
1 
 

Long-term Evaluation of Commercial Air Quality Sensors: An 1 

Overview from the QUANT Study 2 

Sebastian Diez1,2, Stuart Lacy2, Hugh Coe3, Josefina Urquiza4,5, Max Priestman6, Michael 3 

Flynn3, Nicholas Marsden3, Nicholas A. Martin7, Stefan Gillott6, Thomas Bannan3, Pete 4 

Edwards2 5 

1Centro de Investigación en Tecnologías para la Sociedad, Universidad del Desarrollo, Santiago, Chile, CP 7550000 6 

2Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UK 7 

3Department of Earth and Environmental Science, Centre for Atmospheric Science, School of Natural Sciences, The 8 

University of Manchester, Manchester, M13 9PL, UK 9 

4Grupo de Estudios de la Atmósfera y el Ambiente (GEAA), Universidad Tecnológica Nacional, Facultad Regional 10 

Mendoza (UTN-FRM), Cnel. Rodriguez 273, Mendoza, 5501, Argentina 11 

5Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina 12 

6MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, 13 

UK 14 

7National Physical Laboratory, Teddington TW11 0LW, UK 15 

Correspondence: Sebastian Diez (sebastian.diez@udd.cl); Pete Edwards (pete.edwards@york.ac.uk) 16 

Abstract. In times of growing concern about the impacts of air pollution across the globe, lower-cost sensor 17 

technology is giving the first steps in helping to enhance our understanding and ability to manage air quality issues, 18 

particularly in regions without established monitoring networks. While the benefits of greater spatial coverage and 19 

real-time measurements that these systems offer are evident, challenges still need to be addressed regarding sensor 20 

reliability and data quality. Given the limitations imposed by intellectual property, commercial implementations are 21 

often “black boxes”, which represents an extra challenge as it limits end-users' understanding of the data production 22 

process. In this paper we present an overview of the QUANT (Quantification of Utility of Atmospheric Network 23 

Technologies) study, a comprehensive 3-year assessment across a range of urban environments in the United 24 

Kingdom, evaluating 43 sensor devices, including 119 gas sensors and 118 particulate matter sensors, from multiple 25 

companies. QUANT stands out as one of the most comprehensive studies of commercial air quality sensor systems 26 

carried out to date, encompassing a wide variety of companies in a single evaluation and including two generations 27 

of sensor technologies. Integrated into an extensive data set open to the public, it was designed to provide a long-term 28 

evaluation of the precision, accuracy, and stability of commercially available sensor systems. To attain a nuanced 29 

understanding of sensor performance, we have complemented commonly used single-value metrics (e.g., Coefficient 30 

of Determination (R²), Root Mean Square Error (RMSE), Mean Absolute Error (MAE)) with visual tools. These 31 

include Regression plots, Relative Expanded Uncertainty (REU) plots, and Target plots, enhancing our analysis 32 

beyond traditional metrics. This overview discusses the assessment methodology, and key findings showcasing the 33 

significance of the study. While more comprehensive analyses are reserved for future detailed publications, the results 34 
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shown here highlight the significant variation between systems, the incidence of corrections made by manufacturers, 35 

the effects of relocation to different environments, and the long-term behaviour of the systems. Additionally, the 36 

importance of accounting for uncertainties associated with reference instruments in sensor evaluations is emphasised. 37 

Practical considerations in the application of these sensors in real-world scenarios are also discussed, and potential 38 

solutions to end-user data challenges are presented. Offering key information about the sensor systems' capabilities, 39 

the QUANT study will serve as a valuable resource for those seeking to implement commercial solutions as 40 

complementary tools to tackle air pollution. 41 

Keywords: air pollution, commercial sensor systems, QUANT, long-term evaluation. 42 

1. Introduction 43 

Emerging lower-cost sensor systems1 offer a promising alternative to the more expensive and complex monitoring 44 

equipment traditionally used for measuring air pollutants such as PM2.5, NO2, and O3 (Okure et al., 2022). These 45 

innovative devices hold the potential to expand spatial coverage (Malings et al., 2020) and deliver real-time air 46 

pollution measurements (Tanzer-Gruener et al., 2020). However, concerns regarding the variable quality of the data 47 

they provide still hinder their acceptance as reliable measurement technologies (Karagulian et al., 2019; Zamora et 48 

al., 2020).  49 

Sensors2 face key challenges such as cross-sensitivities (Bittner et al., 2022; Cross et al., 2017; Levy Zamora et al., 50 

2022; Pang et al., 2018), internal consistency (Feenstra et al., 2019; Ripoll et al., 2019), signal drift (A. Miech et al., 51 

2023; Li et al., 2021; Sayahi et al., 2019), long term performance (Bulot et al., 2019; Liu et al., 2020) and data coverage 52 

(Brown & Martin, 2023; Duvall et al., 2021; Feinberg et al., 2018). Additionally, environmental factors such as 53 

temperature and humidity (Bittner et al., 2022; Farquhar et al., 2021;, and humidity Crilley et al., 2018; Williams, 54 

2020) can significantly influence sensor signals. 55 

In recent years, manufacturers of both sensing elements (Han et al., 2021; Nazemi et al., 2019) and sensor systems 56 

have made significant technological advances (Chojer et al., 2020). For example, there are now commercial and non-57 

commercial systems equipped with multiple detectors to measure distinct pollutants (Buehler et al., 2021; Hagan et 58 

al., 2019; Pang et al., 2021) helping to mitigate the effects of cross-interferences. Additionally, enhancements in 59 

electrochemical OEMs have been demonstrated in terms of their specificity (Baron & Saffell, 2017; Ouyang, 2020).  60 

However, the complex nature of their responses, coupled with their dependence on local conditions means sensor 61 

performance can be inconsistent (Bi et al., 2020). This complicates the comparison of results or anticipating sensor 62 

future performance across different studies. Moreover, assessments of sensor performance found in the academic 63 

 
1 The term “sensor systems” refers to sensors housed within a protective case, which includes a sampling and power system, 

electronic hardware and software for data acquisition, analog-to-digital conversion, data processing and their transfer (Karagulian 

et al., 2019). Unless specified otherwise, the term “sensor” will be used as a synonym of “sensor systems”. Other alternative names 

for “sensor systems” used here are “sensor devices” (or “devices”), “sensor units” (or “units”). 

2 In a narrower sense, “sensor” typically denotes the specific component within a sensor system that detects and responds to 

environmental inputs, producing a corresponding output signal. To distinguish this from the broader use of “sensor” as equivalent 

to “sensor system” in our text, we will utilise alternative terms such as “detector”, “sensing element”, or “OEM” (original 

equipment manufacturer) when referring specifically to this component, thereby preventing confusion. 
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literature often rely on a range of protocols (e.g., CEN (2021) and Duvall et al. (2021)) and data quality metrics (e.g., 64 

Spinelle et al. (2017) and Zimmerman et al. (2018)), with many studies limited to a single-site co-location and/or 65 

short-term evaluations that do not fully account for broader environmental variations (Karagulian et al., 2019).  66 

The calibration of any instrument used to measure atmospheric composition is fundamental to guarantee their accuracy 67 

(Alam et al., 2020; Long et al., 2021; Wu et al., 2022). Using out-of-the-box sensor data without fit-for-purpose 68 

calibration can produce misleading results (Liang & Daniels, 2022). An effective calibration not only involves 69 

identifying but also compensating for estimated and correcting systematic effects errors in the sensor readings, a 70 

process defined as a correction (for a detailed definition and differentiation of calibration and correction see JCGM, 71 

2012). For standard air pollution measurement techniques, calibration is often performed in a controlled laboratory 72 

environment (Liang, 2021), or by sampling gas from a certified standard cylinder in the field. For PM, particles of 73 

known density and size are used, controlling the airflow conditions. For example, for gases, a known concentration is 74 

sampled from a certified standard. Similarly, for PM, particles of known density and size are generated. Both gases 75 

and PM calibration are conducted under controlled airflow conditions 76 

Yet, the aforementioned challenges with lower-cost sensor-based devices suggest that such calibrations may not 77 

always accurately reflect real-world conditions (Giordano et al., 2021). A frequent approach involves co-locating 78 

sensors alongside regulatory instruments in their intended deployment areas and/or conditions and using data-driven 79 

methods to match the reference data (Liang & Daniels, 2022). Numerous studies have investigated the effectiveness 80 

of calibration methods for sensors e.g. (Bigi et al., 2018; Bittner et al., 2022; Malings et al., 2020; Spinelle et al., 2017; 81 

Zimmerman et al., 2018), including selecting appropriate reference instruments (Kelly et al., 2017), the need for 82 

regular calibration to maintain accuracy (Gamboa et al., 2023), the necessity of rigorous calibration protocols to ensure 83 

consistency (Kang et al., 2022), and transferability (Nowack et al., 2021) of results. Ultimately, the reliability and 84 

associated uncertainty of any applied calibration will influence the final sensor data quality.  85 

For end-users to make informed decisions on the applicability of air pollution sensors, a realistic understanding of the 86 

expected performance in their chosen application is necessary (Rai et al., 2017). Despite this, there has been relatively 87 

little progress in clarifying the performance of sensors for air pollution measurements outside of the academic arena. 88 

This is largely due to the significant variability in both the number of sensors and the variety of applications tested, 89 

compounded by the proliferation of commercially available sensors/sensor systems with different configurations. as 90 

well as the availability of highly accurate measurement instrumentation and/or regulatory networks to those outside 91 

of the atmospheric measurement academic field. Furthermore, the access to highly accurate measurement 92 

instrumentation and/or regulatory networks remains limited for those outside of the atmospheric measurement 93 

academic field (e.g. Lewis and Edwards (2016) and Popoola et al. (2018)). From a UK clean air perspective, this 94 

ambiguity represents a major problem. The lack of a consistent message undermines the exploitation of these devices’ 95 

unique strengths, notably their capability to form spatially dense networks with rapid time resolution. Consequently, 96 

there is potential for a mismatch in users’ expectations of what sensor systems can deliver and their actual operating 97 

characteristics, eroding trust and reliability. 98 

In this work, as part of the UK Clean Air program funded QUANT project, we deployed a variety of sensor 99 

technologies (43 commercial devices, 119 gas and 118 PM measurements) at 3 representative UK urban sites —100 

Manchester, London and York— alongside extensive reference measurements, to generate the data for an 101 

comprehensive extensive in-depth performance assessment. This project aims to not only evaluate the performance 102 

of sensor devices in a UK urban climatological context but also provide critical information for the successful 103 
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application of these technologies in various environmental settings. To our knowledge, QUANT is the most extensive 104 

and longest-running evaluation of commercial sensor systems globally to date. Furthermore, we tested multiple 105 

manufacturers' data products, such as out-of-the-box data versus locally calibrated data, for a significant number of 106 

these sensors to understand the implications of local calibration. This comprehensive approach offers unprecedented 107 

insights into the operational capabilities and limitations of these sensors in real-world conditions. Significantly, some 108 

of the insights gathered during QUANT have contributed to the development of the Publicly Available Specification 109 

(PAS 4023, 2023), which provides guidelines for the selection, deployment, maintenance, and quality assurance of 110 

air quality sensor systems. While this manuscript serves as an initial overview, detailed analyses of the measured 111 

pollutants and study phases, offering a more comprehensive perspective on sensor performance, are planned for future 112 

publications. 113 

In the following sections, we delve into the methodology and provide an overview of the QUANT dataset, as well as 114 

a discussion of some of the key findings and potential considerations for end-users. 115 

2. QUANT study design 116 

To capture the variability of UK urban environments, identical units were installed at three carefully selected field 117 

sites. Two of these sites are highly instrumented urban background measurement supersites: the London Air Quality 118 

Supersite (LAQS; for more details, refer here: https://uk-air.defra.gov.uk/networks/site-info?site_id=HP1) and the 119 

Manchester Air Quality Supersite (MAQS; for more details, see: http://www.cas.manchester.ac.uk/restools/firs/), 120 

located in densely populated urban areas with unique air quality challenges. The third site is a roadside monitoring 121 

site in York, which is part of the Automatic Urban and Rural Network (AURN; click here for more details: https://uk-122 

air.defra.gov.uk/networks/site-123 

info?uka_id=UKA00524&search=View+Site+Information&action=site&provider=archive), representing a urban 124 

environment more influenced by traffic. This selection strategy ensures that the QUANT study's findings reflect the 125 

dynamics of urban air quality across different UK settings, while providing comprehensive reference measurements. 126 

Further details about each site can be found in Section S1 in the Supp. 127 

2.1 Main study 128 

The Main QUANT assessment study aimed to perform a transparent long-term (19 Dec 2019 - 31 Oct 2022) evaluation 129 

of commercially available sensor technologies for outdoor air pollution monitoring in UK urban environments. Four 130 

units duplicates of five different commercial sensor devices (Table 1) were purchased in Sept 2019 for inclusion in 131 

the study, with the selection criteria being: market penetration and/or previous performance reported in the literature, 132 

ability to measure pollutants of interest (e.g. NO2, NO, O3, and PM2.5), and capacity to run continuously reporting 133 

high time resolution data (1-15 min data) ideally in near real-time (i.e., available within minutes of measurement) 134 

with data accessible via an API. 135 

Table 1. Main QUANT devices description. The 20 units, all commercially available and ready for use as-is, offered 56 gas 136 

and 56 PM measurements in total. For a detailed description of the devices see Section S31 in the Supp. 137 

Product* Measurements Cost (£)** 
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(# units) Company3 NO NO2 O3 CO CO2 PM1 PM2.5 PM10 

AQY (4) Aeroqual - ✔ ✔ - - - ✔ ✔ ~4.7K 

AQM (4) AQMesh ✔ ✔ ✔ - ✔ ✔ ✔ ✔ ~8.6K 

Ari (4) QuantAQ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ~8.6K 

PA (4) PurpleAir - - - - - ✔ ✔ ✔ ~0.3K 

Zep (4) Earthsense ✔ ✔ ✔ - - ✔ ✔ ✔ ~7K 

*AQY: Aeroqual; AQM: AQMesh; Ari: Arisense; PA: PurpleAir; Zep: Zephyr. **Cost (Sep 2019) per unit including UK taxes 

and associated contractual costs (i.e., communication, data access, sensor replacement, etc.). 

To capture the variability of UK urban environments, identical units were installed at three carefully selected field 138 

sites. Two of these sites are highly instrumented urban background measurement supersites: the London Air Quality 139 

Supersite (LAQS) and the Manchester Air Quality Supersite (MAQS), located in densely populated urban areas with 140 

unique air quality challenges. The third site is a roadside monitoring site in York, which is part of the Automatic 141 

Urban and Rural Network (AURN, https://uk-air.defra.gov.uk/data/), representing a urban environment more 142 

influenced by traffic. This selection strategy ensures that the QUANT study's findings reflect the dynamics of urban 143 

air quality across different UK settings, while providing comprehensive reference measurements. Further details about 144 

each site can be found in Section S3 in the Supp., and the available reference instrumentation in Section S4. 145 

Initially, all the sensors were deployed in Manchester for approximately 3 months (mid-Dec 2019 to mid-Mar 2020) 146 

before being split up amongst the three sites (Fig. 1). At least one unit per brand was re-deployed to the other two 147 

sites (mid-March 2020 to early-July 2022) leaving two devices per company in Manchester to assess inter-device 148 

consistency. In the final 4 months of the study, all the sensor systems were relocated back to Manchester (early July 149 

2022 to the end of October 2022).  150 

 151 

 
3 Throughout this article, the terms “manufacturers” and “company” are used interchangeably to refer to entities that produce, 

and/or sell sensor systems or devices. This usage reflects the industry practice of referring to businesses involved in the production 

and distribution of technology products without distinguishing between their roles in manufacturing or sales. 

https://uk-air.defra.gov.uk/data/
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 152 

Figure 1. Main QUANT Quant and Wider Participation Study (WPS) timeline. 153 

2.2 Wider Participation Study 154 

The Wider Participation Study (WPS) was a no-cost complementary extension of the QUANT assessment, specifically 155 

designed to foster innovation within the air pollution sensors domain. This segment of the study took place entirely at 156 

the MAQS from 10th June 2021 to 31st October 2022 (Fig. 1). It included a wider array of commercial platforms (9 157 

different sensor systems brands), and offered manufacturers the opportunity to engage in a free-of-charge impartial 158 

evaluation process. Although participation criteria matched those of the Main QUANT study, a key distinction lay in 159 

the voluntary nature of participation: manufacturers vendors were invited to contribute multiple sensor devices 160 

throughout the WPS study (see Table 2). Participants were able to demonstrate their systems’ performance against 161 

collocated high-resolution (1-minute) reference data at a state-of-the-art measurement site such as the Manchester 162 

supersite.  163 

Table 2. The 23 WPS devices deployed at the Manchester supersite, all commercially available and ready for use as-is, 164 

provided 63 gases and 62 PM measurements in total. For a detailed description of the devices see the Section S43 in the 165 

Supp. 166 

Product* 

(# units) 
Company 

Measurements 

NO NO2 O3 CO CO2 PM1 PM2.5 PM10 

Mod (3) QuantAQ - - - - - ✔ ✔ ✔ 

AQM (3) AQMesh ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Atm (2) RLS** - - - - - ✔ ✔ ✔ 

IMB (2) Bosch - ✔ ✔ - - - ✔ ✔ 

Poll (2) Oizom ✔ ✔ ✔ ✔ ✔ - ✔ ✔ 

AP (3) Kunak ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

SA (3) Vortex IoT - ✔ ✔ - - - ✔ ✔ 

NS (3) Clarity - ✔ - - - ✔ ✔ ✔ 
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Prax (2) SCS*** ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

*Mod: Modulair; AQM: AQMesh; Atm: Atmos, Poll: Polludrone Polludrone: Poll; AP: Kunak Air Pro; SA: Silax Air, NS: Node-167 

S, Prax: Praxis. **RLS: Respirer Living Sciences. ***SCS: South Coast Science. 168 

2.3 Sensor deployment and data collection, co-located reference data and data products 169 

All sensor devices were installed at the measurement sites as per manufacturer recommendations, adhering strictly to 170 

manufacturers' guidelines for electrical setup, mounting, cleaning, and maintenance guaranteed proper installation. 171 

Since all deployed systems were designed for outdoor use, no additional protective measures were necessary. Each of 172 

the systems were mounted on poles acquired specifically for the project or on rails at the co-location sites, without the 173 

need for special protections. Following the manufacturer's suggestions, sensors were positioned within 3 metres of 174 

the reference instruments' inlets. Custom electrical setups were developed for each sensor type, incorporating local 175 

energy sources and weather-resistant safety features, alongside security measures to deter vandalism and ensure 176 

uninterrupted operation. Routine maintenance was conducted monthly, although the COVID-19 pandemic 177 

necessitated longer intervals between visits. Despite these obstacles, efforts to maintain sensor security and 178 

functionality continued unabated, employing both physical safeguards and remote monitoring to preserve data 179 

integrity. 180 

In addition to the device supplier's own cloud storage (accessed on-demand via each supplier’s web portals), an 181 

automated daily scraping of each company’s API was performed to save data onto a secure server at the University 182 

of York to ensure data integrity. PurpleAir units were exempt from this due to a lack of mobile data connection and 183 

poor internet signal at the sites; instead, readings were locally collected and manually uploaded. Unlike other brands 184 

that utilise mobile data connections, PurpleAir sensors rely on WiFi for data transmission. Due to poor internet signal 185 

at the sites, we locally collected and manually uploaded readings for these units. Minor pre-processing was applied at 186 

this stage, including temporal harmonisation to ensure that all measurements had a minimum sampling period of 1-187 

minute, ensuring consistency in measurement units and labels, and coercing into the same format to allow for full 188 

compatibility across sensor units. No additional modifications to the original measurements were applied; missing 189 

values were kept as missing and no additional flags were created based on the measurements beyond those provided 190 

by the manufacturers. No outlier checks or data modifications were applied at this stage. For an overview of the sensor 191 

measurands and their corresponding data time resolutions as provided by the companies participating in the Main 192 

QUANT study and the WPS, please see Seccion S3 and S4 (Table S4 and S5) respectively. 193 

2.4 Data products and co-located reference data  194 

In addition to providing an independent assessment of sensor performance, QUANT also aimed to contribute to device 195 

manufacturers to help advance the field of air pollution sensors. During QUANT, device calibrations were performed 196 

solely at the discretion of the manufacturers without any intervention from our team, thus limiting the involvement of 197 

manufacturers in the provision of standard sensor outputs and unit maintenance as would be required by any standard 198 

customer. This approach enabled manufacturers to independently assess and benchmark their sensors' performance, 199 

using provided reference data to potentially develop calibrated data products. It's noteworthy that not all manufacturers 200 

chose to utilise these data for corrections or enhancements. However, those who did were expected to create and 201 

submit calibrated data products, subsequently named as "out-of-box" (initial data product), “cal1” (first calibrated 202 

product), and “cal2” (second calibrated product). This differentiation highlighted the varying degrees of engagement 203 
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and application of the reference data by different manufacturers. Figures S2 and S3 (section S3 and S4 respectively) 204 

show a time-line of the different data products.  205 

To this end, three separate 1-month periods of reference data, spaced every 6 months, were shared with each supplier, 206 

provisional data soon after each period, and ratified data when available. For an overview of reference instrumentation 207 

at each site refer Table S1, and for details on the quality assurance procedures applied to the reference instruments 208 

see Table S2. All reference data were embargoed until it was released to all manufacturers simultaneously to ensure 209 

consistency across manufacturers. For an overview of reference and equivalent-to-reference instrumentation, as 210 

defined in the European Union Air Quality Directive 2008/50/EC (hereafter referred to as EU AQ Directive), at each 211 

site, please refer to Section S2 (Table S1). For details on the quality assurance procedures applied to the reference 212 

instruments, see Table S2. To see the dates and periods of the shared reference data refer to Table S3. Access to 213 

colocated reference data allowed the companies to assess sensors’ performance and, if they chose, to generate and 214 

provide additional calibrated data products. These products are distinct data versions provided by manufacturers 215 

throughout QUANT, before and/or after sharing reference data —for instance, “out-of-box”, “cal1”, “cal2”, etc. 216 

Figures S1 and S2 show a time-line of the different data products. To see the dates and periods of the shared reference 217 

data refer to Table S3. All reference data was embargoed until it was released to all manufacturers simultaneously to 218 

ensure consistency across manufacturers. Not every manufacturer opted to use this data to apply corrections or 219 

improve calibrations, but if they chose to do so, the updated measurements were treated as a separate data product. 220 

Device calibrations were performed solely at the discretion of the manufacturers without any intervention from our 221 

team, thus limiting the involvement of vendors/manufacturers in the provision of standard sensor outputs and unit 222 

maintenance as would be required by any standard customer. 223 

3. Results and discussion 224 

A key challenge in sensor performance evaluation is the high spatial and temporal variability errors that impact the 225 

accuracy of their readings, making the application of laboratory corrections more challenging. Furthermore, the 226 

overreliance on global performance metrics, such as R2 (i.e., the Coefficient of Determination), RMSE (i.e., the Root 227 

Mean Squared Error), and MAE (i.e., the Mean Absolute Error) is an important issue when assessing sensors. While 228 

these metrics provide a general understanding of sensor performance, they can be limiting or even misleading, 229 

restricting a comprehensive understanding of the error structure and the measurement information content (Diez et 230 

al., 2022). Furthermore, the overreliance on global performance metrics is a significant concern in sensor assessment. 231 

The Coefficient of Determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) are 232 

among the most popular single-value metrics for evaluating sensor performance, alongside others (e.g., the bias, the 233 

slope and intercept of the regression fit). However, while single-value metrics offer an overview of performance, they 234 

can be limiting or misleading. They condense vast amounts of data into a single value, simplifying complexity at the 235 

expense of a nuanced understanding of error structures and information content (Diez et al., 2022), potentially 236 

overlooking critical aspects of sensor performance (Chai & Draxler, 2014). Visualisation tools (such as Regression 237 

plots, Target plots, and Relative Expanded Uncertainty plots) complement these metrics, allowing end users to identify 238 

relevant features, which could be beyond the scope of global metrics. For additional details on the metrics utilised in 239 

this study, including some of their limitations and advantages refer to section “S5. Performance Metrics”. This section 240 

also provides a summary of current guidelines and standardisation initiatives, which may offer a foundation for end-241 

users to select appropriate metrics for their own analyses (refer to table S6). For further discussion on metrics and 242 

visualisation tools for performance evaluation, readers are directed to Diez et al. (2022).  243 

https://www.zotero.org/google-docs/?broken=0jha7P
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In response to these challenges, the QUANT assessment represents the most extensive independent appraisal of air 244 

pollution sensors in UK urban atmospheres. As the results presented here illustrate, QUANT is dedicated to examining 245 

sensor performance through multiple complementary perspectives and metrics and visualisation tools, aiming to 246 

integrate these to accurately reflect the complexity of this dataset. This methodology promotes a nuanced 247 

understanding of sensor performance, extending beyond the limitations of conventional global single-value metrics.  248 

Furthermore, by providing open access to the dataset, we encourage stakeholders to explore and utilise the data 249 

according to their unique needs and contexts, as detailed in the “Data Availability” section. In addition, we have 250 

developed a publicly accessible analysis platform (https://shiny.york.ac.uk/quant/), designed for straightforward 251 

offline analysis of the QUANT dataset. This platform enables users to interactively visualise the data through various 252 

representations, such as time series, regression plots, and Bland-Altman plots. It also offers statistical parameters 253 

(including regression equation, R2, and RMSE) for analysing different pollutants, selecting specific sensors or 254 

manufacturers, and comparing across various co-location timeframes. 255 

The following sections aim to provide an overview of the data and provide initial findings, with a focus on those that 256 

are most relevant to end-users of these technologies. The majority of examples presented here focus on PM2.5 and 257 

NO2 measurements, due to both a larger dataset available for these pollutants and their critical role in addressing the 258 

exceedances that predominantly impact UK air quality. All metrics and plots presented here are based on 1-hour 259 

averaged data. Unless otherwise specified, a data inclusion criterion of 75% was uniformly applied across our analyses 260 

to ensure the reliability and representativeness of the results. This threshold aligns with the EU AQ Directive, which 261 

mandates this proportion when aggregating air quality data and calculating statistical parameters. To highlight broad 262 

implications and insights into sensor technology, rather than focusing on the performance of specific manufacturers, 263 

figures illustrating brand-specific features have been anonymized. This is intended to prevent potential bias and 264 

encourage a holistic view of the data, ensuring interpretations remain focused on general trends rather than isolated 265 

examples.  266 

3.1 Inter-device precision  267 

Inter-device precision refers to the consistency of measurements across multiple identical devices (i.e., same brand 268 

and model) of the same type, an important characteristic to ensure the reliability of sensor outputs over time (Moreno-269 

Rangel et al., 2018). During QUANT, all the devices were collocated for the first 3 months and the final 3 months of 270 

the deployment to assess inter-device precision and its changes over time. Fig. 2 shows the inter-device precision (as 271 

defined by the CEN/TS 17660-1:2021, i.e., the “between sensor system uncertainty” metric: us(bs, s)) of PM2.5 272 

measurements during these periods. For an overview of NO2 and O3 inter-device precision, see the “S6. 273 

Complementary plots” section in the supplementary (figures S4 and S5). While most of the companies display a 274 

certain level of inter-device precision stability in each period (except for one, with a seemingly upward trend in the 275 

final period), there are evident long-term changes. Notably, out of the four manufacturers assessed in the final period 276 

(each having 3 devices running simultaneously), three experienced a decline in their inter-device precision compared 277 

to two years earlier. This is likely due to both hardware degradation but also drift in the calibration, which at this point 278 

had been applied between 16 and 34 months prior (depending on the manufacturer). For extended periods, 279 

inconsistencies among devices from the same manufacturer might emerge, leading to varying readings under similar 280 

conditions. Consequently, data collected from different devices may not be directly comparable, which could result 281 

in inaccuracies or misinterpretations when analysing air quality trends or making decisions.  282 
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 283 

Figure 2. The inter-device precision of PM2.5 measurements from “identical” devices across the 5 companies participating 284 

in QUANT is assessed using the “between sensor system uncertainty” metric (defined by the CEN/TS 17660-1:2021 as u(bs, 285 

s)). Each line represents this metric as a composite of all sensors per brand (excluding units with less than 75% data) within 286 

a 40-day sliding window.  287 

It is worth noting that the inter-device precision provides no information on the accuracy of the sensor measurements; 288 

a batch of devices may provide a highly consistent, but also highly inaccurate measurement of the target pollutant.  289 

The “target plot” (as shown in Fig. 3) is a tool commonly used to depict the bias/variance decomposition of an 290 

instrument’s error relative to a reference (for more details see Jolliff et al. (2009)). The mean bias error (MBE) is used 291 

to characterise accuracy and precision is quantified by the centered Root Mean Squared Error (cRMSE, e.g. Kim et 292 

al. (2022) also called unbiased Root Mean Squared Error (uRMSE, e.g. Guimarães et al. (2018)). Fig. 3 visualises the 293 

performance of a set of PM2.5 sensors of the WPS deployment for the first 2 months (out-of-box data) and the last 3 294 

months of colocation (manufacturer-supplied calibrations). In addition to highlighting which devices are most 295 

accurate, Fig. 3 also provides an additional perspective of inter-device precision. In addition to showcasing inter-296 

device precision, Fig. 3 also serves as a transition to accuracy evaluation (the focus of the subsequent section). 297 

 298 

 299 

Figure 3. Target diagrams for the WPS PM2.5 measurements during the initial co-location period (Jun-Jul 2021, left) and 300 

final co-location period (Aug-Oct 2022, right). The error (RMSE) for each instrument is decomposed into the MBE (y-axis) 301 

and cRMSE (x-axis). Each point represents an individual sensor device, with duplicate devices having the same colour. 302 

https://www.zotero.org/google-docs/?broken=Ie0c41
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Since only units with more than 75% of the data were considered, the plot on the right shows fewer units than the plot on 303 

the left. 304 

3.2 Device accuracy and co-location calibrations 305 

Sensor measurement accuracy denotes how close a sensor's readings are to reference values (Wang et al., 2015). 306 

Characterising this feature is imperative for establishing sensor reliability and making informed decisions based on 307 

its data. Fig. 4 shows that co-location calibration can greatly impact observed NO2 sensor performance in a number 308 

of ways. Firstly, measurement bias is often, but not always, reduced following calibration, as evidenced by a general 309 

trend for devices to migrate towards the origin (RMSE = 0 ppb). Secondly, it can help to improve within-manufacturer 310 

precision by grouping sensor systems from the same company closer together., as evidenced by sensor systems from 311 

the same company grouping more closely as the right plot in Fig. 4 shows. The figure also highlights a fundamental 312 

challenge with evaluating sensor systems: the measured performance can vary dramatically over time —and space— 313 

as the surrounding environmental conditions change. To quantify this, 95% Confidence Intervals (CIs) were estimated 314 

for each device using bootstrap simulation and are visualised as a shaded region. For the out-of-the-box data, these 315 

regions are noticeably larger than in the calibrated results for most manufacturers, suggesting that colocation 316 

calibration has helped to tailor the response of each device to the specific site conditions. This is reinforced by the 317 

cRMSE component reducing by a greater extent than the MBE; in the terminology of machine learning, the calibration 318 

has helped reduce the variance portion of the bias-variance trade-off. This observation suggests that colocation 319 

calibration effectively improves each device's response to particular site conditions. This improvement is underscored 320 

by the more substantial reduction in the cRMSE component compared to the MBE. The cRMSE, representing the 321 

portion of error that persists after bias removal, essentially measures errors attributable to variance within the data 322 

space. In the context of out-of-the-box data, this “data space” spans all potential deployment locations used by 323 

manufacturers for initial calibration model training (i.e., before shipping the sensors for the QUANT study), thus 324 

exhibiting high variability. However, applying site-specific calibration significantly narrows this variability, 325 

leveraging local training data to minimise variance. 326 

 327 

Figure 4. Effect of colocation calibration on NO2 sensor accuracy. The accuracy is quantified using RMSE, which is 328 

decomposed into MBE (y-axis) and cRMSE (x-axis). 95% confidence regions were estimated using bootstrap sampling. The 329 

left panel displays results from the period Jun - Jul 2021 (‘out-of-the-box’ data), while the right-hand panel summarises 330 

Aug 2021 when calibrations were applied for all the WPS manufacturers. 331 
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However, it is important to note a limitation of Target Plots: they primarily focus on sensor behaviour around the 332 

mean. Therefore, the collective improvement evidenced by Fig. 4 might be only partial. For applications where it is 333 

important to understand how calibrations impact lower or higher percentiles, considering other metrics or visual tools 334 

would be advisable. An example of this is the absolute and Relative Expanded Uncertainty (REU, defined by the 335 

Technical Specification CEN/TS 17660-1:202). Unlike the more commonly used metrics such as R2, RMSE, and 336 

MAE, which measure performance of the entire dataset, the REU offers a unique “point by point” evaluation, enabling 337 

its representation in various graphical forms, such as time series or concentration space (for the REU mathematical 338 

derivation, refer to section “S5. Performance Metrics”). The REU approach also incorporates the uncertainty of the 339 

reference method into its assessment, highlighting the intrinsic uncertainty present in all measurements, including 340 

those from reference instruments. This consideration of reference uncertainty is crucial for a holistic understanding of 341 

sensor performance and calibration effectiveness. For a comprehensive discussion on this, refer to Diez et al. (2022). 342 

Fig. 5 illustrates how NO2 calibrations might not only improve collective performance around the mean (as indicated 343 

by the dotted red line in Fig. 5 and previously displayed in the target plot) but across the entire concentration range. 344 

 345 

Figure 5. The top plots display the REU (%) across the concentration range, while the bottom plots depict the Absolute 346 

Uncertainty (ppb) —both before (left plots) and after (right plots) calibrating NO2 WPS systems. The shaded areas 347 

represent the collective variability evolution (all sensors from all companies) of both metrics. These plots were constructed 348 

using the minimum and maximum value of the REU and the Absolute Uncertainty for the entire concentration range. 349 

However, a note of caution when interpreting results from observational studies such as these is that it is impossible 350 

to ascertain a direct causal relationship between calibration and sensor performance as there are numerous other 351 

confounding factors at play (Diez et al., 2022). Notably these two data products are being assessed over different 352 

periods when many other factors will have changed, for example, the local meteorological conditions as well as 353 

human-made factors such as reduced traffic levels following the COVID-19 lockdown that commenced in March 354 

2020. 355 

3.3 Reference instrumentation is key 356 

https://www.zotero.org/google-docs/?broken=urz4K2
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A common assumption when evaluating the performance of sensors is that the metrological characteristics of the 357 

sensor predominantly influence discrepancies detected in co-locations. While this presumption can often be justified 358 

due to both devices' (sensor and the reference method) relative scales of measurement errors, it is not always the case. 359 

Since every measurement is subject to uncertainties, it is crucial to consider those associated with the reference when 360 

deriving the calibration factors of placement. 361 

Fig. 6 (left plots) displays the performance of a NO2 reference instrument (Teledyne T200U) specifically installed for 362 

QUANT, located next to the usual instrument at the Manchester supersite (Teledyne T500). Although they use 363 

different analytical techniques (chemiluminescence for the T200U and Cavity Attenuated Phase Shift Spectroscopy 364 

for the T500), their measurements are highly correlated (R2~0.95). However, it's possible to identify a proportional 365 

bias (slope=0.69), attributed to retaining the initial calibration (conducted in York) without subsequent adjustments, 366 

a situation exacerbated by an unnoticed mechanical failure of one of the instrument's components. The REU 367 

demonstrates that, under these circumstances, an instrument designated as a reference does not meet the minimum 368 

requirements (REU ≤ 15% for NO2 reference measurements) set out by the Data Quality Objectives (DQOs) of 369 

the EU AQ Air Quality Directive 2008/50/EC. Figure S63 shows a unique sensor evaluated against both the T500 and 370 

the T200U. The comparison against the T200U yields better results, suggesting that, in a hypothetical scenario where 371 

it was the only instrument at the site, this could lead to misleading conclusions. This situation reinforces the idea that 372 

instruments should not only be adequately characterised but also undergo rigorous quality assurance and data quality 373 

control programs, as well as receive appropriate maintenance (Pinder et al., 2019). All of this must be performed 374 

before and during the use of any instrument. 375 

For PM monitoring, the current EU reference method is the gravimetric technique (CEN EN 12341, 2023), which is 376 

a non-continuous monitoring method that requires weighing the sampled filters and off-line processing of the results. 377 

Techniques that have proven to be equivalent to the reference method (called “equivalent to reference” in the EU AQ 378 

Air Quality Directive) are very often used in practice. In the UK context, the Beta Attenuated Monitor (BAM) and 379 

FIDAS (optical aerosol spectrometer) are equivalent-to-reference methods commonly used as part of the Urban 380 

AURN Network (Allan et al., 2022). To illustrate these differences in practice, Fig. 6 compares these two equivalent-381 

to-reference PM2.5 measurements obtained with a BAM (AURN York site, located on a busy avenue), and a FIDAS 382 

unit specifically installed for QUANT. During this specific period, they show a strong linear association do not fully 383 

agree (R2 = 0.87). Although the bias is not extremely pronounced (slope=0.80), the FIDAS measurements are, on 384 

average, systematically lower compared to BAM. Despite a not very pronounced bias (slope=0.80), the dispersion of 385 

points around the best-fit line is noticeable, limiting the linearity of the FIDAS compared to the BAM.  386 

In the hypothetical case that the BAM were to be considered the reference method (arbitrarily chosen for this example 387 

as it is the current instrument at the AURN York site) when assessing the FIDAS under these test conditions, it would 388 

only meet the criterion stipulated by the EU DQOs for indicative measurements (REU ≤ 25% for PM2.5), but not 389 

for fixed (i.e., reference) measurements (REU ≤ 50% for PM2.5). Of course, This example is primarily intended to 390 

illustrate the magnitude of differences between both methods for this particular application, and by no means does 391 

this observation imply that the FIDAS measurements are inherently problematic. 392 
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 393 

Figure 6. The left plots depict the comparison between the Teledyne T200U (chemiluminescence analyzer) and the reference 394 

method (Teledyne T500 CAPS analyzer) at the Manchester supersite. The plots to the right illustrate PM2.5 measurements 395 

in York, taken with a FIDAS instrument (optical aerosol spectrometer) and a BAM 1020 (beta attenuation monitor), both 396 

equivalent-to-reference methods. While the top plots show the regression (including some typical single-value metrics), 397 

those on the bottom present the REU alongside the DQOs defined by the EU AQ Directive European Directive 2008/50/EC.  398 

Although these two instruments (BAM and Fidas) show a greater concordance between themselves than with sensors 399 

(for the comparison of two sensor systems against the BAM and the Fidas, refer to Fig. S74), the choice of the 400 

measurement method can have a considerable impact on evaluations of this type. This underscores the importance of 401 

adequately characterising the uncertainties of the reference monitor when evaluating sensors. 402 

3.4 Inter-location performance Systems performance after location transfer  403 

An extreme example of sensor performance varying due to environmental conditions is when sensors are moved 404 

between locations, as their apparent performance may vary drastically. Fig. 7 displays the REU and regression plots 405 

for four of the same PM2.5 sensor system in two periods: April-June 2022 when the devices were working across the 406 

3 sites (York, Manchester and London), and August-October 2022 when they were all reunited in Manchester. The 407 

RMSE remains reasonably consistent (range 2.27 to 3.47 ppb) between the devices across the periods and locations. 408 

However, for the device that moved from York to Manchester, a change in slope from 0.69 to 0.86 was observed. 409 

Because this device’s slope is consistent with the other units while running in Manchester, this is likely due to the 410 

different sensor responses in the specific environments. The precise cause of this change is not immediately evident 411 

and will be the focus of a follow-up study, but could be due to changes in local conditions (e.g., weather, emissions, 412 

etc.) impacting sensor calibration and/or differences in actual PM2.5 sources and particle characteristics at the sites 413 

(Raheja et al., 2022).  414 
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 415 

 416 

Figure 7. Regression (top) and REU (bottom) plots showing data from four PM2.5 sensors (same manufacturer) over 2 time 417 

periods: Apr-Jun 2022 and Aug-Oct 2022. The four devices were in separate locations in the first period, but all deployed 418 

in Manchester in the second. The horizontal dashed lines represent a reference for the PM2.5 DQOs as defined by the EU 419 

AQ Directive (for “fixed” PM2.5 measurements, REU < 25%; for “indicative” PM2.5 measurements, REU < 50%). Readers 420 

are encouraged to consult the specified standard for further details. 421 

A second example of inter-location performance changing between locations is presented in Fig. 8, showing NO2 data 422 

from two sensor systems (from two different manufacturers, identified as Systems A and B) (different brands, one 423 
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shown on top of the other) before (left plots) and after (right plots) they were moved from Manchester to London in 424 

March 2020. Both sensors saw a reduction in agreement with the reference instrument at the London site compared 425 

to Manchester, despite both these sites being classified as urban-background with reference instrument performance 426 

regularly audited by the UK National Physical Laboratory. 427 

 428 
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 429 

Figure 8. Comparison of NO2 measurements for two systems (A and B) that were moved between Manchester (left plots) 430 

and London (right plots). The Manchester deployment was from January - February 2020, and the London data were 431 

recorded from April - May 2020.  432 

Figure 8. Comparative analysis of NO2 measurements from two systems (A and B), across two urban settings. The left plots 433 

display Manchester “out-of-box” data product (January to February 2020), while the right plots show London “cal1” data 434 

product (April to May 2020). This “cal1” label does not indicate corrections specific to London's conditions but denotes a 435 

data product from a specific period (as detailed in Figures S2 and S3). The colour gradient represents the density of data 436 

points, with darker shades indicating lower densities and brighter shades signifying higher densities. 437 

The primary distinction between both systems’ behaviour lies in the fact that the sensor located in the top row, even 438 

after being relocated to London, maintains a linear response (albeit slightly more degraded than that observed in 439 

Manchester, as the R2 and RMSE show). In contrast, in the second system (bottom row), the response is notably 440 

noisier as the Standard Error (SE) —which is the dispersion of the data around the best-line fit line, i.e., the remaining 441 

error after bias correction. In scenarios akin to this latter, where there is a high variance in the residuals, a linear 442 

correction will not provide a significant improvement. While more sophisticated corrections could be applied, these 443 

will be limited by domain knowledge of the end-user, and potentially by other complex data sources that might be 444 

available. However, it is important to remember that additional post-processing could increase the risk of overfitting 445 

(Aula et al., 2022). On the other hand, for cases like the top plots, users might benefit from trying to correct them 446 

using simple linear correction (e.g. using reference instruments if available) or other approaches that could provide 447 

means for zero and span correction. A straightforward and cost-effective example could be the use of diffusion tubes 448 

for the case of NO2, as discussed in Section 3.6. The primary distinction between both systems’ behaviour lies in the 449 

fact that the sensor located in the top row (Sensor A), even after being relocated to London, maintains a linear response 450 

(albeit slightly more degraded than that observed in Manchester, as indicated by the R2 and RMSE). In contrast, Sensor 451 
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B's response becomes significantly noisier upon relocation to London, as highlighted by the Standard Error (SE) —452 

which represents the remaining error after applying a perfect bias correction. Despite both systems utilising identical 453 

sensing elements, the variance in residuals between them may stem from the distinct calibration approaches applied 454 

by the respective companies. 455 

For cases resembling Sensor A, users might find it beneficial to implement simple linear correction methods (e.g., 456 

using reference instruments if available) or explore other strategies for zero and span correction. A practical and cost-457 

effective approach, for example, is using diffusion tubes for NO2 measurements, as discussed in Section 3.6. 458 

Conversely, in scenarios characterised by high variance in residuals, such as those observed with Sensor B, a-459 

posteriori attempts to apply a simple linear correction are unlikely to result in significant improvement. While more 460 

sophisticated corrections are theoretically feasible, their effectiveness is limited by the end-user’s domain knowledge 461 

and the availability of additional complex data sources. Furthermore, it is important to consider that excessive post-462 

processing may lead to overfitting —a situation where a model excessively conforms to specific patterns in the training 463 

data, resulting in poor performance on new, unseen data (Aula et al., 2022). 464 

3.5 Long-term stability 465 

The long-term stability of sensor response is also an important facet of its performance, especially for certain use 466 

cases such as multi-year network deployments. There can be multiple causes of long-term changes to sensor response, 467 

for example, particles settling inside the sampling chamber in optical-based sensors(e.g. Hofman et al. (2022)), or the 468 

gradually changing composition of electrochemical cells (e.g. Williams (2020)). How these changes manifest 469 

themselves in the data must be identified if ways to account for them are to be implemented. 470 

Fig. 9 shows the temporal nature of the O3 and NO2 errors (MBE, cRMSE and RMSE) from a sensor system between 471 

February 2020 and October 2022. The O3 shows (Fig. 9a) a gradual increase in the overall measurement error, largely 472 

due to an increase in the MBE. It also shows a distinct seasonality MBE, increasing by a factor of 3-4 between March 473 

and July compared to the August-February period. The cRMSE component shows fluctuations during the study but 474 

only has a small increasing trend. The NO2 system (Fig. 9b) demonstrates a consistently increasing overall error, with 475 

a less pronounced seasonal influence. The bias contributes greatly to the total error (see Section 3.6 for NO2 sensor 476 

correction, Fig. 9c).  477 

 478 

 479 
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Figure 9. Seasonal variation of error (as RMSE, red line) of one of the systems belonging to the Main QUANT, decomposed 480 

into cRMSE (in blue) and MBE (in yellow) estimated based on a 40-day (aligning with the sample size recommendation by 481 

the CEN/TS 17660-1:2021 standard for on-field tests) moving window approach with a 1-day slide (i.e., advancing the 482 

calculation 1 day at a time) (1-day slide) moving window. Panel a) is for O3 measurements, and panel b) is for NO2 (April 483 

2020-Oct 2022). Panel c) is also for NO2, this time showing the effect of a linear correction using diffusion tubes (see next 484 

section for more details). 485 

3.6 Informing end-use applications 486 

Ultimately, for any air pollution monitoring application, the requirements of the task should dictate the measurement 487 

technology options available. For example, if the requirement for a particular measurement is to assess legal 488 

compliance, then lower measurement uncertainty must be a key consideration as the reported values need to be 489 

compared to a limit value. In contrast, if an application aimed to look at long-term trends in pollutants, then absolute 490 

accuracy may not be as important as the long-term stability of sensor response. In order to realise the potential of air 491 

pollution sensor technologies, end users need to be provided with the information required to critically assess the 492 

strengths and weaknesses of potential candidate sensor devices, ideally in an easy-to-access and interpret manner. To 493 

realise the potential of air pollution sensor technologies, end users need to align their specific measurement needs 494 

with the capabilities of available devices. Achieving this necessitates access to unbiased performance data, such as 495 

long-term stability and accuracy across varying conditions, ideally in an easy-to-access and interpret manner. 496 

Understanding the uncertainty associated with a measurement instrument is essential for recognizing its capabilities 497 

and limitations. Accurate instruments are crucial, especially in areas like public health decision-making, where 498 

inaccurate data can have profound implications (Molina Rueda et al., 2023). Furthermore, instruments that operate 499 

autonomously ensure consistent, uninterrupted data collection, making them more efficient and cost-effective in terms 500 

of maintenance and calibration. Figure 10 shows the REU (y-axis) and Data Coverage (DC, x-axis) of companies 501 

measuring NO2 with more than 2 systems running to avoid ambiguity in the results. Using multiple systems, not only 502 

avoids ambiguity in results but also enhances the robustness of the data collected. Figure 10 illustrates the collective 503 

behaviour of NO2 sensors from each of the four companies with more than two working systems, showcasing their 504 

REU (y-axis) versus Data Coverage (DC, x-axis). Both parameters were calculated for each sensor system using a 40-505 

day moving window approach and then aggregated by brand, ensuring a comprehensive analysis. This methodology 506 

leverages overlapping data from multiple sensors to provide a robust representation of company-wide sensor 507 

performance and aims to prevent biassed interpretations. Both REU and DC are key criteria within the EU scheme 508 

(EU 2008/50/EC) for evaluating the performance of measurement methods, and are complemented by the CEN/TS 509 

17660-1:2021 specifically for sensors. The latter This document defines three different sensor system tiers. Class 1 510 

NO2 sensors, bounded by the green rectangle (REU < 25% and DC > 90%), offer higher accuracy than Class 2 sensors 511 

(REU < 75% and DC > 50%), delimited highlighted by the red rectangle (Class 3 sensors have no set requirements). 512 

Presenting the REU and DC data like in Fig. 10 this helps users anticipate the performance of sensor systems —under 513 

the assumption that all sensors from the same brand will behave similarly in equivalent environmental conditions— 514 

providing more insight into selecting the appropriate instrument for a given project or study. 515 
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 516 

 517 

Figure 10. The REU vs. Data Coverage (DC) for 4 systems companies was evaluated during the WPS for the period Nov 518 

2021-Oct 2022 (after all companies had at least one calibrated product). Both the REU and the DC were estimated based 519 

on a 40-day size (which is the number of days used by CEN/TS 17660-1:2021 for on-field tests) moving window (1-day slide). 520 

While the green rectangle represents the DQOs for Class 1 sensors, the red one limits the DQOs for Class 2 sensors (Class 521 

3 sensors have no requirements). 522 
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Figure 10. REU vs. DC for 4 sensor system companies measuring NO2, with more than two units working simultaneously 523 

during the WPS (period Nov 2021-Oct 2022, after all companies provided at least one calibrated product). Each heat map 524 

plot (cooler colours for lower densities and warmer colours for higher densities) aggregates the REU and DC from sensors 525 

of the same brand working concurrently. The calculation of these two parameters employ a 40-day (aligning with the sample 526 

size recommendation by the CEN/TS 17660-1:2021 standard for on-field tests) moving window approach with a 1-day slide 527 

(i.e., advancing the calculation 1 day at a time). The green dashed rectangle limits the Data Quality Objectives (DQOs) for 528 

Class 1 sensors, and the red dashed rectangle outlines the DQOs for Class 2 sensors. 529 

Depending on the nature of the sensor data uncertainty, methods can be implemented to improve certain aspects of 530 

the data quality for a particular application. One such example is the use of distributed networks to estimate sensor 531 

measurement errors, such as that described by (J. Kim et al., 2018). Depending on the application, simpler methods 532 

could also be available to reduce the magnitude of the changing bias, and thus significantly improve the accuracy of 533 

an individual sensor system, but also that of broader sensor networks. For the case shown in Fig.9b, one possible way 534 

to do this would be using supporting observations of NO2 made via diffusion tubes. Depending on the application and 535 

available options, users can access alternative methods to reduce bias, thus enhancing the accuracy of sensor systems 536 

and networks. For example, “Indicative methods”, as defined by the EU AQ Directive, such as diffusion tubes (e.g., 537 

NOx, SO2, VOCs, etc.), can be an option. Specifically, our study leverages diffusion tube data for NO2, illustrating 538 

one effective approach to bias correction using supporting observations, as exemplified in Fig. 9b. These 539 

measurements are widely used to monitor NO2 concentrations in UK urban environments, due to their lower cost (~£5 540 

per tube) and ease of deployment, but only provide average concentrations over periods of weeks to months 541 

(Butterfield et al., 2021). During QUANT, NO2 diffusion tubes were deployed at the 3 colocation sites (see Section 542 

S7 at the Supp. for more details). Combining these measurements offers the possibility of quantifying the average 543 

sensor bias, thus reducing the error on the sensor measurement whilst maintaining the benefits of its high time-544 

resolution observations. It is important to note that while bias correction has been applied to the sensor data, the NO2 545 

diffusion tube concentrations used for comparison purposes must also be adjusted (e.g. following Defra DEFRA 546 

(2022)). Fig. 9c shows the accuracy of the same NO2 sensor data shown in Fig. 9b but applies a monthly offset 547 

calculated as the difference between its monthly average measurement and that from the diffusion tube (see Figure 548 

S85). This shows a dramatic reduction in overall error largely driven by its bias correction. What remains largely 549 

resulting from the cRMSE, i.e. the error variance that might arise from limitations from the sensing technology itself 550 

and/or the conversion algorithms used to transform the raw signals into the concentration output. To validate the 551 

efficacy and reliability of this bias correction method, further long-term studies are warranted. 552 

The development and communication of methods that improve sensor data quality, ideally in accessible digestible 553 

case studies, would likely increase the successful application of sensor devices for local air quality management. There 554 

is also a need for similar case studies showcasing the successful application of sensor devices for particular monitoring 555 

tasks. An example of this from the QUANT dataset is the use of sensor devices to successfully identify change points 556 

in a pollutant’s concentration profile. These are points in time where the parameters governing the data generation 557 

process are identified to change, commonly the mean or variance, and can arise from human-made or natural 558 

phenomena (Aminikhanghahi and Cook, 2017). Determining when a specific pollutant has changed its temporal 559 

nature is a challenging task as there are a large number of confounding factors that influence atmospheric 560 

concentrations a pollutant’s concentration at a specific point in time, including but not limited to seasonal factors, 561 

environmental conditions (both natural and arising from human behaviour), and meteorological factors. This challenge 562 

has lead to several “deweathering” techniques being proposed in the literature (Carslaw et al., 2007; Grange and 563 
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Carslaw, 2019; Ropkins et al., 2022). While change point detection is highlighted here as a promising application of 564 

sensor data, it represents just one of many potential methodologies that could be explored with the QUANT dataset.  565 

 566 

Figure 11. NO2 measurements (black solid line) and detrended estimates (blue solid line with 95% confidence interval in 567 

the shaded grey region) from the reference instrument (left panel) and 2 sensor systems (middle and right panels) from 568 

Manchester in 2020. Vertical dashed lines and their corresponding dates indicate identified change points, which 569 

correspond to the introduction of the first national lockdown due to COVID-19 on the 23rd of March 2020. The percentage 570 

in blue represents the relative peak-trough decrease from 5th March to 20th April. 571 

A novel statistical approach to smoothing air quality measurements was applied, accounting for these external factors 572 

(Lacy & Moller). This method was applied to NO2 concentrations determined from the sensor systems that had 573 

remained in Manchester throughout 2020, aiming to identify whether the well-documented reduction in ambient NO2 574 

concentrations could be observed due to changes in travel patterns associated with COVID-19 restrictions. To provide 575 

an objective quantification of whether a change-point had occurred, the Bayesian online change-point detection 576 

(Adams & MacKay, 2007) was applied. Of the 8 devices that measured NO2, clear changepoints corresponding to the 577 

introduction of a lockdown were identified in 2 (Fig.11). While this is an unsupervised analysis, it demonstrates the 578 

potential of these devices to identify long-term trends with appropriate processing, even with only having had 3 579 

months of training data to fit the model to. This is especially aided by the given algorithm’s ability to use reference 580 

data as a prior allowing sensor systems to fine-tune the model.  581 

A state-space based deweathering model was applied to NO2 concentrations measured from the sensor systems that 582 

had remained in Manchester throughout 2020 to remove these confounding factors, with the overarching objective to 583 

identify whether the well-documented reduction in ambient NO2 concentrations due to changes in travel patterns 584 

associated with COVID-19 restrictions could be observed in the low-cost sensor systems. To provide a quantifiable 585 

measure of whether a meaningful reduction had occurred, the Bayesian online change-point detection (Adams & 586 

MacKay, 2007) was applied. Of the 8 devices that measured NO2, clear change points corresponding to the 587 

introduction of a lockdown were identified in 2 (Fig.11), demonstrating the potential of these devices to identify long-588 

term trends with appropriate processing, even with only 3 months of training data. 589 
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4. Conclusions  590 

Lower-cost air pollution sensor technologies have significant potential to improve our understanding and ability to 591 

manage air pollution issues. Large-scale uptake in the use of these devices for air quality management has, however, 592 

been primarily limited by concerns over data quality and a general lack of a realistic characterisation of the 593 

measurement uncertainties making it difficult to design end uses that make the most of the data information content. 594 

Developments in the field of air pollution sensor technology are also developing rapidly, with advances in both the 595 

measurement technology and particularly in the data post-processing and calibration. Advances are occurring rapidly, 596 

in both the measurement technology and particularly in the data post-processing and calibration. A challenge with the 597 

use of sensor-based devices is that many of the end-use communities do not have access to extensive reference-grade 598 

air pollution measurement capability (Lewis & Edwards, 2016), or in many cases, expertise in making atmospheric 599 

measurements or the technical ability for data post-processing. For this reason, reliable information on expected sensor 600 

performance needs to be available to aid effective end-use applications. Large-scale independent assessments of air 601 

sensor technologies are non-trivial and costly, however, making it difficult for end users to find relevant performance 602 

information on current sensor technologies. The QUANT assessment is a multi-year study across multiple locations, 603 

that aims to provide relevant information on the strengths and weaknesses of commercial air pollution sensors in UK 604 

urban environments.  605 

The QUANT sensor systems were installed at two highly instrumented urban background measurement sites, in 606 

Manchester and London, and one roadside monitoring station in York. The study design ensured that multiple devices 607 

were collocated to assess inter-device precision, and devices were also moved between locations and able to test 608 

additional calibration data products to assess and enable developments in sensor performance under realistic end-use 609 

scenarios. A wider participation component of the Main QUANT assessment was also run at the Manchester site to 610 

expand the market representation of devices included in the study, and also to assess recent developments in the field.  611 

A high-level analysis of the dataset has highlighted multiple facets of air pollution sensor performance that will help 612 

inform their future usage. Inter-device precision has been shown to vary, both between different devices of the same 613 

brand and model types and over different periods of time, with the most accurate devices generally showing the highest 614 

levels of inter-device precision. The accuracy of the reported data for a particular device can be impacted by a variety 615 

of factors, from the calibrations applied to its location or seasonality. This has important implications for the way 616 

sensor-based technologies are deployed and supports the case made by others (Bittner et al., 2022; Farquhar et al., 617 

2021; Crilley et al., 2018; Williams, 2020; Bi et al., 2020) that practical methods to monitor sensor bias will be crucial 618 

in uses where data accuracy is paramount. Ultimately, this work shows that sensor performance can be highly variable 619 

between different devices and end-users need to be provided with impartial performance data on characteristics such 620 

as accuracy, inter-device precision, long-term drift and calibration transferability in order to decide on the right 621 

measurement tool for their specific application. 622 

In addition to these findings, this overview lays the groundwork for more detailed research to be presented in future 623 

publications. Subsequent analyses will focus on providing a more nuanced understanding of the uncertainty in air 624 

pollution sensor measurements, thus equipping end-users with better insights into the capability of sensor data. Future 625 

studies will delve into specific aspects of air pollution sensor performance: 1) a comprehensive performance 626 

evaluation of PM2.5 data, assessing their accuracy and reliability under different environmental conditions; 2) an in-627 

depth analysis of NO2 measurements, examining their sensitivity and response in various urban environments; and 3) 628 

a detailed investigation into the detection limits of these sensor technologies, targeting their optimised application in 629 
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low concentration scenarios. These focused studies are basic steps needed to further advance our understanding of 630 

sensors' capabilities and limitations, ensuring informed and effective application in air quality monitoring. 631 
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Data availability 634 

The data for this study can be found at the Centre for Environmental Data Analysis (CEDA): Lacy et al. (2023): 635 

Quantification of Utility of Atmospheric Network Technologies: (QUANT): Low-cost air quality measurements from 636 

52 commercial devices at three UK urban monitoring sites. NERC EDS Centre for Environmental Data Analysis, date 637 

of citation (https://catalogue.ceda.ac.uk/uuid/ae1df3ef736f4248927984b7aa079d2e).  638 

The QUANT dataset, accessible at the Centre for Environmental Data Analysis (CEDA) (Lacy et al., 2023; 639 

https://catalogue.ceda.ac.uk/uuid/ae1df3ef736f4248927984b7aa079d2e), is the most extensive collection to date 640 

assessing air pollution sensors' performance in UK urban settings. It encompasses gas and PM sensor data recorded 641 

in the native reporting frequency of each device. The reference data from the three monitoring sites can be found at: 642 

● MAQS: https://data.ceda.ac.uk/badc/osca/data/manchester; 643 

● LAQS: https://www.londonair.org.uk/london/asp/datadownload.asp); 644 

● YoFi: https://uk-air.defra.gov.uk/data/data_selector. 645 

A comprehensive data descriptor manuscript, detailing the QUANT dataset's collection methods, processing 646 

protocols, accessibility features, and overall structure—including variables, data reporting frequencies, and QA/QC 647 

practices—has been submitted for publication. At the time of this writing, the manuscript is still under review. 648 
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S1. Co-location sites 1 

For the main QUANT deployment, 3 field sites were chosen: Manchester, London, and York, all providing 2 

extensive reference measurements across a range of chemical environments representative of UK urban 3 

atmospheres. On the other hand, only the Manchester site was used for the WPS colocation. 4 

The Manchester Air Quality Supersite (MAQS, 53° 26' 39.2"N, 2° 12' 51.9"W) is one of the largest air quality 5 

research facilities in the UK, and also because it is located in the south of the city of Manchester (the second 6 

largest metropolitan area in the UK, with approx. 3.3 million inh.) in an urban background environment (avg. 7 

temp. in winter of about 4-5 °C and RH ~87 %, avg. temp. in summer around 16-17 °C and RH ~88 %. MAQS 8 

reference instrumentation details can be found in the Section S4. All the data provided by MAQS was 1-min time 9 

resolution. 10 

The Manchester Air Quality Supersite (MAQS, 53° 26' 39.2"N, 2° 12' 51.9"W) stands as one of the largest air 11 

quality research facilities in the UK. Situated in an urban background setting approximately four kilometres south 12 

of Manchester city center — the UK's second-largest metropolitan area with around 3.3 million residents — 13 

MAQS benefits from a strategic location on the University of Manchester's Fallowfield Campus. This location is 14 

notably distanced from direct traffic emissions, surrounded by student accommodations, university administrative 15 

buildings, and sports facilities. The campus's vicinity to shops, bars, and restaurants introduces a range of human 16 

activities, including varying levels of foot traffic and associated vehicular movement. Additionally, the presence 17 

of these commercial and recreational spaces, alongside residential buildings, contributes to the area’s ambient air 18 

quality through emissions from heating and cooking, among other sources. For a visual representation of MAQS's 19 

surroundings, please refer to Figure S1 (panel a). The site experiences an average winter temperature of 20 

approximately 4-5°C with relative humidity around 87%, and an average summer temperature of about 16-17°C 21 

with relative humidity near 88%. Detailed information on MAQS's reference instrumentation and the 22 

methodologies employed for air quality measurements can be found in section S2. Data from MAQS are provided 23 

with a 1-minute time resolution, facilitating a granular temporal analysis of air quality metrics. 24 

The London Air Quality Supersite (LAQS) is an urban background monitoring site located at Honor Oak Park 25 

(51° 26' 58.9"N 0° 02' 14.6"W) in Greater London, the third biggest European urban conglomeration with approx. 26 

14.8 million inh. (avg. temp. in winter ~5 °C and RH ~84 %, avg. temp. in summer ~17 °C and RH ~72 %). All 27 

gas data provided by LAQS is 1-min time resolution and 15-min for PM. 28 

The London Air Quality Supersite (LAQS, 51° 26' 58.9"N 0° 02' 14.6"W) serves as an urban background 29 

monitoring site, nestled within Honor Oak Park in Greater London. Situated 9 km southeast of the city center of 30 

the third-largest European urban conglomeration, LAQS offers a unique window into the air quality challenges of 31 

an area inhabited by approximately 14.8 million people. Nestled within the serene King's College sports grounds, 32 

is surrounded by middle-class neighbourhoods, abundant parks, and green spaces. This tranquil setting, is 33 

distanced from major roads and pollution sources, provides a representative snapshot of the ambient air quality 34 

typical of residential London. LAQS's surroundings are marked by a low level of commercial activity, with local 35 

shops and restaurants contributing minimally to the area's overall noise and bustle. Figure S1 (panel b) offers an 36 

aerial view of LAQS, illustrating the overall urban layout. The area is characterised by a temperate climate, 37 
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experiencing average winter temperatures of around 5°C with RH of approx. 84%, and milder summers with 38 

temperatures averaging 17°C and RH of around 72%. Gas measurements at LAQS are conducted with a 1-minute 39 

time resolution, while PM data are collected at a 15-minute resolution (see section S2 for more details). 40 

The York Fishergate roadside site (YoFi), located in the city of York (~210,000 inh., avg. temp. in winter of ~4°C 41 

and RH ~87 %, avg. temp. in summer around 15 °C and RH ~80 %). This site is a self-contained air quality 42 

monitoring station located very close to the city centre on a traffic island (53° 57' 06.9"N 1° 04' 33.1"W) 43 

surrounded by a residential/commercial area. This site was chosen to evaluate the LCS responses to a greater 44 

pollutant variability typical of traffic-related sites (in contrast with urban background monitoring stations as in the 45 

case of MAQS and LAQS). While PM and NOx data from YoFi are 1-hr time resolution, the O3 data is 1-min 46 

(deployed on the 15th of May 2020, specifically as part of the QUANT study). 47 

The York Fishergate roadside site (YoFi, 53° 57' 06.9"N, 1° 04' 33.1"W), in the historic city of York, which is 48 

home to approximately 210,000 inhabitants (avg. temp. in winter of ~4°C and RH ~87 %, avg. temp. in summer 49 

around 15 °C and RH ~80 %). Situated just about 1 km from the city center on a traffic island, YoFi stands amidst 50 

a predominantly residential area that also encompasses commercial and light industrial elements. Unique to its 51 

location, the site is sandwiched between two lanes of Fishergate Road, a major avenue that bifurcates to facilitate 52 

traffic flow into and out of the city's southern part. Directly across from YoFi, a primary school adds to the daily 53 

human activity around the site, while the nearby River Ouse, located merely 300 metres to the west, contributes 54 

to the area's environmental characteristics. A vibrant commercial zone, featuring pubs and restaurants, is found 55 

just 100 metres to the north. Moreover, the site is flanked by Walmgate Stray, an expanse of recreational fields, 56 

located about 300 metres to the southeast, offering a green respite amidst the urban setting. Additional details can 57 

be visualised in Figure S1 (panel c), providing an aerial perspective of the site's key features and its urban context. 58 

This self-contained air quality monitoring station was specifically selected for the QUANT study to assess sensors' 59 

responses to the greater pollutant variability typical of traffic-related sites, contrasting with the urban background 60 

settings of MAQS and LAQS. YoFi provides data on PM and NOx with a 1-hour time resolution. Additionally, 61 

in a targeted effort to enhance our understanding of air quality dynamics, O3 measurements (deployed on the 15th 62 

of May 2020, specifically as part of the QUANT study), utilising a 1-minute time resolution to offer detailed 63 

insights into temporal variations (refer to section S2 for more details). 64 
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Figure S1: Aerial views of the air quality monitoring sites: a) MAQS, b) LAQS, and c) YoFi, captured from Google 66 

Earth. These images illustrate the diverse urban settings of each site, emphasising aspects such as their proximity to 67 

traffic sources, presence of green spaces, and the general urban layout. Image credits: Google Earth. 68 

S2. Reference instrumentation, QA/QC, and data-sharing periods  69 

Table S1 summarises the reference instrumentation at each site, Table S2 describes some of the QA/QC processes 70 

at the supersites, and Table S3 shows the data periods shared with the suppliers. 71 

Table S1. Research grade instrumentation used for the QUANT study. 72 

Analyte Manchester London York 

NO 
Thermo 42i-y 

(Chem) 

Teledyne T200U 

(Chem) Teledyne T200UP 

(Chem) 
NO2 

*Teledyne T500U 

(CAPS) 

*Teledyne T500U 

(CAPS) 

O3 
*Thermo 49i 

(UV) 

*Teledyne 400E 

(UV) 

*2B 205 

(UV) 

PM 
*Palas FIDAS200 

(OAS) 

*Palas FIDAS200 

(OAS) 

*Met One BAM 

1020 

(BA) 

    

*Equivalent to reference (as defined in the European Air Quality Directive 2008/50/EC) 73 

Acronyms: Chem: Chemiluminescence; CAPS: Cavity Attenuated Phase Shift Spectroscopy; UV: Ultraviolet; OAS: 74 

Optical aerosol spectrometer; BA: Beta attenuation. 75 

Table S2. Summary of Quality Assurance processes in MAQS and LAQS 76 

Instrument Frequency *Process 

NOy At least monthly 
Zero and span checks using standard cylinder and scrubber. 

Corrections to zero and span values. 

NO2 Daily 
Automatic zero and span checks using internal NO2 diffusion tube 

and scrubber. Zero corrections, span monitored. 

O3 Daily 
Automatic zero and span checks using internal O3 lamp and 

scrubber. Corrections to zero, span monitored. 

CO 
Every three 

hours & monthly 

Zero checks every three hours and span checks monthly using onsite 

cylinder. Adjustments to zero and span values. 

CO2 and CH4 Regular Stability checks using onsite cylinder, no corrections made. 

*PM Semiannual 
Sizing response verified with Mono dust, flow rate checked with 

Gilibrator.  

*Checked with external standards by NPL every 6 months. These external standards are also used to provide a certification of the on-site 77 

standard cylinders. Final corrections to the data are provided by using the audit data to define the concentration of the on-site standards, with 78 

zero and span values interpolated between the calibration points. 79 

**Sizing and flow checked every 6-month NPL audit process.1 80 
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Table S3. Reference data is shared with the sensor manufacturers. 81 

QUANT main study Wider Participation Study 

Reference 

dataset 
Period Released 

Reference 

dataset 
Period Released 

1 10-12-2019 - 17-02-2020 15-04-2020 1 17-06-2021 - 16-07-2021 23-07-2021 

2 18-02-2020 - 17-08-2020 27-10-2020 2 01-12-2021 - 31-12-2021 26-01-2022 

3 18-08-2020 - 17-02-2021 15-04-2021 3 01-05-2022 - 31-05-2022 15-06-2022 

 82 

S3. QUANT main study devices 83 

In this section, a brief description of the QUANT main study systems’ components is offered. 84 

PurpleAir (PA) (https://www2.purpleair.com) devices (PA-II-SD model, firmware v4.11) reports particulate 85 

matter (PM1, PM2.5, and PM10), and it was chosen for its penetration around the world. Two identical Plantower 86 

PMS5003 (Plantower) sensors (channels A and B) are found in each PA. It offers two data products (2-min avg. 87 

time): the “cf_atm” (for outdoor applications) and the “cf_1” (for indoor or controlled environment applications). 88 

The PMS behaves like a nephelometer rather than an optical particle counter to measure the light scattered by the 89 

PM (Ouimette et al., 2022) and is composed of a laser, a photodiode, a fan, and a microprocessor control unit. 90 

They also measure temperature (Temp), relative humidity (RH), and atmospheric pressure (Pres) (Bosch). The 91 

data can be communicated via Wi-Fi or stored locally (microSD card), which was the preferred way during the 92 

colocation. No calibrated products are offered by the company. 93 

*Note: For this study, only Channel A and the data product “cf_atm” were included in the analysis and shown in 94 

the plots. 95 

AQMesh (https://www.aqmesh.com) reports NO2, NO, O3 using electrochemical (EC) sensors (Alphasense), CO2 96 

with a non-dispersive infrared sensor (NDIR, Alphasense), PM1, PM2.5, and PM10 through a light-scattering sensor 97 

(Nephelometer, Environmental Instr.) with 1-minute time resolution (algorithm v5.1 for gases and v3.0 for PM). 98 

This instrument also registers Temp, RH, and Pres (Solid-State sensors) (Zauli-Sajani et al., 2022) and the 99 

sampling mechanism employs a pump. The collected data is sent to the company server via a cellular network and 100 

post-processed (Temp, RH, and cross-interference correction) in the cloud by a proprietary algorithm. Finally, the 101 

data is released to the final user via secure web login or through its Application Programming Interface (API). 102 

Although the first 4 months of the deployment the data had a 15-min resolution, since then the provided resolution 103 

is 1-min average.  104 

AQY (v.1.0) is also a multi-species device (https://www.aeroqual.com) and measures O3, NO2, PM2.5, PM10, 105 

Temp, and RH. This is the only device system that does not use Alphasense sensors for gases. While O3 is 106 

quantified using a metal oxide sensor (WO3-based, Aeroqual Ltd), the NO2 is measured by an EC sensor 107 

(Membrapore type O3/M5, Aeroqual Ltd) (Weissert et al., 2019). For PM it uses a light scattering method (Nova) 108 

https://www2.purpleair.com/
https://www.aqmesh.com/
https://www.aeroqual.com/
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to convert size and particle count to a mass fraction and behaves like a nephelometer (Myklebust et al., 2022). 109 

These LCS devices send their data (1-min time resolution) to the Aeroqual server via cellular (WiFi could also be 110 

used for this purpose) or stored locally (microSD card). The non-local data access is through a web portal or via 111 

API.  112 

Zephyr units (https://www.earthsense.co.uk) measure PM (Nephelometer, Plantower), Temp & RH (Sensirion), 113 

and Press (Bosch) (the sample uptake uses a fan). As most of the commercial units tested here, it used Alphasense 114 

EC sensors (the “A series”, a smaller version than the B series) for gases (NO, NO2, and O3). These devices send 115 

their raw data to the server via a cellular network, where they pre-process the raw signals. We have secure access 116 

to the measurements with a time resolution of 1-min per species through the website or via its API.  117 

ARIsense v200 devices (https://quant-aq.com) measure NO, NO2, O3, CO (EC, Alphasense), CO2 (NDIR, 118 

Alphasense), Temp & RH (Sensirion), and Press (Bosch) (Cross et al., 2017). Of all the devices tested, this is the 119 

only one that uses an Optical Particle Counter (OPC) for PM (Particles Plus). Communication is carried out 120 

through a cellular network and the data products are accessed through a web portal or API (1-minute time 121 

resolution). According to the company policy, only the gas data products are subjected to calibrations (if 122 

colocation data is available). 123 

Table S4. Summary of sensor measurements and the time resolution data provided by participating companies in the Main 124 
QUANT study. 125 

System Measurands 
Time 

Resol. 

PA PM1, PM2.5, PM10 2min 

AQM 
PM1, PM2.5, PM10,  

NO, NO2, O3, CO2 
1min/15min 

AQY 
PM2.5, PM10,  

NO2, O3 
1min 

Zep 
PM1, PM2.5, PM10,  

NO, NO2, O3 
1min 

Ari 
PM1, PM2.5, PM10,  

NO, NO2, O3, CO; CO2 
1min 

https://www.earthsense.co.uk/
https://quant-aq.com/
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 126 

Figure S21. Data product for each of the participating companies during Main QUANT. The top panels are for 127 

NO2, the middle panels for O3 and the bottom panels for PM2.5. The y-axis represents the different products: “out-128 

of-box”, cal1 and cal2. The x-axis shows the dates for which each company provided the mentioned products. 129 

S4. WPS devices 130 

A short description of the WPS devices’ components is shown in this section 131 

Modulair-PM instruments (https://quant-aq.com) employ two different techniques to obtain PM mass 132 

concentration (it samples the air using a fan), an OPC (Alphasense, OPC-N3) and a nephelometer (Plantower, 133 

PMS5003). This system provides 1-min time resolution data for PM1, PM2.5, and PM10, plus size-resolved particle 134 

number concentration (range 350 nm to 40 μm) (Meyer et al., 2022; Westgate and Ng, 2022). Temp, RH, and 135 

Press are also measured, but no data was found about the sensing elements it uses. The post-processed data can 136 

be accessed locally (microSD card) or through its server (cellular network comm) via its web portal or API. 137 

AQMesh (see earlier description). 138 

The Atmos device (http://urbansciences.in/) reports PM1, PM2.5, PM10 (Plantower, PMS7003) plus Temp and RH 139 

(Adafruit), employing a fan as a means to sample the air. The system transmits the data (1-min time resolution) 140 

to a cloud server (only via Wi-Fi) and also stores it locally (Puttaswamy et al., 2022). The data can be accessed 141 

via a web dashboard or API. Unfortunately, and due to the meteorological conditions at the Manchester supersite 142 

these co-located devices only survived for about 2 months. 143 

The IMB instrument (https://www.bosch-mobility-solutions.com) measures NO2, O3 PM2.5 and PM10, 144 

(Alphasense sensors), plus Press, RH an Temp (no details were found about the brand and model). The raw data 145 

is transmitted to their cloud using cellular connectivity (3G or LTE). The final data is 1-min resolution (accessed 146 

only via API). 147 

https://quant-aq.com/
http://urbansciences.in/
https://www.bosch-mobility-solutions.com/
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Polludrone (https://oizom.com) uses Alphasense sensors for gas measurements (B4 series for NO, NO2, O3. No 148 

data available about CO, CO2 and SO2) and a Wuhan Cubic PM3006S for PM (PM2.5 and PM10) (Oizom - 149 

Polludrone Smart, 2023). It also registers RH and Temp, but no data was found in regards to sensor model/brand. 150 

The sampling mechanism uses a fan and data transmission is wireless. The final product (time res is 10-min) can 151 

be obtained through the Oizom webpage and/or via API. 152 

Kunak Air Pro (https://www.kunak.es/) uses a fan for sampling and all sensors are from Alphasense (EC, B series 153 

for CO, NO, NO2 and O3; an NDIR sensor for CO2; and an OPC-N3 for PM1, PM2.5, and PM10) (Hofman et al., 154 

2022). It also provides Temp, RH, and Press (no data was found in regards to environmental sensor model/brand). 155 

The raw data is transmitted via a multi-band network, and the final data (time res is 5-min) can be accessed through 156 

their website or via API. 157 

The Silax Air (https://vortexiot.com) system measures NO2, O3, PM10 and PM2.5. Their webpage mentions that for 158 

PM an optical scattering sensor is used and EC sensors for the gases. Further details weren’t found. The raw data 159 

is transmitted via 4G or WiFi and the final user accesses the final product (5-min time res) through API or website. 160 

The Node-S system (https://www.clarity.io) holds a nephelometer (Plantower PMS6003) to measure 3 PM size 161 

cuts (PM1, PM2.5, PM10) (Liu et al., 2022) and EC sensors for NO2 (Alphasense) (Miech et al., 2021). The air is 162 

dragged into the system by a fan and a Bosch sensor is used for press, RH, and temp. The data is communicated 163 

to Clarity’s cloud via cellular signal (4G) and the final product is ~3-min time res (something unusual for sensor 164 

systems). Access to the final data is via the web portal or through API. 165 

Praxis/Urban (https://www.southcoastscience.com) system employs EC sensors for NO, NO2, O3 (Alphasense, A 166 

series), an NDIR for CO2 (Alphasense), and particle counter (Alphasense, OPC-N3) for PM1, PM10 and PM2.5. 167 

The Temp/RH is Sensirion and the Press sensor is TDK. The raw data is communicated to the company server 168 

using 4G and the user can access it and post-processed data through an API (1-min time res). 169 

Table S5. Summary of sensor measurements and the time resolution data provided by participating companies in the WPS 170 
study. 171 

System Measurands 
Time 

Resol. 

Mod PM1, PM2.5, PM10 1min 

AQM 
PM1, PM2.5, PM10,  

NO, NO2, O3, CO; CO2 
15min 

Atm PM1, PM2.5, PM10 2min 

IMB 
PM1, PM2.5, PM10,  

NO2, O3 
1min 

Poll 
PM1, PM2.5, PM10,  

NO, NO2, O3 
10min 

AP 
PM1, PM2.5, PM10,  

NO, NO2, O3, CO; CO2 
5min 

https://oizom.com/
https://www.kunak.es/
https://vortexiot.com/
https://www.clarity.io/
https://www.southcoastscience.com/
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SA 
PM1, PM2.5, PM10,  

NO2, O3 
5min 

NS 
PM1, PM2.5, PM10,  

NO2 
~5min 

Prax 
PM1, PM2.5, PM10,  

NO, NO2, O3, CO; CO2 
1min 

 172 

 173 

Figure S32. Data product for each of the participating companies in the WPS. The top panels are for NO2, the 174 

middle panels for O3 and the bottom panels for PM2.5. The y-axis represents the different products: “out-of-box”, 175 

cal1 and cal2. The x-axis shows the dates for which each company provided the mentioned products. 176 

S5. Performance Metrics 177 

In the assessment of sensor measurement error, it is standard practice to employ a linear additive model, described 178 

by the following equation: 179 

yi = b1xi + b0 + εi                                                                                                                                                    (1) 180 

In this model, the dependent variable “y” represents the sensor measurements, while the independent variable “x” 181 

denotes the reference measurements. The coefficient b1 corresponds to the slope of the regression line (the 182 

response sensitivity of the sensor relative to the reference) and b0 is the ordinate at the origin (the sensor's output 183 

when the reference measurement is zero). εi, assumed to have a mean of zero and a standard deviation of σε, 184 

captures the portion of “y” that cannot be explained by “x”. For a sensor to perfectly match the reference 185 

measurements (i.e., y = x), b1 would equal one, with both b0 and εi being zero.  186 

Coefficient of Determination (R2) 187 
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R2 is an adimensional metric that quantifies the proportion of variance in the sensor measurements (“y”) that can 188 

be explained by its linear relationship with the reference measurements (“x”): 189 

𝑅2 =  
∑𝑛

𝑖 = 1 (𝑥𝑖 − �̂� )2

∑𝑛
𝑖 = 1 (𝑦𝑖 − �̂� )2                                                                                                                                            (2) 190 

 As a bounded metric, R2 varies between zero and one (0 ≤ R2 ≤ 1), where a value closer 191 

to one indicates a stronger linear association between the sensor and reference 192 

data. Despite being one of the most widely used metrics in sensor evaluation, as 193 

highlighted by Karagulian et al. (2019), R2 comes with limitations that warrant careful consideration. 194 

Notably, R2 does not account for bias in the data; a regression line diverging from the ideal 1:1 relationship 195 

between “x” and “y” does not affect its value. Additionally, R2 is influenced by the dynamic range of the 196 

measurements, which can skew its interpretation. Given these nuances, it is prudent to report R² alongside 197 

complementary metrics that can offer a more rounded view of sensor performance. For a more in-depth analysis 198 

of the limitations and proper use of R², readers are directed to the discussion in Legates and McCabe Jr. (1999). 199 

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 200 

MAE and RMSE (both dimensional metrics, expressed in the same units as the measured variable),  also stand as 201 

very popular metrics for performance evaluation, as they offer insights into the accuracy of sensors, presenting a 202 

fuller picture than the R2 alone. These metrics can be estimated as follows: 203 

𝑀𝐴𝐸 =  
1

𝑛
∑𝑛

𝑖 = 1 |𝑦𝑖  −  𝑥𝑖|                                                                                                                                     (3) 204 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑛

𝑖 = 1 (𝑦𝑖  −   𝑥𝑖  )2                                                                                                                         (4) 205 

 206 

However, both MAE and RMSE quantify average errors. MAE does so by calculating the average magnitude of 207 

errors without directionality, utilising absolute differences, while RMSE gauges the standard deviation of these 208 

differences, highlighting the squared differences between sensor readings and reference grade measurements. 209 

Although MAE and RMSE are both valued for their measure of accuracy, they bear distinct implications in 210 

practice. MAE treats all errors equally, allocating proportional weight across the board. Conversely, RMSE 211 

disproportionately penalises larger errors due to its squaring of difference values, an aspect noted by (Willmott 212 

and Matsuura, 2005). This characteristic makes RMSE particularly sensitive to outliers, shaping its utility in 213 

identifying and rectifying significant deviations. 214 

Mean Bias Error (MBE) 215 

The MBE quantifies the average bias in sensor measurements relative to reference values. Expressed in the same 216 

units as the variable being measured, MBE reflects the systematic error, offering a straightforward indication of a 217 

sensor's tendency to overestimate or underestimate the reference: 218 

𝑀𝐵𝐸 =
1

𝑛
∑𝑛

𝑖 = 1 (𝑦𝑖  −   𝑥𝑖  )                                                                                                                                    (5) 219 
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A zero value of MBE indicates no consistent over- or underestimation, while positive or negative values signal 220 

systematic bias in measurement. This simplicity in interpretation makes MBE particularly valuable for initial 221 

assessments of sensor accuracy and for guiding calibration efforts to correct for systematic bias. However, the 222 

MBE does not capture the precision of the measurements. For this reason, MBE is most effective when used in 223 

conjunction with other metrics, such as RMSE and MAE, to gain a comprehensive understanding of sensor 224 

performance, encompassing both systematic and random errors. 225 

Relative Expanded Uncertainty (REU)  226 

In contrast to single-value metrics such as R2, RMSE, and MAE, which assess data sets as a whole, REU offers a 227 

“point by point” metric. This allows for graphical representations (like the REU in the concentration space or as 228 

a time series), offering detailed insights into measurement performance variability. The REU’s mathematical 229 

framework is outlined in the “Guidance for the Demonstration of Equivalence of Ambient Air Monitoring 230 

Methods” (European Commission, 2010), as follows: 231 

 𝑈(𝑦
𝑖
) = √

𝑅𝑆𝑆

𝑛−2
− 𝑢2(𝑥

𝑖
) + (𝑦

𝑖
− 𝑏0 − 𝑏1𝑥𝑖 )

2
                                                                                       (6) 232 

𝑅𝐸𝑈(𝑦𝑖) =
𝑘.𝑈(𝑦𝑖)

�̂�
                                                                                                                                          (7) 233 

𝑅𝑆𝑆 = ∑𝑛
𝑖 = 1 (𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖  )2                                                                                                                       (8) 234 

here, U(yi) represents the measurement uncertainty [concentration units]; REU(yi) denotes the REU [percentage]; 235 

u(xi) is the random uncertainty of the reference monitor [concentration units]; “n” stand for the number of 236 

collocated data points considered; RSS is the Residual Sum of Squares; k is the coverage factor (set at 2 for a 95% 237 

confidence level). 238 

A distinctive feature of REU is its incorporation of the uncertainty associated with the reference method  (i.e., 239 

u(xi)). This aspect recognizes that all measurements, including those from reference methods, are subject to 240 

inherent uncertainties. While calculating REU is more complex than traditional metrics, it's essential to 241 

acknowledge that, like any metric, REU is based on specific assumptions and considerations. These factors must 242 

be thoughtfully evaluated when interpreting data to ensure that conclusions are firmly rooted in the context of the 243 

study. 244 

Current guidance and normalisation efforts 245 

Table S6 summarises the key metrics addressed in some of the most recent guidance documents and technical 246 

standards. These metrics have been categorised under various labels: linearity, bias, error, uncertainty, data 247 

coverage, and inter-sensor precision. Each of these guidelines and regulations has its own set of procedures, 248 

protocols, and thresholds. Therefore, it is advisable for readers to consult the original documents for a detailed 249 

understanding of these specificities. 250 

Table S6. Summary of field evaluation metrics for sensors according to different guidelines and technical standards. 251 

Feature EPA1&2 CEN3 ASTM4&5 
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Pollutants 

covered 
PM2.5 & O3

 
NO2, O3, CO, SO2 

& Bencene 

PM2.5, PM10 

NO2, O3, CO & SO2 

Linearity R2 ---- R2 

Bias 

Slope Slope Slope 

Intercept Intercept Intercept 

Error 

---- ---- MAE 

RMSE ---- RMSE 

NRMSE ---- NRMSE 

Uncertainty ---- REU ---- 

Data coverage 
Data  

completeness 

Data  

Capture 

Data  

Capture Rate 

Inter–sensor 

precision 

SD u(bs,s) Sr,f 

CV ---- ---- 

References in the table: 252 

1EPA/600/R-20/279 Performance Testing Protocols, Metrics, and Target Values for Ozone Air Sensors. 253 

2EPA/600/R-20/280 Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter 254 
Air Sensors. 255 

3CEN/TS 17660-1: Air quality - Performance evaluation of air quality sensor systems - Part 1 Gaseous 256 
pollutants in ambient air. 257 

4ASTM D8406-22: Standard Practice for Performance Evaluation of Ambient Outdoor Air Quality Sensors 258 
and Sensor-based Instruments for Portable and Fixed-point Measurement. 259 

5ASTM WK74812: Standard Specification for Ambient Outdoor Air Quality Sensors and Sensor-based 260 
Instruments for Portable and Fixed-Point Measurement. 261 

Acronyms: EPA: U.S. Environmental Protection Agency; CEN: European Committee for Standardization; 262 
ASTM: American Society for Testing and Material. CV: Coefficient of Variation; SD: Standard Deviation 263 
(see the definition in the EPA Performance Testing Protocols); u(bs,s): Between sensor system uncertainty 264 
(see the definition in the CEN TS 17660-1); Sr,f: field reproducibility standard deviation (see the definition 265 
in the ASTM protocols). 266 

S6. Complementary plots 267 
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 268 

Figure S4. Inter-device precision of NO2 measurements from “identical” devices across the 4 companies 269 

participating in QUANT is assessed using the “between sensor system uncertainty” metric (defined by the CEN/TS 270 

17660-1:2021 as u(bs, s)). Each line represents this metric as a composite of all sensors per brand (excluding units 271 

with less than 75% data) within a 40-day sliding window.  272 

 273 

Figure S5. The inter-device precision of O2 measurements from “identical” devices across the 4 companies 274 

participating in QUANT is assessed using the “between sensor system uncertainty” metric (defined by the CEN/TS 275 

17660-1:2021 as u(bs, s)). Each line represents this metric as a composite of all sensors per brand (excluding units 276 

with less than 75% data) within a 40-day sliding window.  277 

S5. Sensor performance estimated using different reference methods 278 

 279 
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Figure S63. Comparative analysis of “Sensor A” performance against two reference instruments for NO2 280 

measurements. The left plot shows the correlation with the Teledyne T500 (Cavity Attenuated Phase Shift 281 

Spectroscopy), while the right plot is against the Teledyne T200U (chemiluminescence) and specifically installed at 282 

the Manchester supersite for the QUANT study. The dashed red line represents the line of best fit for the sensor 283 

data against each reference, indicating a closer agreement with the T200U (slope=1.02) compared to the T500 284 

(slope=0.73). 285 

 286 

Figure S74. Comparative regression analysis and performance metrics of two distinct PM2.5 sensor systems 287 

benchmarked against a BAM for the top plots and a Fidas for the bottom plots. Each plot demonstrates the 288 

correlation and agreement between the sensor readings and the two equivalent-to-reference instruments in a 289 

roadside site located in York. 290 

S76. NO2 Diffusion tubes 291 

A diffusion tube co-location study was carried out between November 2020 and November 2021 at the MAQS, 292 

LAQS and York sites, using two types of diffusion tubes: the conventional (also known as LAQM, for Local Air 293 

Quality Management) and UUNN (for UK Urban NO2 Network). LAQM tubes have an open end and capture 294 

NO2 which is converted to nitrite when reacting with triethanolamine (TEA) for subsequent analysis. On the other 295 

hand, UUNN tubes, similar in the sampling process to LAQM, include an amorphous polyethylene filter at the 296 

open end to further mitigate the effect of wind on NO2 measurements. For more details refer to (Butterfield et al., 297 

2021). Both types of tubes (conventional and UUNN) were installed in duplicates, either in shelters (to limit the 298 

incidence of wind) or directly exposed without protection in mounting blocks. Figure S5 illustrates the 299 
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performance comparison of traditional diffusion tubes and a sensor system in Manchester. The data from these 300 

diffusion tubes have been used to correct the sensor shown here and explained in detail in Section 3.6 (Figures 9b 301 

and 9c). 302 

 303 

Figure S85. The left plot displays the correlation between an air quality sensor's readings and those from a reference 304 

monitor for NO2, while the right plot demonstrates the LAQM diffusion tube performance. The LAQM plot shows 305 

a tighter correlation with the 1:1 line, indicating a higher accuracy in measuring NO2 concentrations for the period 306 

Nov 2020 - Nov 2021 at the Manchester supersite (blue dots represent monthly averages). 307 
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