO2 data.  222 

CO2 line densities are, as for the CSF method, derived from the Gaussian functions fitted with CO2 data and converted 223 

into emission estimates by the multiplication of an effective wind. For the LCSF method, this effective wind is extracted at 224 

the location of the enhancements and at an altitude above ground of 100 m, as preliminary tests have shown that extracting 225 

winds at the altitude of 100 m yields, for the LCSF approach, better inversion results compared to other altitudes or 226 

alternative methods of computing the effective winds. This result may be reflecting a trade-off between the need to account 227 
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for emission injection heights higher than 100 m when considering isolated power plants, and lower than 100 m when 228 

considering the mix of sources within cities, whose emissions are not dominated by large power plants (Brunner et al., 229 

2024). The automatic process of sources limits the ability to derive a case by case selection of the height for the wind 230 

extraction, but a finer option for future analysis might be to discriminate this selection as a function of the type of target 231 

(considering at least isolated power plants vs. urban areas). 232 

Finally, under steady-state atmospheric conditions, the cross-sectional CO2 flux derived at each selected enhancement is 233 

equivalent to the upwind source emissions. Therefore, as several enhancements belonging to a same atmospheric signature of 234 

a source are generally processed, the algorithm produces multiple individual estimates of the source emission; the estimate 235 

computed by the method for a given source and from a given image is then computed as the median value of these individual 236 

estimates; the use of the median helping to reduce the impact of outliers. Moreover, uncertainties in the individual estimates 237 

provided by the LCSF method are computed by propagation of the errors derived by the fitting algorithm when generating 238 

the line densities; uncertainties in the final estimates are finally the median of these uncertainties. 239 

2.1.3 Gaussian plume (GP) inversion method 240 

The Gaussian plume inversion approach assumes that observed plumes can be described with Gaussian plume models. This 241 

approach has been widely used such as for example in the determination of CH4 point source emissions (Varon et al., 2018), 242 

the use of OCO-2 data to quantify CO2 emissions from power plants (Nassar et al., 2017), or in a framework to estimate at 243 

the global scale CO2 emissions from large cities and point sources (Wang et al., 2020). Compared to previous Gaussian 244 

plume inversions, the GP inversion method used in this work allows the Gaussian plume model (like the CSF method) to 245 

handle curved plumes (see Sect 3.2.1 in Hakkarainen et al., 2023b).  246 

The detection of plumes, i.e. of the CO2 or NO2 enhancements from the background, is carried out using the same 247 

algorithm as for the CSF method. Then, the inversion uses a Levenberg-Marquardt least-squares optimization to find the 248 

optimal parameters of the Gaussian functions fitting the enhancements and, of the Bézier curves describing the centre lines 249 

of the plumes (Hakkarainen et al., 2023b). If NO2 data and CO2 data are simultaneously available, then the Gaussian plume 250 

model is first fitted to the NO2 observations and the optimised parameters regarding the plume shape are subsequently used 251 

as first guesses for the fitting to CO2 observations. These derived parameters are constrained to remain close to the optimised 252 

parameters obtained from the fitting of NO2 data. Finally, the uncertainties in the Gaussian plume estimates are obtained by 253 

propagation of the uncertainties in the fitted parameters for the wind speed and for the source strength. 254 

To ensure the convergence of the minimization algorithm, first-guessed values of the fitted parameters need to be 255 

carefully prescribed: parameters of the centre-line curves, for example, are initialised from the curves retrieved by the plume 256 

detection algorithm, and the initial wind speed is calculated as in the CSF method (see Sect. 2.1.1). Most importantly, the 257 

prior values of emission parameters are set to the true summertime source emission strength. Thus, unlike any of the other 258 

methods studied in this work, the GP method integrates an important constraint on the emissions which implies that the 259 

estimated values, hence the method’s performance, are not entirely determined by the information contained within the 260 
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synthetic satellite observations alone. This limitation should be taken into account when applying this method to invert from 261 

real satellite data emissions of sources whose amplitudes are barely known. 262 

2.1.4 Integrated mass enhancement (IME) method 263 

The IME method integrates the total mass enhancements of CO2 or NO2 above the background that can be associated with 264 

detectable plumes. Then, following Frankenberg et al. (2016), the relationship between IMEs and emissions (Q) can be 265 

approximated by a linear relationship defined by the residence times (τ) of the species within the plumes (Eq. 1): 266 

𝑄 =
1
𝜏
𝐼𝑀𝐸 (1) 

 𝜏 =
𝑈𝑒𝑓𝑓
𝐿

 (2) 

The residence time can in turn be expressed as a characteristic plume length L divided an effective wind speed Ueff (Eq. 267 

2) . For example, Varon et al. (2018), who applied the IME method with CH4 observations, derived Ueff from 10 m wind 268 

speeds using large eddy simulations (LES). Here, the plume detection algorithm which identifies either CO2 or NO2 269 

enhancements from the background is the same as the one used by the CSF and GP methods, but the detected area of the 270 

plume over which the integration is performed is dilated using a circular kernel in order to increase the number of integrated 271 

pixels (Hakkarainen et al., 2023b). Missing values are filled using a normalised convolution and estimates are rejected when 272 

less than 75% of valid pixels are available for the detected plume.  The characteristic length L is computed from the centre-273 

line of the plume as the arc length to the most distant detected pixel minus 10 km, but at least 10 km. Moreover, the effective 274 

wind speed Ueff is extracted by using the same vertically weighted average as the CSF method. If NO2 observations are used 275 

in conjunction with CO2 observations, the integration area is established by the application of the plume detection algorithm 276 

with NO2 data. Then, to estimate CO2 emissions, the IME is calculated over this area with CO2 observations. Finally, the 277 

uncertainty in the IME estimates is computed by propagation of uncertainty from the single sounding precision of satellite 278 

data and an estimate of the uncertainty in the wind speed. 279 

2.1.5 Divergence method 280 

The divergence method, initially introduced by Beirle et al. (2019, 2021), was used to estimate NOx emissions based on 281 

TROPOMI NO2 observations. For this study, the method has been modified in order to estimate CO2 emissions, as outlined 282 

in Hakkarainen et al. (2022) where a detailed theoretical analysis of this approach can be found in the supplementary 283 

material. The divergence method is based on the continuity equation at steady state (Jacob, 1999), where the divergence of a 284 

vector field 𝐹 (flux) is defined as the difference between emissions 𝐸 and sinks S (Eq. 3): 285 

𝛻 ⋅ 𝐹 =  𝐸 −  𝑆    (3) 286 

𝐹 = �𝐹𝑥,𝐹𝑦� = �∆𝐼 ⋅ 𝑈𝑒𝑓𝑓 ,∆𝐼 ⋅ 𝑉𝑒𝑓𝑓�     (4) 287 
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Since CO2 lifetime is extremely long, the sink term can be neglected. However, before applying the divergence operator to 288 

XCO2 images, the atmospheric background needs to be removed in order to extract purely the XCO2 enhancements. For this 289 

purpose, a median filter is applied to the data and the resulting field is subtracted from the original data. Moreover, in order 290 

to improve the accuracy of the estimates when CO2 noise levels are high, data first undergo a denoising process using a 5×5 291 

pixel mean filter. The flux field F is then defined at each pixel by the Eq. 4where ΔI is the vertical column density 292 

enhancement above background, and 𝑈𝑒𝑓𝑓  and 𝑉𝑒𝑓𝑓  are the eastward and northward winds, respectively, interpolated at the 293 

location of the pixel and at the time of the satellite observations, and vertically averaged using the GNFR-A/SNAP-1 294 

emission profile (Brunner et al., 2019).  295 

Divergence maps are computed from the mass flux field using a finite difference approximation. The divergence map is 296 

then averaged over a long period to enhance the emission signal, while reducing the impact of noise and the spatio-temporal 297 

variations of the CO2 background. Here, divergence maps are averaged over one year. In theory, the divergence method can 298 

also be used to estimate emissions from single-overpass images such as the cross-sectional flux method (as the two methods 299 

are in theory similar, see Koene et al. 2024). However, we choose in this study to focus on the standard application of this 300 

method (e.g., Beirle et al. 2019, 2021, 2023; Hakkarainen et al., 2022, Sun et al., 2022), which provides temporally averaged 301 

estimates. Appendix A provides a brief overview of the performance when estimating emissions from individual images with 302 

different versions of the divergence approach. 303 

For a specific source, the annual estimate of the emissions is then computed from the enhancement in the averaged 304 

divergence field by using a peak fitting approach which fits the divergence map by a function including a Gaussian and a 305 

linear term centred at the source (Beirle et al, 2021). Emissions, and more generally the parameters, of the peak function are 306 

determined by an adaptive Markov chain Monte Carlo (MCMC) that also provides the uncertainties in the estimates from the 307 

standard deviations of the sampled posterior distributions of the parameters. 308 

2.2. Synthetic satellite observations of CO2 and NO2 309 

In this study, synthetic satellite observations of CO2 and NO2 were generated from atmospheric simulations in order to 310 

evaluate and compare the ability of the methods described in Sect. 2.1 for retrieving CO2 or NO2 emissions from point 311 

sources or urban areas using satellite imagery akin to that provided by the upcoming CO2M mission. These simulated 312 

satellite data are readable by the ddeq Python library and were produced as part of the SMARTCARB project and have been 313 

extensively described and used in previous works (e.g. Brunner et al., 2019; Kuhlmann et al., 2019; 2020; 2021). They are 314 

openly accessible from https://doi.org/10.5281/zenodo.4048227  (Kuhlmann et al., 2020b).  315 

Atmospheric concentrations of CO2 and NO2 were simulated by the COSMO-GHG atmospheric transport model (Jähn et 316 

al., 2020) with a vertical resolution of 60 levels up to an altitude of 24 km and with a horizontal resolution of about 1 km × 1 317 

km for a domain centred over the city of Berlin. The domain extends about 750 km in the east-west and 650 km in the south-318 

north direction. Simulations provided hourly outputs for nearly the entire year 2015. In order to generate realistic 319 

simulations, initial and lateral boundary conditions for meteorological variables and tracers were extracted from products of 320 

https://doi.org/10.5281/zenodo.4048227�
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the European Centre for Medium-Range Weather Forecasts (ECMWF) and MeteoSwiss (Kuhlmann et al., 2019). 321 

Furthermore, CO2 emissions included both the anthropogenic and biospheric components which were interpolated onto the 322 

COSMO grid at a temporal resolution of one hour: anthropogenic emissions were largely derived from the TNO/MACC-3 323 

inventory (Kuenen et al., 2014) and biospheric fluxes were simulated with the Vegetation Photosynthesis and Respiration 324 

Model (VPRM, Mahadevan et al., 2008). NOx emissions were also derived from the TNO-MACC-3 inventory and 325 

atmospheric simulations used a simplified NOx chemistry with a fixed NOx decay time of 4 hours. NOx concentrations were 326 

converted to NO2 concentrations using an empirical equation for the evolution of NO2 : NOx ratios downwind of emission 327 

sources (Düring et al., 2011). 328 

To generate synthetic satellite observations similar to CO2M observations, the XCO2 and NO2 column densities derived 329 

from the COSMO-GHG simulations were sampled at the resolution of 2 km × 2 km along 250 km wide satellite tracks 330 

(Kuhlmann et al., 2019); these tracks were computed using an orbit simulator and correspond to a hypothetical constellation 331 

of six CO2M satellites. In addition to XCO2 and NO2 column-average data, a cloud mask was generated from the total cloud 332 

fraction computed by the COSMO-GHG model. For CO2 data, all pixels with cloud fraction larger than 1% were removed as 333 

CO2 retrievals are strongly impacted by clouds (Taylor et al., 2016). For NO2 data, less sensitive to clouds, a threshold of 334 

30% on the cloud fraction was used to select valid pixels (e.g. Boersma et al., 2011). Figure 2 illustrates a COSMO-GHG 335 

simulation of XCO2 over the SMARTCARB domain, on which are represented synthetic XCO2 data corresponding to a 336 

CO2M satellite overpass. 337 

    For the purposes of this benchmarking study, we use the configuration of the SMARTCARB dataset where the CO2M 338 

constellation consists of three satellites. By choosing this, we follow the recommendation of Kuhlmann et al. (2021) that a 339 

constellation of at least three CO2M satellites is necessary for a proper estimation of the annual emissions from weak 340 

sources and in regions such as central Europe where cloud cover dramatically reduces the number of estimates. When 341 

ignoring clouds, this constellation of three satellites leads to observing each local source within the SMARTCARB domain 342 

once every other day; if we consider that a satellite image is usable if there are at least 50 data pixels next and downwind to 343 

the source, then we can use about 3000 images to determine the emissions of the 16 local sources considered in this study. 344 

But, if we consider the cloud cover, only 500 images remain usable. 345 

The characteristics of the uncertainties in the synthetic CO2M observations were computed using three different 346 

uncertainty scenarios (low, medium, high). Simulated XCO2 column densities were thus assigned random errors by 347 

employing various levels of instrumental noise in the error parameterization formula. This formula, used for generating the 348 

errors, takes into account the Solar Zenith Angle (SZA) and surface albedos (Buchwitz et al., 2013).  The NO2 column 349 

densities were assumed to be characterised by random uncertainties of different constant values depending on the chosen 350 

uncertainty scenario. These values are defined for clear sky conditions and increase in the presence of clouds; nearly 351 

doubling for a cloud fraction of 30%. No systematic errors were prescribed for either XCO2 or NO2 column averaged data. In 352 

this study, the characteristics of the random uncertainties prescribed to the synthetic data are chosen according to the 353 

requirements of the CO2M mission (Meijer et al., 2019). For XCO2 retrievals, random errors are generated using the error 354 
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parameterization formula with a single sounding precision of 0.7 ppm for vegetation albedos and a SZA of 50°. For NO2 355 

retrievals, a single sounding precision in cloud-free conditions of 2×1015 molecules cm-2 is prescribed. 356 

2.3. Benchmarking scenarios 357 

    The relative performance of the different inversion methods to estimate CO2 emissions are evaluated for the 15 strongest 358 

point sources of the SMARTCARB domain and for the city of Berlin (Fig. 2 and Table 1 in Kuhlmann et al., 2021). These 359 

16 sources cover a large emission range that extends from 3.7 MtCO2.yr-1 for the power plant located in Chvaletice (CZ) to 360 

40.3 MtCO2.yr-1 for the power plant located in Jänschwalde (DE); these values being the annual mean emissions at the time 361 

of the satellite overpass (10:30 UTC) used in the COSMO-GHG simulations. It is worth mentioning that the distribution of 362 

the source emissions is skewed towards the lowest value as the median emission rate in the collection is around 9.6 363 

MtCO2.yr-1 and 75% of the sources emit less than 14 MtCO2.yr-1. 364 

In order to thoroughly evaluate the relative performance of the different methods and the sensitivity of these 365 

performances to different factors, the benchmarking study is carried out according to several scenarios that share the same 366 

features for the simulated data and for the source collection that have been described above. The most optimistic or ideal 367 

scenario corresponds to the application of inversions to CO2 and NO2 images without the removal of pixels associated to 368 

cloud-cover (ignoring the clouds modelled with the COSMO-GHG model; we label such inversions “cloud-free” hereafter) 369 

and with a perfect knowledge of the wind field (i.e. using directly the winds from the COSMO-GHG model, denoted 370 

SMARTCARB winds). It is the ideal case because 1) the joint analysis of NO2 and CO2 images strengthen the estimates 371 

compared to the analysis of CO2 images only; 2) ignoring the potential loss of data due to cloud cover in the CO2 and NO2 372 

images yield full images, whose analysis is more robust than that of partial images, and thus provides a higher number and 373 

precision of estimates. . The results derived from this benchmarking scenario should be seen as an upper limit of what the 374 

inversion methods could achieve in terms of accuracy and number of estimates. The most realistic scenarios take cloud cover 375 

into account and use winds extracted from the ERA5 wind product (Hersbach et al., 2020) that is independent from the 376 

inverted data and whose resolution (~0.25°) is much coarser than that of the SMARTCARB winds (~0.01°). The results 377 

derived from this benchmarking scenario should be seen as a lower limit for the method's performance.  378 

The differences between the ERA5 and SMARTCARB wind products are significant at the 16 sources considered in this 379 

study: the annual mean biases between these two wind products in 2015 range from 0.1 ms-1 to 1.5 ms-1 depending on the 380 

source with an average value across the sources of 0.6 ms-1 while RMSEs range from 1.1 ms-1 to 2.1 ms-1 depending on the 381 

source with an average value across the sources of 1.5 ms-1 (Fig. A2). The biases per source are systematically positive since 382 

SMARTCARB tends to provide larger winds than ERA5. With such differences, comparing scenarios with the same 383 

characteristics but using different wind products allows us to gain insight into the method’s sensitivity to wind uncertainties. 384 

Additional benchmarking scenarios were designed to test the sensitivity of the methods with respect to other factors, 385 

including the consideration of cloud cover in satellite data and the use of NO2 for plume detection and characterization. All 386 

benchmarking scenarios are listed in Table 2. 387 
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2.4. Benchmarking metrics 388 

For a given benchmarking scenario, the performances of the different inversion methods can be evaluated through the 389 

number of single-image estimates that can be retrieved regarding the number of available satellite images: ~500 or ~3000 390 

considering or ignoring the cloud cover in the data. Performances can be assessed as well through the quality of the 391 

estimates; the accuracies of the methods are then assessed by comparing the estimates retrieved from single satellite 392 

overpasses to the corresponding true values that were used to generate the synthetic satellite data.  More precisely, inversion 393 

results are analysed in terms of distributions of the differences between the estimated and the true emissions of all the 394 

sources considered in this study. We will refer to these differences in the following as deviations. More precisely, our 395 

analysis will mostly focus on examining the distributions of the relative deviations, i.e. the differences between estimated 396 

and true emissions divided by the true emissions, in order to fairly compare results across sources with significantly different 397 

magnitudes (Sect. 2.3). Furthermore, to properly describe distributions that may be very different from Gaussian 398 

distributions, box plots are used, in which the median values, the interquartile ranges (IQRs), the 10th and the 90th percentiles 399 

of the distributions are represented.  400 

The ability of the different inversion methods to estimate source emissions can also be analysed from the study of the 401 

annual or monthly averages of the single-image estimates. Benchmarking results are then evaluated for each source in terms 402 

of relative deviations of the annual/monthly estimates from the annual/monthly true emissions and, in terms of Root Mean 403 

Square Errors (RMSE) in order to provide a global indicator for the accuracy of the annual/monthly estimates across all 404 

sources. 405 

In this study, the annual/monthly averages of the single-image estimates for a given source are computed using three 406 

different methods which are 1) the arithmetic means of all the single-image estimates of the source emission that have been 407 

generated from inverting one year/month of data, 2) the means of these estimates weighted by the inverse of their computed 408 

variances (Sect. 2.1) and 3) the medians of these estimates. The annual/monthly inverse variance weighted means 409 

incorporate the information provided by the methods on the quality of the estimates when averaging, whereas the 410 

annual/monthly medians are statistical indicators that are more robust to outliers than the means. Moreover, since the Div 411 

method is applied by temporally averaging satellite observations over the year, it produces only a single annual estimate for 412 

each source; we will thus consider that the three types of annual/monthly estimates are all equal to this single estimate. 413 

It is important to note that the annual and monthly estimates are affected by temporal sampling biases when inversion 414 

methods use data filtered by cloud cover. Specifically, the presence of denser cloud cover during winter generally results in 415 

over-representation of emission estimates during summer and hence could lead to an underestimation of annual estimates as 416 

emissions are higher during winter due to increased fossil fuel consumption associated with electricity and heat production. 417 

Although more advanced methods, such as fitting periodic curves to capture seasonal cycles as demonstrated by Kuhlmann 418 

et al. (2021) could potentially enhance the accuracy of estimates, they are not included in this study. However, these 419 
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temporal sampling biases are integrated in the results as the annual/monthly estimates are compared to the true 420 

annual/monthly emissions which are computed by considering all the days of the year/months. 421 

3 Results on emission estimates based on individual images 422 

The following subsections present a comparative study of the CSF, GP, IME, and LCSF methods for estimating emissions 423 

from single images. In the following, we will refer to these kinds of estimates as single-image estimates. Note that, as the 424 

methods use different algorithms for plume detection and emission quantification, which include different rejection criteria 425 

(Sect. 2.1), they produce different sets of estimates. 426 

3.1 Sensitivity to the emission strengths of the sources 427 

In the optimal scenario (cloud-free, SMARTCARB winds, CO2 and NO2 data), all methods tend to provide more accurate 428 

estimates for strong sources than for weak sources, and this trend is particularly noticeable for the IME and CSF methods 429 

(Fig. 3). The median values of the absolute relative deviations for weak sources (emissions ranging from 0 to 6.9 MtCO2/yr 430 

in the 1st row of Fig. 3) are 207% (IME method) and 54% (CSF method), respectively. In contrast, for strong sources 431 

(emissions ranging from 15.6 to 53.2 MtCO2/yr in the 4th row of Fig. 3), they are approximately 47% (IME) and 28% (CSF), 432 

respectively. The inversion methods are also more prone to produce unrealistic values for weak sources as the distributions 433 

are strongly skewed for this type of sources: the 95th percentile accuracy indicator is indeed 1128%, 584%, 172%  and 178% 434 

for the IME, CSF, GP and LCSF inversion models respectively (1st row in Fig. 3). For strong sources, this indicator is 435 

significantly lower, decreasing to 200%, 108%, 90% and 76%, respectively (4th row in Fig. 3). Atmospheric signals 436 

generated by strong sources are more distinct from the background than those from weak sources and as a result, the signal-437 

to-noise ratio in the XCO2 and NO2 images is better which helps to reduce uncertainties in the determination of their 438 

emissions. For low-emitting sources, the performance of the inversion methods can be degraded by the limited number of 439 

enhanced pixels that are detected in images with noise; this limitation makes the identification of plume centre-lines by the 440 

CSF, IME and GP methods challenging (Sect. 2.1). This problem could have impacted the GP method, but its current 441 

implementation incorporates prior knowledge filtering out estimates that fall outside the 25% to 400% range from the prior. 442 

This filtering process is expected to improve the accuracy of the GP method, especially for weak sources. 443 

Biases in the emission estimates may also depend on the strength of the source, as observed in the IME and CSF methods 444 

which strongly overestimate the emissions of weak sources compared to strong sources. For weak sources, the median of the 445 

deviation distributions for the IME and CSF models (blue bars, 1st row of Fig. 3) are +116% and +50%, respectively, 446 

compared to +16% and +11% for strong sources (blue bars, 4th row of Fig. 3). This discrepancy is probably due to the plume 447 

detection algorithm, which, for weak sources, may wrongly attribute enhancements from other sources in the vicinity of the 448 

source of interest and thus artificially increase the amplitude of the detected emissions. Conversely, the LCSF approach 449 

tends to underestimate the emissions of strong sources while slightly overestimating those of weak sources, with the median 450 
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of the deviation distribution being –26% (blue bar, 4th row of Fig. 3) and +12% (blue bar, 1st row of Fig. 3) respectively. The 451 

underestimation of source emissions could be attributed to a tendency of the method to overestimate the amplitudes of the 452 

background for non-isolated sources: contrary to the other methods, the LCSF method does not remove the influence of 453 

neighbouring plumes when computing the background around a given source. Another explanation could lie in the fact that 454 

this method uses 100-m winds as effective winds while, especially for strong emitting sources, these winds are lower than 455 

the GNFR-A average winds used by the other methods. 456 

3.2 Impact of the use of NO2 images for the detection of plumes 457 

The use of NO2 data to identify and characterise plumes increases the number of estimates for all inversion methods 458 

compared to CO2-only inversions, as shown in Figure 4 (blue vs orange bars). The increase is significant for the IME and GP 459 

methods (~93% and ~70%), moderate for the CSF method (~34%), and slight for the LCSF method (~4%). The IME, GP, 460 

and CSF methods rely on a plume detection algorithm that is less reliable when using only CO2 observations (Kuhlmann et 461 

al. 2019). Of these three, the CSF method requires fewer pixels to detect and quantify plumes, resulting in a larger proportion 462 

of still quantified plume cases than the IME and GP methods when having CO2 data only. The detection of plumes by the 463 

LCSF method is performed on data slices whose pixels are relatively close to sources and where XCO2 enhancement signals 464 

due to emissions are thus relatively strong; this may explain the only small benefit for this method of using joint CO2 and 465 

NO2 images to better determine the shape of the plumes. 466 

When using CO2 and NO2 data, the maximum number of estimates obtained from each inversion method varies 467 

significantly: the IME method produces the smallest number of estimates, with 1661, while the LCSF method produces the 468 

largest, with 2722. The GP and CSF methods, based on the same algorithm of plume detection as the IME method, produce 469 

up to 1776 and 2012 estimates, respectively. These differences can be attributed to the differences in the number of detected 470 

pixels below which the algorithm rejects plumes and, in the emission quantification algorithms used by the different 471 

methods. In addition, the overall complexity of the IME, CSF and GP methods, which use a relatively large number of 472 

rejection criteria likely explains why these three methods deliver much fewer estimates than the LCSF method. The relative 473 

efficiency and robustness of the plume detection algorithm of the LCSF method is evidenced when using CO2 data only to 474 

determine emissions:  the number and accuracy of estimates is hardly changed compared to the inversions performed with 475 

CO2 and NO2 data; contrarily to the other methods whose algorithms are more sensitive to uncertainties in XCO2 data and 476 

which need NO2 data to accurately fit a plume coordinate system to the data. 477 

The inclusion of NO2 data does not appear to significantly improve the overall performance of the GP and LCSF methods 478 

in terms of accuracy of the CO2 emission estimates (lower panel in Fig. 4). However, for the LCSF method, there is a notable 479 

reduction in the 95th percentile of the relative absolute deviations from 175% without NO2 to 115% with NO2. For the CSF 480 

method, the use of NO2 data strongly improves its overall performance as the 3rd quartile and the median of the absolute 481 

residuals are for example significantly decreased, from ~127% down to ~74% and from ~54% to ~36%, respectively. As the 482 

CSF method rejects fewer estimates when using CO2 data only than the GP method, its accuracy decreases because with a 483 



16 
 

more permissive filtering, it may include complex cases for which emissions are difficult to estimate. This may also explain 484 

why the CSF estimates are less biased, with a significantly lower median relative deviation, in cases where inversions also 485 

use NO2 data (upper panel in Fig. 4). 486 

In contrast, the precision of the IME method decreases when using NO2 data, but this fact could be related to a numerical 487 

artefact: the IME method performs much better for high-emitting sources than for low-emitting sources (see Sect. 3.1) and 488 

the use of NO2 data likely allows constraining small sources more efficiently than with CO2 data only. Therefore, when 489 

adding NO2 data, the number of low-emitting sources which are estimated increases more than for the high-emitting sources 490 

and then the overall performance degrades. This bias associated to the relative bad estimation of low-emitting sources is 491 

confirmed when deviations are used to assess performance instead of relative deviations: the absolute deviations associated 492 

to the IME estimates globally decrease with the use of NO2 data with for example the median error decreasing from ~15 to 493 

~11.5 MtCO2/yr. 494 

3.3 Impact of the cloud cover 495 

The impact of clouds is studied by comparing inversions with cloud-free images to inversions with cloud-filtered images 496 

(Sect. 2.3). When disregarding cloudy pixels in the XCO2 and column-averaged NO2 data, the number of estimates from all 497 

the methods is considerably reduced, with a decrease of 94%, 85%, 85% and 88% for the IME, CSF, GP and LCSF methods 498 

respectively (Table 3). The number of estimates that can be provided for the cloud-filtered configuration with 499 

SMARTCARB winds is at the maximum equal to 313 (LCSF) and decreases to 96 for the IME method which can provide 500 

robust estimates for images free of clouds only as this method requires integrating enhancements over the full extent of 501 

plumes. As sources are characterized by different cloud covers, the number of estimates per year and per source ranges from 502 

1 to 12 (IME), from 6 to 28 (CSF), from 8 to 23 (GP) and from 15 to 26 (LCSF). 503 

Furthermore, the filtering of data pixels removing those with a significant cloud cover not only affects the number of 504 

estimates but also impacts the performance of the methods, although to a much lesser extent. When comparing results 505 

obtained from the same images, cloud-free inversions produce slightly better results than cloud-filtered inversions (Fig A3). 506 

This is because, in images partially masked by cloud cover, some pixels containing useful information are likely removed, 507 

which can lead to less accurate determination of emissions. Consistently, if the threshold of cloud cover above which XCO2 508 

images are discarded for the analysis is increased from 1% to 2% or 5%, the performance of the methods does not 509 

significantly increase, unlike the number of estimates, which can increase, e.g. by 12% and 29% respectively when using the 510 

LCSF method (Fig. A4).   511 

3.4 Impact of uncertainty in the wind 512 

As mentioned above, in order to assess the impact of potential uncertainties in the wind, a series of inversions is carried out 513 

with a different wind product than the one used to generate the synthetic XCO2 and NO2 data. For this purpose, the 514 

SMARTCARB winds are replaced by ERA5 winds and the differences between these two wind products are characterised at 515 
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the sites of this study by random and systematic components (Sect 2.3 and Fig. A3). Notably, ERA5 winds show 516 

systematically lower values. 517 

For all inversion methods, the global accuracies of the estimates, evaluated in terms of relative absolute deviations, are 518 

only slightly reduced when using ERA5 winds instead of SMARTCARB winds (lower panel  in Fig. 4, green vs red bars). 519 

There are a few possible explanations for this: the temporal or spatial uncertainties in wind components are only a minor 520 

source of uncertainty compared to other factors impacting the determination of the estimates by the different inversion 521 

methods such as, for example, uncertainties in the XCO2 and NO2 columns densities (Sect. 2.2) or over-simplified 522 

assumptions in plume detection or quantification algorithms. Kuhlmann et al. (2020, 2021) showed, for instance, that the 523 

determination of the CO2 background field could introduce significant uncertainties in the estimates. Furthermore, as 524 

indicated by Reuter et al. (2019), one of the important benefits of satellite imagery is that uncertainties related to 525 

meteorological variables likely average out when emission estimates are sampled along significant areas of plumes. 526 

However, the fact that ERA5 wind values are systematically lower than those of SMARTCARB winds has an impact on 527 

the median values of the relative deviations, i.e. on the biases in the estimates. While the accuracies in terms of relative 528 

absolute deviations are slightly affected by using either wind product (bottom panel in Fig. 4, green vs red bars), biases can 529 

be significantly increased, as in the cases of the GP and LCSF methods whose estimates are on average underestimated if 530 

inversions use ERA5 winds instead of SMARTCARB winds. The lower amplitudes of the ERA5 winds explains also that the 531 

results for the IME and CSF methods improve, especially for the 95th percentiles of the absolute deviation distributions 532 

which respectively decrease from around 504% and 411% to 370% and 286% respectively. The systematic overestimation of 533 

the estimates evidenced above for the CSF and the IME methods is therefore mitigated when using ERA5 winds (top panel 534 

in Fig. 4). 535 

As mentioned previously (Sect. 2.3), the benchmarking scenario for which inversions are performed with ERA5 winds 536 

and data filtered for cloud cover, is the closest to real conditions of monitoring emissions from data images delivered by 537 

satellites. For this scenario with CO2 and NO2 data, the GP and LCSF methods show the best performances in terms of 538 

global accuracies with respectively IQRs of 25–62% and 17–55% for the distributions of the absolute relative deviations (red 539 

boxes in Fig. 4). It is interesting to note that the overall accuracies of these methods are similar for this realistic scenario and 540 

the ideal scenario where inversions are performed with cloud-free data and SMARTCARB winds. Contrarily, the number of 541 

estimates strongly decreases when inversions are performed with cloud-filtered data such as, for example, from 2722 to 318 542 

estimates for the LCSF method (see Table 3). 543 

4 Results on annual and monthly averages of the emissions 544 

4.1 Annual estimates 545 

To evaluate how well an inversion method performs on an annual basis, we include all image estimates generated by the 546 

method, regardless of their uncertainty. We calculate annual estimates for a given source using three methods, as described 547 
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in Sect. 2.4: 1) by taking the average of all available image estimates for the source over the entire year, 2) by taking the 548 

weighted average of these image estimates based on their uncertainty, and 3) by taking the median value of these image 549 

estimates. Because the Div method only provides one estimate per year, its annual estimates are the same, irrespective of the 550 

calculation method used. In order to compare for a given source the three estimated annual values to the true emission, we 551 

define this latter as the arithmetic mean of the true emissions values for the source over all 365 days of the year. 552 

When annual estimates are calculated as arithmetic means or medians of individual image estimates, the GP and LCSF 553 

methods generally outperform the other methods. Indeed, for cloud-free inversions with CO2 and NO2 data, the median 554 

deviations for the annual arithmetic means (solid lines, 2nd column of Fig. 5) are 8% (GP), 14% (LCSF), 73% (IME), 35% 555 

(CSF), and 64% (Div), and the median deviations for the annual medians (dotted lines, 2nd column of Fig. 5) are 14% (GP), 556 

21% (LCSF), 54% (IME), 13% (CSF), and 64% (Div). However, if annual estimates are calculated as the means of image 557 

estimates weighted by their uncertainty, the relative performance of the methods changes. In this case, the median deviations 558 

for annual weighted means (dashed lines, 2nd column of Fig. 5) are 28% (GP), 48% (LCSF), 46% (IME), and 12% (CSF). 559 

Thus, using weighted means to calculate annual estimates significantly improves, especially for low-emitting sources, the 560 

performance of the IME and CSF methods while having a negative impact on the GP and LCSF methods. This finding 561 

indicates the reliability of the uncertainties in the estimates produced by the IME and CSF methods compared to the other 562 

methods and, if we use weighted means to compute annual estimates, the accuracies of the IME and CSF methods increase 563 

significantly. 564 

Figure 6 displays the inversion results for the annual estimates in a different but complementary way compared to Fig. 5: 565 

the estimated annual emissions are represented with respect to the true ones which in particular allows illustrating whether 566 

annual estimates are over- or under-estimated for a certain type of source and by a given inversion method. In order to 567 

consider the best performance for each method according to what has been shown above, annual estimates represented in the 568 

figure, and used for the analysis of the results made below, are arithmetic means of single-image estimates for the LCSF and 569 

the GP methods, while they are weighted means for the IME and CSF methods. Furthermore, Fig. 6 illustrates more clearly 570 

than Fig. 5 the fact that, when weighted averages are used as annual estimates, the latter methods produce annual estimates 571 

whose precision is comparable for weak and strong sources while the global precision of estimates derived from single 572 

images by these methods is significantly lower for weak sources (Fig. 3); averaging single-image estimates weighted by their 573 

uncertainty thus strongly increases the performance of the IME and CSF methods at the annual scale for low-emitting 574 

sources. However, even though the amplitudes of the relative deviations are similar between strong and weak sources, they 575 

have opposite signs: annual estimates for strong sources are generally underestimated while annual estimates for weak 576 

sources are generally overestimated.  577 

Contrary to the results for the estimates retrieved from single images (Fig. 4), the CSF, GP and LCSF approaches show 578 

similar performance, with a slight advantage for the GP method, when estimating annual emissions if we consider the 579 

ensemble of the benchmarking scenarios. For example, in the case of inversions from cloud-filtered CO2 and NO2 data and, 580 

with SMARTCARB/ERA5 winds, the relative RMSEs are 18/27% (CSF), 20/20% (GP) and 17/31% (LCSF). The analysis 581 
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of Fig. 3 shows that the LCSF method produces single-image estimates that are slightly more accurate but more biassed than 582 

that of the GP method. Thus, the compensation of errors when averaging single-image estimates over a year may be less 583 

effective for the LCSF method than for the GP method leading to similar global accuracies for both methods. For instance, 584 

the LCSF method has a greater tendency to underestimate high emissions (4th row of Fig. 3) which likely explain why, 585 

contrarily to the GP method, it systematically underestimates the emissions of the strong emitting power plant located in 586 

Jänschwalde, regardless of the inversion scenario (Fig. 6). With respect to its results for single-image estimates, the CSF 587 

method has significantly better results at the annual scale when annual estimates are computed as weighted averages of 588 

single-image estimates. 589 

Even when annual estimates are computed for the IME method as weighted averages of the single-image estimates, this 590 

method still show smaller accuracies compared to the CSF, GP and LCSF methods: the median values of the deviations for 591 

the annual estimates are for example 39% (IME), 20% (CSF), 11% (GP) and 21% (LCSF) when considering the best scores 592 

for the inversions performed with ERA5 winds and cloud-filtered data (4th column of Fig. 5). The relative performance of the 593 

IME method is even worse when analysing the performance in terms of RMSE because, despite a weighting of estimates 594 

according to their quality or uncertainty in the annual averages, this method produces for some sources annual estimates that 595 

strongly deviate from the actual values, as in the cases of Boxberg or Schwarze Pumpe power plants (Fig. 6). Moreover, the 596 

deviations of the Div method compared to that of the CSF, GP and LCSF methods are higher for most of sources except for 597 

strong sources (true annual emissions > 15 MtCO2/yr) when inversions are performed using cloud-filtered data and ERA5 598 

winds (4th column of Fig. 5). 599 

It is noteworthy that annual estimates for most inversion methods are comparable between inversions using data with or 600 

without clouds (comparison between the 2nd and 3rd columns, Fig. 5), and surprisingly the deviations of the IME and Div 601 

approaches are even smaller for inversions with cloud-filtered data. Despite significant differences in the number of image 602 

estimates between those two (i.e., cloud-filtered and cloud-free) inversion configurations, annual estimates are on average 603 

slightly affected when cloud cover is considered in the data, at least for the year and sources examined in this study. 604 

However, even though the relatively small number of image estimates in the inversion configuration with clouds does not 605 

hinder most methods from determining annual emissions of most sources, discrepancies can be high for some sources when 606 

estimates do not sample correctly the entire year and thus introduce an important temporal bias. For example, the GP method 607 

mostly estimates emissions during summer for the Jänschwalde power plant when it uses the cloud-filtered inversion setup, 608 

explaining the strong underestimation of the annual emission of this source compared to the cloud-free case (top-left vs 609 

bottom-left panel of Fig. 6); this explains additionally why the RMSE increases significantly for the GP method (from 13% 610 

to 20% when inversions use SMARTCARB winds) when the cloud cover limits the number of single-image estimates. The 611 

IME method is also impacted by this temporal bias when the number of estimates is too small to properly capture the 612 

seasonal cycle of the emissions, as in the case of the Boxberg power plant. Moreover, whatever the benchmarking scenario, 613 

most inversion methods produce annual estimates for all the sources studied in this work, with the notable exception of the 614 

Div approach, which estimates annual emissions for only 10 out of 16 sources. This limitation, also present for cloud-free 615 
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data configurations, is related to the fact that some sources don’t produce strong enough divergence peaks from which 616 

annual estimates can be made by this method. 617 

As for the results concerning single-image estimates, the use of ERA5 winds instead of SMARTCARB winds has on 618 

average a very low impact on annual estimates delivered by the IME, CSF, GP and LCSF methods. For emissions estimated 619 

from cloud-free CO2 and NO2 data, the median deviations when inversions use SMARTCARB winds are indeed 46% (IME), 620 

12% (CSF), 8% (GP) and 14% (LCSF), and when inversions use ERA5 winds, they are equal to 46% (IME), 12% (CSF), 9% 621 

(GP) and 12% (LCSF) as shown in the comparison between the 2nd and 4th columns of Fig. 5. On the other hand, the overall 622 

accuracy of the Div method improves when inversions use ERA5 winds rather than SMARTCARB winds to estimate 623 

emissions. In this case, annual estimates are less prone to overestimation due to the generally lower amplitude of ERA5 624 

winds compared to SMARTCARB winds (Fig. A2). This also explains a stronger underestimation of the emissions of strong 625 

sources by the LCSF method, resulting in a decrease in the accuracy of the annual estimates for this kind of sources when 626 

this method uses ERA5 instead of SMARTCARB winds (left-bottom vs right-bottom panel of Fig. 6).  627 

The overall precision of the annual estimates computed by the IME, CSF, GP and LCSF methods are, for all the 628 

benchmarking scenarios, significantly higher than the overall precision of their single-image estimates. For example, when 629 

inversions are performed with ERA5 winds and cloud-filtered data, which is the benchmarking scenario with the poorest 630 

results, the median deviations of the annual estimates are 39%, 20%, 11% and 21% whereas the median deviations of the 631 

single-image estimates are 73%, 35%, 46% and 37% for the IME, CSF, GP and LCSF methods. Despite the biases that can 632 

hamper the image estimates, the compensation for errors when averaging across a year allow to generate annual estimates 633 

that are more precise and this positive effect is amplified when error-weighted averages are used, as in the case of the IME 634 

and CSF methods.  635 

4.2 Monthly estimates and seasonal cycle 636 

Monthly estimates can be computed using the same three methods as the annual estimates but, according to the results 637 

analysed in the former section, we choose to estimate monthly emissions with the method leading to the best performance at 638 

the annual scale: monthly estimates are thus calculated as the arithmetic means for the GP and LCSF methods and, as 639 

weighted means for the CSF and IME methods. Then, considering the distributions of image estimates month by month 640 

allows us to study how well inversion approaches capture the seasonal cycle of the true emissions. The analysis of Fig. 7 641 

shows however that none of them are able to do this when the cloudy pixels are masked: the seasonal cycle of the actual 642 

monthly emissions, i.e. maximal/minimal emissions for winter/summer months, is not reproduced by the inversion methods 643 

whose estimates are characterised by an erratic monthly evolution leading to inconsistent seasonal cycles. Even though a 644 

method correctly estimates annual emissions, some of its monthly estimates can be in important disagreement with the true 645 

monthly emissions as it is the case for the CSF method on the Heyden source or for the LCSF method on the Dolna Odra 646 

source (Fig. 7). Moreover, the methods generally fail to produce estimates for the winter months of the year due to the 647 

temporal sparsity of data when the impact of the cloud cover is taken into account. 648 



21 
 

If the number of estimates is higher, i.e. when clouds are not considered in the data, seasonal cycles derived from 649 

monthly estimates are in better agreement with that of the observations for most of inversion methods: the amplitude of the 650 

seasonal cycle of the data can be well reproduced as it is the case for the Jänschwalde and Dolna Odra sources for example 651 

(Fig. A5). But, the averaged values of the seasonal cycles of the monthly estimates, i.e. the annual estimates, can still be in 652 

strong disagreement with that of the data even though the number of estimates is higher; this fact supports the presence of 653 

systematic biases in the estimates that was evidenced for most of the methods in the analysis of the results for single-image 654 

image estimates (Sect. 3.1).  655 

5 Discussion 656 

5.1 Accuracy vs number of estimates 657 

For a given benchmarking scenario, the analysis conducted in Section 3 has evaluated the performance of the different 658 

methods in inferring estimates from individual images by considering all the estimates provided by each method for this 659 

scenario. In other terms, the analysis did not integrate any diagnostic regarding the quality of the estimates from these 660 

methods. However, we demonstrated in Sect. 4.1 that computing annual means of estimates weighted by their uncertainties 661 

can significantly improve the accuracy of the annual estimates when uncertainties are effectively characterised as in the case 662 

of the IME and CSF methods. Therefore, a study of the performance of inversion methods for estimating single-image 663 

estimates from synthetic XCO2 images should as well integrate a characterization of the quality of its estimates. More 664 

precisely, different performance indicators or error estimates can be derived from the application of the inversion methods 665 

and such indicators can be used to identify and select the most reliable estimates. Nevertheless, there are no objective criteria 666 

to impose a threshold on the quality of the estimates; higher quality thresholds come with smaller sets of estimates, and 667 

optimal values depend on the inversion method. Indeed, not only do the different inversion methods calculate the 668 

uncertainties in the estimates in different ways but also the computed uncertainties only reflect part of the total/actual 669 

uncertainties, focusing on subsets of sources of uncertainties which differ across the different methods. 670 

    For a given inversion method, we attempt an effective quality indicator (QI) which would allow selecting estimates in a 671 

manner that the global accuracy of the method increases when the QI increases, and which would provide indications on the 672 

actual/total errors. We assume that the uncertainties in the estimates derived by the methods provide the best basis we can 673 

get from the algorithms described in Sect. 2.1 for the derivation of such an indicator. In principle, since dealing with sources 674 

of quantitatively different amplitudes (see Sect. 2.3) we should derive the QI in terms of relative uncertainties. And, if we 675 

define the QI as a threshold selecting the estimates whose relative uncertainties are below it, we should select the most 676 

reliable estimates regardless of the strength of the source they are associated with. However, this would be true if the 677 

methods perform independently with respect to the amplitudes of the emissions and this is not the case for most methods as 678 

illustrated in Sect 3.1. The CSF and IME methods for example strongly overestimate low-emitting sources compared to 679 

high-emitting sources which implies that the relative uncertainties of weak sources are underestimated by these methods 680 
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(Fig. 3). Therefore, if the threshold value of relative uncertainty was decreased, we would tend to select more bad than good 681 

estimates and the overall performance would decrease. Therefore, for these methods, we prefer to select estimates with 682 

respect to their uncertainties, and not to their relative uncertainties, which will mitigate the impact of the bias in the 683 

estimation of low-emitting sources.  684 

In any case, determining whether a QI should be based on absolute or relative uncertainties depends on whether the 685 

overall performance of the method improves when estimates with decreasing absolute or relative uncertainties are chosen. 686 

Preliminary tests (not shown here) have established that the overall accuracy of the IME and CSF methods increases when 687 

the absolute uncertainty below which estimates are selected is decreased. For the GP and LCSF methods, this behaviour is 688 

obtained when relative uncertainties are used to discriminate estimates. Consistently, for all methods, the increase of 689 

performance is then associated with a reduction in the number of estimates and, in order to get a significant number of high-690 

quality estimates, the value of uncertainty corresponding to the maximal accuracy of the method is arbitrarily set to the 10th 691 

percentile of the distribution of the absolute/relative uncertainties. Then, by varying its QI between this value and the 692 

maximal uncertainty of its estimates, each method can be thus associated to a range of accuracies with their respective 693 

number of estimates for a specific benchmarking scenario (e.g. cloud-filtered or cloud-free). In other words, inversion results 694 

can be represented by curves of accuracy vs number of estimates, which gives for each inversion method a complete 695 

overview of its performance in terms of accuracy and number of estimates. 696 

To assess the inherent performance of the methods without considering the impact of the cloud cover or of the 697 

uncertainty in the winds, inversion results are analysed for the inversion configuration using XCO2 and NO2 cloud-free data 698 

and SMARTCARB winds, i.e. the same winds used to generate the synthetic XCO2 and NO2 observations. Figure 8 699 

illustrates that the overall accuracies of the CSF and IME methods are highly dependent on the selection of their estimates, 700 

and are therefore strongly correlated with their number of estimates. For instance, the IME and CSF methods exhibit large 701 

increases in the 3rd quartiles of their deviation distribution when the QIs of their estimates decrease: from 81% to 231% 702 

(IME) and from 43% to 75% (CSF) respectively.  For these methods, the selection of estimates based on their quality 703 

indicators appears to be effective, as the 3rd quartiles and 95th percentiles, which indicate the proportion of poor estimates, 704 

significantly decrease with increasing quality index, i.e. with decreasing number of estimates. Therefore, the IME and CSF 705 

methods are very likely to produce reliable uncertainty estimates in the individual emission estimates and the definition and 706 

derivation of their QI reflect the level of accuracy of their estimates.  707 

The LCSF and GP methods display a slight correlation between most of their accuracy indicators and the number of 708 

estimates. For instance, the 3rd quartiles of the distributions of relative absolute deviations remain relatively stable, varying 709 

only from 46% to 56% and from 51% to 59% for the LCSF and GP methods respectively, over their entire range of number 710 

of estimates. For these methods, the tradeoff between precision and number of estimates is not a critical issue and retrieving 711 

an important number of estimates does not imply a significant deterioration in accuracy. On the other hand, this also 712 

indicates that the current quality indicators for the GP and LCSF methods do not reflect the total/actual uncertainties in their 713 

estimates. 714 
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As the methods present different sensitivities of the accuracy to the number of estimates, the relative performances of the 715 

methods in terms of accuracy change according to the number of estimates. In other terms, as is the case for the LCSF and 716 

CSF methods in Fig. 8, one method may outperform another method depending on the number of estimates we consider. 717 

Indeed, below 1000 estimates, the CSF method is characterised by a better precision than the LCSF method for all the 718 

statistical indicators and in particular for the 95th percentile of the deviation distribution. The best performance of the CSF 719 

methods in terms of precision is then reached for ~400 estimates where the median of the deviations is ~25% compared to 720 

~29% for the LCSF method. But, if the number of estimates increases beyond 1000, the LCSF method starts outperforming 721 

the CSF method with respect to the 95th percentile and when estimates are not filtered by their QI (right ends of the curves of 722 

Fig. 8), it totally outperforms the CSF method not only in terms of precision but also in terms of number of estimates: if all 723 

estimates are considered, the LCSF/CSF method generates 2722/2028 estimates whose deviations from the truth are 724 

characterised by an IQR of 17%–56%/17%–75%. Furthermore, the LCSF method discards outliers much more efficiently 725 

than the CSF method insofar as the 95th percentile of the deviation distribution is much lower for the former (118%) than for 726 

the latter method (341%). 727 

Selecting one method over another involves making a trade-off between precision and the number of estimates obtained. 728 

Taking the example from Fig. 8, if the primary objective of an application is to obtain as many estimates as possible, the 729 

LCSF method would be the preferred choice, as it can provide 2722 estimates with an IQR of the deviations ranging from 730 

17% to 56%. On the contrary, if the main priority is to obtain estimates with the highest precision, the CSF method would be 731 

more suitable, providing approximately 400 estimates with an IQR of the deviations ranging from 11% to 45%. The trade-off 732 

between accuracy and number of estimates in the choice of method is even more accentuated in the case where inversions 733 

are made with ERA5, as the use of this wind product increases the accuracy of the CSF method through bias compensation 734 

(Sect. 3.4): in this case, using the CSF method, a maximum precision can be obtained, with an IQR equal to 11%–42%, for 735 

650 estimates. If, on the other hand, the LCSF method is used, a maximum number of estimates, 2670, can be obtained with 736 

an IQR of 18%–55% (Fig. A6). 737 

The difficulty in achieving the best possible precision for a given method lies in determining an appropriate QI for their 738 

estimates. Here, we adopted a relatively simple approach by defining high-quality estimates as those with relative or absolute 739 

errors below the 10th percentile of the distribution relative to all the uncertainties of the estimates. However, as seen in the 740 

curves of Fig. 8, highest precision may not be achieved at this value but at a higher one as in the examples of the IME and 741 

CSF method. This is because misleading estimates, such as those resulting from the overlap of plumes from two sources, can 742 

be characterised by very small uncertainties but at the same time by important deviations from the truth, and their impact on 743 

the results becomes significant when the number of estimates gets relatively small. More generally, the QIs defined in this 744 

study reflect the actual uncertainties in the estimates more or less well and the definition of a more reliable QI that ensures 745 

increased accuracy with higher values of the indexes and deliver the maximum achievable precisions for all of the methods 746 

is beyond the scope of this study, as it likely requires extensive studies in order to provide a common and an accurate 747 

characterization of the total uncertainties in the estimates for all the inversion methods. Finally, we will note that all the 748 
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qualitative insights stated above about the relationships between accuracy and number of estimates are also valid when 749 

considering inversions using cloud-filtered data and ERA5 winds (Fig. A7). 750 

5.3 Single methods vs ensemble approaches 751 

In this study, we create ensemble approaches by averaging the single-image estimates – for the same source and from the 752 

same individual image – produced by different inversion methods. The aim is to obtain more robust and reliable predictions 753 

if individual biases and errors associated with each approach compensate each other. We want thus to analyse whether an 754 

ensemble method, although more expensive from a computational point of view, would perform quantitatively better than a 755 

single method among CSF, GP and LCSF; these methods clearly outperforming the IME method in terms of accuracy and 756 

number of estimates. 757 

Four sets of ensemble approaches are considered: the first one integrates the CSF, GP and LCSF inversion methods, and 758 

the remaining three ensemble approaches integrate pairs of methods (CSF & GP, CSF & LCSF and GP & LCSF). Moreover, 759 

in order to assess the impact of the QIs of the different inversion methods on the performance of the ensemble methods, 760 

results are analysed by considering 1) all the estimates and 2) only the best estimates produced by each method. As results 761 

are assessed for the inversions using ERA5 winds and cloud-filtered data which provide a relatively small number of 762 

estimates, we consider the best estimates as the estimates whose relative/absolute errors are below the 25th percentile of their 763 

respective error distribution. 764 

The ensemble approaches do not provide clear improvements in terms of estimate accuracy over the individual methods 765 

from which they are derived (Fig. 9), with the exception of the important number of outliers produced by the CSF method 766 

when estimates are not filtered: the 95th percentile of the deviation distribution is equal to 286% for the CSF method only, 767 

while it decreases to 160% for the ensemble approach gathering the CSF, GP and LCSF methods. On the other hand, the 768 

skewness of the CSF distribution of deviations lead to an increase of the 95th percentile of the deviations of the ensemble 769 

approaches compared to the 95th percentiles of the LCSF and GP methods. Otherwise, the IQR of the deviations are similar 770 

for all the ensemble and individual approaches and roughly ranges from 15% to 65% when estimates are not selected based 771 

on their uncertainty and from 15% to 60% when the best estimates are selected. Therefore, errors and biases in the estimates 772 

produced by a given method are generally not compensated by the estimates of other inversion methods which suggest that 773 

in general, for the same images and sources, the estimates produced by other inversion methods may also present larger 774 

errors or similar biases. 775 

The great benefit of using ensemble approaches lies in the significant increase in the number of estimates, which is a 776 

crucial issue in the real world when the amount of satellite data is strongly limited by the cloud cover. The ensemble 777 

approach gathering the CSF, GP and LCSF methods can supply a maximum of 412 estimates over the year analysed in this 778 

study, representing a 30% increase compared to the LCSF method which is the individual method that supplies the most 779 

estimates (318). This result indicates that the CSF, GP and LCSF methods can provide estimates from different images, i.e. if 780 

one method does not provide an estimate from a given image, another method from the ensemble may, conversely, provide 781 
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one (Fig. A8). This allows the ensemble method to produce a maximum number of estimates (412) that is close to the 782 

number of usable satellite images (~500). When only best estimates are considered, the ensemble approach generates more 783 

than twice as many values compared to the LCSF method (195 vs 80) whereas the other ensemble approaches (CSF & GP, 784 

CSF & LCSF and GP & LCSF) only provide about 140 estimates. 785 

While combining the estimates generated by the CSF, GP and LCSF methods seems to be the optimal choice for an 786 

ensemble approach providing the largest number of predictions, the computational cost of using these methods together may 787 

not outweigh the benefits in terms of number of estimates compared to using a single method. For example, in the most 788 

realistic scenario of inversions conducted with cloud-filtered data and ERA5 winds, the computational time required for the 789 

CSF-GP-LCSF ensemble method is more than three times that of the LCSF method alone (see Sect. 2.1) whereas the overall 790 

precision of the LCSF method is better and the increase in the number of estimates is only 30% when using the ensemble 791 

approach. Therefore, if the performance of computer systems remains an important factor to take into account, one would 792 

prefer to use the LCSF method, which is the fastest method of this study, instead of using an ensemble approach. 793 

In order to investigate the benefit of using ensemble approaches for the estimation of annual emissions, we use the same 794 

three individual methods that produce much better results than the IME and Div methods (see Sect. 4.1), but we consider 795 

different definitions of the annual estimates depending on the inversion method: annual estimates are arithmetic means of 796 

image estimates for the LCSF and the GP methods whereas they are weighted means for the CSF method. This choice 797 

corresponds to the best performance at the annual scale that has been found in this study for each method (Sect. 4.1.) 798 

Besides, no selection of the estimates was performed to compute the annual estimates although the quality of the estimates is 799 

integrated within the annual estimates of the CSF method which are averages weighted by the errors in the estimates. Among 800 

the ensemble methods considered here, only the approach gathering the CSF and GP methods yields better results than the 801 

best individual method composing it for most of benchmarking scenarios (Fig. A9). For example, when inversions are 802 

performed with cloud-filtered data and SMARTCARB winds, the CSF, GP and their ensemble approach are characterised by 803 

relative RMSE equal to 18%, 20% and 16%, respectively. The benefit of using ensemble methods for estimating annual 804 

estimates is thus questionable, especially considering that the gain in accuracy, if any, is very small compared to the 805 

individual methods which, depending on the inversion scenario, produce the more accurate annual estimates. This is due to 806 

the fact that the inversion methods generate annual estimates that are generally biassed in the same way: emissions of strong 807 

sources are generally underestimated while emissions of weak sources are generally overestimated (see median values in 808 

Fig. 6). 809 

6 Conclusions 810 

In this paper, we tested and benchmarked several lightweight data-driven inversion methods for estimating local (city and 811 

power plant) emissions from XCO2 and NO2 satellite images. The five methods that have been studied are the Integrated 812 

Mass Enhancement (IME), the Cross-Sectional Flux (CSF), the Gaussian Plume (GP), the Light Cross-Sectional Flux 813 
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(LSCF) and the Divergence (Div); this last method generating only annual estimates. In a domain centred over the city of 814 

Berlin, which extends about 750 km in the east-west and 650 km in the south-north direction, inversions were performed 815 

with almost one year of synthetic SMARTCARB XCO2 and tropospheric column NO2 satellite observations with similar 816 

characteristics as the upcoming CO2M mission. The ability of the inversion methods to estimate emissions has been assessed 817 

by comparing the deviations of estimates from the corresponding “true” values used in the simulations, for 16 sources 818 

including the city of Berlin and 15 power plants. To get a complete overview of performance, several benchmarking 819 

scenarios were considered in order to analyse the benefit of using auxiliary NO2 data or the impacts of the cloud cover in the 820 

data or of uncertainties in the wind data. 821 

In terms of quantifying emissions from single satellite images, the implementations of the CSF, GP and LCSF methods 822 

used in this study outperform that of the IME method. Furthermore, we have demonstrated that the performance in terms of 823 

accuracy and number of estimates varies, to a greater or a lesser extent depending on the method, with the selection of the 824 

estimates based on their relative or absolute uncertainty. The overall accuracies of the IME and CSF methods are 825 

significantly enhanced when a strict screening for high quality estimates is applied but at the cost of an important decrease in 826 

the number of estimates. The GP and LCSF methods, on the other hand, perform more robustly showing only a variation in 827 

their global precisions with increasing quality screening. This behaviour points out the need for these methods of a better 828 

characterization of the uncertainties in the estimates. When estimates are filtered, the CSF method yields the best results in 829 

terms of accuracy while, when estimates are not filtered, the LCSF method provides the highest number of estimations with 830 

a slight decrease in accuracy. Overall, the CSF, GP and LCSF methods show similar accuracies for all the benchmarking 831 

scenarios and when the less reliable estimates of the CSF method are removed: most of IQRs of the absolute deviations 832 

range from 15% to 60% with an average median around 35%. Moreover, for the most realistic benchmarking scenario, i.e. 833 

for the inversions using cloud-filtered NO2 & CO2 data and ERA5 winds, the IME, CSF, GP and LCSF methods generate on 834 

average 6 (IME), 18 (CSF), 17 (GP) and 20 (LCSF) estimates per source and per year with great differences between sources 835 

(See Sect. 3.3), which is equivalent to a maximum number of estimates equal to 96 (IME), 295 (CSF), 274 (GP) and 318 836 

(LCSF) for all 16 sources. These figures are significantly lower than the number of usable images (~500) that can provide a 837 

hypothetical constellation of 3 satellites as analysed here; this suggests that methodological improvements could increase the 838 

number of estimates.  839 

The accuracy of the CSF and IME methods was found to depend on the strength of the sources with important errors 840 

when determining low emissions; the GP and LCSF methods, in contrast, show similar performances across different ranges 841 

of emissions. Moreover, the advantage of using co-located NO2 signal for plume detection and quantification appeared to be 842 

clear for the CSF, IME and GP methods, for which the number of single-image estimates significantly increased, while it 843 

was rather weak for the LCSF method. When a cloud cover mask was taken into account in the data, the number of estimates 844 

significantly decreased for all the inversion methods with an average reduction of 85%; the global precision however hardly 845 

decreased and even improved for the IME method. For all the inversion methods, the sensitivities of the results to wind 846 

uncertainties were surprisingly found to be insignificant when replacing the SMARTCARB winds (used in the simulation) 847 
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by ERA5 reanalysis winds. Finally, if we do not take computational cost into account, the interest in using ensemble 848 

approaches instead of a single method lies mainly in an increased number of single-image estimates as the availability of 849 

estimates from the different methods complements each other. 850 

Part of the effectiveness of the implementations of the cross-sectional flux method may come from the generation of 851 

multiple estimates of cross-sectional fluxes along plumes and the subsequent averaging in order to get an unique emission 852 

estimate for a given source and satellite overpass. Probably, errors in the satellite data or in the simplifying assumptions of 853 

the cross-sectional approaches partly cancel out when averaging. The CSF implementation uses a complex algorithm of 854 

plume detection which makes it possible to use the total detectable plume, probably leading to more accurate estimates than 855 

for the LCSF implementation, which only uses observations near the source. However, the plume detection and the 856 

computation of the curved centreline can fail for weak sources (i.e. short plumes) at the cost of having a large number of 857 

outliers. On the contrary, the LCSF implementation uses a simpler but more robust algorithm that uses the wind vector to 858 

estimate the location of the plume, which likely explains why this method generates more estimates, and without the need of 859 

NO2 data, compared to the CSF implementation. However, efforts should be made to correct the systematic underestimation 860 

of strong emissions by the LCSF implementation. A way forward can be merging the CSF and LCSF method into a single 861 

algorithm that takes the advantages of both approaches.  862 

When compared to other methods, the relative ability of the GP method in estimating emissions probably relies on the 863 

use of a Gaussian function whose optimization determines the emissions while taking into account the entire structure of the 864 

plumes, and calculating effective winds that are consistent with that of the plumes. However, this optimization and thus the 865 

performance of the GP method highly depend on the first-guessed values to be assigned to its parameters (not shown). And, 866 

in this study, the first-guessed values of the emissions are the summer average emissions for each source; this could be a 867 

strong constraint on the estimated values and could lead to an overestimation of the GP performance in this benchmarking 868 

study. Finally, the GP method is computationally expensive due to the heavy plume detection algorithm and to the multi-869 

parameter optimization required for the Gaussian fitting of the plumes (Table 1). 870 

The IME method also integrates information retrieved from the entire structure of the plumes but, contrarily to the GP 871 

method, it does not use this information when computing effective winds. Therefore, these winds may be inconsistent with 872 

the characteristic lengths of plumes used by the IME method to estimate CO2 emissions (Sect. 2.1.4) and this could explain 873 

the relatively poor performance of the IME method in this study. Varon et al. (2018) probably found that the IME method 874 

was adapted to estimate CH4 emissions from high-resolution plumes because they inferred a relationship between the 875 

effective winds and the characteristic lengths through LES simulations. Another drawback of the IME method is that it is 876 

very sensitive to missing data as it needs an entire coverage of the plume area by data to efficiently integrate the total mass 877 

enhancement. Other single-image methods (GP, CSF and LCSF) are less sensitive to missing data as they fit functions to the 878 

data and can handle data gaps; this explains why these methods provide a much larger number of estimates when the impact 879 

of cloud cover on the data is considered (see Sect. 3.3). 880 
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In this study, we chose not to analyze the potential of the divergence method for estimating instant emissions from single 881 

satellite overpasses because of the lack of studies on such an application of this method. As highlighted in the introduction 882 

section, our aim is to compare proven approaches for the local scale estimation of strong sources (such as the application of 883 

the divergence method to time-averages of satellite images). Moreover, the strong spatial variability of the divergence fields 884 

derived from single images suggest that only averaged fields could be processed properly with the version of the divergence 885 

approach which is used here for annual estimates and which relies on the peak-fitting of temporally averaged divergence 886 

fields. However, we have conducted some preliminary analysis on a version of the divergence method which instead 887 

integrates the divergence signal spatially (over disks centered on the sources). The results, documented in appendix A, 888 

demonstrate that with a range of integration radii close to that of the spatial resolution of image, this approach can yield 889 

estimates that would be comparable in terms of accuracy and quantity to that of the best inversion methods of our benchmark 890 

evaluation for single-image based estimates. A better understanding of the behavior of this approach as a function of the 891 

integration radius, and an assessment of the estimation errors are needed to conduct a proper comparison to the other 892 

methods. This deserves further investigations. However, these preliminary results raise optimistic perspectives regarding the 893 

potential of using the divergence method for estimating instant emissions from single-overpass images. 894 

For estimating annual emissions, the CSF, GP and LCSF methods outperform the Div and IME methods when annual 895 

estimates are computed as error-weighted means of single-image estimates for the CSF method and as arithmetic means of 896 

these estimates for the GP and LCSF methods. Across the different benchmarking scenarios, the GP method shows better 897 

precisions in its annual estimates because its single-image estimates have similar absolute deviations from the truth but are 898 

less affected by biases compared to the CSF and LCSF methods (see Fig. 3). However, despite biases, errors in the single-899 

image estimates provided by the CSF, GP and LCSF methods likely compensate when averaging and these methods also 900 

generate annual estimates with a better precision than for their single-image estimates. In the most realistic benchmarking 901 

scenario – where inversions use cloud-filtered XCO2 & NO2 data and ERA5 winds and where performances are the lowest 902 

compared to other scenarios – the relative RMSE for the annual emissions of the 16 sources is 20% (GP), 27% (CSF), 31% 903 

(LCSF), 55% (IME) and 79% (Div). The relatively weak performance of the Div method could be explained by the fact that 904 

this method was originally developed for the estimation of NOx emissions and the fields of this chemical species are 905 

generally characterised by stronger divergence peaks than for CO2 fields. However, its performance could be improved by 906 

selecting and averaging images that are characterized by favourable conditions such as strong signals or wind speeds 907 

important enough to guarantee the predominance of advective processes in the atmospheric transport. The performances of 908 

ensemble approaches gathering several inversion methods in terms of annual estimations is not better, and in some cases 909 

even worse, than the individual methods. Finally, none of the methods were able to correctly reproduce the monthly seasonal 910 

cycle of the emissions when data underwent a cloud-filtering, i.e. when data were not available for some months, which 911 

points out the need for an extensive temporal coverage of the observations when aiming to capture the monthly variability in 912 

emissions.  913 
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In addition to the technical improvements that could be made on the algorithms of the methods, further developments 914 

could extend this study such as the integration of new data streams for estimating CO2 emissions such as satellite data of 915 

other co-emitted gases than NO2, e.g. CO data provided by the TROPOMI instrument. A companion paper (Hakkarainen et 916 

al., 2024) analyses the ability of the inversion methods in determining NOx emissions, from synthetic and TROPOMI NO2 917 

satellite data for the Matimba and Medupi power plants in South-Africa. The NO2 synthetic data are extracted from the high-918 

resolution MicroHH Large Eddy Simulations (LES) (Van Heerwaarden et al., 2017) and used in particular to study the 919 

nitrogen dioxide to nitrogen oxide scaling factors that are required for satellite-based estimations of NOx emissions. 920 

Moreover, the capacity of the inversion methods to estimate city emissions has been analysed in this study on the single 921 

example of the city of Berlin and, as most of the methods have provided correct estimates for its emissions, it would be 922 

interesting to expand this study to other cities and other local sources. Finally, this benchmarking study has not integrated the 923 

new and promising type of inversion methods that are the methods derived from deep learning techniques (e.g. Lary et al., 924 

2016). After a potentially complex training phase, deep-learning methods could quickly process large amounts of data and 925 

provide estimations with similar or better accuracy than the methods studied here (Dumont le Brazidec et al., 2023). They 926 

could also complement these methods by allowing a fine differentiation of the plumes compared to the background with 927 

advanced image segmentation techniques. 928 

The aim of this study is to contribute to the development of the CO2 Monitoring and Verification Support system that 929 

will use the upcoming CO2M satellite data. And, although this benchmarking study has been performed with synthetic 930 

observations, the methods studied here can be easily adapted to the analysis of real satellite observations and to deal with 931 

sources of unknown location as demonstrated in Hakkarainen et al. (2024). 932 

 933 

 934 

 935 

 936 

Appendix A: Potential of the divergence approach to estimate local CO2 emissions from single-overpass satellite 937 
images of XCO2 and NO2  938 

In this study, the performance of the divergence approach to estimate local CO2 emissions from XCO2 and NO2 synthetic 939 

satellite images is assessed with a standard version of this approach (e.g., Beirle et al., 2021; Hakkarainen et al., 2022), 940 

which provides temporally averaged estimates. Results concerning the divergence approach are thus analyzed in the main 941 

part of this paper in terms of annual means. However, following the suggestions of a reviewer (S. Beirle), we also tested the 942 

potential of this method to estimate instant emissions using single-overpass images. For this purpose, we have used two 943 

versions of the divergence approach that have been modified for single image geometry as in Beirle et al. (2023).  944 
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For both versions, the computation of the divergence fields is performed by only considering the “advective” term 945 

(106 ∗ 𝑀𝑎𝑖𝑟 ∗ 𝑈 ∗ ∇(𝑉𝐶𝐷)) of the full expression of the horizontal flux divergence (∇(106𝑀𝑎𝑖𝑟 ∗ 𝑈 ∗ 𝑉𝐶𝐷)) where Mair is 946 

the dry air mass, U is the wind vector and VCD is the vertical column density in parts per million. Such reformulation of the 947 

divergence method that does not compute the divergence of the wind term was also used by Beirle et al. (2023) for NO2. The 948 

advantage of this reformulation for CO2 is that the background (e.g., a constant offset of 400 ppm) is implicitly removed.  949 

These versions of the divergence approach differ from each other in their way of computing emissions from the 950 

divergence maps associated with single-overpass images: the first version integrates the divergence fields on disks centered 951 

on the sources (Figure A10). And, to mitigate the impact of the uncertainties in the observations, the emission estimate for a 952 

given satellite overpass and source can be computed as the average of the estimates when integrating the divergence signal 953 

on disks of different radii. This version of the divergence approach will be referred to hereinafter as the integral divergence 954 

method. The second version proceeds in a similar way to the one used in the main part of the article and fits a 2-D Gaussian 955 

function to the divergence maps in order to retrieve source emissions (e.g. Beirle et al. 2020). The modified peak fitting 956 

model is similar to the original but with a reduced number of estimated parameters. Namely, the parameters related to the 957 

background and to the location correction are removed from the model parameters. This version of the divergence approach 958 

will be referred to hereinafter as the peak-fitting divergence method. 959 

For both versions, potential peaks are detected by using NO2 fields which are integrated over disks of 6 km radius 960 

centered on the sources. If the integral of the divergence map on the disk is larger than the integral on the area outside the 961 

disk, then the enhancement, related to a given source and for a given satellite overpass, is considered strong enough and the 962 

emission estimation can be carried out. Many sources in the SMARTCARB dataset are weak and enhancements may be 963 

barely visible which causes challenges for both versions. 964 

To evaluate the potential of these two versions of the divergence approach, we use the SMARTCARB dataset described 965 

in section 2.2. which provides about 3000 images to determine the emissions of the 16 local sources that are considered in 966 

this study (if we take into account the cloud cover, only 500 images remain usable). Furthermore, we consider two 967 

benchmark scenarios (see table 2 and section 2.3) where inversions are performed using CO2 and NO2 data with 968 

SMARTCARB winds. In one case, we use cloud-free data, while in the other, cloud-filtered data.  969 

The analysis of the deviations from the truth of the instant estimates shows that the integral divergence approach is 970 

strongly sensitive to the radius of the integration disks (Fig. A11). No clear trend appears except that errors increase sharply 971 

for a radius greater than 10 km, with a significant presence of outliers. Below this value, the absolute relative deviations 972 

(bottom panel of Fig. A11) can increase or decrease depending on the value of the radius Furthermore, the integral 973 

divergence approach can underestimate or overestimate emissions depending if the radius is lower or greater than ~4 km. A 974 

possible explanation for this behavior could be that the impacts of the two main sources of errors in the divergence method 975 

— namely, the uncertainties in the observations and the influence of additional but unwanted sources on the background of 976 

the divergence fields — evolve in opposite directions as the integration radius increases. The impact of the uncertainties is 977 

mitigated when the area of the integration disk increases because errors have more probability to cancel out. Conversely, the 978 
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impact of neighboring sources on the background of the divergence field intensifies as the integration radius increases, 979 

because the likelihood of capturing features in the divergence maps that are not directly related to the emissions of the 980 

targeted sources grows. This impact consistently introduces a positive bias in the estimates (as we capture more sources) and 981 

is likely more important than the one related to the uncertainties as performance overall degrades when the integration radius 982 

increases. 983 

The peak-fitting divergence method is characterized by a poor performance compared to the integral divergence method 984 

for the ensemble of integration radii that we have considered here (Fig. A11). The estimation of small emitting sources may 985 

be more difficult for the peak-fitting version as the fit of the 2-D Gaussian function to the data associated to these sources 986 

often fails and does not provide optimal and reliable parameter combinations, yielding poor and often overestimated 987 

emission estimations. Therefore, even though the peak-fitting divergence method is generally more efficient at the annual 988 

scale, these results suggest that it is not the case when estimating instant emissions from single overpass images.  989 

The configuration of the integral divergence method which averages estimates across the integration radii of 2, 3 and 4 990 

km shows the best performance amongst the configurations that we have tested. Probably, the impacts of the data 991 

uncertainties and the background are well balanced for this range of radii and the fact of averaging estimates across three 992 

different radii further reduces the influence of the data uncertainties on the results. When compared to other inversion 993 

methods analyzed in this study, the performance of this configuration of the integral divergence method is similar to that of 994 

the best inversion methods (Fig. A12). For the benchmarking scenario considering cloud-free data, its relative absolute 995 

deviations are for example characterized by a median value of ~38% and Interquartile Range (IQR) of [~19% ‒ ~64%] 996 

which are comparable to deviations associated to the Light Cross-Sectional Flux (LCSF) method which have a median value 997 

of ~32 % and an IQR of [~15 % ‒ ~56 %]. Note that the integral divergence method generates fewer estimates (2174) 998 

compared to the LCSF method (2722), but more than the Gaussian Plume (GP) method (1776). 999 

These preliminary results regarding the potential of the integral divergence method for estimating local CO2 emissions 1000 

from single-overpass images of XCO2 and NO2 appear promising, especially since this method allows for the detection of 1001 

plumes from unknown sources (Beirle et al., 2021). However, further investigation is required to properly assess factors such 1002 

as the integration radius based on data resolution, and to generalize this method to various types of satellite data. 1003 

Additionally, a thorough quantitative error assessment is essential to evaluate the accuracy of the estimates, enabling the 1004 

classification and selection of estimates, which would enhance the method's overall performance. 1005 
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 1215 

 1216 
Figure 1. Illustration of different inversion methods for a plume produced by the Jänschwalde power plant on April 23rd, 2015. 1217 
For all figures, pixels with dots are the selected enhancements representing the plume a) CSF method: the blue boxes depict the 1218 
areas where the Gaussian fits of the plume cross-sections are made and the black line the centre-line of the plume. b) LCSF 1219 
method: the blue lines represent the domain where the Gaussian fits of the plume cross-sections are made and the black line the 1220 
along-wind direction at the source. c) IME method: the blue curve represents the domain on which mass enhancements are 1221 
integrated. d) GP method: Blue curves depict contour lines of the 2-dimensional Gaussian curve that fits the plume.  1222 

 1223 



39 
 

 1224 
Figure 2. Simulations of XCO2 on 23 April 2015 over the SMARTCARB domain. Synthetic XCO2 observations over a 250 km wide 1225 
swath are represented in the centre of the figure for a low noise scenario. Missing XCO2 observations due to a cloud fraction larger 1226 
than 1% are shown in white. The 16 emission sources considered in this study are highlighted along with their names 1227 

 1228 
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 1229 
Figure 3. Performance when estimating CO2 emissions from individual images of the different single-image inversion methods 1230 
(columns) across different ranges of true emissions (rows) using SMARTCARB winds and cloud-free CO2 and NO2 data. The 1231 
distributions of relative deviations (in blue) and relative absolute deviations (in orange) are illustrated using violin plots. The inter-1232 
quartiles are represented by the boxes, while the whiskers indicate the 5th and 95th percentiles, and medians are the lines inside the 1233 
boxes. The numbers alongside boxes show the numbers of estimates corresponding to true emissions ranges and inversion 1234 
methods. 1235 

 1236 

 1237 



41 
 

 1238 
Figure 4. Performances of the inversion methods when estimating emissions from single images for different benchmarking 1239 
scenarios:  cloud-free CO2 and NO2 data with SMARTCARB winds (in blue), cloud-free CO2 data only with SMARTCARB winds 1240 
(in orange), cloud-filtered CO2 and NO2 data with SMARTCARB winds (in green), cloud-filtered CO2 and NO2 data with ERA5 1241 
winds (in red). Bold texts in the legend indicate the elements of benchmarking scenarios that differ from those in the ideal 1242 
benchmarking scenario. Distributions of the relative deviations (top panel) and relative absolute deviations (bottom panel) are 1243 
illustrated using violin plots. Boxes are the inter-quartiles of the distributions, the whiskers are the 5th and 95th percentiles, and the 1244 
lines within boxes are the medians. Numbers in the inter-quartile boxes are the number of estimates for each benchmarking 1245 
scenario and inversion method.    1246 
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 1248 
Figure 5. Performance of the inversion methods for annual estimates of CO2 emissions. The markers represent for a given source 1249 
the relative absolute deviations from the true annual emissions of the arithmetic means (squares), the weighted means (diamonds) 1250 
and the medians (circles) of the estimates over a year. The lines represent the median values of the annual estimates over the entire 1251 
set of sources. The inversions are performed using CO2 cloud-free data and SMARTCARB winds (1st column), using CO2 and NO2 1252 
cloud-free data and with SMARTCARB winds (2nd column), using CO2 and NO2 cloud-filtered data and SMARTCARB winds (3rd 1253 
column), and using CO2 and NO2 cloud-free data and with ERA5 winds (4th column). (1) For the Divergence methods, the 1254 
inversions of the 3rd and 4th columns are performed using CO2 data only. Markers color indicates the true CO2 annual emissions of 1255 
the corresponding source. 1256 
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 1257 
Figure 6. Estimated vs true annual emissions for 4 inversion scenarios (titles of the panels). For the IME and CSF methods, annual 1258 
estimates are weighted means of the single-image estimates while they are arithmetic means for the GP, LCSF and Divs methods. 1259 
Each marker represents a given emission source and each color a given inversion method. The unfilled markers represent the 1260 
median values of all the estimates for each source. The divergence inversion method uses CO2 data for all the inversion scenarios. 1261 
The plain line represents the 1:1 line. The bottom-right legends display for each inversion method the relative RMSE which is the 1262 
RMSE between estimated and true annual emissions divided by the median of true annual CO2 emissions of all sources (~9.6 Mt 1263 
yr-1). 1264 

 1265 

 1266 
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 1267 
Figure 7. Annual and monthly estimates of the true and estimated emissions for different sources and for different inversion 1268 
methods. Each panel is associated with a given source. Plain lines and markers represent annual averages and monthly averages 1269 
respectively. Colors and markers are associated with different inversion methods (true emissions are represented by black circles). 1270 
Annual and monthly estimates for the IME and CSF methods are weighted means of image estimates. Annual and monthly 1271 
estimates for the GP and LCSF are means of image estimates while for the divergence method, we use the annual estimate also for 1272 
monthly estimates. All inversion methods use CO2 and NO2 cloud-filtered data (CO2 data only for the Div method) with ERA5 1273 
winds. 1274 

 1275 

 1276 
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 1277 
Figure 8. Accuracy of inversions vs number of single-image estimates. The inversion methods shown here use CO2 and NO2 cloud-1278 
free data and SMARTCARB winds. The filled areas represent the inter-quartiles of the distributions of the relative absolute 1279 
deviations depending on the number of estimates. The 95th percentiles of the distributions are represented in the inset. Points 1280 
belonging to a same curve are associated to different QIs and from left to right along curves, points are associated with a 1281 
decreasing QI; the points at the left and right ends of the curves are associated with the maximal and minimal QIs respectively.  1282 

 1283 

 1284 
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 1285 
Figure 9: Performance of the inversion methods and ensemble approaches for estimating the emissions with cloud-filtered CO2 & 1286 
NO2 data and with ERA5 winds. The distributions of the relative absolute deviations for all the inversion results (in blue) and for 1287 
the best estimates (in orange) provided by each method (see text) are illustrated using violin plots. Boxes represent the inter-1288 
quartiles of the distributions, the whiskers the 5th and 95th percentiles, and the lines within boxes the medians. Numbers in the 1289 
inter-quartile boxes are the number of estimates for each benchmarking scenario and inversion method.     1290 

 1291 
Figure A1: Illustration of the divergence method for the Jänschwalde power station in 2015 based on the synthetic SMARTCARB 1292 
dataset (see text). The figures represent the annual fields of the computed CO2 divergence (a), the modeled CO2 divergence (b) and 1293 
the difference of both quantities (c). Of note that as sink terms are considered negligible for CO2, divergence fields are considered 1294 
equal to the emission fields for CO2. 1295 
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 1296 
Figure A2: Norms of the ERA5 winds vs norms of the SMARTCARB winds at the sources considered in this study and for all the 1297 
days of 2015. Black lines represent the 1:1 agreement line. Mean biases of the SMARTCARB norms minus the ERA5 norms and 1298 
RMSEs are noted at the top left of the figures. 1299 
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 1301 
Figure A3: Performance of the inversion methods when using data with or without clouds for the emissions estimated from the 1302 
same images. The inversion methods use CO2 and NO2 data and SMARTCARB winds. The boxes represent the inter-quartiles of 1303 
the distributions of the absolute relative deviations, the whiskers the 5th and 95th percentiles, and the lines within boxes the 1304 
medians. 1305 
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1306 
Figure A4: Performance of the LCSF method when estimating emissions from single images of CO2 and NO2 without considering 1307 
clouds (in red) and for different cloudiness thresholds: 1% (in blue), 2% (in orange) and 5% (in green). Distributions of the 1308 
relative deviations (top panel) and relative absolute deviations (bottom panel) are illustrated using violin plots. Boxes are the inter-1309 
quartiles of the distributions, the whiskers are the 5th and 95th percentiles, and the lines within boxes are the medians. Numbers in 1310 
the inter-quartile boxes are the number of estimates for each benchmarking scenario.    1311 
  1312 
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 1313 
Figure A5: Annual and monthly estimates of the true and estimated emissions for different sources and for different inversion 1314 
methods. Each panel is associated with a given source. Plain lines and markers represent annual averages and monthly averages 1315 
respectively. Dashed lines represent the fits by a 2nd order polynomial of the monthly estimates. Colours are associated with 1316 
different inversion methods (true emissions are in black). Annual and monthly estimates for the IME and CSF methods are 1317 
weighted means of image estimates. Annual and monthly estimates for the GP and LCSF are means of image estimates while for 1318 
the divergence method, we use the annual estimate also for monthly estimates. All inversion methods use CO2 and NO2 cloud-free 1319 
data (CO2 data only for the Divs methods) with ERA5 winds. 1320 
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 1321 
Figure A6. Accuracy of inversions vs number of instant estimates. The inversion methods shown here use CO2 and NO2 cloud-free 1322 
data and ERA5 winds. The filled areas represent the inter-quartiles of the distributions of the relative absolute deviations 1323 
depending on the number of estimates. The 95th percentiles of the distributions are represented in the inset. Points belonging to a 1324 
same curve are associated to different QIs and from left to right along curves, points are associated with a decreasing QI; the 1325 
points at the left and right ends of the curves are associated with the maximal and minimal QIs respectively.  1326 
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 1327 

Figure A7: Accuracy of inversions vs number of instant estimates. The inversion methods shown here use CO2 and NO2 data, 1328 
ERA5 winds and for cloud-free (1st column) and cloud-filtered data (2nd column). Results are shown for the cases where true CO2 1329 
emissions of sources are below (1st row) and above (2nd row) 10 Mt yr-1. The filled areas represent the inter-quartiles of the 1330 
distributions of the relative absolute deviations depending on the number of estimates. The 95th percentiles of the distributions are 1331 
represented in the insets. Each point belonging to a same curve is associated with a different QI and from left to right along a same 1332 
curve; points are associated with a decreasing QI. 1333 
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 1334 
Figure A8: Days of 2015 (x-axis) for which the IME, CSF, GP and LCSF methods produce estimates for the CO2 emissions of eight 1335 
sources (y-axis). For a given day, the availability of an estimate from a given inversion method is illustrated by a color bar (for 1336 
color explanation, see legend of the figure). Inversions use CO2 and NO2 cloud-filtered data and ERA5 winds. 1337 
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 1340 
Figure A9: Estimated vs true annual emissions for 4 inversion scenarios (titles of the panels). Results are displayed for the CSF, 1341 
GP, LCSF and ensemble methods that gather 2 or 3 of these individual methods. For the CSF method, annual estimates are 1342 
weighted means of the instant estimates while they are arithmetic means for the GP and LCSF methods. Each marker represents a 1343 
given emission source and each color a given inversion method. The divergence inversion method uses CO2 data only for all the 1344 
inversion scenarios. The plain line represents the 1:1 line. The bottom-right legends display for each inversion method the relative 1345 
RMSE which is the RMSE between estimated and true annual emissions divided by the median of true annual emissions of all 1346 
sources (~9.6 MtCO2.yr-1).  1347 
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55 
 

 1350 

Figure A10: Divergence map estimated around the Jänschwalde power station on January 2015 the 12th. Dotted circles show 1351 
different radii (3 km, 5 km and 7 km) which define integration disks that could be used by the integral divergence method. 1352 
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 1353 
Figure A11: Performances of the different versions of the divergence inversion method when estimating emissions from one year 1354 
of single images for different benchmarking scenarios: cloud-free CO2 and NO2 data with SMARTCARB winds (in blue) and 1355 
cloud-filtered CO2 and NO2 data with SMARTCARB winds (in orange). Distributions of the relative deviations (top panel) and 1356 
relative absolute deviations (bottom panel) are illustrated using violin plots. Boxes are the inter-quartiles of the distributions, the 1357 
whiskers are the 5th and 95th percentiles, and the lines within boxes are the medians. Numbers in the inter-quartile boxes are the 1358 
number of estimates for each benchmarking scenario and inversion method. Methods DIV_int_R=xkm and DIV_PeakFit are the 1359 
integral (for an integration radius of x km) and peak-fitting versions of the divergence approach respectively. For a given overpass 1360 
and source, the emission estimate of the method DIV_int_R=x-y-zkm is the average of the estimates when integrating over circles 1361 
of x, y and z km radius around the source.  1362 
 1363 
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 1364 

Figure A12: Performances of the inversion methods when estimating emissions from one year of single images for different 1365 
benchmarking scenarios: cloud-free CO2 and NO2 data with SMARTCARB winds (in blue) and cloud-filtered CO2 and NO2 data 1366 
with SMARTCARB winds (in orange). Distributions of the relative deviations (top panel) and relative absolute deviations (bottom 1367 
panel) are illustrated using violin plots. Boxes are the inter-quartiles of the distributions, the whiskers are the 5th and 95th 1368 
percentiles, and the lines within boxes are the medians. Numbers in the inter-quartile boxes are the number of estimates for each 1369 
benchmarking scenario and inversion method. Methods DIV_int_R=2-3-4km and DIV_PeakFit are the integral and peak-fitting 1370 
versions of the divergence approach respectively. For a given overpass and source, the emission estimate of the method 1371 
DIV_int_R=2-3-4km is the average of the estimates when integrating over circles of 2,3 and 4 km radius around the source.  1372 

 1373 

 1374 

Method Time frame Computational cost 
(1) 

Integrated Mass 
Enhancement 
(IME) 

Single-Image 
estimates Medium: ~20 min 

Cross-Sectional 
Flux (CSF) 

Single-Image 
estimates Medium: ~25 min 
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Gaussian Plume 
(GP) 

Single-Image 
estimates High: ~110 min 

Light Cross-
Sectional Flux 
(LCSF) 

Single-Image 
estimates Low: ~10 min 

Divergence (Div) 

Averaged 
estimates from 
ensemble of 
images 

Medium: ~23 min 

Table 1: Summary of characteristics of the benchmarked methods. (1) Computation time was estimated by inverting one month of 1375 
CO2 and NO2 cloud-free SMARTCARB data on the same server using the ddeq package (Kuhlmann et al., 2023) 1376 

 1377 

Benchmark 
Scenario Wind dataset Cloud fraction 

thresholds 
Joint use of NO2 
and CO2 

Scenario 1 SMARTCARB 100% (no clouds) Yes 

Scenario 2 SMARTCARB 1% for CO2, 30% for NO2 No 

Scenario 3 SMARTCARB 100% (no clouds) No 

Scenario 4 SMARTCARB 1% for CO2, 30% for NO2 Yes 

Scenario 5 ERA5 100% (no clouds) Yes 

Scenario 6 ERA5 1% for CO2, 30% for NO2 No 

Scenario 7 ERA5 100% (no clouds) No 

Scenario 8 ERA5 1% for CO2, 30% for NO2 Yes 
Table 2: List of the different benchmarking scenarios: from the most optimistic (scenario 1) which considers inversions with cloud-1378 
free data and SMARTCARB winds to the most realistic (Scenario 8) with cloud-filtered data and with ERA5 winds. Note that a 1379 
cloud fraction threshold of x% corresponds to the rejection of data pixels if their cloud cover exceeds x%, so that a cloud fraction 1380 
of 100% yields full images without a loss of data pixels.  1381 

 1382 

 1383 

 1384 

Inversion method Cloud-free data Cloud-filtered data 
IME 1661 96 

CSF 2028 302 

GP 1776 266 

LCSF 2722 313 



59 
 

Table 3. Number of estimates for each inversion method when data with or without clouds are used. Inversions are 1385 
performed with CO2 and NO2 data and, with SMARTCARB winds.  1386 

 1387 
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