Field comparison of dual- and single-spot aethalometers: Equivalent black carbon, light

absorption, Ångström exponent and secondary brown carbon estimations

Liangbin Wu^{1,2,3}, Cheng Wu^{1,2,3*}, Tao Deng⁴, Dui Wu^{1,2,3}, Mei Li^{1,2,3}, Yong Jie Li⁵, Zhen Zhou^{1,2,3}

¹Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for online source apportionment system of air pollution, Jinan University, Guangzhou 510632, China

²Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China

³Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou 510530, China

⁴Institute of Tropical and Marine Meteorology, CMA, Guangzhou 510080, China

⁵Department of Civil and Environmental Engineering, Centre for Regional Oceans, and Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Taipa, Macau, China

Correspondence to: Cheng WU (wucheng.vip@foxmail.com)

Test S1 AAE calculation examples

Following are the data points used as an example.

babs370	babs470	babs520	babs590	babs660	babs880	babs950
41.98	32.19	27.40	24.04	20.45	14.27	13.52
In(babs370)	In(babs 470)	In(babs520)	In(babs590)	In(babs660)	In(babs880)	In(babs950)
3.74	3.47	3.31	3.18	3.02	2.66	2.60
λ1	λ2	λ3	λ4	λ5	λ6	λ7
370	470	520	590	660	880	950
In370	In470	In520	In590	In660	In880	In950
5.91	6.15	6.25	6.38	6.49	6.78	6.86

Example of approach 1:

$$AAE_{370/950} = \frac{\ln \left(b_{abs950} / b_{abs370} \right)}{\ln \left(370/950 \right)}$$

 $AAE_{370/950} \texttt{=} \mathsf{ln}(13.52/41.98) / \mathsf{ln}(370/950) \texttt{=} 1.20$

Example of approach 2:

AAE wave obtained from the curve fitting of the power function. In this case, $AAE_{370-950} = 1.23$

Wavelength	AE33_σ _{air} (m²g ⁻¹)	$AE31_\sigma_{ATN} (m^2g^{-1})$
370 nm	18.47	39.5
470 nm	14.54	31.1
520 nm	13.14	28.1
590 nm	11.58	24.8
660 nm	10.35	22.2
880 nm	7.77	16.6
950 nm	7.19	15.4

Table S1. The σ_{air} of AE33 Aethalometer and σ_{ATN} of AE31 Aethalometer.

Table S2. Summary of the multiple scattering parameter (C_{ref}) values for Aethamometers reported in the literature.

Deference	Site	Site turne	Aethalometer	Reference			Wa	avelength (I	nm)		
Reference	Site	Site type	(Filter type)	instrument	370	470	520	590	660	880	950
(Bernardoni et al., 2021)	Milan (Italy)	Urban background	AE33 (TFE-coated glass fibre tape T60A20)	PP_UniMI		2.91	2.93		2.78	2.78	
		station	AE31 (Pall Q250 quartz)			3.58	3.54		3.56	3.47	
(Valentini et al., 2020)	Rome (Italy)	Urban background station	AE33	МААР					2.66		
(Zhao et al., 2020)	Beijing (China)	Urban	AE33 (Tape 8060)	PASS-3				2.9 ± 0.4			
(Backman et al., 2017)	Arctic	Clean environmen t	AE31 (Pallflex Q250F)	PSAP/MAAP				3.45			
(Di Biagio et al., 2017)	Laboratory	Mineral dust aerosols	AE31	Extinction minus scattering					1.92		
(Segura et al., 2014)	Granada (Spain)	Urban	AE31	MAAP	3.42	3.87	3.90	3.98	4.19	4.35	4.59
(Arnott et al., 2005)	Las Vegas (USA)	Urban	AE31	PAS			3.69				
(Collaud Coen et al., 2010)	Cabauw, (Netherland s)	Urban	AE31 (Pallflex Q250F)	MAAP					4.26		
(Zhang et al., 2021)	Beijing (China)	Urban	AE31	PAS	5.61	4.98	4.73	4.92	5.19	5.30	5.24
(Weingartner et al., 2003)	Laboratory	Diesel soot with organic coating	AE30 (Pallflex Q250F)	Extinction minus scattering					3.60		
(Schmid et al., 2006)	Amazon (Brazil)	Biomass aerosol	AE30	PAS			5.23				
(Saturno et al., 2017)	Amazon (Brazil)	Urban	AE31	MAPP					4.90		
(Lim et al., 2018)	East Asia	Urban	AE31	PASS-3	3.37	3.80	3.99	4.25	4.49	5.18	5.39
(Ajtai et al., 2019)	Budapest (Hungary)	Urban	AE42 (Quartz)	PAS	2.15	3.52	4.78	4.86	5.21	5.11	5.16
(Laing et al., 2020)	Oregon (USA)	Rural	AE33 (TFE-coated glass filter)	TAP		4.35	4.45		4.24		
(Qin et al., 2018)	Guangzhou (China)	Suburban	AE33 (TFE-coated glass filter)	Extinction minus scattering		C _{re}	$e_f = C_{AE3}$	$_{3} \cdot C' = 1.57$	·2.1 = 3.2	297	
(Wu et al., 2013)	Guangzhou (China)	Suburban	AE16	PAS				3.48			

Table S3. The monthly eBC mass concentrations (μ g m⁻³) of AE31 and AE33 Aethalometers at 5 min and 1 hr time bases. AE31_V and AE31_W are AE31 data the corrected by algorithms of Virkkula and Weingartner, respectively. AE33_{2nd_Cor} refers to eBC of AE33 with the second correction.

Time base	Instrument/ Algorithm	Annual	Apr- 2021	May- 2021	Jun- 2021	Jul- 2021	Aug- 2021	Sep- 2021	Oct- 2021	Nov- 2021	Dec- 2021	Jan- 2022	Feb- 2022	Mar- 2022
	AE31_V	1.95±1.12	2.44±1.14	1.75±0.91	1.89±0.86	1.66±0.80	1.98±0.90	2.26±1.06	1.39±0.83	1.71±0.92	2.05±1.16	2.63±1.53	1.18±0.90	2.38±1.24
1	AE31_W	1.95±1.12	2.44±1.15	1.75±0.91	1.89±0.86	1.66±0.81	1.98±0.90	2.26±1.07	1.38±0.84	1.70±0.92	2.04±1.16	2.62±1.50	1.17±0.90	2.38±1.24
1 111	AE33	2.35±1.37	2.76±1.29	2.06±1.05	2.22±1.05	1.91±0.85	2.36±1.10	2.65±1.24	1.81±1.16	2.21±1.26	2.51±1.39	3.25±1.86	1.46±1.16	2.91±1.65
	AE33 _{2nd_Cor}	1.96±1.14	2.30±1.08	1.71±0.87	1.85±0.87	1.59±0.71	1.97±0.92	2.21±1.04	1.51±0.97	1.84±1.05	2.09±1.16	2.71±1.55	1.22±0.97	2.43±1.38
	AE31_V	1.96±1.18	2.45±1.21	1.75±0.95	1.89±0.93	1.66±0.85	1.97±0.95	2.25±1.10	1.39±0.84	1.71±0.93	2.05±1.23	2.63±1.62	1.18±0.95	2.42±1.31
5	AE31_W	1.96±1.18	2.46±1.22	1.75±0.96	1.89±0.94	1.66±0.85	1.98±0.95	2.25±1.12	1.39±0.85	1.71±0.94	2.05±1.23	2.62±1.62	1.17±0.96	2.41±1.31
min	AE33	2.35±1.39	2.78±1.37	2.05±1.07	2.22±1.09	1.91±0.89	2.36±1.13	2.64±1.27	1.79±1.14	2.18±1.19	2.52±1.43	3.25±1.87	1.46±1.16	2.91±1.66
	AE33 _{2nd_Cor}	2.02±1.20	2.36±1.16	1.74±0.90	1.88±0.92	1.61±0.75	2.00±0.96	2.24±1.08	1.52±0.97	1.85±1.00	2.13±1.21	2.80±1.61	1.26±1.00	2.51±1.43

Model	Time		Α	nnual mear	b _{abs} with ±	1 S.D. (Mm ⁻	¹)	
wodei	base	370 nm	470 nm	520 nm	590 nm	660 nm	880 nm	950 nm
AE21 \/	1 hr	22.10±12.78	16.94±9.84	14.72±8.58	13.12±7.70	11.75±6.94	8.69±5.20	7.69±4.63
AE31_V	5 min	22.16±13.03	16.98±10.55	14.76±8.78	13.15±7.90	11.78±7.15	7.81±5.42	7.71±4.86
AE21 \A/	1 hr	20.62±11.97	16.36±9.51	14.47±8.44	12.97±7.63	11.49±6.80	8.62±5.19	7.51±4.55
ALSI_W	5 min	20.70±12.22	16.42±9.73	14.52±8.65	13.02±7.84	11.53±7.01	8.65±5.41	7.54±4.79
AE22	1 hr	21.05±12.48	16.33±9.59	14.05±7.90	12.21±7.19	10.42±6.15	7.51±4.48	7.14±4.27
AE33	5 min	21.04±12.64	16.32±9.70	14.02±8.10	12.20±7.27	10.41±6.23	7.50±4.54	7.14±4.32

Table S4. Annual mean b_{abs} (±1 S.D.)by AE31_V, AE31_W and AE33 at 7 wavelengths.

Table S5. Monthly b_{abs} comparisons (370 nm) among AE33_ b_{abs} , AE31_V_ b_{abs} , and AE31_W_ b_{abs} at 5 min and 1 hr time bases. Where the AE31_V_ b_{abs} and AE31_W_ b_{abs} are the light absorption coefficients of AE31 corrected by the procedures of Virkkula and Weingartner, respectively. And the AE33_ b_{abs} is the light absorption coefficient of the AE33 aethalometer.

370 nm	Time base		Annual	Apr- 2021	May- 2021	Jun- 2021	Jul- 2021	Aug- 2021	Sep- 2021	Oct- 2021	Nov- 2021	Dec- 2021	Jan- 2022	Feb- 2022	Mar- 2022
	Emin	R ²	0.95	0.96	0.97	0.95	0.93	0.95	0.94	0.93	0.93	0.97	0.93	0.94	0.91
AE33_b _{abs} vs AE31_V_b _{abs}	5 11111	Slope	0.96	0.89	0.91	0.92	0.85	0.95	0.97	0.98	1.03	0.98	0.97	0.98	1.00
	1	R ²	0.96	0.96	0.98	0.98	0.97	0.96	0.96	0.97	0.96	0.98	0.97	0.97	0.96
	1	Slope	0.97	0.89	0.93	0.93	0.89	0.96	0.99	1.06	1.09	0.99	0.98	0.97	1.08
	Emin	R ²	0.94	0.95	0.96	0.94	0.93	0.94	0.93	0.93	0.91	0.96	0.91	0.94	0.89
AE33_b _{abs}	5	Slope	1.03	0.95	0.97	1.00	0.90	1.02	1.04	1.05	1.10	1.05	1.04	1.04	1.07
AE31_W_b _{abs}	1	R ²	0.95	0.95	0.97	0.97	0.96	0.95	0.95	0.96	0.95	0.97	0.96	0.96	0.95
	TUL	Slope	1.04	0.96	0.99	1.01	0.95	1.03	1.05	1.14	1.16	1.05	1.06	1.04	1.15
	5 min	R ²	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
AE31_W_b _{abs} VS AE31_V_b _{abs}	5 11111	Slope	0.93	0.94	0.94	0.92	0.94	0.93	0.94	0.93	0.94	0.94	0.93	0.94	0.94
	1	R ²	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
	TUL	Slope	0.93	0.93	0.94	0.92	0.94	0.93	0.94	0.93	0.94	0.94	0.93	0.93	0.94

Table S6. Monthly b_{abs} comparisons (880 nm) among AE33_ b_{abs} , AE31_V_ b_{abs} , and AE31_W_ b_{abs} at 5 min and 1 hr time bases. Where the AE31_V_ b_{abs} and AE31_W_ b_{abs} are the light absorption coefficients of AE31 corrected by the procedures of Virkkula and Weingartner, respectively. And the AE33_ b_{abs} is the light absorption coefficient of the AE33 aethalometer.

880 nm	Time base		Annual	Apr- 2021	May- 2021	Jun- 2021	Jul- 2021	Aug- 2021	Sep- 2021	Oct- 2021	Nov- 2021	Dec- 2021	Jan- 2022	Feb- 2022	Mar- 2022
AE33_b _{abs}	5 min	R ²	0.91	0.94	0.90	0.88	0.89	0.91	0.92	0.93	0.86	0.92	0.84	0.87	0.84
vs		Slope	0.85	0.77	0.72	0.74	0.74	0.80	0.80	0.88	0.91	0.83	0.84	0.86	0.86
AE31_V_b _{abs}	1 hr	R ²	0.97	0.97	0.97	0.97	0.96	0.97	0.96	0.97	0.96	0.98	0.98	0.98	0.97
^		Slope	0.87	0.81	0.85	0.86	0.79	0.88	0.85	0.95	0.96	0.87	0.89	0.87	0.99
AE33_b _{abs}	5 min	R ²	0.91	0.93	0.89	0.86	0.88	0.90	0.90	0.92	0.86	0.92	0.84	0.87	0.84
vs		Slope	0.86	0.77	0.72	0.75	0.75	0.80	0.80	0.89	0.92	0.83	0.85	0.87	0.87
AE31_W_babs	1 hr	R ²	0.96	0.96	0.96	0.96	0.94	0.96	0.95	0.96	0.95	0.98	0.98	0.97	0.97
		Slope	0.95	0.81	0.85	0.86	0.80	0.88	0.85	0.96	0.97	0.88	0.91	0.88	1.01
AE31_W_b _{abs}	5 min	R ²	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	1.00	0.99
vs		Slope	0.99	1.00	0.99	0.99	0.99	1.00	1.00	0.99	0.99	0.99	0.99	0.98	0.99
AE31 V babs	1 hr	R ²	1.00	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	1.00	0.99
^		Slope	0.98	1.00	1.00	1.00	0.99	1.00	1.00	0.98	0.99	0.99	0.99	1.00	0.99

Table S7. Relative deviation of slope btween monthly and annual data among AE33_b_{abs}, AE31_V_b_{abs}, and AE31_W_b_{abs} at 5 min and 1 hr time bases. The month with maximun deviation was shown in bold. Where the AE31_V_b_{abs} and AE31_W_b_{abs} are the light absorption coefficients of AE31 corrected by the procedures of Virkkula and Weingartner, respectively. And the AE33_b_{abs} is the light absorption coefficient of the AE33 aethalometer.

Relative deviation	Instrument/	Time	Apr-	May-	Jun-	Jul-	Aug-	Sep-	Oct-	Nov-	Dec-	Jan-	Feb-	Mar-
of slope	Algorithm	base	2021	2021	2021	2021	2021	2021	2021	2021	2021	2022	2022	2022
	AE33_b _{abs}	5 min	7.29%	5.21%	4.17%	11.46%	1.04%	1.04%	2.08%	7.29%	2.08%	1.04%	2.08%	4.17%
	AE31_V_b _{abs}	1 hr	8.25%	4.12%	4.12%	8.25%	1.03%	2.06%	9.28%	12.37%	2.06%	1.03%	0.00%	11.34%
370 nm	AE33_b _{abs}	5 min	7.77%	5.83%	2.91%	12.62%	0.97%	0.97%	1.94%	6.80%	1.94%	0.97%	0.97%	3.88%
	AE31_W_b _{abs}	1 hr	7.69%	4.81%	2.88%	8.65%	0.96%	0.96%	9.62%	11.54%	0.96%	1.92%	0.00%	10.58%
	AE31_W_b _{abs} vs	5 min	1.08%	1.08%	1.08%	1.08%	0.00%	1.08%	0.00%	1.08%	1.08%	0.00%	1.08%	1.08%
	AE31_V_b _{abs}	1 hr	0.00%	1.08%	1.08%	1.08%	0.00%	1.08%	0.00%	1.08%	1.08%	0.00%	0.00%	1.08%
	AE33_b _{abs} vs	5 min	9.41%	15.29%	12.94%	12.94%	5.88%	5.88%	3.53%	7.06%	2.35%	1.18%	1.18%	1.18%
	AE31_V_b _{abs}	1 hr	6.90%	2.30%	1.15%	9.20%	1.15%	2.30%	9.20%	10.34%	0.00%	2.30%	0.00%	13.79%
880 nm	AE33_b _{abs} vs	5 min	10.47%	16.28%	12.79%	12.79%	6.98%	6.98%	3.49%	6.98%	3.49%	1.16%	1.16%	1.16%
	AE31_W_b _{abs}	1 hr	6.90%	2.30%	1.15%	8.05%	1.15%	2.30%	10.34%	11.49%	1.15%	4.60%	1.15%	16.09%
	AE31_W_b _{abs} vs AE31_V_b _{abs}	5 min	1.01%	0.00%	0.00%	0.00%	1.01%	1.01%	0.00%	0.00%	0.00%	0.00%	1.01%	0.00%
		1 hr	1.01%	1.01%	1.01%	0.00%	1.01%	1.01%	1.01%	0.00%	0.00%	0.00%	1.01%	0.00%

Table S8. Monthly average (± 1 S.D.) of AAE values (AAE_{470/660}, AAE_{370/880}, AAE_{880/950}, AAE_{370/950} and AAE₃₇₀₋₉₅₀) calculated by 1 hr data.

AAE		Apr- 2021	May- 2021	Jun- 2021	Jul- 2021	Aug- 2021	Sep- 2021	Oct- 2021	Nov- 2021	Dec- 2021	Jan- 2022	Feb- 2022	Mar- 2022	Annual
	AE31_V	1.04±0.09	1.03±0.08	1.04±0.08	1.03±0.08	1.03±0.08	1.01±0.08	1.09±0.14	1.20±0.18	1.22±0.11	1.23±0.09	1.30±0.18	1.17±0.11	1.12±0.15
470/660	AE31_W	1.00±0.13	1.00±0.12	1.00±0.13	1.00±0.13	0.99±0.12	0.98±0.12	1.06±0.17	1.17±0.19	1.18±0.14	1.19±0.12	1.28±0.19	1.13±0.14	1.08±0.17
	AE33	1.28±0.08	1.25±0.05	1.27±0.07	1.28±0.06	1.27±0.06	1.27±0.06	1.33±0.09	1.40±0.12	1.43±0.09	1.45±0.09	1.46±0.14	1.34±0.14	1.33±0.12
	AE31_V	1.04±0.15	1.03±0.26	1.03±0.23	1.03±0.17	1.02±0.20	1.01±0.15	1.09±0.24	1.21±0.29	1.23±0.20	1.25±0.22	1.28±0.27	1.16±0.23	1.11±0.14
370/880	AE31_W	0.97±0.18	0.96±0.28	0.96±0.25	0.96±0.20	0.95±0.22	0.94±0.18	1.02±0.26	1.15±0.31	1.16±0.22	1.18±0.23	1.23±0.28	1.09±0.25	1.05±0.17
	AE33	1.12±0.11	1.11±0.06	1.12±0.08	1.14±0.07	1.12±0.07	1.13±0.07	1.21±0.10	1.27±0.12	1.31±0.09	1.32±0.10	1.30±0.20	1.21±0.15	1.20±0.13
	AE31_V	1.59±0.32	1.72±0.41	1.74±0.39	1.65±0.34	1.69±0.38	1.67±0.38	1.85±0.49	1.74±0.56	1.77±0.38	1.98±0.57	1.82±0.61	1.78±0.57	1.75±0.47
880/950	AE31_W	1.78±0.31	1.91±0.40	1.94±0.38	1.84±0.34	1.89±0.37	1.86±0.37	2.04±0.49	1.92±0.52	1.95±0.38	2.17±0.57	1.99±0.60	1.96±0.57	1.94±0.46
	AE33	0.66±0.06	0.62±0.06	0.62±0.06	0.62±0.06	0.60±0.05	0.62±0.06	0.65±0.09	0.69±0.10	0.72±0.07	0.76±0.11	0.76±0.28	0.67±0.13	0.67±0.12
	AE31_V	1.05±0.07	1.02±0.06	1.03±0.07	1.04±0.06	1.03±0.06	1.03±0.06	1.10±0.09	1.18±0.14	1.22±0.10	1.23±0.09	1.26±0.11	1.14±0.10	1.16±0.14
370/950	AE31_W	1.01±0.11	0.98±0.10	0.99±0.11	1.00±0.11	0.98±0.10	0.98±0.11	1.06±0.13	1.15±0.16	1.18±0.13	1.19±0.11	1.23±0.14	1.09±0.13	1.12±0.17
	AE33	1.12±0.08	1.10±0.05	1.11±0.06	1.12±0.06	1.11±0.05	1.12±0.06	1.20±0.09	1.25±0.10	1.29±0.08	1.32±0.09	1.35±0.14	1.20±0.13	1.15±0.12
	AE31_V	1.06±0.16	1.06±0.29	1.06±0.28	1.05±0.19	1.05±0.23	1.04±0.18	1.12±0.26	1.22±0.31	1.24±0.22	1.28±0.29	1.30±0.26	1.19±0.26	1.11±0.12
370-950	AE31_W	1.02±0.19	1.02±0.31	1.02±0.29	1.01±0.21	1.01±0.25	1.00±0.20	1.08±0.27	1.18±0.32	1.20±0.23	1.24±0.30	1.27±0.27	1.14±0.27	1.07±0.15
	AE33	1.12±0.08	1.10±0.05	1.11±.0.06	1.12±0.06	1.11±0.06	1.12±0.06	1.19±0.10	1.25±0.11	1.29±0.09	1.31±0.10	1.35±0.17	1.20±0.15	1.19±0.12

b _{abs370_BrCsec} (Mm ⁻¹)	AE31_V	AE31_W	AE33
Full-year	2.16 ± 2.02	2.61 ± 2.35	1.99 ± 1.97
Dry season	2.68 ± 2.15	2.91 ± 2.54	2.34 ± 2.08
Wet season	1.12 ± 1.15	2.07 ± 1.85	0.99 ± 1.15
Apr-2021	1.85 ± 1.51	2.80 ± 2.42	1.55 ± 1.65
May-2021	0.71 ± 0.62	1.58 ± 1.41	0.43 ± 0.44
Jun-2021	0.96 ± 1.14	1.89 ± 1.72	0.82 ± 1.03
Jul-2021	0.98 ± 1.07	1.87 ± 1.63	0.87 ± 0.91
Aug-2021	0.92 ± 0.87	2.05 ± 1.73	0.86 ± 0.79
Sep-2021	1.08 ± 0.99	2.11 ± 1.71	1.05 ± 1.06
Oct-2021	1.44 ± 1.58	1.94 ± 1.80	1.58 ± 1.82
Nov-2021	3.46 ± 2.39	3.66 ± 2.90	2.95 ± 2.37
Dec-2021	4.22 ± 2.40	4.51 ± 3.06	3.38 ± 2.38
Jan-2022	3.02 ± 1.78	3.08 ± 2.19	2.38 ± 1.77
Feb-2022	1.64 ± 1.28	1.67 ± 1.40	1.45 ± 1.32
Mar-2022	1.92 ± 1.56	2.27 ± 2.01	1.75 ± 1.62

 Table S9.
 Secondary brown carbon light absorption of AE31 and AE33 aethalometers at hourly time resolution.

Fiugre S1. Example of Aethalometer eBC data before and after correction. The shaded areas indicate change of of sampling spot to a new position. AE31_V and AE31_W represent AE31 data corrected by Virkkula and Weingartner algorithms, respectively.

Figure S2. The frequency histograms of the blank measurements of AE31 and AE33 at the time base of 60 min. The red histograms represents AE31and AE33 results are shown in blue histograms. Figures a-g correspond to 370, 470, 520, 590, 660, 880 and 950 nm, respectively.

Figure S3. Comparisons of 5 min light absorption coefficient between AE33 and AE31 at 370, 470, 520, 590, 660, 880 and 950 nm. AE31_V_b_{abs} and AE31_W_b_{abs} represent the light absorption coefficients of AE31 corrected by the algorithms of Virkkula and Weingartner, respectively.

Figure S4. Frequency distributions of AAE values of AE33, AE31_V (AE31 data corrected by Virkkula algorithms), and AE31_W (AE31 data corrected by Weingartner algorithms) at 5 min time base. Here "/" denotes the AAE value calculated by the light absorption coefficients of two wavelengths (approach 1) and "-" denotes the AAE value obtained by curve fitting of seven wavelengths (approach 2).

Figure S5. Frequency distributions of AAE values of AE33, AE31_V (AE31 corrected by the algorithms of Virkkula), and AE31_W (AE31 corrected by the algorithms of Weingartner) at 1 hr time base. Here "/" denotes the AAE value calculated by the light absorption coefficients of two wavelengths (approach 1) and "-" denotes the AAE value obtained by curve fitting of seven wavelengths (approach 2).

Figure S6. Scatter plot of b_{abs370_BrCsec} between AE31_V, AE31_W and AE33.

Figure S7. Diurnal variation of b_{abs370_BrCsec} with hourly time base. AE31_V and AE31_W represent the AE31 data corrected with algorithms of d and Weingartner, respectively.

References:

Ajtai, T., Kiss-Albert, G., Utry, N., Tóth, Á., Hoffer, A., Szabó, G., and Bozóki, Z.: Diurnal variation of aethalometer correction factors and optical absorption assessment of nucleation events using multi-wavelength photoacoustic spectroscopy, J. Environ. Sci., 83, 96-109, doi: <u>https://doi.org/10.1016/j.jes.2019.01.022</u>, 2019.

Arnott, W. P., Hamasha, K., Moosmüller, H., Sheridan, P. J., and Ogren, J. A.: Towards Aerosol Light-Absorption Measurements with a 7-Wavelength Aethalometer: Evaluation with a Photoacoustic Instrument and 3-Wavelength Nephelometer, Aerosol Science and Technology, 39, 17-29, doi: https://doi.org/10.1080/027868290901972, 2005.

Backman, J., Schmeisser, L., Virkkula, A., Ogren, J. A., Asmi, E., Starkweather, S., Sharma, S., Eleftheriadis, K., Uttal, T., Jefferson, A., Bergin, M., Makshtas, A., Tunved, P., and Fiebig, M.: On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic, Atmos. Meas. Tech., 10, 5039-5062, doi: <u>https://doi.org/10.5194/amt-10-5039-2017</u>, 2017.

Bernardoni, V., Ferrero, L., Bolzacchini, E., Forello, A. C., Gregorič, A., Massabò, D., Močnik, G., Prati, P., Rigler, M., Santagostini, L., Soldan, F., Valentini, S., Valli, G., and Vecchi, R.: Determination of Aethalometer multiple-scattering enhancement parameters and impact on source apportionment during the winter 2017/18 EMEP/ACTRIS/COLOSSAL campaign in Milan, Atmos. Meas. Tech., 14, 2919-2940, doi: https://doi.org/10.5194/amt-14-2919-2021, 2021.

Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J. S., Jennings, S. G., Moerman, M., Petzold, A., Schmid, O., and Baltensperger, U.: Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms, Atmos. Meas. Tech., 3, 457-474, doi: <u>https://doi.org/10.5194/amt-3-457-2010</u>, 2010.

Di Biagio, C., Formenti, P., Cazaunau, M., Pangui, E., Marchand, N., and Doussin, J. F.: Aethalometer multiple scattering correction Cref for mineral dust aerosols, Atmos. Meas. Tech., 10, 2923-2939, doi: https://doi.org/10.5194/amt-10-2923-2017, 2017.

Laing, J. R., Jaffe, D. A., and Sedlacek, I. I. I. A. J.: Comparison of Filter-based Absorption Measurements of Biomass Burning Aerosol and Background Aerosol at the Mt. Bachelor Observatory, Aerosol. Air. Qual. Res., 20, 663-678, doi: <u>https://doi.org/10.4209/aaqr.2019.06.0298</u>, 2020.

Lim, S., Lee, M., Kim, S.-W., and Laj, P.: Sulfate alters aerosol absorption properties in East Asian outflow, Scientific Reports, 8, 5172, doi: <u>https://doi.org/10.1038/s41598-018-23021-1</u>, 2018.

Qin, Y. M., Tan, H. B., Li, Y. J., Li, Z. J., Schurman, M. I., Liu, L., Wu, C., and Chan, C. K.: Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China, Atmos. Chem. Phys., 18, 16409-16418, doi: <u>https://doi.org/10.5194/acp-18-16409-2018</u>, 2018.

Saturno, J., Pöhlker, C., Massabò, D., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditas, F., Hrabě de Angelis, I., Morán-Zuloaga, D., Pöhlker, M. L., Rizzo, L. V., Walter, D., Wang, Q., Artaxo, P., Prati, P., and Andreae, M. O.: Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data, Atmos. Meas. Tech., 10, 2837-2850, doi: https://doi.org/10.5194/amt-10-2837-2017, 2017.

Schmid, O., Artaxo, P., Arnott, W. P., Chand, D., Gatti, L. V., Frank, G. P., Hoffer, A., Schnaiter, M., and Andreae, M. O.: Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques, Atmos. Chem. Phys., 6,

3443-3462, doi: https://doi.org/10.5194/acp-6-3443-2006, 2006.

Segura, S., Estellés, V., Titos, G., Lyamani, H., Utrillas, M. P., Zotter, P., Prévôt, A. S. H., Močnik, G., Alados-Arboledas, L., and Martínez-Lozano, J. A.: Determination and analysis of in situ spectral aerosol optical properties by a multi-instrumental approach, Atmos. Meas. Tech., 7, 2373-2387, doi: https://doi.org/10.5194/amt-7-2373-2014, 2014.

Valentini, S., Barnaba, F., Bernardoni, V., Calzolai, G., Costabile, F., Di Liberto, L., Forello, A. C., Gobbi, G. P., Gualtieri, M., Lucarelli, F., Nava, S., Petralia, E., Valli, G., Wiedensohler, A., and Vecchi, R.: Classifying aerosol particles through the combination of optical and physical-chemical properties: Results from a wintertime campaign in Rome (Italy), Atmospheric Research, 235, 104799, doi: https://doi.org/https://doi.org/10.1016/j.atmosres.2019.104799, 2020.

Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and Baltensperger, U.: Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers, J. Aerosol. Sci., 34, 1445-1463, doi: <u>https://doi.org/10.1016/S0021-8502(03)00359-8</u>, 2003.

Wu, D., Wu, C., Liao, B., Chen, H., Wu, M., Li, F., Tan, H., Deng, T., Li, H., Jiang, D., and Yu, J. Z.: Black carbon over the South China Sea and in various continental locations in South China, Atmos. Chem. Phys., 13, 12257-12270, doi: <u>https://doi.org/10.5194/acp-13-12257-2013</u>, 2013.

Zhang, Y., Zhi, G., Jin, W., Liu, S., Wang, L., Li, Z., Shi, R., Zhang, P., Shu, Y., and Hu, J.: Developing a dynamic correction mechanism for aethalometer results of actual urban aerosols, Atmos. Res., 255, 105529, doi: <u>https://doi.org/10.1016/j.atmosres.2021.105529</u>, 2021.

Zhao, G., Yu, Y., Tian, P., Li, J., Guo, S., and Zhao, C.: Evaluation and Correction of the Ambient Particle Spectral Light Absorption Measured Using a Filter-based Aethalometer, Aerosol and Air Quality Research, 20, 1833-1841, doi: <u>https://doi.org/10.4209/aaqr.2019.10.0500</u>, 2020.