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Abstract. We demonstrate how machine learning can be easily applied to support the analysis of large amounts of OH* airglow 

imager data. We use a TCN (temporal convolutional network) classification algorithm to automatically pre-sort images into 10 

the three categories “"dynamic” (images where small-scale motions like turbulence are likely to be found), “"calm” (clear-sky 

images with weak airglow variations) and “"cloudy” (cloudy images where no airglow analyses can be performed). The 

proposed approach is demonstrated using image data of FAIM 3 (Fast Airglow IMager), acquired at Oberpfaffenhofen, 

Germany between 11 June 2019 and 25 February 2020, achieving a mean average precision of 0.82 in image classification. 

The attached video sequence demonstrates the classification abilities of the learned TCN. 15 

Within the “"dynamic” category, we find a subset of 13 episodes of image series showing turbulence. As FAIM 3 exhibits a 

high spatial (23 m pixel-1) and temporal (2.8 s per image) resolution, turbulence parameters can be derived to estimate the 

energy diffusion rate. Similar to the results the authors found for another FAIM station (Sedlak et al., 2021), the values of 

energy dissipation rate range from 0.03 to 3.18 W kg-1. 

 20 
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1 Introduction 

Airglow imagers are a well-established method for studying UMLT (upper mesosphere – lower thermosphere) dynamics. As 

the short-wave infrared (SWIR) radiation of excited hydroxyl (OH*) between approx. 82 and 90 km height (von Savigny, 25 

2015; Wüst et al., 2017b, 2020) are known to be the brightest diffuse emissions during night-time (Leinert et al., 1998; 

Rousselot et al., 1999), atmospheric dynamics is observed using airborne (Wüst et al., 2019) or ground-based SWIR cameras 

(Taylor, 1997; Nakamura et al., 1999; Hecht et al., 2014; Pautet et al., 2014; Hannawald, 2016, 2019; Sedlak et al., 2016, 

2021). OH* measurements OH* measurements are also possible from satellite where they can be made in limb or nadir viewing 

geometry (see table 1 of Wüst et al. (2023) for limb instruments)are also possible from satellite (see table 1 of Wüst et al. 30 
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(2023) for limb instruments). They can be made in limb or nadir. The limb measurements address indeed mainly the SWIR 

range and are mostly used for deriving information about the OH* layer height and thickness. Nadir-looking instruments, 

however, such as VIIRRS DNB (Day/Night Band nightglow imagery from the Visible/Infrared Imaging Radiometer Suite) on 

board Suomi NPP (Suomi National Polar orbiting Partnership) and JPSS-1 (Joint Polar Satellite System-1) which have been 

used for analyses of atmospheric dynamics until now are measuring in the VIS (visible) range. In contrast to imager systems 35 

using an all-sky lens, which enable us to observe the entire dynamical situation of the nocturnal sky, operating an imager with 

a lens of long focal length and narrow aperture angles provides the opportunity to observe small-scale dynamical features in 

the UMLT with a high spatial resolution. This includes instability features of gravity waves, such as ‘ripples’ (Peterson, 1979; 

Taylor and Hapgood, 1990; Li et al., 2017), but also turbulence (Hecht et al., 2021; Sedlak et al., 2016, 2021). Former Previous 

studies at Oberpfaffenhofen (Sedlak et al., 2016) and Otlica, Slovenia (Sedlak et al., 2021) using the high-resolution airglow 40 

imager FAIM 3 have shown that the observation of turbulent episodes in the OH* layer is possible with this kind of instrument. 

Turbulence marks the end of the life cycle of breaking gravity waves (Hocking, 1985). Having become dynamically or 

convectively unstable, the wave can no longer exist propagate and eventually breaks down developing eddies. Within this 

inertial subrange of turbulence, energy is cascaded to smaller and smaller structures until it is dissipated via viscous damping, 

causing a heating effect on the atmosphere. Observing turbulence episodes with high-resolution airglow imagers, the respective 45 

energy dissipation rate can be derived from the image series by reading out the typical length scale 𝐿 of the eddies and the 

root-mean-square velocity 𝑈, i.e., the velocity of single eddy patches relative to the background motion (Hecht et al., 2021; 

Sedlak et al., 2021). 

The energy dissipation rate 𝜖 is given by 

𝜖 = 𝐶𝜖
𝑈3

𝐿
 (1) 50 

(Chau et al., 2020), where 𝐶𝜖 ≈ 1 (Gargett, 1999). The results in Sedlak et al. (2021) suggest that the heating rate driven by 

the turbulent breakdown of gravity waves can be locally and within a few minutes as large as the daily chemical heating rates 

in the mesopause region (Marsh, 2011). Thus, one has to assume, that this dynamically driven effect is of great importance for 

the energy budget of the atmosphere and needs to be included realistically into modern climate models. 

In order to derive statistically resilient reliable and also global information about gravity wave energy deposition in the UMLT, 55 

more and more high-resolution airglow imagers need to be deployed at different locations around the world. The largest 

challenge is to identify turbulence episodes in a rapidly growing data set of airglow images. While in former studies turbulence 

episodes were found by manual inspection (Sedlak et al., 2016, 2021), this will not be feasible anymore with much larger 

amounts of data. 

When it comes to image recognition, artificial intelligence (AI) is a field that has seen tremendous progress in recent years. 60 

(Fujiyoshi et al., 2019; Horak & Sablatnig, 2019; Guo et al., 2022). In particular, algorithms using Neural Networks (NN) 

show a very good performance in identifying different objects in images, and also have a quite efficient computation time. 
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Using these methods to detect turbulence in airglow images presents several challenges that complicate the use of off-the-shelf 

image recognition algorithm: 

• Turbulent movement manifests itself in a wide variety of shapes and structures 65 

• Structures in the OH* layer appear blurred and contrasts are strongly dominated by clouds 

• Turbulence can often only be identified in the dynamic course of a video sequence; single images of a turbulent 

episode are easily confused with clouds 

• The number of images showing turbulence is much smaller than the number of images showing no turbulence, thus 

there is an essential disbalance imbalance of available training data for the different categories. 70 

All these aspects have the consequence that a direct extraction of turbulent episodes from the entire measurement data set is 

hardly possiblevery difficult. However, some existing approaches exhibit promising advantages that could help finding 

turbulence episodes. In this work, we show how NN-based methods can be combined into an algorithm that is easy to use and 

performs well in strongly reducing the data basisbase where turbulence can likely be found. We demonstrate the application 

and performance of this practical approach on OH* airglow image data of the FAIM 3 (Fast Airglow Imager) instrument 75 

acquired at Oberpfaffenhofen, Germany between 11 June 2019 and 25 February 2020. 

Our goal is to explain our approach in a way that it is relatively easy to apply for airglow scientists who are not specialized in 

AI. Therefore, the description of the classification algorithm (section 3) is in more detail than for example the introduction of 

the airglow instrument or the data preparation (section 2). 

2 Instrumentation and data preparation 80 

The OH*-airglow imager FAIM 3 (Fast Airglow Imager) is based on the short-wave infrared (SWIR) camera CHEETAH CL 

by Xenicx nv. The system is already describedhas already been described in Sedlak et al. (2016), therefore, only the most 

important information is given here.  

The SWIR camera consists of a 512 x 640 pixels InGaAs focal plane array, which is sensitive to infrared radiation with a 

wavelength between 0.9 and 1.7 µm. Images are acquired automatically during each night (solar zenith angle > 100 °) with a 85 

temporal resolution of 2.8 s. Since June 2019 measurements have been performed at the DLR site at Oberpfaffenhofen 

(48.09 ° N, 11.28 ° E), Germany with a zenith angle of 34 ° and an azimuthal angle of 204 ° (SSW direction). Due to the aperture 

angles of 5.9 ° and 7.3 ° this results in a trapezium-shaped field of view (FOV) in the mean OH* emission height at ca. 87 km 

with size 175 km² (13.0 – 13.9 km x 13.1 km) and a mean spatial resolution of 23 m ∙ pixels-1. The field-of-view (FOV) is located 

ca. 80 km south of Augsburg, Germany. 90 

The data basisdatabase used in this work consists of nocturnal image series acquired between June, 11th , 2019 and February, 

25th , 2020. During this period, measurement have been performed in during 258 nights. Analyzing keograms, 95 (37 %) of 

these nights show complete cloud coverage and do not allowprevent analyses based on airglow observations. The remaining 

163 nights exhibit a clear sky either all of the time or at least temporarily (at least ca. 30 min), so that the OH* layer is visible 
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in a total of 188 episodes (it is possible that a single night may have several clear episodes interspersed with cloudy episodesone 95 

night has more than one clear episode as soon as it is interrupted by cloudy episodes). 

The images are prepared for analysis by performing a flat-field correction and transforming each of them onto an equidistant 

grid (for further details see Hannawald et al., 2016). In order to completely remove any pattern remnants, such as reflections 

of the objective lens in the window, the average image of each episode (a pixel-wise mean of all images in that episode) the 

average image, a pixel-wise mean of all images, of each episode is subtracted from the individual images. 100 

3 Image classification with Neural Networks 

3.1 Label classes 

When looking at the temporal course of the image data, three main types of observation can be distinguished, which we use as 

label classes for the classification algorithm (typical examples of these label classes are shown in Figure 1): 

 105 

Figure 1: Typical Examples of the three label classes: a) “"cloudy”, b) “"dynamic” and c) “"calm”. 

• “"Cloudy”. Episodes of clouds or cloud fragments moving through the image (Figure 1a). These cloudy episodes are 

too short or too faint to be recognized during keogram analysis (see Section 2). The image series are characterized by 

sharp contrasts and fast movement of coherent structures "(compared with structures in "dynamic” class). Often (but 

not necessarily) stars are covered by the clouds. 110 

• “"Dynamic”. Cloud-free episodes with pronounced moving OH*-airglow structures (Figure 1b), including waves and 

eddies. OH* dynamics can be distinguished from cloud movement due to slower velocities, blurrier edges and (except 

for extended wave fields) more isotropic movements. 

• “"Calm”. Cloud-free episodes with weak movement in the OH* layer (Figure 1c). The images appear quite 

homogeneous and hardly change in the temporal course. 115 
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The goal of the classification algorithm is to automatically and reliably identify the ""dynamic"" label class. In a 

subsequent step, which is not part of this work, these episodes can then be analyzed with respect to turbulence. 

3.2 Image features 

We calculated a set of one-dimensional features for each image series that we believe help to distinguishing the categories 

introduced in section 3.1.  120 

The mean value and standard deviation are calculated for every image. The mean value feature was calculated based on the 

assumption that “"cloudy” episodes have a higher intensity than “"calm” episodes due to reflections from ground lights or the 

moon. The standard deviation of the label class “"calm” is expected to be lower, whereas the label class “"clouds” is expected 

to have higher values, since clouds show very intense cloud structures and OH* airglow outside of cloud structures, which is 

less intense. Both mean and standard deviation of the label class "cloudy” are expected to have values intermediate between 125 

those of the "calm” and "cloudy” class. Mean and standard deviation of the label class “"dynamic” are to be expected between 

“"calm” and “"dynamic”. We refer to these two features (mean value and standard deviation) as the basic features. 

They are supplemented by three texture-based features derived from the grey level co-occurrence matrix (GLCM) as described 

in Zubair and Alo (2019). Homogeneity is the first of these three texture-based features and a wayis a method of measuring 

the similarity of neighboring pixels in an image. If its value is particularly high, it suggests a high similarity of adjacent pixels 130 

(Zhou et al. 2017). This may indicate a positive correlation with the label class “"calm”. The second texture-based feature, 

dissimilarity, is inversely correlated to homogeneity and thus could help to identify the episodes containing a lot of motion.  

The third texture-based feature, uniformity, is particularly high, if the image has uniform structures. On the other hand, this 

value is very small as soon as the image contains heterogeneous structures. 

Additionally, features which are based on a 2-dimensional Fast Fourier Transform (2d-FFT) as described in Hannawald et al. 135 

(2019) are derived for each image. They are called “"psd” feature group in the following. As in Sedlak et al. (2021), the 2d-

FFT is applied to a squared cut-out centered at the image center with side length 406 pixels (9.3 km). This results in 2-

dimensional spectra, which depend on the zonal and the meridional wave number. They are integrated over these wave numbers 

such that the power spectral density (PSD) in dependence of theas a function of horizontal wave number 𝑘  is derived. 

According to Kolmogorov (1941), the log(PSD)-log(k) shows different slopes, which depend on whether the observed field is 140 

in the buoyancy (dominating energy transport by waves), the inertial (energy cascades to smaller scales) or the viscous 

subrange (viscous damping of movements). Therefore, the feature slope is derived as the linear fit in the log(PSD)-log(𝑘) plot. 

Then, the PSD is integrated over all 𝑘 and the change of this value per timestep is calculated. This feature is called DiffIPSD 

(differences of integrated PSD) and takes into account the fact that clouds tend to cause stronger fluctuations over time than 

during clear sky episodes.takes the fact into account that, for example, clouds are causing stronger fluctuations over time than 145 

during clear sky episodes. Last, the PSD is integrated over all 𝑘 and over the whole night. This feature is denoted IPSD 

(integrated PSD).  

In total, we calculate eight different features for each image. They are summarized again in Table 1 for a better overview. 
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Table 1. Image features used with the classification algorithm. 

Feature Group Feature Description 

basic Mean Mean value of an image. 

Standard Deviation Standard deviation of an image. 

texture-based 

(GLCM) 

Homogeneity Similarity of neighboring pixels in an image. 

Dissimilarity Inversely correlated to homogeneity; measure to identify strong 

motion. 

Uniformity Measure of how homogeneous / heterogeneous the structures in an 

image are. 

PSD-based Slope Slope in the log(PSD)-log(k) plot resulting from the 2D FFT analyses. 

DiffIPSD Change of PSD integrated over all wavenumbers 𝑘 per time step. 

IPSD PSD integrated over all 𝑘 and the time period of the episode. 

 150 

 

3.3 Data basis for the classification algorithm 

The features introduced in the last subsection were calculated for every fifth image. This results in a temporal resolution of 14 

seconds and data set of approximately 240,000 time steps. About 105,000 time steps are assigned to the label class “"calm”, 

65,000 to “"cloudy” and 70,000 to “"dynamic”. This data set is divided into three parts: training, validation and test data. The 155 

partition is performed as follows: first, the list of all measured nights is arranged chronologically and divided into parts with 

ten measured nights each. From these parts, one measured night is randomly selected and assigned to the test data. From the 

remaining nine measured nights, two are randomly assigned to the validation data. The remaining seven measured nights are 

assigned to the training data. This results in approximately 70% training data, 20% validation data and 10% test data by looking 

at the total number of time steps. All features of the three datasets were independently normalized to the range 0 to 1. Before 160 

normalization, the outliers (lowest and highest 0.05 quantile) were replaced by the highest value of the lowest 0.05 quantile 

and the lowest value of the highest 0.05 quantile respectively.  

The training data set is used to train a neural network, and at the end of an epoch (one training of the whole training data set) 

the result and the learning progress are checked using the validation data set. After running through all 100 epochs and 

additional possible manual adjustments to the classification procedure, the final quality of a classifier is determined on the test 165 

data set. This procedure serves, among other things, to avoid overfitting to the training data set. In order to use this procedure 

properly, the training, validation and test data must be different from each other. In our case, this is ensured by dividing the 

complete data set into training, validation and test data set by complete nights and not by individual parts of a night. Features 
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from one night may be more similar to each other than features from different nights which could lead to inadvertentunnoticed 

overfitting if parts of a night were used for the partitioning into the training, validation and test data set.  170 

 

3.4 Classification algorithm 

A neural network consists of an input and an output layer as well as one or more hidden layers in between (in the latter case, 

the network is called ‘deep’). Each layer is composed of one or more neurons, which are working like a biological neuron: 

Multiple input signals are passed to a neuron. If the aggregated inputs surpass exceed a certain strength, the neuron is activated 175 

and transmits a signal to its outputs. For artificial neurons, we assume that the incoming signal (for all but the input layer) is 

the weighted sum from other neurons’ outputs plus a bias. The activation of the artificial neuron happens according to an 

activation function (e.g. Rectified Linear Unit, ReLU as described in Nair and Hinton, 2010). The different hidden layers are 

used to learn the true output. This is done by optimizing the weights and the bias for each neuron.  

 180 

The goal of our neural network is to assign a FAIM image to one of the three label classes “"calm”, “"cloudy” or “"dynamic”. 

Hence, the output layer of our NN has three neurons. Each output neuron is representing a label class and is supposed to output 

the probability of the respective class given the input features. These three output probabilities are combined in a vector, the 

prediction vector.  

Since considering a sequence of images instead of an individual image often simplifies the discrimination between the different 185 

classes, our neural network uses sequences as input. In our case these are sequences of the above-mentioned features and not 

sequences of images. The sequences of features are derived from several consecutive images that are located symmetrically in 

time around the original image that is to be classified.  

 

In order to attribute one image to a specific class, we used a Temporal Convolutional Network (TCN, see e.g., Bai et al. 2018) 190 

in the TensorFlow Keras implementation of Rémy (2020). TCNs are based on dilated convolutions, so at each neuron of the 

hidden layer a convolution takes place. In our case, the input is a time series stored in 𝑥. Each temporal component of 𝑥 consists 

of the eight features mentioned before and is calculated from the same image. Thus x is two-dimensional and of size 𝑇 × 8, 

with 𝑇 being the length of the time series. The kernel 𝑘  is a function (details are given later) with which our input 𝑥  is 

convolved. It is two-dimensional with dimension (2𝑟 + 1)  × 8 ∶  (2𝑟 + 1)  is its temporal length  (i.e.,  𝑘  is defined at 195 

−𝑟, −(𝑟 − 1), … , −1, 0, 1, … , (𝑟 − 1), 𝑟 , where r can be chosen) and eight is due to the eight features per time step. 𝑑 is the 

dilation factor (𝑑 ∈ ℕ). 

The dilated convolution is then calculated as follows: 

𝒙′(𝒕) = (𝒙 ∗𝒅 𝒌)(𝒕) = ∑ 𝒙𝑻(𝒕 − 𝒅𝒂) ⋅ 𝒌(𝒂) 𝒓
𝒂=−𝒓   (1) 
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The result of the dilated convolution 𝑥’(𝑡) is a scalar (in contrast to 𝑥(𝑡 − 𝑑𝑎) which is the vector of features at time 𝑡 − 𝑑𝑎 200 

and 𝑘(𝑎) which is a vector of length 8). The dilation factor 𝑑 leads to the fact, that for the computation of 𝑥′ not every but 

every 𝑑th temporal component of 𝑥 is taken. From the range of the running index 𝑎, which is going from −𝑟 to 𝑟 , it becomes 

clear that we have here a so-called non-causal convolution, i.e., for the calculation of 𝑥′ at time 𝑡 also values of 𝑥 at time points 

later than 𝑡 (i.e, values referring to the future) are included. The values of kernel 𝑘 represent the weights mentioned at the 

beginning of this section. So, through the training process, the kernel and therefore the weights as well as the bias are optimized 205 

for each hidden layer in order to achieve the true classification. 

 

In TCNs, these dilated convolutions are stacked, which is visualized for two dilations in Figure 2. The dilation factor increases 

by a factor of 2 with each additional stacked dilated convolution. This makes sure that all information from the input sequence 

contribute (in a modified way) to the output and allows large input sequences with only a few layers. 210 

 

  

Figure 2: Stacked dilated convolutions applied to a time series 𝒙(𝒕). The output is denoted with 𝒚(𝒕). The dilated convolutions 

have the dilation factors 𝒅 =  𝟏, 𝟐 and a kernel of length 3 (according to Bai et al. (2018)). In order to avoid a shortening of the 

time series in each step, the series are enlarged by zeros at the beginning and the end (also called zero padding). 215 

We constructed and trained two TCN instances for different sequence lengths. The short sequence includes features of 13 time 

steps, which corresponds to a time of approximately three minutes. The long sequence includes features of 61 time steps, which 

corresponds to a time span of approximately 14 minutes. These two different sequence lengths were used so that one TCN 

(𝑇𝐶𝑁13), on one hand, has a way of reacting well to short-term events. On the other hand, the greater information content of a 

long sequence can be used, so that the second TCN (𝑇𝐶𝑁61) can better classify unclear episodes. The two sequence lengths 220 

lead to two independent classifications by the respective TCN for the same point in time.  

We always used a kernel size of 3 for the dilated convolutions. Furthermore, for the input sequence length of 13 the dilation 

factors for the 𝑇𝐶𝑁13 were 𝑑 = 1,2  while for the input sequence length of 61 the dilation factors for that TCN were 𝑑 =

 1, 2, 4, 8. Comparing the given sequence length of 13 for the given dilation factors 1, 2, with the sequence length from Figure 

2 for the same dilation factors, a difference between the theory and implementation can be noticed.  This is a known property 225 
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of the given implementation (https://github.com/philipperemy/keras-tcn/issues/207, https://github.com/philipperemy/keras-

tcn/issues/196). The implementation always achieves a maximum sequence length with a dilation factor less than required in 

theory. For example, a maximum sequence length of 13 does not require the theoretical dilation factors of 𝑑 = 1, 2, 4 , it only 

requires 𝑑 = 1, 2. 

The number of filters (number of different stacked dilated convolutions applied on every feature sequence) is 16. This results 230 

in approximately 3,000 trainable parameters for 𝑇𝐶𝑁13 and 6,000 trainable parameters for 𝑇𝐶𝑁61. 

 

After describing the basic idea of a TCN as introduced in Bai et al. (2018), we also would like to give the most important 

information about the implementation of the TCN. For this the TCN used so-called residual blocks as described in Bai et al. 

(2018). A residual block consists of two hidden layers (each hidden layer comprises the weighting of the signals using dilated 235 

convolutions, the activation of the neurons and the processed signals) and a skip connection. The skip connection allows to 

jump over hidden layers. As activation function we used the rectified linear unit (ReLU) in the residual block (Nair and Hinton, 

2010) and due to the classification task the softmax function in the output layer. Softmax ensures amongst others that the 

individual values of the prediction vector, so the output of the neural network, can be interpreted as a probability. The weights 

in the residual block are normalized during the training process with weight normalization as introduced in Salimans and 240 

Kingma (2016) and for temporal convolution networks suggested in Bai et al. (2018). 

One challenge when using neural networks is to avoid overfitting, i.e., the network only memorizes the training data. In order 

to prevent this, we used a dropout regularization as proposed in Srivastava et. al (2014) with the ratio of 0.3 in the residual 

block as well as in the layer before the output layer. That means randomly 30% of the inputs of an neurons in each of these 

layers are switched off during the training of the network. Additionally, Gaussian noise is added to the time series before it is 245 

passed to the TCN. The architecture of our TCN is displayed in Figure 3Figure 3. 
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Figure 3: The input is a sequence of length 13 with 8 features at each time step. It has the dimension 8*13. The first layer is a 

Gaussian Noise Layer, which is only active during training and adds a slight normally distributed noise to the input data (standard 250 

deviation = 0.01). Afterwards the 8*13 data points are passed to the TCN and there to the first residual block. This residual block 

implements a one-dimensional dilated convolution with a dilation factor of d = 1 and kernel length of three. Since we have 16 filters 

(16 different initialized kernels) this also leads to 16 output features. The number of time steps remains the same. Afterwards, the 

same is repeated in the second residual block, only with the dilation factor increased to d = 2. The last step in the TCN is picking up 

the black marked middle element of the 13 time steps since only this element contains information about the complete time sequence. 255 

This is done with the help of a so-called lambda layer. Finally, we map the 16 features resulting from the TCN to the 3 output neurons 

with a fully connected layer and the softmax function as activation function. In this representation, the dropout regularization in 

the residual blocks as well as in the output layer (with a factor of 0.3) is not shown.  
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As mentioned at the beginning of this section, the class prediction of each image is stored in a vector. The length of the vector 

is equal to the number of classes. Since we have three classes, the vector is three-dimensional. The ground truth classification 

vector has a single entry equal to one and two entries equal to zero, because each image is manually assigned to a single label 

class. This kind of classification encoding is called a one-hot classification vector. The prediction vector of our learned 265 

classifier also has three entries and every entry gives the predicted probability of the respective label class. We calculate the 

mean vector of the two prediction vectors for a sequence length of 13 and 61 and call this the “"combined classifier” whose 

entries also can be interpreted as a probability for the respective label class. To retrieve information about the quality of the 

classification and to learn, the difference between the classification vector and the prediction vector needs to be measured; this 

is done by the ""categorical cross entropy” metric which is explained in Murphy (2012). This is repeated for all inputs in a 270 

batch and the resulting average is called loss. This loss has to be minimized based on the adjustment of the trainable parameters 

(i.e., weights and biases of the different neurons), which can be done using a gradient-based optimizer. Our TCN was trained 

by the Adam optimizer, which was introduced in Kingma and Ba (2014). A starting learning rate of 0.05 provided the best 

results. The learning rate was additionally (to the adjustments of the optimizer “"Adam”) adjusted at the beginning of all 100 

training epochs in the following way: After each epoch the learning rate was reduced by a factor of exp (−0.2). After 25 275 

epochs and multiples thereof the learning rate was increased to approximately 70% of the last maxima. This principle of such 

so-called cycling learning rate was proposed in Smith (2017) and leads to the fact that only a range around the perfect learning 

rate has to be found instead of a perfect fitting learning rate.   

During the training process we saved the model with the lowest loss on the validation data, also estimated by the categorical 

cross-entropy metric. 280 

 

Due to the large amount of data, it is most important that sequences predicted as “"dynamic” are actually dynamic episodes. 

This can be measured by the precision. The precision 𝑃𝑖  of a label class 𝑖 is the quotient of correctly positive predicted time 

steps of a label class 𝑡p𝑖
 and all time steps that are assigned by the classifier to a label class (,i.e., the sum of the correctly 

positive and the false positive predicted time steps 𝑡p𝑖
+ 𝑓p𝑖

): 285 

𝑷𝒊 =
𝒕p𝒊

𝒕p𝒊
+𝒇p𝒊

 (2) 

The counterpart to precision is recall 𝑅𝑖 (of a label class 𝑖), which is calculated by dividing the correctly positive predicted 

time steps of a label class 𝑡p𝑖
 by all the time steps manually assigned to a label class (,i.e., the sum of the correctly positive 

predicted and the false negative predicted time steps 𝑡p𝑖
+ 𝑓N𝑖

): 

𝑹𝒊 =
𝒕p𝒊

𝒕p𝒊
+𝒇N𝒊

 (3) 290 
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Therefore, recall is a measure of how many time steps of a label class are actually recognized by the classifier, whereas 

precision only evaluates the time steps assigned to a label class by the classifier and thereby determines the proportion of all 

correctly assigned time steps. 

Thresholds can be defined to determine at what value a prediction is assigned to a label class. For example, if a threshold value 295 

of zero is set for the output neuron of the label class “"dynamic"", all time steps will be assigned to the label class ""dynamic"". 

In this case, the recall is at its maximum value of one, whereas the precision is usually at its minimum, since there is normally 

a large number of false positive time steps. If the threshold value is now increased step by step, recall decreases and precision 

increases at the same time.  

For each threshold value, a value pair of precision and recall can now be formed. Plotting recall versus precision and calculating 300 

the area under the curve, we get the so called “"average precision” (AP) of a respective label class, which can reach the 

maximum value of one (see Figure 4). This is a reliable quality metric for the detection of a label class of a classifier 

independent to the used thresholds. Calculating the mean value of all average precisions, so for calm, dynamic, and cloudy, 

gives the mean average precision of a classifier. 

3.5 Analysis of the classification algorithm 305 

According to the precision-recall curves on the test data set (Figure 4), the combined classifier achieves a mean average 

precision of 0.82. Taking a closer look at all average precisions reveals the following result. 

 

Figure 4: Precision-recall curves of all three label classes on the test data. Each value pair of precision and recall is based on a 

threshold value which decides whether a prediction is assigned to a label class or not. These thresholds start at a high level and are 310 
decreased constantly until a recall of 1.0 is achieved. This is done for all label classes separately. The area under the precision-

recall curve is called average precision (AP) of the label class.  

The average precision for the actual target label class “"dynamic” is 0.63. If we consider the same statistical measures on the 

non-target label classes “"calm” and “"cloudy”, we achieve an average precision of 0.85 for the label class “"calm” and an 

average precision of 0.90 for the label class “"cloudy”. 315 
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For our combined classifier, we used features instead of whole images. In order to determine the importance of individual 

features groups for detection, we derived the precision values by omitting one of the three groups of features (basic, texture 

and psd features). If we omit the feature groups basic features or texture features, we only detect tiny changes of the average 

precision of the label classes “"calm” and “"cloudy”. The decrease of the average precision of the label class “"dynamic” is a 

bit higher, while omitting the basic feature group instead of the texture feature group. This leads to a slightly lower mean 320 

average precision by omitting the basic feature group compared to the texture feature group.  The greatest influence on all 

statistical measures has is the psd feature group. Omitting this feature group leads to a decrease of approximately ten percent 

in every average precision. Therefore, the mean average precision decreases also by approximately ten percent.  

So far, we have reported the general metrics of the neural network. To sum it up, the prediction of the label class “"cloudy” 

has given the best results, followed by “"calm” and with some distance “"dynamic”.  325 

 

Since our goal is the identification of dynamic episodes, we adjusted the classification criteria to optimize the precision of the 

label class “"dynamic”. This configuration was modified according to the validation data This configuration was evolved on 

the validation data and tested on the test data in the final step. The classification criteria are specified as follows: 

First, we set thresholds whether predictions are assigned to a label class or not. This is done using Figure 5, which shows the 330 

precision and recall for each label class as a function of the threshold values. 

 

Figure 5: Precision and recall dependent on thresholds (on validation data) for all three label classes “"calm”, “"cloudy” and 

“"dynamic”. 
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We have chosen threshold values 0.35 for the label class „"clouds“" and 0.5 for the label class „"calm“", since the precision 335 

and recall of these two label classes are almost identical for these threshold values on the validation data set. For the label class 

„"dynamic“" we have chosen 0.5 as threshold. In contrast to the other label classes, precision is higher than recall in order to 

optimize the precision of the label class „"dynamic“". Due to these individual thresholds, it is possible that the final classifier 

suggests no label class or more than one label class for some time steps.  

If time steps are not assigned to any label class, we classify them as “"unsure”. If the classifier suggests more than one label 340 

class for a time step, the label class with the highest average precision wins the prediction. 

Applying this procedure to the test data leads to the following confusion matrices and statistical measures (Table 2Table 1, 

Table 3Table 2 and Table 4Table 3). 

In confusion matrices, the manual classifications are plotted in the vertical direction and the automatic predictions in the 

horizontal directionthe manual classifications are plotted in horizontal direction and the automatic predictions in vertical 345 

direction. Correct predictions are therefore on the main diagonal, whereas incorrect predictions are on the secondary diagonal. 

This allows to identify label classes that can be well distinguished, but also label classes that are more difficult to distinguish. 

 Classifier prediction 

calm cloudy dynamic unsure Sum 

M
an

u
al

 

cl
as

si
fi

ca
ti

o
n

 

calm 6,862 540 1,982 1,081 10,465 

cloudy 109 5,046 567 646 6,368 

dynamic 1,402 764 4,371 931 7,468 

sum 8,373 6,350 6,920 2,658 24,301 

Table 21: Confusion matrix of the combined classifier, with thresholds of 0.35 for the label class „"cloudy“", 0.5 for label class 

„"calm“" and 0.5 for the label class „"dynamic“".  

 350 

The confusion matrix displayed in Table 2Table 1 presents a detailed look on every manual classification and prediction of the 

combined classifier. As the number of manual classifications differs in each label class, drawing a conclusion on the quality 

of the classifier's predictions regarding the confusion of individual label classes is quite difficult. Therefore, we also display a 

normalized version of the confusion matrix in Table 3Table 2. Each row is normalized by the sum of each row, so that the 

results in Table 3Table 2 are independent of the number of manual classifications in each label class.  355 

 
 

Classifier pPrediction 

calm cloudy dynamic Unsure 

M
an

u
al

 

cl
as

si
fi

ca
ti

o
n
 calm 0.66 0.05 0.19 0.10 

cloudy 0.02 0.79 0.09 0.10 

dynamic 0.19 0.10 0.59 0.12 
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Table 32: Normalized confusion matrix of the classifier displayed in Table 2Table 1.  Each row in the confusion matrix was 

divided by the sum of the row, which is equal to the sum of classifications in the corresponding label class. 

 

Before we go into the details of the confusion matrices in Table 2Table 1 and Table 3Table 2, we shortly focus on the statistical 360 

measures which are calculated based on the confusion matrix in Table 2Table 1. The statistical measures precision, recall and 

overall accuracy are presented in Table 4Table 3: 

 

 calm cloudy dynamic 

precision 0.82 0.80 0.63 

recall 0.66 0.79 0.59 

overall accuracy 0.67 

Table 43: Statistical measures “"precision”, “"recall” and “"overall accuracy” 

 calculated by the confusion matrix of Table 2Table 1. 365 

 

As we have seen before, Table 4Table 3 also shows that the combined classifier gives the best results for the label class 

„"cloudy“", followed by „"calm“" and with some distance “"dynamic”. There is just little difference between precision and 

recall in both label classes “"cloudy” and “"dynamic”, while the recall of the label class „"calm“" is much lower than the 

precision of the label class „"calm“".  370 

This is initially unexpected, because we adjusted our thresholds in a way that recall and precision on the label classes „"calm“" 

and „"dynamic“" are almost on the same level and for the label class „"dynamic“". However, this can be explained by the 

confusion matrix in Table 2Table 1 and Table 3Table 2. First, the label classes „"calm“" and „"dynamic“" have a high potential 

of being mixed up: 19% of the episodes classified as „"calm“" are predicted as „"dynamic“" and vice versa. Secondly, all label 

classes occur at similar frequencies in the validation data set. So, if we compare this to the test data set, we can see (in the 375 

column “"sum”) that there are by far more „"calm“" classifications than „"dynamic“" classifications. Combining these two 

aspects, it is on the one hand clear that the precision of the label class is boosted by the large amount of „"calm“" classifications 

and therefore higher than the recall of the label class „"calm“". On the other hand, a larger number of „"calm“" classifications 

leads (due to the high potential of mixed-up predictions between „"calm“" and „"dynamic“") to a large number of predictions 

of „"dynamic“", which were originally classified as „"calm“". This decreases the precision of label class „"dynamic“".  380 

The confusion matrix in Table 2Table 1 suggests that there are in total more „"dynamic“" predictions which are originally 

classified with the label class „"calm“" than vice versa. But we have also seen that there are by far more „"calm“" classifications 

than „"dynamic“" classifications. Due to these aspects the confusion matrix in Table 3Table 2 is normalized by the sum of 

each row, which means by number of classifications of each label class. This confusion matrix shows that the proportion of 

mixed-up „"calm“" and „"dynamic“" timestamps in relation to the number of classifications of each label class is the same in 385 

both directions (19 percent of the label classes „"calm“" or „"dynamic“"). It also shows that the lower recall of the label class 
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„"dynamic“" (0.59) compared to the label class „"calm“" (0.66) is mainly caused by the increased number of „"cloudy“" 

predictions in relation to the total number of classifications, when the timestamps are classified as „"dynamic“". 

It has been shown that the imbalance of the test data set and the mixing-up between „"calm“" and „"dynamic“" predictions has 

a large influence on the statistical measures. Therefore, as a next step, "calm” predictions which are classified as „"dynamic“" 390 

and „"dynamic“" predictions which are classified as „"calm“" will be investigated. All these episodes are categorized with 

mispredicted or misclassified (Table 5Table 4).  

 

 Classified as “"calm“" but predicted as 

„"dynamic“" 

Classified as “"dynamic“" but predicted as 

“"calm” 

frequency relative frequency frequency relative frequency 

mispredicted 872 0.44 362 0.26 

misclassified  1,110 0.56 1,040 0.74 

sum  1,982 1.00 1,402 1.00 

Table 54: Overview of “"calm” and “"dynamic” episodes categorized in mispredicted and misclassified. 

Table 5Table 4 shows that in both cases most of the time steps that are considered as wrongly predicted are actually 395 

misclassified and not mispredicted. The relative frequency of mispredicted episodes is higher in the case of classified as 

„"calm“" but predicted as „"dynamic“" than in the opposite case. This can be partly explained by gravity wave structures, 

which are classified as „"dynamic“" and often predicted as „"calm“", which leads to the assumption that our classifier or our 

features are not able to detect these structures. 

 400 

In a further next step the data classified as “"dynamic” is used to find turbulence episodes. To determine the frequency of 

turbulence episodes in this label class, all sequences of the test data set predicted as „"dynamic“" were viewed and split into 

three categories: Turbulence, if rotating structures of nearly cylindrical shape can be detected; potentially turbulence, if rotating 

structures can be suspected, but not clearly detected; no turbulence, if no structures can be observed that are relatable to rotating 

cylinders. Examples of these three categories can be seen in Video 1 (see supplements to this article). The intervals of these 405 

three categories are discussed in detail within the next section.  

 frequency relative frequency 

turbulence 1,825 0.26 

potentially turbulence 2,127242 0.3139 

no turbulence 2,714853 0.3936 

Table 65: Categorization of all as „"dynamic“" predicted timestamps into three categories: Turbulence, potentially turbulence 

and no turbulence. 
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Splitting all as “"dynamic” predicted timestamps in the described manner delivers three categories of roughly the same size 

(see Table 6Table 5). Slightly less than one third contains turbulence. Another third contains structures that can be related to 410 

turbulence and slightly more than one third does not contain any structures that can be related to turbulence.  

3.6 Discussion of the Classification algorithm 

At first glance, the statistical measures of mean average precision of 0.82 and average precisions of 0.90 for the label class 

„"cloudy“", 0.85 for the label class „"calm“" and 0.63 for the label class „"dynamic“" on the test data set appear satisfying, but 

not entirely convincing. In this context, a few aspects need to be considered. For instance, the fundamental task is not one of 415 

completely unambiguous class assignments (as it is in the case of basic object detections). In our case, the transitions between 

the label classes, in particular the transitions between ""calm"" and ""dynamic"" are fluid. This also means that the manual 

classification is always subjective to some degree. Furthermore, there are events that are generally difficult to classify 

manually, such as very short cloud fields moving rapidly through the field of view, or short „"calm“" (non-cloudy) episodes 

between cloud fields. To illustrate these aspects with an example, a video is digitally attached to the submission (Video 1). It 420 

shows the complete video footage of one night out of the test data set and is provided with the manual classification as well as 

with the raw and final automated prediction of the classifier (i.e., the manual classification is represented as a one-hot vector 

and the raw prediction is represented as a one-hot vector). In this video, some turbulent vortices are visible (19:30, 19:55, 

20:10, 20:50). These time periods are all correctly predicted as ""dynamic"". Furthermore, the combined classifier detects even 

the smallest cloud veils, such as from 19:44–19:52. These are undoubtedly detectable, but only faintly and briefly, so they 425 

were not noticed in the manual classification. In the statistics, this is counted as a false classification, even thoughas the 

labelling was incorrect. 

The largest impact on the statistical measures is the confusion between „"calm“" and „"dynamic“" episodes (as shown in Table 

2Table 1 and Table 4). Video 1 in the supplements shows also confused „"calm“" and „"dynamic“" episodes, especially 

episodes which are classified as „"dynamic“" but predicted as „"calm“" (22:06–22:14 and 22:23–22:45). Taking a closer look 430 

at these episodes reveals the difficulty of drawing boundaries between the label classes „"calm“" and „"dynamic“". 

Nevertheless, episode 22:06–22:14 and 22:33–22:45 can be considered misclassified, whereas the episode 22:23–22:33 is 

more likely to be considered as mispredicted. Although only two of three episodes can rather be considered as misclassified, 

all three episodes are counted as misclassification and formally impair the statistical measures of the classifier. So, in these 

cases it is mainly the manual classification that is wrong and not the prediction of the classifier. The prediction of the classifier 435 

provides also further advantages: On the one hand, theThe prediction of the classifier happens without significant time effort, 

whereas the manual classification of future data would take an extreme amount of time. On the other handIn addition, it is not 

affected by human effects such as lack of concentration and subjectivity. This leads to the result in Table 5Table 4, which 

implies that the majority of confused "calm" and ""dynamic"" timestamps are caused by the manual classification due to 

misclassifications instead of mispredictions of the classifier. This leads to the fact that the classifier is better suited to 440 

distinguish between ""calm"" and ""dynamic"" episodes than the manual classification. These confusions due to 



18 

 

misclassification have the largest negative impact on precision and recall of the label class ""dynamic"" (listed in Table 4Table 

3 and calculated according to Table 2Table 1) and are caused by errors in the manual classification (Table 5Table 4), not by 

mispredictions of the classifier.  

Assuming that the validation and training dataset containing the same proportion of ""calm"" and ""dynamic"" episodes that 445 

have been mixed up during the manual classification, it is worth saying that the training and validation data do not have to be 

perfectly classified (manually) in order to train a well performing classifier. 

The classification into three different label classes ""calm"", ""dynamic"" and ""cloudy"" is a natural approach according to 

the video material. This does not automatically means, that this is a helpful search space restriction for the automated search 

for turbulence. 450 

Looking at the relative frequencies of turbulence and potential turbulence (Table 6Table 5) reveals that about two thirds of all 

data belonging to the label class ""dynamic"" can be of interest for turbulence analysis.  

In the video shown in the supplement, the intervals 19:28–19:30, 20:00–20:08, 20:22–20:25, 21:16–21:29 are annotated with 

potential turbulence and the intervals 19:30–19:43, 19:52–20:01, 20:08–20:22, 20:50–20:58 are episodes in which turbulence 

can be observed. In order to complete the annotations of the video, the sequences that have been annotated with no turbulence 455 

are the following: 20:25–20:35, 20:48–20:50, 20:58–21:02, 21:05–21:17, 21:30–22:05, 22:12–22:23. It remains to be said that 

the classification into the three label classes ""calm"", ""dynamic"" and ""cloudy"" can be regarded as quite reasonable since 

in two thirds of all ""dynamic"" timestamps either turbulence or events resembling to turbulence occur. 

In future work, the resulting downsized dataset (all data that are predicted as “"dynamic”) can now be used to train neural 

networks using image data to directly detect and potentially measure turbulence. This was not possible before due to several 460 

issues: 

Firstly, the computational cost of processing image sequences in a neural network is higher than processing a time series of 

manually determined features of the images: a time series of images requires processing 10,000 data points per time step (if 

the image has a resolution of 100*100 pixels), whereas a time series of our features only requires processing 8 data points per 

time step. Using time series (with 13 respand. 61 time steps respectively), instead of a single time step increases computational 465 

costs additionally. This will become crucial when applying this method to larger amounts of data. 

Secondly, training with single images instead of image sequences to reduce computational cost is not ideal. Image sequences, 

in comparison to single images, are containing essential information for the differentiation of the respective label classes. For 

example, cloud veils in a single image often cannot be distinguished from the label class ""dynamic"", or turbulence vortices 

that appear similar to rotating cylinders can only be clearly identified by the information of the image sequence.  470 

This reduced dataset contains only episodes that show „"dynamics“" in the UMLT, of which approximately two thirds are 

potentially related to turbulence. Thus, the dataset is more balanced with respect to turbulence, which simplifies training for 

direct search and measurement of turbulence. Future work will also not waste computational time on ""calm"" and ""cloudy"" 

episodes (where observable turbulence is not expected), making training with the image sequences more efficient. 

 475 
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4 Analysis and discussion of turbulence 

Checking the “"dynamic” episodes from the TCN model by hand we identified 19 episodes of turbulence. 13 of them exhibited 

such a good quality that we were able to read out the length scale and the root-mean-square velocity of turbulence and calculate 

the energy dissipation rate 𝜖, according to the method applied by Hecht et al. (2021) and Sedlak et al. (2021). The resulting 480 

values are displayed in Table 7Table 6. The uncertainty 𝛿𝜖 is calculated by applying the rules of error propagation to equation 

(1). Similar to Sedlak et al. (2021), a general read-out error of ± 3 pixels is used. This leads to an uncertainty of the length scale 

𝛿𝐿 of ± 69 m and (since velocities are determined over a set of ten images) an uncertainty of the velocity 𝛿𝑈 of ± 2.5 m s-1. 

 

Date 𝝐 [W kg-1] 𝜹𝝐 [W kg-1] 

16 June 2019 0.55 0.50 

16 June 2019 0.46 0.44 

16 June 2019 2.24 1.43 

6 July 2019 0.06 0.11 

18 July 2019 0.19 0.24 

18 July 2019 0.03 0.09 

3 September 2019 2.43 1.55 

13 October 2019 1.75 1.09 

13 November 2019 3.18 1.39 

12 December 2019 2.65 1.25 

18 December 2019 0.78 0.63 

29 December 2019 0.19 0.24 

19 February 2020 0.04 0.09 

Table 76: Values of energy dissipation rate 𝝐 and the corresponding uncertainty 𝜹𝝐 of all turbulence events of sufficient quality 485 
found in the airglow image data between 11 June 2019 and 25 February 2020 acquired at Oberpfaffenhofen, Germany. 

 

The values of 𝜖 range from 0.03 to 3.18 W kg-1 with a median value of 0.55 W kg-1 and a standard deviation of 1.16 W kg-1. In 

Sedlak et al. (2021), for comparison, 𝜖 ranges from 0.08 to 9.03 W kg-1 with a median value of 1.45 W kg-1. In both studies, the 

values cover three orders of magnitude, however this is also reflected in the publications of other authors. Hecht et al. (2021) 490 

found an energy dissipation rate of 0.97 W kg-1 with this approach; Chau et al. (2020) present an energy dissipation rate of 
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1.125 W kg-1 and claim that this would be a rather high value. Hocking (1999) finds a maximum order of magnitude of 

 0.1 W kg-1. 

Although the identification of turbulent episodes is done automatically via the TCN approach presented in section 3 the 

measurement of 𝐿 and 𝑈 is still done manually. This implies an inherent read-out uncertainty due to the blurry structures and 495 

a remaining possibility of misinterpretation, which we intended to minimize by multiple-eye inspection of the episodes. It is 

interesting to note that no events with very large energy dissipation rates in the range 4–9 W kg-1 as in Sedlak et al. (2021) were 

found in this data set, whereas the lower limit of 𝜖 is quite similar. It is still an open question whether the larger values are the 

result of direct energy dissipation or if the respective large eddies are about to further decompose to smaller structures beyond 

the sensitivity of our instrument, which then mark the actual end of the energy cascade. 500 

The values in Table 6 are in good agreement with literature values, however the data basis base is still very small. Future 

measurements of airglow imagers will have to be analyzed with the method applied here in order to establish resilient reliable 

statistical conclusions. 

5 Summary and outlook 

We have investigated the application of practical and easy-to-use algorithms based on Neural Networks (NN) to facilitate the 505 

detection of episodes showing turbulent motions in OH* airglow image data. This is done by setting up two variants of a TCN 

(Temporal Convolutional Neural Network) to automatically pre-sort the images into images exhibiting strong airglow 

„"dynamics“" (where turbulence can likely be found), and images exhibiting "calm” airglow „" dynamics“", or being disturbed 

by „"clouds“" (which can be excluded from further turbulence analyses). The image data used in this work has been acquired 

by the high-resolution camera system FAIM 3 at Oberpfaffenhofen, Germany between 11 June 2019 and 25 February 2020. 510 

The TCN-based classification algorithm (based on the time series of features derived from the temporal image sequences) 

achieves a mean average precision of 0.82. We demonstrated with a video example from the test data set that the algorithm 

works much better than the statistical values suggest. All in all, 13 episodes exhibit a sufficiently high quality to derive the 

energy dissipation rate 𝜖. Values range from 0.03 to 3.18 W kg-1 and are in good agreement with previous work. The data 

analyzed here confirms the importance of considering dynamically driven energy deposition by breaking gravity waves when 515 

studying the energy budget of the atmosphere. 

We have shown that a NN-based algorithm can support the identification of turbulent episodes in airglow imager data. This 

marks an important step to expand the method of extracting turbulence parameters from airglow images from local case studies 

to investigations of global extent. Utilizing Neural Networks is a promising way of dealing with ‘big data’. With ongoing 

airglow measurements, it will be possible to also investigate effects like seasonal or latitudinal variations of the energy 520 

dissipation rate with diminishing uncertainties. 
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