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Abstract. In times of growing concern about the impacts of air pollution across the globe, lower-cost sensor 17 

technology is giving the first steps in helping to enhance our understanding and ability to manage air quality issues, 18 

particularly in regions without established monitoring networks. While the benefits of greater spatial coverage and 19 

real-time measurements that these systems offer are evident, challenges still need to be addressed regarding sensor 20 

reliability and data quality. Given the limitations imposed by intellectual property, commercial implementations are 21 

often “black boxes”, which represents an extra challenge as it limits end-users' understanding of the data production 22 

process. In this paper we present an overview of the QUANT (Quantification of Utility of Atmospheric Network 23 

Technologies) study, a comprehensive 3-year assessment across a range of urban environments in the United 24 

Kingdom, evaluating 43 sensor devices, including 119 gas sensors and 118 particulate matter sensors, from multiple 25 

companies. QUANT stands out as one of the most comprehensive studies of commercial air quality sensor systems 26 

carried out to date, encompassing a wide variety of companies in a single evaluation and including two generations 27 

of sensor technologies. Integrated into an extensive data set open to the public, it was designed to provide a long-term 28 

evaluation of the precision, accuracy, and stability of commercially available sensor systems. To attain a nuanced 29 

understanding of sensor performance, we have complemented commonly used single-value metrics (e.g., Coefficient 30 

of Determination (R²), Root Mean Square Error (RMSE), Mean Absolute Error (MAE)) with visual tools. These 31 

include Regression plots, Relative Expanded Uncertainty (REU) plots, and Target plots, enhancing our analysis 32 

beyond traditional metrics. This overview discusses the assessment methodology, and key findings showcasing the 33 

significance of the study. While more comprehensive analyses are reserved for future detailed publications, the results 34 
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shown here highlight the significant variation between systems, the incidence of corrections made by manufacturers, 35 

the effects of relocation to different environments, and the long-term behaviour of the systems. Additionally, the 36 

importance of accounting for uncertainties associated with reference instruments in sensor evaluations is emphasised. 37 

Practical considerations in the application of these sensors in real-world scenarios are also discussed, and potential 38 

solutions to end-user data challenges are presented. Offering key information about the sensor systems' capabilities, 39 

the QUANT study will serve as a valuable resource for those seeking to implement commercial solutions as 40 

complementary tools to tackle air pollution. 41 

Keywords: air pollution, commercial sensor systems, QUANT, long-term evaluation. 42 

1. Introduction 43 

Emerging lower-cost sensor systems1 offer a promising alternative to the more expensive and complex monitoring 44 

equipment traditionally used for measuring air pollutants such as PM2.5, NO2, and O3 (Okure et al., 2022). These 45 

innovative devices hold the potential to expand spatial coverage (Malings et al., 2020) and deliver real-time air 46 

pollution measurements (Tanzer-Gruener et al., 2020). However, concerns regarding the variable quality of the data 47 

they provide still hinder their acceptance as reliable measurement technologies (Karagulian et al., 2019; Zamora et 48 

al., 2020).  49 

Sensors2 face key challenges such as cross-sensitivities (Bittner et al., 2022; Cross et al., 2017; Levy Zamora et al., 50 

2022; Pang et al., 2018), internal consistency (Feenstra et al., 2019; Ripoll et al., 2019), signal drift (A. Miech et al., 51 

2023; Li et al., 2021; Sayahi et al., 2019), long term performance (Bulot et al., 2019; Liu et al., 2020) and data coverage 52 

(Brown & Martin, 2023; Duvall et al., 2021; Feinberg et al., 2018). Additionally, environmental factors such as 53 

temperature and humidity (Bittner et al., 2022; Farquhar et al., 2021; Crilley et al., 2018; Williams, 2020) can 54 

significantly influence sensor signals. 55 

In recent years, manufacturers of both sensing elements (Han et al., 2021; Nazemi et al., 2019) and sensor systems 56 

have made significant technological advances (Chojer et al., 2020). For example, there are now commercial and non-57 

commercial systems equipped with multiple detectors to measure distinct pollutants (Buehler et al., 2021; Hagan et 58 

al., 2019; Pang et al., 2021) helping to mitigate the effects of cross-interferences. Additionally, enhancements in 59 

electrochemical OEMs have been demonstrated in terms of their specificity (Baron & Saffell, 2017; Ouyang, 2020).  60 

However, the complex nature of their responses, coupled with their dependence on local conditions means sensor 61 

performance can be inconsistent (Bi et al., 2020). This complicates the comparison of results or anticipating sensor 62 

future performance across different studies. Moreover, assessments of sensor performance found in the academic 63 

 
1 The term “sensor systems” refers to sensors housed within a protective case, which includes a sampling and power system, 

electronic hardware and software for data acquisition, analog-to-digital conversion, data processing and their transfer (Karagulian 

et al., 2019). Unless specified otherwise, the term “sensor” will be used as a synonym of “sensor systems”. Other alternative names 

for “sensor systems” used here are “sensor devices” (or “devices”), “sensor units” (or “units”). 

2 In a narrower sense, “sensor” typically denotes the specific component within a sensor system that detects and responds to 

environmental inputs, producing a corresponding output signal. To distinguish this from the broader use of “sensor” as equivalent 

to “sensor system” in our text, we will utilise alternative terms such as “detector”, “sensing element”, or “OEM” (original 

equipment manufacturer) when referring specifically to this component, thereby preventing confusion. 
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literature often rely on a range of protocols (e.g., CEN (2021) and Duvall et al. (2021)) and data quality metrics (e.g., 64 

Spinelle et al. (2017) and Zimmerman et al. (2018)), with many studies limited to a single-site co-location and/or 65 

short-term evaluations that do not fully account for broader environmental variations (Karagulian et al., 2019).  66 

The calibration of any instrument used to measure atmospheric composition is fundamental to guarantee their accuracy 67 

(Alam et al., 2020; Long et al., 2021; Wu et al., 2022). Using out-of-the-box sensor data without fit-for-purpose 68 

calibration can produce misleading results (Liang & Daniels, 2022). An effective calibration not only involves 69 

identifying but also compensating for estimated systematic effects in the sensor readings, a process defined as a 70 

correction (for a detailed definition and differentiation of calibration and correction see JCGM, 2012). For standard 71 

air pollution measurement techniques, calibration is often performed in a controlled laboratory environment (Liang, 72 

2021). For example, for gases, a known concentration is sampled from a certified standard. Similarly, for PM, particles 73 

of known density and size are generated. Both gases and PM calibration are conducted under controlled airflow 74 

conditions. 75 

Yet, the aforementioned challenges with lower-cost sensor-based devices suggest that such calibrations may not 76 

always accurately reflect real-world conditions (Giordano et al., 2021). A frequent approach involves co-locating 77 

sensors alongside regulatory instruments in their intended deployment areas and/or conditions and using data-driven 78 

methods to match the reference data (Liang & Daniels, 2022). Numerous studies have investigated the effectiveness 79 

of calibration methods for sensors e.g. (Bigi et al., 2018; Bittner et al., 2022; Malings et al., 2020; Spinelle et al., 2017; 80 

Zimmerman et al., 2018), including selecting appropriate reference instruments (Kelly et al., 2017), the need for 81 

regular calibration to maintain accuracy (Gamboa et al., 2023), the necessity of rigorous calibration protocols to ensure 82 

consistency (Kang et al., 2022), and transferability (Nowack et al., 2021) of results. Ultimately, the reliability and 83 

associated uncertainty of any applied calibration will influence the final sensor data quality.  84 

For end-users to make informed decisions on the applicability of air pollution sensors, a realistic understanding of the 85 

expected performance in their chosen application is necessary (Rai et al., 2017). Despite this, there has been relatively 86 

little progress in clarifying the performance of sensors for air pollution measurements outside of the academic arena. 87 

This is largely due to the significant variability in both the number of sensors and the variety of applications tested, 88 

compounded by the proliferation of commercially available sensors/sensor systems with different configurations. 89 

Furthermore, the access to highly accurate measurement instrumentation and/or regulatory networks remains limited 90 

for those outside of the atmospheric measurement academic field (e.g. Lewis and Edwards (2016) and Popoola et al. 91 

(2018)). From a UK clean air perspective, this ambiguity represents a major problem. The lack of a consistent message 92 

undermines the exploitation of these devices’ unique strengths, notably their capability to form spatially dense 93 

networks with rapid time resolution. Consequently, there is potential for a mismatch in users’ expectations of what 94 

sensor systems can deliver and their actual operating characteristics, eroding trust and reliability. 95 

In this work, as part of the UK Clean Air program funded QUANT project, we deployed a variety of sensor 96 

technologies (43 commercial devices, 119 gas and 118 PM measurements) at 3 representative UK urban sites —97 

Manchester, London and York— alongside extensive reference measurements, to generate the data for an 98 

comprehensive in-depth performance assessment. This project aims to not only evaluate the performance of sensor 99 

devices in a UK urban climatological context but also provide critical information for the successful application of 100 

these technologies in various environmental settings. To our knowledge, QUANT is the most extensive and longest-101 

running evaluation of commercial sensor systems globally to date. Furthermore, we tested multiple manufacturers' 102 

data products, such as out-of-the-box data versus locally calibrated data, for a significant number of these sensors to 103 
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understand the implications of local calibration. This comprehensive approach offers unprecedented insights into the 104 

operational capabilities and limitations of these sensors in real-world conditions. Significantly, some of the insights 105 

gathered during QUANT have contributed to the development of the Publicly Available Specification (PAS 4023, 106 

2023), which provides guidelines for the selection, deployment, maintenance, and quality assurance of air quality 107 

sensor systems. While this manuscript serves as an initial overview, detailed analyses of the measured pollutants and 108 

study phases, offering a more comprehensive perspective on sensor performance, are planned for future publications. 109 

In the following sections, we delve into the methodology and provide an overview of the QUANT dataset, as well as 110 

a discussion of some of the key findings and potential considerations for end-users. 111 

2. QUANT study design 112 

To capture the variability of UK urban environments, identical units were installed at three carefully selected field 113 

sites. Two of these sites are highly instrumented urban background measurement supersites: the London Air Quality 114 

Supersite (LAQS; for more details, refer here: https://uk-air.defra.gov.uk/networks/site-info?site_id=HP1) and the 115 

Manchester Air Quality Supersite (MAQS; for more details, see: http://www.cas.manchester.ac.uk/restools/firs/), 116 

located in densely populated urban areas with unique air quality challenges. The third site is a roadside monitoring 117 

site in York, which is part of the Automatic Urban and Rural Network (AURN; refer here for more details: https://uk-118 

air.defra.gov.uk/networks/site-119 

info?uka_id=UKA00524&search=View+Site+Information&action=site&provider=archive), representing a urban 120 

environment more influenced by traffic. This selection strategy ensures that the QUANT study's findings reflect the 121 

dynamics of urban air quality across different UK settings, while providing comprehensive reference measurements. 122 

Further details about each site can be found in Section S1 in the Supp. 123 

2.1 Main study 124 

The Main QUANT assessment study aimed to perform a transparent long-term (19 Dec 2019 - 31 Oct 2022) evaluation 125 

of commercially available sensor technologies for outdoor air pollution monitoring in UK urban environments. Four 126 

units of five different commercial sensor devices (Table 1) were purchased in Sept 2019 for inclusion in the study, 127 

with the selection criteria being: market penetration and/or previous performance reported in the literature, ability to 128 

measure pollutants of interest (e.g. NO2, NO, O3, and PM2.5), and capacity to run continuously reporting high time 129 

resolution data (1-15 min data) ideally in near real-time (i.e., available within minutes of measurement) with data 130 

accessible via an API. 131 

Table 1. Main QUANT devices description. The 20 units, all commercially available and ready for use as-is, offered 56 gas 132 

and 56 PM measurements in total. For a detailed description of the devices see Section S3 in the Supp. 133 

Product* 

(# units) 
Company3 

Measurements 
Cost (£)** 

NO NO2 O3 CO CO2 PM1 PM2.5 PM10 

AQY (4) Aeroqual - ✔ ✔ - - - ✔ ✔ ~4.7K 

 
3 Throughout this article, the terms “manufacturers” and “company” are used interchangeably to refer to entities that produce, 

and/or sell sensor systems or devices. This usage reflects the industry practice of referring to businesses involved in the production 

and distribution of technology products without distinguishing between their roles in manufacturing or sales. 
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AQM (4) AQMesh ✔ ✔ ✔ - ✔ ✔ ✔ ✔ ~8.6K 

Ari (4) QuantAQ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ~8.6K 

PA (4) PurpleAir - - - - - ✔ ✔ ✔ ~0.3K 

Zep (4) Earthsense ✔ ✔ ✔ - - ✔ ✔ ✔ ~7K 

*AQY: Aeroqual; AQM: AQMesh; Ari: Arisense; PA: PurpleAir; Zep: Zephyr. **Cost (Sep 2019) per unit including UK taxes 

and associated contractual costs (i.e., communication, data access, sensor replacement, etc.). 

Initially, all the sensors were deployed in Manchester for approximately 3 months (mid-Dec 2019 to mid-Mar 2020) 134 

before being split up amongst the three sites (Fig. 1). At least one unit per brand was re-deployed to the other two 135 

sites (mid-March 2020 to early-July 2022) leaving two devices per company in Manchester to assess inter-device 136 

consistency. In the final 4 months of the study, all the sensor systems were relocated back to Manchester (early July 137 

2022 to the end of October 2022).  138 

 139 

Figure 1. Main QUANT and Wider Participation Study (WPS) timeline. 140 

2.2 Wider Participation Study 141 

The Wider Participation Study (WPS) was a no-cost complementary extension of the QUANT assessment, specifically 142 

designed to foster innovation within the air pollution sensors domain. This segment of the study took place entirely at 143 

the MAQS from 10th June 2021 to 31st October 2022 (Fig. 1). It included a wider array of commercial platforms (9 144 

different sensor systems brands), and offered manufacturers the opportunity to engage in a free-of-charge impartial 145 

evaluation process. Although participation criteria matched those of the Main QUANT study, a key distinction lay in 146 

the voluntary nature of participation: manufacturers were invited to contribute multiple sensor devices throughout the 147 

WPS study (see Table 2). Participants were able to demonstrate their systems’ performance against collocated high-148 

resolution (1-minute) reference data at a state-of-the-art measurement site such as the Manchester supersite.  149 

Table 2. The 23 WPS devices deployed at the Manchester supersite, all commercially available and ready for use as-is, 150 

provided 63 gases and 62 PM measurements in total. For a detailed description of the devices see the Section S4 in the Supp. 151 
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Product* 

(# units) 
Company 

Measurements 

NO NO2 O3 CO CO2 PM1 PM2.5 PM10 

Mod (3) QuantAQ - - - - - ✔ ✔ ✔ 

AQM (3) AQMesh ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Atm (2) RLS** - - - - - ✔ ✔ ✔ 

IMB (2) Bosch - ✔ ✔ - - - ✔ ✔ 

Poll (2) Oizom ✔ ✔ ✔ ✔ ✔ - ✔ ✔ 

AP (3) Kunak ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

SA (3) Vortex IoT - ✔ ✔ - - - ✔ ✔ 

NS (3) Clarity - ✔ - - - ✔ ✔ ✔ 

Prax (2) SCS*** ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

*Mod: Modulair; AQM: AQMesh; Atm: Atmos, Poll: Polludrone; AP: Kunak Air Pro; SA: Silax Air, NS: Node-S, Prax: Praxis. 152 

**RLS: Respirer Living Sciences. ***SCS: South Coast Science. 153 

2.3 Sensor deployment and data collection 154 

All sensor devices were installed at the measurement sites as per manufacturer recommendations, adhering strictly to 155 

manufacturers' guidelines for electrical setup, mounting, cleaning, and maintenance. Since all deployed systems were 156 

designed for outdoor use, no additional protective measures were necessary. Each of the systems were mounted on 157 

poles acquired specifically for the project or on rails at the co-location sites, without the need for special protections. 158 

Following the manufacturer's suggestions, sensors were positioned within 3 metres of the reference instruments' inlets. 159 

Custom electrical setups were developed for each sensor type, incorporating local energy sources and weather-160 

resistant safety features, alongside security measures to deter vandalism and ensure uninterrupted operation. Routine 161 

maintenance was conducted monthly, although the COVID-19 pandemic necessitated longer intervals between visits. 162 

Despite these obstacles, efforts to maintain sensor security and functionality continued unabated, employing both 163 

physical safeguards and remote monitoring to preserve data integrity. 164 

In addition to the device supplier's own cloud storage (accessed on-demand via each supplier’s web portals), an 165 

automated daily scraping of each company’s API was performed to save data onto a secure server at the University 166 

of York to ensure data integrity. Unlike other brands that utilise mobile data connections, PurpleAir sensors rely on 167 

WiFi for data transmission. Due to poor internet signal at the sites, we locally collected and manually uploaded 168 

readings for these units. Minor pre-processing was applied at this stage, including temporal harmonisation to ensure 169 

that all measurements had a minimum sampling period of 1-minute, ensuring consistency in measurement units and 170 

labels, and coercing into the same format to allow for full compatibility across sensor units. No additional 171 

modifications to the original measurements were applied; missing values were kept as missing and no additional flags 172 

were created based on the measurements beyond those provided by the manufacturers. For an overview of the sensor 173 

measurands and their corresponding data time resolutions as provided by the companies participating in the Main 174 

QUANT study and the WPS, please see Seccion S3 and S4 (Table S4 and S5) respectively. 175 

2.4 Data products and co-located reference data  176 
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In addition to providing an independent assessment of sensor performance, QUANT also aimed to contribute to device 177 

manufacturers to help advance the field of air pollution sensors. During QUANT, device calibrations were performed 178 

solely at the discretion of the manufacturers without any intervention from our team, thus limiting the involvement of 179 

manufacturers in the provision of standard sensor outputs and unit maintenance as would be required by any standard 180 

customer. This approach enabled manufacturers to independently assess and benchmark their sensors' performance, 181 

using provided reference data to potentially develop calibrated data products. It's noteworthy that not all manufacturers 182 

chose to utilise these data for corrections or enhancements. However, those who did were expected to create and 183 

submit calibrated data products, subsequently named as "out-of-box" (initial data product), “cal1” (first calibrated 184 

product), and “cal2” (second calibrated product). This differentiation highlighted the varying degrees of engagement 185 

and application of the reference data by different manufacturers. Figures S2 and S3 (section S3 and S4 respectively) 186 

show a time-line of the different data products.  187 

To this end, three separate 1-month periods of reference data, spaced every 6 months, were shared with each supplier, 188 

provisional data soon after each period, and ratified data when available. All reference data were embargoed until it 189 

was released to all manufacturers simultaneously to ensure consistency across manufacturers. For an overview of 190 

reference and equivalent-to-reference instrumentation, as defined in the European Union Air Quality Directive 191 

2008/50/EC (hereafter referred to as EU AQ Directive), at each site, please refer to Section S2 (Table S1). For details 192 

on the quality assurance procedures applied to the reference instruments, see Table S2. To see the dates and periods 193 

of the shared reference data refer to Table S3. 194 

3. Results and discussion 195 

A key challenge in sensor performance evaluation is the high spatial and temporal variability errors that impact the 196 

accuracy of their readings, making the application of laboratory corrections more challenging. Furthermore, the 197 

overreliance on global performance metrics is a significant concern in sensor assessment. The Coefficient of 198 

Determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) are among the most popular 199 

single-value metrics for evaluating sensor performance, alongside others (e.g., the bias, the slope and intercept of the 200 

regression fit). However, while single-value metrics offer an overview of performance, they can be limiting or 201 

misleading. They condense vast amounts of data into a single value, simplifying complexity at the expense of a 202 

nuanced understanding of error structures and information content (Diez et al., 2022), potentially overlooking critical 203 

aspects of sensor performance (Chai & Draxler, 2014). Visualisation tools (such as Regression plots, Target plots, 204 

and Relative Expanded Uncertainty plots) complement these metrics, allowing end users to identify relevant features, 205 

which could be beyond the scope of global metrics. For additional details on the metrics utilised in this study, including 206 

some of their limitations and advantages refer to section “S5. Performance Metrics”. This section also provides a 207 

summary of current guidelines and standardisation initiatives, which may offer a foundation for end-users to select 208 

appropriate metrics for their own analyses (refer to table S6). For further discussion on metrics and visualisation tools 209 

for performance evaluation, readers are directed to Diez et al. (2022).  210 

In response to these challenges, the QUANT assessment represents the most extensive independent appraisal of air 211 

pollution sensors in UK urban atmospheres. As the results presented here illustrate, QUANT is dedicated to examining 212 

sensor performance through multiple complementary metrics and visualisation tools, aiming to integrate these to 213 

accurately reflect the complexity of this dataset. This methodology promotes a nuanced understanding of sensor 214 

performance, extending beyond the limitations of conventional global single-value metrics.  215 
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Furthermore, by providing open access to the dataset, we encourage stakeholders to explore and utilise the data 216 

according to their unique needs and contexts, as detailed in the “Data Availability” section. In addition, we have 217 

developed a publicly accessible analysis platform (https://shiny.york.ac.uk/quant/), designed for straightforward 218 

offline analysis of the QUANT dataset. This platform enables users to interactively visualise the data through various 219 

representations, such as time series, regression plots, and Bland-Altman plots. It also offers statistical parameters 220 

(including regression equation, R2, and RMSE) for analysing different pollutants, selecting specific sensors or 221 

manufacturers, and comparing across various co-location timeframes. 222 

The following sections aim to provide an overview of the data and provide initial findings, with a focus on those that 223 

are most relevant to end-users of these technologies. The majority of examples presented here focus on PM2.5 and 224 

NO2 measurements, due to both a larger dataset available for these pollutants and their critical role in addressing the 225 

exceedances that predominantly impact UK air quality. All metrics and plots presented here are based on 1-hour 226 

averaged data. Unless otherwise specified, a data inclusion criterion of 75% was uniformly applied across our analyses 227 

to ensure the reliability and representativeness of the results. This threshold aligns with the EU AQ Directive, which 228 

mandates this proportion when aggregating air quality data and calculating statistical parameters. To highlight broad 229 

implications and insights into sensor technology, rather than focusing on the performance of specific manufacturers, 230 

figures illustrating brand-specific features have been anonymized. This is intended to prevent potential bias and 231 

encourage a holistic view of the data, ensuring interpretations remain focused on general trends rather than isolated 232 

examples.  233 

3.1 Inter-device precision  234 

Inter-device precision refers to the consistency of measurements across multiple identical devices (i.e., same brand 235 

and model), an important characteristic to ensure the reliability of sensor outputs over time (Moreno-Rangel et al., 236 

2018). During QUANT, all the devices were collocated for the first 3 months and the final 3 months of the deployment 237 

to assess inter-device precision and its changes over time. Fig. 2 shows the inter-device precision (as defined by the 238 

CEN/TS 17660-1:2021, i.e., the “between sensor system uncertainty” metric: us(bs, s)) of PM2.5 measurements during 239 

these periods. For an overview of NO2 and O3 inter-device precision, see the “S6. Complementary plots” section in 240 

the supplementary (figures S4 and S5). While most of the companies display a certain level of inter-device precision 241 

stability in each period (except for one, with a seemingly upward trend in the final period), there are evident long-242 

term changes. Notably, out of the four manufacturers assessed in the final period (each having 3 devices running 243 

simultaneously), three experienced a decline in their inter-device precision compared to two years earlier. This is 244 

likely due to both hardware degradation but also drift in the calibration, which at this point had been applied between 245 

16 and 34 months prior (depending on the manufacturer). For extended periods, inconsistencies among devices from 246 

the same manufacturer might emerge, leading to varying readings under similar conditions. Consequently, data 247 

collected from different devices may not be directly comparable, which could result in inaccuracies or 248 

misinterpretations when analysing air quality trends or making decisions.  249 

https://shiny.york.ac.uk/quant/
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 250 

Figure 2. The inter-device precision of PM2.5 measurements from “identical” devices across the 5 companies participating 251 

in QUANT is assessed using the “between sensor system uncertainty” metric (defined by the CEN/TS 17660-1:2021 as u(bs, 252 

s)). Each line represents this metric as a composite of all sensors per brand (excluding units with less than 75% data) within 253 

a 40-day sliding window.  254 

It is worth noting that the inter-device precision provides no information on the accuracy of the sensor measurements; 255 

a batch of devices may provide a highly consistent, but also highly inaccurate measurement of the target pollutant.  256 

The “target plot” (as shown in Fig. 3) is a tool commonly used to depict the bias/variance decomposition of an 257 

instrument’s error relative to a reference (for more details see Jolliff et al. (2009)). The mean bias error (MBE) is used 258 

to characterise accuracy and precision is quantified by the centered Root Mean Squared Error (cRMSE, e.g. Kim et 259 

al. (2022) also called unbiased Root Mean Squared Error (uRMSE, e.g. Guimarães et al. (2018)). Fig. 3 visualises the 260 

performance of a set of PM2.5 sensors of the WPS deployment for the first 2 months (out-of-box data) and the last 3 261 

months of colocation (manufacturer-supplied calibrations). In addition to showcasing inter-device precision, Fig. 3 262 

also serves as a transition to accuracy evaluation (the focus of the subsequent section). 263 

 264 

 265 

Figure 3. Target diagrams for the WPS PM2.5 measurements during the initial co-location period (Jun-Jul 2021, left) and 266 

final co-location period (Aug-Oct 2022, right). The error (RMSE) for each instrument is decomposed into the MBE (y-axis) 267 

and cRMSE (x-axis). Each point represents an individual sensor device, with duplicate devices having the same colour. 268 

Since only units with more than 75% of the data were considered, the plot on the right shows fewer units than the plot on 269 

the left. 270 
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3.2 Device accuracy and co-location calibrations 271 

Sensor measurement accuracy denotes how close a sensor's readings are to reference values (Wang et al., 2015). 272 

Characterising this feature is imperative for establishing sensor reliability and making informed decisions based on 273 

its data. Fig. 4 shows that co-location calibration can greatly impact observed NO2 sensor performance in a number 274 

of ways. Firstly, measurement bias is often, but not always, reduced following calibration, as evidenced by a general 275 

trend for devices to migrate towards the origin (RMSE = 0 ppb). Secondly, it can help to improve within-manufacturer 276 

precision, as evidenced by sensor systems from the same company grouping more closely as the right plot in Fig. 4 277 

shows. The figure also highlights a fundamental challenge with evaluating sensor systems: the measured performance 278 

can vary dramatically over time —and space— as the surrounding environmental conditions change. To quantify this, 279 

95% Confidence Intervals (CIs) were estimated for each device using bootstrap simulation and are visualised as a 280 

shaded region. For the out-of-the-box data, these regions are noticeably larger than in the calibrated results for most 281 

manufacturers, suggesting that colocation calibration has helped to tailor the response of each device to the specific 282 

site conditions. This observation suggests that colocation calibration effectively improves each device's response to 283 

particular site conditions. This improvement is underscored by the more substantial reduction in the cRMSE 284 

component compared to the MBE. The cRMSE, representing the portion of error that persists after bias removal, 285 

essentially measures errors attributable to variance within the data space. In the context of out-of-the-box data, this 286 

“data space” spans all potential deployment locations used by manufacturers for initial calibration model training (i.e., 287 

before shipping the sensors for the QUANT study), thus exhibiting high variability. However, applying site-specific 288 

calibration significantly narrows this variability, leveraging local training data to minimise variance. 289 

 290 

Figure 4. Effect of colocation calibration on NO2 sensor accuracy. The accuracy is quantified using RMSE, which is 291 

decomposed into MBE (y-axis) and cRMSE (x-axis). 95% confidence regions were estimated using bootstrap sampling. The 292 

left panel displays results from the period Jun - Jul 2021 (‘out-of-the-box’ data), while the right-hand panel summarises 293 

Aug 2021 when calibrations were applied for all the WPS manufacturers. 294 

However, it is important to note a limitation of Target Plots: they primarily focus on sensor behaviour around the 295 

mean. Therefore, the collective improvement evidenced by Fig. 4 might be only partial. For applications where it is 296 

important to understand how calibrations impact lower or higher percentiles, considering other metrics or visual tools 297 

would be advisable. An example of this is the absolute and Relative Expanded Uncertainty (REU, defined by the 298 

Technical Specification CEN/TS 17660-1:202). Unlike the more commonly used metrics such as R2, RMSE, and 299 

MAE, which measure performance of the entire dataset, the REU offers a unique “point by point” evaluation, enabling 300 
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its representation in various graphical forms, such as time series or concentration space (for the REU mathematical 301 

derivation, refer to section “S5. Performance Metrics”). The REU approach also incorporates the uncertainty of the 302 

reference method into its assessment, highlighting the intrinsic uncertainty present in all measurements, including 303 

those from reference instruments. This consideration of reference uncertainty is crucial for a holistic understanding of 304 

sensor performance and calibration effectiveness. For a comprehensive discussion on this, refer to Diez et al. (2022). 305 

Fig. 5 illustrates how NO2 calibrations might not only improve collective performance around the mean (as indicated 306 

by the dotted red line in Fig. 5 and previously displayed in the target plot) but across the entire concentration range. 307 

 308 

Figure 5. The top plots display the REU (%) across the concentration range, while the bottom plots depict the Absolute 309 

Uncertainty (ppb) —both before (left plots) and after (right plots) calibrating NO2 WPS systems. The shaded areas 310 

represent the collective variability evolution (all sensors from all companies) of both metrics. These plots were constructed 311 

using the minimum and maximum value of the REU and the Absolute Uncertainty for the entire concentration range. 312 

However, a note of caution when interpreting results from observational studies such as these is that it is impossible 313 

to ascertain a direct causal relationship between calibration and sensor performance as there are numerous other 314 

confounding factors at play (Diez et al., 2022). Notably these two data products are being assessed over different 315 

periods when many other factors will have changed, for example, the local meteorological conditions as well as 316 

human-made factors such as reduced traffic levels following the COVID-19 lockdown that commenced in March 317 

2020. 318 

3.3 Reference instrumentation is key 319 

A common assumption when evaluating the performance of sensors is that the metrological characteristics of the 320 

sensor predominantly influence discrepancies detected in co-locations. While this presumption can often be justified 321 

due to both devices' (sensor and the reference method) relative scales of measurement errors, it is not always the case. 322 

Since every measurement is subject to uncertainties, it is crucial to consider those associated with the reference when 323 

deriving the calibration factors of placement. 324 
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Fig. 6 (left plots) displays the performance of a NO2 reference instrument (Teledyne T200U) specifically installed for 325 

QUANT, located next to the usual instrument at the Manchester supersite (Teledyne T500). Although they use 326 

different analytical techniques (chemiluminescence for the T200U and Cavity Attenuated Phase Shift Spectroscopy 327 

for the T500), their measurements are highly correlated (R2~0.95). However, it's possible to identify 328 

a proportional bias (slope=0.69), attributed to retaining the initial calibration 329 

(conducted in York) without subsequent adjustments, a situation exacerbated by an 330 

unnoticed mechanical failure of one of the instrument's components. The REU 331 

demonstrates that, under these circumstances, an instrument designated as a 332 

reference does not meet the minimum requirements (REU ≤ 15% for NO2 reference 333 

measurements) set out by the Data Quality Objectives (DQOs) of the EU AQ Directive. Figure S6 shows a unique 334 

sensor evaluated against both the T500 and the T200U. The comparison against the T200U yields better results, 335 

suggesting that, in a hypothetical scenario where it was the only instrument at the site, this could lead to misleading 336 

conclusions. This situation reinforces the idea that instruments should not only be adequately characterised but also 337 

undergo rigorous quality assurance and data quality control programs, as well as receive appropriate maintenance 338 

(Pinder et al., 2019). All of this must be performed before and during the use of any instrument. 339 

For PM monitoring, the current EU reference method is the gravimetric technique (CEN EN 12341, 2023), which is 340 

a non-continuous monitoring method that requires weighing the sampled filters and off-line processing of the results. 341 

Techniques that have proven to be equivalent to the reference method (called “equivalent to reference” in the EU AQ 342 

Directive) are very often used in practice. In the UK context, the Beta Attenuated Monitor (BAM) and FIDAS (optical 343 

aerosol spectrometer) are equivalent-to-reference methods commonly used as part of the Urban AURN Network 344 

(Allan et al., 2022). To illustrate these differences in practice, Fig. 6 compares these two equivalent-to-reference PM2.5 345 

measurements obtained with a BAM (AURN York site, located on a busy avenue), and a FIDAS unit specifically 346 

installed for QUANT. During this specific period, they show a strong linear association (R2 = 0.87). Although the bias 347 

is not extremely pronounced (slope=0.80), the FIDAS measurements are, on average, systematically lower compared 348 

to BAM.  349 

In the hypothetical case that the BAM were to be considered the reference method 350 

(arbitrarily chosen for this example as it is the current instrument at the AURN York 351 

site) when assessing the FIDAS under these test conditions, it would only meet the 352 

criterion stipulated by the EU DQOs for indicative measurements (REU ≤ 50% for PM2.5), 353 

but not for fixed (i.e., reference) measurements (REU ≤ 25% for PM2.5). This example is 354 

primarily intended to illustrate the magnitude of differences between both methods for this particular application, and 355 

by no means does this observation imply that the FIDAS measurements are inherently problematic. 356 
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 357 

Figure 6. The left plots depict the comparison between the Teledyne T200U (chemiluminescence analyzer) and the reference 358 

method (Teledyne T500 CAPS analyzer) at the Manchester supersite. The plots to the right illustrate PM2.5 measurements 359 

in York, taken with a FIDAS instrument (optical aerosol spectrometer) and a BAM 1020 (beta attenuation monitor), both 360 

equivalent-to-reference methods. While the top plots show the regression (including some typical single-value metrics), 361 

those on the bottom present the REU alongside the DQOs defined by the EU AQ Directive.  362 

Although these two instruments (BAM and Fidas) show a greater concordance between themselves than with sensors 363 

(for the comparison of two sensor systems against the BAM and the Fidas, refer to Fig. S7), the choice of the 364 

measurement method can have a considerable impact on evaluations of this type. This underscores the importance of 365 

adequately characterising the uncertainties of the reference monitor when evaluating sensors. 366 

3.4 Inter-location performance 367 

An extreme example of sensor performance varying due to environmental conditions is when sensors are moved 368 

between locations, as their apparent performance may vary drastically. Fig. 7 displays the REU and regression plots 369 

for four of the same PM2.5 sensor system in two periods: April-June 2022 when the devices were working across the 370 

3 sites (York, Manchester and London), and August-October 2022 when they were all reunited in Manchester. The 371 

RMSE remains reasonably consistent (range 2.27 to 3.47 ppb) between the devices across the periods and locations. 372 

However, for the device that moved from York to Manchester, a change in slope from 0.69 to 0.86 was observed. 373 

Because this device’s slope is consistent with the other units while running in Manchester, this is likely due to the 374 

different sensor responses in the specific environments. The precise cause of this change is not immediately evident 375 

and will be the focus of a follow-up study, but could be due to changes in local conditions (e.g., weather, emissions, 376 

etc.) impacting sensor calibration and/or differences in actual PM2.5 sources and particle characteristics at the sites 377 

(Raheja et al., 2022).  378 
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 379 

Figure 7. Regression (top) and REU (bottom) plots showing data from four PM2.5 sensors (same manufacturer) over 2 time 380 

periods: Apr-Jun 2022 and Aug-Oct 2022. The four devices were in separate locations in the first period, but all deployed 381 

in Manchester in the second. The horizontal dashed lines represent a reference for the PM2.5 DQOs as defined by the EU 382 

AQ Directive (for “fixed” PM2.5 measurements, REU < 25%; for “indicative” PM2.5 measurements, REU < 50%). Readers 383 

are encouraged to consult the specified standard for further details. 384 

A second example of inter-location performance is presented in Fig. 8, showing NO2 data from two sensor systems 385 

(from two different manufacturers, identified as Systems A and B) before (left plots) and after (right plots) they were 386 

moved from Manchester to London in March 2020. Both sensors saw a reduction in agreement with the reference 387 

instrument at the London site compared to Manchester, despite both these sites being classified as urban-background 388 

with reference instrument performance regularly audited by the UK National Physical Laboratory. 389 
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 390 

Figure 8. Comparative analysis of NO2 measurements from two systems (A and B), across two urban settings. The left plots 391 

display Manchester “out-of-box” data product (January to February 2020), while the right plots show London “cal1” data 392 

product (April to May 2020). This “cal1” label does not indicate corrections specific to London's conditions but denotes a 393 

data product from a specific period (as detailed in Figures S2 and S3). The colour gradient represents the density of data 394 

points, with darker shades indicating lower densities and brighter shades signifying higher densities. 395 

The primary distinction between both systems’ behaviour lies in the fact that the sensor located in the top row (Sensor 396 

A), even after being relocated to London, maintains a linear response (albeit slightly more degraded than that observed 397 

in Manchester, as indicated by the R2 and RMSE). In contrast, Sensor B's response becomes significantly noisier upon 398 

relocation to London, as highlighted by the Standard Error (SE) —which represents the remaining error after applying 399 

a perfect bias correction. Despite both systems utilising identical sensing elements, the variance in residuals between 400 

them may stem from the distinct calibration approaches applied by the respective companies. 401 

For cases resembling Sensor A, users might find it beneficial to implement simple linear correction methods (e.g., 402 

using reference instruments if available) or explore other strategies for zero and span correction. A practical and cost-403 

effective approach, for example, is using diffusion tubes for NO2 measurements, as discussed in Section 3.6. 404 

Conversely, in scenarios characterised by high variance in residuals, such as those observed with Sensor B, a-405 

posteriori attempts to apply a simple linear correction are unlikely to result in significant improvement. While more 406 

sophisticated corrections are theoretically feasible, their effectiveness is limited by the end-user’s domain knowledge 407 

and the availability of additional complex data sources. Furthermore, it is important to consider that excessive post-408 

processing may lead to overfitting —a situation where a model excessively conforms to specific patterns in the training 409 

data, resulting in poor performance on new, unseen data (Aula et al., 2022). 410 

3.5 Long-term stability 411 
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The long-term stability of sensor response is also an important facet of its performance, especially for certain use 412 

cases such as multi-year network deployments. There can be multiple causes of long-term changes to sensor response, 413 

for example, particles settling inside the sampling chamber in optical-based sensors(e.g. Hofman et al. (2022)), or the 414 

gradually changing composition of electrochemical cells (e.g. Williams (2020)). How these changes manifest 415 

themselves in the data must be identified if ways to account for them are to be implemented. 416 

Fig. 9 shows the temporal nature of the O3 and NO2 errors (MBE, cRMSE and RMSE) from a sensor system between 417 

February 2020 and October 2022. The O3 shows (Fig. 9a) a gradual increase in the overall measurement error, largely 418 

due to an increase in the MBE. It also shows a distinct seasonality MBE, increasing by a factor of 3-4 between March 419 

and July compared to the August-February period. The cRMSE component shows fluctuations during the study but 420 

only has a small increasing trend. The NO2 system (Fig. 9b) demonstrates a consistently increasing overall error, with 421 

a less pronounced seasonal influence. The bias contributes greatly to the total error (see Section 3.6 for NO2 sensor 422 

correction, Fig. 9c).  423 

 424 

 425 

Figure 9. Seasonal variation of error (as RMSE, red line) of one of the systems belonging to the Main QUANT, decomposed 426 

into cRMSE (in blue) and MBE (in yellow) estimated based on a 40-day (aligning with the sample size recommendation by 427 

the CEN/TS 17660-1:2021 standard for on-field tests) moving window approach with a 1-day slide (i.e., advancing the 428 

calculation 1 day at a time). Panel a) is for O3 measurements, and panel b) is for NO2 (April 2020-Oct 2022). Panel c) is also 429 

for NO2, this time showing the effect of a linear correction using diffusion tubes (see next section for more details). 430 

3.6 Informing end-use applications 431 

Ultimately, for any air pollution monitoring application, the requirements of the task should dictate the measurement 432 

technology options available. For example, if the requirement for a particular measurement is to assess legal 433 

compliance, then lower measurement uncertainty must be a key consideration as the reported values need to be 434 

compared to a limit value. In contrast, if an application aimed to look at long-term trends in pollutants, then absolute 435 

accuracy may not be as important as the long-term stability of sensor response. To realise the potential of air pollution 436 

sensor technologies, end users need to align their specific measurement needs with the capabilities of available 437 

devices. Achieving this necessitates access to unbiased performance data, such as long-term stability and accuracy 438 

across varying conditions, ideally in an easy-to-access and interpret manner. 439 
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Understanding the uncertainty associated with a instrument is essential for recognizing its capabilities and limitations. 440 

Accurate instruments are crucial, especially in areas like public health decision-making, where inaccurate data can 441 

have profound implications (Molina Rueda et al., 2023). Furthermore, instruments that operate autonomously ensure 442 

consistent, uninterrupted data collection, making them more efficient and cost-effective in terms of maintenance and 443 

calibration. Figure 10 illustrates the collective behaviour of NO2 sensors from each of the four companies with more 444 

than two working systems, showcasing their REU (y-axis) versus Data Coverage (DC, x-axis). Both parameters were 445 

calculated for each sensor system using a 40-day moving window approach and then aggregated by brand, ensuring a 446 

comprehensive analysis. This methodology leverages overlapping data from multiple sensors to provide a robust 447 

representation of company-wide sensor performance and aims to prevent biassed interpretations. Both REU and DC 448 

are key criteria within the EU scheme (EU 2008/50/EC) for evaluating the performance of measurement methods, and 449 

are complemented by the CEN/TS 17660-1:2021 specifically for sensors. The latter document defines three different 450 

sensor system tiers. Class 1 NO2 sensors, bounded by the green rectangle (REU < 25% and DC > 90%), offer higher 451 

accuracy than Class 2 sensors (REU < 75% and DC > 50%), delimited by the red rectangle (Class 3 sensors have no 452 

set requirements). Presenting the REU and DC like in Fig. 10 helps users anticipate the performance of sensor systems 453 

—under the assumption that all sensors from the same brand will behave similarly in equivalent environmental 454 

conditions— providing more insight into selecting the appropriate instrument for a given project or study. 455 

 456 

Figure 10. REU vs. DC for 4 sensor system companies measuring NO2, with more than two units working simultaneously 457 

during the WPS (period Nov 2021-Oct 2022, after all companies provided at least one calibrated product). Each heat map 458 

plot (cooler colours for lower densities and warmer colours for higher densities) aggregates the REU and DC from sensors 459 

of the same brand working concurrently. The calculation of these two parameters employ a 40-day (aligning with the sample 460 

size recommendation by the CEN/TS 17660-1:2021 standard for on-field tests) moving window approach with a 1-day slide 461 

(i.e., advancing the calculation 1 day at a time). The green dashed rectangle limits the Data Quality Objectives (DQOs) for 462 

Class 1 sensors, and the red dashed rectangle outlines the DQOs for Class 2 sensors. 463 
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Depending on the nature of the sensor data uncertainty, methods can be implemented to improve certain aspects of 464 

the data quality for a particular application. One such example is the use of distributed networks to estimate sensor 465 

measurement errors, such as that described by (Kim et al., 2018). Depending on the application and available options, 466 

users can access alternative methods to reduce bias, thus enhancing the accuracy of sensor systems and networks. For 467 

example, “Indicative methods”, as defined by the EU AQ Directive, such as diffusion tubes (e.g., NOx, SO2, VOCs, 468 

etc.), can be an option. Specifically, our study leverages diffusion tube data for NO2, illustrating one effective approach 469 

to bias correction using supporting observations, as exemplified in Fig. 9b. These measurements are widely used to 470 

monitor NO2 concentrations in UK urban environments, due to their lower cost (~£5 per tube) and ease of deployment, 471 

but only provide average concentrations over periods of weeks to months (Butterfield et al., 2021). During QUANT, 472 

NO2 diffusion tubes were deployed at the 3 colocation sites (see Section S7 at the Supp. for more details). Combining 473 

these measurements offers the possibility of quantifying the average sensor bias, thus reducing the error on the sensor 474 

measurement whilst maintaining the benefits of its high time-resolution observations. It is important to note that while 475 

bias correction has been applied to the sensor data, the NO2 diffusion tube concentrations used for comparison 476 

purposes must also be adjusted (e.g. following Defra (2022)). Fig. 9c shows the accuracy of the same NO2 sensor data 477 

shown in Fig. 9b but applies a monthly offset calculated as the difference between its monthly average measurement 478 

and that from the diffusion tube (see Figure S8). This shows a dramatic reduction in overall error largely driven by its 479 

bias correction. What remains largely resulting from the cRMSE, i.e. the error variance that might arise from 480 

limitations from the sensing technology itself and/or the conversion algorithms used to transform the raw signals into 481 

the concentration output. To validate the efficacy and reliability of this bias correction method, further long-term 482 

studies are warranted. 483 

The development and communication of methods that improve sensor data quality, ideally in accessible case studies, 484 

would likely increase the successful application of sensor devices for local air quality management. There is also a 485 

need for similar case studies showcasing the successful application of sensor devices for particular monitoring tasks. 486 

An example of this from the QUANT dataset is the use of sensor devices to successfully identify change points in a 487 

pollutant’s concentration profile. These are points in time where the parameters governing the data generation process 488 

are identified to change, commonly the mean or variance, and can arise from human-made or natural phenomena 489 

(Aminikhanghahi and Cook, 2017). Determining when a specific pollutant has changed its temporal nature is a 490 

challenging task as there are a large number of confounding factors that influence atmospheric concentrations, 491 

including but not limited to seasonal factors, environmental conditions (both natural and arising from human 492 

behaviour), and meteorological factors. This challenge has lead to several “deweathering” techniques being proposed 493 

in the literature (Carslaw et al., 2007; Grange and Carslaw, 2019; Ropkins et al., 2022). While change point detection 494 

is highlighted here as a promising application of sensor data, it represents just one of many potential methodologies 495 

that could be explored with the QUANT dataset.  496 
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 497 

Figure 11. NO2 measurements (black solid line) and detrended estimates (blue solid line with 95% confidence interval in 498 

the shaded grey region) from the reference instrument (left panel) and 2 sensor systems (middle and right panels) from 499 

Manchester in 2020. Vertical dashed lines and their corresponding dates indicate identified change points, which 500 

correspond to the introduction of the first national lockdown due to COVID-19 on the 23rd of March 2020. The percentage 501 

in blue represents the relative peak-trough decrease from 5th March to 20th April. 502 

A state-space based deweathering model was applied to NO2 concentrations measured from the sensor systems that 503 

had remained in Manchester throughout 2020 to remove these confounding factors, with the overarching objective to 504 

identify whether the well-documented reduction in ambient NO2 concentrations due to changes in travel patterns 505 

associated with COVID-19 restrictions could be observed in the low-cost sensor systems. To provide a quantifiable 506 

measure of whether a meaningful reduction had occurred, the Bayesian online change-point detection (Adams & 507 

MacKay, 2007) was applied. Of the 8 devices that measured NO2, clear change points corresponding to the 508 

introduction of a lockdown were identified in 2 (Fig.11), demonstrating the potential of these devices to identify long-509 

term trends with appropriate processing, even with only 3 months of training data. 510 

4. Conclusions  511 

Lower-cost air pollution sensor technologies have significant potential to improve our understanding and ability to 512 

manage air pollution issues. Large-scale uptake in the use of these devices for air quality management has, however, 513 

been primarily limited by concerns over data quality and a general lack of a realistic characterisation of the 514 

measurement uncertainties making it difficult to design end uses that make the most of the data information content. 515 

Advances are occurring rapidly, in both the measurement technology and particularly in the data post-processing and 516 

calibration. A challenge with the use of sensor-based devices is that many of the end-use communities do not have 517 

access to extensive reference-grade air pollution measurement capability (Lewis & Edwards, 2016), or in many cases, 518 

expertise in making atmospheric measurements or the technical ability for data post-processing. For this reason, 519 

reliable information on expected sensor performance needs to be available to aid effective end-use applications. Large-520 

scale independent assessments of air sensor technologies are non-trivial and costly, however, making it difficult for 521 

end users to find relevant performance information on current sensor technologies. The QUANT assessment is a multi-522 
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year study across multiple locations, that aims to provide relevant information on the strengths and weaknesses of 523 

commercial air pollution sensors in UK urban environments.  524 

The QUANT sensor systems were installed at two highly instrumented urban background measurement sites, in 525 

Manchester and London, and one roadside monitoring station in York. The study design ensured that multiple devices 526 

were collocated to assess inter-device precision, and devices were also moved between locations and able to test 527 

additional calibration data products to assess and enable developments in sensor performance under realistic end-use 528 

scenarios. A wider participation component of the Main QUANT assessment was also run at the Manchester site to 529 

expand the market representation of devices included in the study, and also to assess recent developments in the field.  530 

A high-level analysis of the dataset has highlighted multiple facets of air pollution sensor performance that will help 531 

inform their future usage. Inter-device precision has been shown to vary, both between different devices of the same 532 

brand and model and over different periods of time, with the most accurate devices generally showing the highest 533 

levels of inter-device precision. The accuracy of the reported data for a particular device can be impacted by a variety 534 

of factors, from the calibrations applied to its location or seasonality. This has important implications for the way 535 

sensor-based technologies are deployed and supports the case made by others (Bittner et al., 2022; Farquhar et al., 536 

2021; Crilley et al., 2018; Williams, 2020; Bi et al., 2020) that practical methods to monitor sensor bias will be crucial 537 

in uses where data accuracy is paramount. Ultimately, this work shows that sensor performance can be highly variable 538 

between different devices and end-users need to be provided with impartial performance data on characteristics such 539 

as accuracy, inter-device precision, long-term drift and calibration transferability in order to decide on the right 540 

measurement tool for their specific application. 541 

In addition to these findings, this overview lays the groundwork for more detailed research to be presented in future 542 

publications. Subsequent analyses will focus on providing a more nuanced understanding of the uncertainty in air 543 

pollution sensor measurements, thus equipping end-users with better insights into the capability of sensor data. Future 544 

studies will delve into specific aspects of air pollution sensor performance: 1) a comprehensive performance 545 

evaluation of PM2.5 data, assessing their accuracy and reliability under different environmental conditions; 2) an in-546 

depth analysis of NO2 measurements, examining their sensitivity and response in various urban environments; and 3) 547 

a detailed investigation into the detection limits of these sensor technologies, targeting their optimised application in 548 

low concentration scenarios. These focused studies are basic steps needed to further advance our understanding of 549 

sensors' capabilities and limitations, ensuring informed and effective application in air quality monitoring. 550 

Supplementary 551 

The supplement related to this article is available online at: 552 

Data availability 553 

The QUANT dataset, accessible at the Centre for Environmental Data Analysis (CEDA) (Lacy et al., 2023; 554 

https://catalogue.ceda.ac.uk/uuid/ae1df3ef736f4248927984b7aa079d2e), is the most extensive collection to date 555 

assessing air pollution sensors' performance in UK urban settings. It encompasses gas and PM sensor data recorded 556 

in the native reporting frequency of each device. The reference data from the three monitoring sites can be found at:  557 

● MAQS: https://data.ceda.ac.uk/badc/osca/data/manchester; 558 

● LAQS: https://www.londonair.org.uk/london/asp/datadownload.asp; 559 
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● YoFi: https://uk-air.defra.gov.uk/data/data_selector. 560 

A comprehensive data descriptor manuscript, detailing the QUANT dataset's collection methods, processing 561 

protocols, accessibility features, and overall structure—including variables, data reporting frequencies, and QA/QC 562 

practices—has been submitted for publication. At the time of this writing, the manuscript is still under review. 563 

A GitHub repository at https://github.com/wacl-york/quant-air-pollution-measurement-errors provides access to 564 

Python and R scripts designed for generating diagnostic visuals and metrics related to the QUANT study, along with 565 

sample analyses using the QUANT dataset. 566 
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